WO2018120211A1 - 一种弧焊控制方法、控制系统及弧焊机器人 - Google Patents
一种弧焊控制方法、控制系统及弧焊机器人 Download PDFInfo
- Publication number
- WO2018120211A1 WO2018120211A1 PCT/CN2016/113918 CN2016113918W WO2018120211A1 WO 2018120211 A1 WO2018120211 A1 WO 2018120211A1 CN 2016113918 W CN2016113918 W CN 2016113918W WO 2018120211 A1 WO2018120211 A1 WO 2018120211A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- time
- welding gun
- air supply
- arcing
- sub
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/095—Monitoring or automatic control of welding parameters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/06—Arrangements or circuits for starting the arc, e.g. by generating ignition voltage, or for stabilising the arc
- B23K9/067—Starting the arc
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/12—Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/16—Arc welding or cutting making use of shielding gas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/32—Accessories
Definitions
- the present invention relates to the field of welding technology, and more particularly to an arc welding control method, and also relates to an arc welding control system and an arc welding robot.
- Arc welding is a widely used welding method, and automatic arc welding is often performed in the industry by an arc welding robot.
- the protective gas to the weld seam, that is, to use gas shielded arc welding.
- the time parameter of the specific pre-set time aspiration is generally required by the user to set the parameters of the arcing command.
- the welding gun is generally controlled to move to the arcing point, and then the welding machine is opened to open the air valve to start blowing the shielding gas, and after the preset time of blowing, the welding machine is started to arc.
- the time required before arcing is longer and the efficiency is lower.
- the first object of the present invention is to provide an arc welding control method, which can effectively solve the problem of long time and low efficiency of pre-gas arc welding, and the second object of the present invention is to provide an arc.
- a welding control system, a third object of the present invention is to provide an arc welding robot.
- the present invention provides the following technical solutions:
- An arc welding control method comprising:
- the preset time is not greater than a difference between the moving time length and the air supply time length;
- the current voltage parameter is sent to the welder and the welder is controlled to arc.
- the preset time is a difference between the moving time length and the air supply time length.
- the method further includes:
- the method before the obtaining the movement time required for the welding gun to move according to the movement track, the method further includes:
- the motion trajectory includes a plurality of sub-motion trajectories connected in series at the beginning and the end; and the obtaining the movement duration required for the movement of the welding gun according to the movement trajectory comprises:
- the sub-time lengths required for the welding gun to move according to the plurality of sub-motion trajectories are respectively acquired, and the sub-time lengths corresponding to the sub-motion trajectories are added to obtain the movement duration.
- the arc welding control method provided by the invention firstly reads the movement trajectory of the welding gun from the starting point to the arcing point; and then obtains the movement time required for the welding gun to move according to the movement trajectory, and when the moving time is longer than the preset aeration period of the pre-airing air supply At the same time, the control torch is moved according to the movement track from the starting point, and the air supply is started at a preset time from the moment until the welding gun moves to the arcing point, and the preset time is not greater than the difference between the moving time and the air supply time.
- the control torch When the moving time is less than or equal to the preset air supply duration of the preset air supply, the control torch is moved according to the movement track from the starting point and the air supply is started at the same time, and the welding gun moves to the arcing point to stop the air supply until the air supply time is reached. At the end of the air supply, the current and voltage parameters are sent to the welder and the welder is controlled to start the arc.
- Tm the length of movement
- Tg the length of the air supply
- the control method provided by the present invention shortens the takt time of the arc welding operation, so that more workpieces can be welded in the same time, and the control efficiency is effectively improved.
- the present invention also provides an arc welding control system comprising:
- a motion track reading module for reading a movement track of the welding torch moving from a starting point to an arcing point
- a moving time acquisition module configured to acquire a moving time required for the welding gun to move according to the motion track
- a processing module configured to determine whether the moving duration is greater than a preset air supply duration of the pre-advanced air supply, and if so, controlling the welding gun to move according to the motion trajectory from the starting point and starting from the starting point with the welding gun At the time of the movement, the air supply is started from the preset time until the welding gun moves to the arcing point, and the preset time is not greater than the difference between the moving time and the air supply time; otherwise, the control station The welding gun starts to move according to the movement trajectory from the starting point and starts to supply air at the same time when the welding gun starts to move from the starting point, and the welding gun moves to the point where the arcing point stops and continues to supply air until the said Length of air supply;
- the arcing module is configured to send a current voltage parameter to the welder and control the welder to start arcing when the air supply ends.
- the method further includes:
- the alarm module is configured to perform an alarm prompt when the welding machine receives the current voltage parameter and does not receive the arcing success feedback signal within a predetermined time after the arcing.
- the method further includes:
- the judging module is configured to judge whether the welder is in a ready state, and if yes, perform a subsequent step; otherwise, an alarm prompt is performed.
- the motion trajectory includes a plurality of sub-motion trajectories connected in series from the beginning to the end;
- the movement duration acquisition module specifically includes a sub-time length acquisition unit and a summation unit;
- the sub-time length acquisition unit is configured to respectively acquire a sub-time length required for the welding gun to move according to the plurality of sub-motion trajectories;
- the summing unit is configured to add the sub-times corresponding to the pieces of the sub-motion trajectories to obtain the movement duration.
- the alarm module is an audible and visual alarm or a voice alarm.
- the takt time of the arc welding operation is shortened, so that more workpieces can be welded in the same time, and the control efficiency is effectively improved.
- the present invention also provides an arc welding robot comprising:
- a communication component for obtaining a motion trajectory of the welding torch moving from a starting point to an arcing point
- a first instruction for acquiring a movement duration required for the welding gun to move according to the movement trajectory; and for storing a second instruction for determining whether the movement duration is greater than a preset air supply duration of the preset advance air supply,
- the welding gun When the moving time is not greater than the preset air supply duration of the preset advance air supply, controlling the welding gun to start moving according to the motion trajectory from the starting point and simultaneously starting air supply at a time when the welding gun starts moving from the starting point, The welding gun moves to a fourth command that continues to supply air until the arcing point stops until the air supply time length is reached; the preset time is not greater than a difference between the moving time length and the air supply time length;
- a first processor configured to retrieve and execute the first instruction
- a second processor configured to retrieve and execute the second instruction
- a third processor configured to retrieve and execute the third instruction or the fourth instruction according to a processing result of the second processor
- a controller configured to: when the third processor executes the third instruction or the fourth instruction, send a current voltage parameter to the welder and control the welder to start arcing.
- the memory is further configured to be stored in the welder to receive The fifth command to give an alarm when the current voltage parameter does not receive the arcing success feedback signal within a predetermined time after the arc is started:
- An alarm device is also included for recalling and executing the fifth command.
- the memory is further configured to store a sixth instruction for determining whether the welder is in a ready state and alarming when the welder is not in a ready state;
- a fourth processor is also included for retrieving and executing the sixth instruction.
- the motion trajectory includes a plurality of sub-motion trajectories connected in series from the beginning to the end;
- the memory is specifically configured to store a sub-time acquisition command for acquiring a sub-time length required for the welding gun to move according to the plurality of sub-motion trajectories, and add the sub-time lengths corresponding to the sub-motion trajectories of each of the sub-motion trajectories to Obtaining a summation instruction of the movement duration;
- the first processor is specifically configured to retrieve and execute the sub-time acquisition instruction and the addition instruction.
- the alarm device is an acousto-optic alarm or a voice alarm.
- FIG. 1 is a schematic flow chart of a specific embodiment of an arc welding control method provided by the present invention
- FIG. 2 is a schematic structural view of a specific embodiment of an arc welding control system provided by the present invention.
- FIG. 3 is a schematic structural view of a specific embodiment of an arc welding robot provided by the present invention.
- the third processor 205 is a controller 206.
- the embodiment of the invention discloses an arc welding control method to shorten the arc welding time and improve the arc welding efficiency.
- FIG. 1 is a schematic flow chart of a specific embodiment of an arc welding control method provided by the present invention.
- the arc welding control method provided by the present invention comprises the following steps:
- the robot control system can first read the movement trajectory of the welding torch moving from the starting point to the starting point, and the reading of the motion trajectory provides a basis for the calculation of the subsequent movement time.
- the specific starting point and the position of the arcing point are set according to the structure of the welding robot and the structure of the workpiece to be welded, and are not specifically limited herein.
- the movement path from the starting point to the arcing point can be specifically programmed in advance.
- the read motion track can be stored to facilitate control of the movement of the subsequent torch.
- the corresponding moving time is obtained by calculation, that is, the moving time required for the welding gun to move from the starting point to the starting point, such as the displacement according to the motion track and the welding torch
- the motion speed is calculated to obtain the length of movement.
- step S3 determining whether the movement duration is greater than the preset air supply duration of the pre-advanced air supply; if yes, proceeding to step S4, otherwise performing step S5;
- the length of the air supply and the length of the air supply are determined.
- the length of the air supply may be a predetermined advance air supply time, and the value may be set according to requirements, which is not specifically limited herein.
- S4 Control the welding gun to move according to the movement track from the starting point and start from the starting point of the welding torch At the time of the movement, the gas is sent to the preset time to start the gas supply until the welding torch moves to the arcing point, and the preset time is not greater than the difference between the moving time and the gas supply time;
- the control welding gun starts to move according to the movement track from the starting point, and starts to delay when the welding gun starts to move from the starting point, and starts to supply air after the delay reaches the preset time, specifically by The welder sends a gas supply signal to start the gas supply.
- the welding torch moves according to the movement trajectory until it moves to the arcing point, and the welding gun stops moving.
- the preset time is not greater than the difference between the moving time and the air supply time. That is, the gas is fed in advance after the preset time is started from the time when the welding gun starts to move from the starting point.
- the time of the early airing is exactly equal to the length of the air supply or the length of the air supply, so that the gas can be used.
- the role of protection is the difference between the moving time and the length of the air supply, that is, when the welding torch moves to the arcing point, the time of pre-airing is equal to the length of the air supply, thereby achieving gas protection purposes while avoiding gas waste.
- the tool center point (TCP) of the front end of the welding gun fixed at the flange end of the robot can be used.
- the tool center point is the action point of the torch movement control, that is, the control TCP point moves from the starting point according to the predetermined trajectory until it moves to the arcing point.
- the control torch When the moving time is not greater than the length of the air supply, that is, less than or equal to the length of the air supply, the control torch is moved according to the movement track from the starting point, and the air is simultaneously supplied at the time when the welding gun starts to move from the starting point, for example, to the welding machine.
- Sending the air supply signal to start air supply the welding gun moves according to the movement track until it moves to the arcing point, and the welding gun stops moving. Since the air supply time is greater than or equal to the moving time, when the air supply time is longer than the moving time, the welding gun moves until the arcing point stops.
- the air supply time When the air supply time is not reached, the air supply is continued until the air supply time is reached.
- the welding gun moves until the arcing point stops, just reaching the air supply time.
- the robot control system can send current and voltage parameters to the welding machine and control the arcing of the welding machine; the moving time is not greater than the air supply.
- the welder sends current and voltage parameters and controls the welder to start arcing.
- the arc welding control method provided by the invention firstly reads the movement trajectory of the welding gun from the starting point to the arcing point; and then obtains the movement time required for the welding gun to move according to the movement trajectory, and when the moving time is longer than the preset aeration period of the pre-airing air supply At the same time, the control torch is moved according to the movement track from the starting point, and the gas is sent from the time when the welding gun starts to move from the starting point, and the gas is moved to the arcing point, and the preset time is not greater than the moving time and the air supply. The difference in duration.
- the control welding gun starts to move according to the movement track from the starting point and starts to supply air at the same time when the welding gun starts to move from the starting point, and the welding gun moves to the starting point and stops to continue to supply air.
- the current and voltage parameters are sent to the welder and the welder is controlled to start arcing.
- Tm the movement time of the welding gun from the starting point according to the movement trajectory to the arcing point
- Tg the length of the air supply
- the control method provided by the present invention shortens the tact time of the arc welding operation, so that more workpieces can be welded in the same time, and the control efficiency is effectively improved.
- the method may further include:
- the control system sends the arcing signal to the welding machine, it further determines whether the arcing success feedback signal is received within the predetermined time. If yes, it indicates that the arcing is successful, otherwise it indicates that the arcing is unsuccessful, and an alarm prompt is given.
- the arcstable signal of the welding machine can be monitored to determine whether the welding machine is successfully arc-started.
- the specific value of the scheduled time can be set according to actual needs, and can be set to 5 seconds.
- the method may further include:
- the state generally refers to the normal connection between the welder and the robot, and the welder can accept commands from the robot (such as welding switch signals, current and voltage parameters, etc.), and can also send status to the robot. According to the need, it can also mean that the components of the welder are normal and fault-free.
- the welder has a built-in module for judging whether it is in the ready state. For the specific structure, please refer to the prior art.
- the motion trajectory may include a plurality of sub-motion trajectories connected in series at the beginning and the end; and the step S2 specifically includes: separately obtaining sub-times required for the welding gun to move according to the plurality of sub-motion trajectories, and trajecting each sub-trajectory The corresponding sub-times are added to obtain the moving time.
- the motion track from the starting point to the arcing point may include a plurality of sub-motion trajectories, and the plurality of sub-motion trajectories are connected end to end.
- the first sub-motion trajectory is from P0 point to P1 point
- the second sub-motion trajectory is from P1 point to P2 point
- the k-th sub-motion trajectory is from Pk-1 point to Pk point, that is, the welding torch is in turn
- the sub-times required for the movement of the welding torch according to the multiple sub-motion trajectories are respectively obtained, and the sub-times corresponding to the respective sub-motion trajectories are added to obtain the movement duration, that is, the duration T1 of the first sub-motion trajectory.
- the control of the advance air supply can be performed by judging the relationship between Tm and Tg. When the welding torch moves, it moves in accordance with each piece of motion trajectory.
- the movement and the air supply of the welding torch are controlled, which can be realized based on the forward-looking command. That is, when the program execution thread resolves to a motion instruction, it does not wait until the motion instruction is executed and then executes downward. Instead, the motion instruction is planned and placed in a track queue and passed to another thread of the program, that is, The interpolation thread processes, and the program execution thread continues to parse the execution instruction until there are already k motion paths in the track queue.
- the movement track of the welding torch from the starting point to the arcing point can be read and stored, and the welding gun is not controlled to move according to the movement track, and the movement of the welding gun is controlled according to the relationship between the movement time and the length of the air supply.
- the torch moves to the arcing point when all the sub-movement trajectories in the trajectory queue are completed.
- control part for extracting the air supply during the arc welding control process is mainly described, and the subsequent control after the arc starting can refer to the prior art.
- the delay is preset to the dwell time after ignition, and the control torch is moved from the arcing point to the arc stop point according to the preset welding path, and the welding is completed.
- S101 Start the arc start instruction, and at this time, there are already k sub-motion tracks that are planned and to be executed by the interpolation thread.
- S102 Check whether the welder is in the ready state. If the welder is not in the ready state, the alarm is directly returned, and the execution of the instruction ends, otherwise the subsequent steps are performed.
- T1 is a motion duration required for the first sub-motion trajectory in the trajectory queue
- T2 is a trajectory queue.
- the motion duration required for the second sub-motion trajectory, and so on, Tk is the motion duration required for the k-th sub-motion trajectory in the trajectory queue.
- Tm>Tg indicating the total time of the track in the track queue, that is, the air supply time when the moving time is longer than the early air supply
- Tm-Tg the time delay Tm-Tg is sent from the current time, and then the track in the track queue is Immediately after the execution, the arc is started, and the gas is supplied in advance Tg before the arc start.
- S108 Detecting the arcing success feedback signal of the welder. If the arcing success signal of the welder is not detected within 5s, the alarm is directly returned, and the execution of the instruction ends.
- the invention also provides an arc welding control system, please refer to FIG. 2, which is provided by the present invention.
- FIG. 2 Schematic diagram of a specific embodiment of the arc welding control system.
- the arc welding control system described below and the arc welding control method described above may be referred to each other.
- an arc welding control system further provided by the present invention includes:
- the motion track reading module 101 is configured to read a movement track of the welding gun moving from a starting point to an arcing point;
- a movement duration acquisition module 102 configured to acquire a movement duration required for the welding gun to move according to a motion trajectory
- the processing module 103 is configured to determine whether the movement duration is greater than a preset air supply duration of the pre-advanced air supply, and if so, control the welding gun to start moving according to the movement trajectory from the starting point and start the air supply at a preset time after the welding gun starts to move from the starting point. Until the welding gun moves to the arcing point, the preset time is not greater than the difference between the moving time and the length of the air supply; otherwise, the control torch starts to move according to the movement track from the starting point and starts to supply air at the same time when the welding gun starts moving from the starting point, the welding torch Move until the arcing point stops and continue to supply air until the air supply time is reached;
- the arcing module 104 is configured to send a current voltage parameter to the welder and control the arcing of the welder when the air supply ends.
- the control method provided by the present invention shortens the tact time of the arc welding operation, so that more workpieces can be welded in the same time, and the control efficiency is effectively improved.
- an alarm module may be further included, configured to perform an alarm prompt when the welding machine receives the current voltage parameter and does not receive the arcing success feedback signal within a predetermined time after the arcing.
- an alarm module configured to perform an alarm prompt when the welding machine receives the current voltage parameter and does not receive the arcing success feedback signal within a predetermined time after the arcing.
- a determination module may be further included for determining whether the welder is in a ready state and prompting an alarm when the welder is not ready.
- the judging module can determine whether the welder is in the ready state by reading the movement track of the welding gun from the starting point to the arcing point, and if so, performing the subsequent step. Otherwise; otherwise, the alarm prompt is directly performed. That is, the state of the welder is judged in advance, and when it is in the ready state, the subsequent steps are performed, and when it is not ready, an alarm prompt is issued to remind the operator to perform corresponding operations, such as checking the welder failure.
- the motion track includes a plurality of sub-motion trajectories connected in series at the beginning and the end;
- the movement duration acquisition module 102 specifically includes a sub-time length acquisition unit and a summation unit; and the sub-time length acquisition unit is configured to respectively acquire the welding gun according to the plurality of sub-motions The sub-time required for the trajectory movement;
- the summing unit is used to add the sub-lengths corresponding to the respective sub-motion trajectories to obtain the movement duration.
- the alarm module is an audible and visual alarm or a voice alarm.
- the sound and light alarm is convenient for reminding the abnormal situation of the remote staff.
- the setting of the voice alarm can intuitively remind the operator of the fault or abnormal situation, so that the relevant personnel can take emergency measures.
- FIG. 3 is a schematic structural view of a specific embodiment of the arc welding robot provided by the present invention.
- the arc welding robot described below and the arc welding control method described above can be referred to each other.
- an arc welding robot further provided by the present invention includes:
- the communication component 201 is configured to acquire a motion track of the welding gun moving from a starting point to an arcing point;
- the memory 202 is configured to store a first instruction for acquiring a movement duration required for the welding gun to move according to the movement track; and to store a second instruction for determining whether the movement duration is greater than a preset air supply duration of the preset advance air supply,
- the control welding gun starts to move according to the movement track from the starting point and starts to supply air when the welding gun starts moving from the starting point until the welding gun moves to the arcing point.
- the control welding gun starts to move according to the movement track from the starting point and starts to supply air at the same time when the welding gun starts to move from the starting point, and the welding gun moves to the arcing point to stop and then continues to supply air until reaching.
- a fourth command for the length of the air supply is not greater than the difference between the moving time and the length of the air supply;
- the first processor 203 is configured to retrieve and execute the first instruction
- a second processor 204 configured to retrieve and execute a second instruction
- the third processor 205 is configured to retrieve and execute according to the processing result of the second processor 204. a third instruction or a fourth instruction;
- the controller 206 is configured to send a current voltage parameter to the welder and control the welder to start arcing when the third processor 205 executes the third command or the fourth command.
- the memory 202 is further configured to store a fifth instruction for performing an alarm prompt when the welding machine receives the current voltage parameter and does not receive the arcing success feedback signal within a predetermined time after the arcing:
- An alarm device is also included for recalling and executing the fifth command.
- the memory 202 is further configured to store a sixth instruction for determining whether the welder is in a ready state and alarming when the welder is not in a ready state;
- a fourth processor is also included for retrieving and executing the sixth instruction.
- the motion trajectory may include a plurality of sub-motion trajectories connected in series from the beginning to the end;
- the memory 202 is configured to store a sub-time acquisition command for acquiring a sub-time length required for the welding gun to move according to the plurality of sub-motion trajectories, and add the sub-time lengths corresponding to the respective sub-motion trajectories to obtain an addition instruction of the movement duration;
- the first processor 203 is specifically configured to retrieve and execute the sub-time acquisition instruction and the addition instruction.
- the alarm device is an audible and visual alarm or a voice alarm.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Arc Welding Control (AREA)
Abstract
一种弧焊控制方法,包括:读取焊枪由起始点移动至起弧点的运动轨迹(S1);获取焊枪按运动轨迹移动所需的移动时长(S2);判断移动时长是否大于预设提前送气的送气时长(S3),若是,则控制焊枪由起始点开始按照运动轨迹移动并以该时刻起延时预设时间开始送气,直至焊枪移动至起弧点,预设时间不大于移动时长与送气时长的差值(S4);若否,控制焊枪由起始点开始按照运动轨迹移动并在该时刻同时开始送气,焊枪移动至起弧点停止后继续送气直至达到送气时长(S5);当送气结束时,向焊机发送电流电压参数并控制焊机起弧(S6)。还提供了一种弧焊提前送气的控制系统及弧焊机器人。上述控制方法和系统及弧焊机器人,缩短了弧焊作业的节拍时间,有效提高了控制效率。
Description
本发明涉及焊接技术领域,更具体地说,涉及一种弧焊控制方法,还涉及一种弧焊控制系统及弧焊机器人。
弧焊是一种应用广泛的焊接方式,工业上常通过弧焊机器人进行自动弧焊。在机器人控制焊机进行弧焊作业时,为了提高焊缝质量,避免材质氧化,需要对焊缝吹保护气,也就是采用气体保护电弧焊。而为了保证气管中的保护气体有较高的纯度,在控制焊机起弧之前预设时间就需要控制焊机打开气阀开始吹保护气,从而将气管中靠近吹气口的参有杂质的气体排空。具体提前预设时间送气的时间参数一般需要用户通过起弧指令的参数进行设置。
现有弧焊控制方法中,一般先控制焊枪移动至起弧点,而后控制焊机打开气阀开始吹保护气,吹气预设时间后则控制焊机起弧。上述过程中,起弧前所需时间较长,效率较低。
综上所述,如何有效地解决提前送气弧焊费时长、效率低等问题,是目前本领域技术人员急需解决的问题。
发明内容
有鉴于此,本发明的第一个目的在于提供一种弧焊控制方法,该方法可以有效地解决提前送气弧焊费时长、效率低的问题,本发明的第二个目的是提供一种弧焊控制系统,本发明的第三个目的是提供一种弧焊机器人。
为了达到上述第一个目的,本发明提供如下技术方案:
一种弧焊控制方法,包括:
读取焊枪由起始点移动至起弧点的运动轨迹;
获取所述焊枪按所述运动轨迹移动所需的移动时长;
判断所述移动时长是否大于预设提前送气的送气时长,若是,则控制
所述焊枪由所述起始点开始按照所述运动轨迹移动并以所述焊枪由所述起始点开始移动的时刻起延时预设时间开始送气,直至所述焊枪移动至所述起弧点,所述预设时间不大于所述移动时长与所述送气时长的差值;
若否,控制所述焊枪由所述起始点开始按照所述运动轨迹移动并在所述焊枪由所述起始点开始移动的时刻同时开始送气,所述焊枪移动至所述起弧点停止后继续送气直至达到所述送气时长;
当送气结束时,向焊机发送电流电压参数并控制所述焊机起弧。
优选地,上述弧焊控制方法中,所述预设时间为所述移动时长与所述送气时长的差值。
优选地,上述弧焊控制方法中,所述向焊机发送电流电压参数并控制所述焊机起弧后,还包括:
当预定时间内未接收到起弧成功反馈信号时,进行报警提示。
优选地,上述弧焊控制方法中,所述获取所述焊枪按所述运动轨迹移动所需的移动时长之前,还包括:
判断所述焊机是否处于就绪状态,若是,则执行后续步骤;否则,进行报警提示。
优选地,上述弧焊控制方法中,所述运动轨迹包括首尾依次相连的多条子运动轨迹;所述获取所述焊枪按所述运动轨迹移动所需的移动时长,具体包括:
分别获取所述焊枪按多条所述子运动轨迹移动所需的子时长,并将各条所述子运动轨迹对应的子时长相加,以获得所述移动时长。
应用本发明提供的弧焊控制方法,首先读取焊枪由起始点移动至起弧点的运动轨迹;而后获取焊枪按运动轨迹移动所需的移动时长,当移动时长大于预设提前送气的送气时长时,则控制焊枪由起始点开始按照运动轨迹移动,并以该时刻起延时预设时间开始送气,直至焊枪移动至起弧点,预设时间不大于移动时长与送气时长的差值。当移动时长小于或等于预设提前送气的送气时长时,则控制焊枪由起始点开始按照运动轨迹移动并在该时刻同时开始送气,焊枪移动至起弧点停止后继续送气直至达到送气时长,当送气结束时,向焊机发送电流电压参数并控制焊机起弧。上述过程
中,若焊枪由起始点按照运动轨迹移动至起弧点的移动时长记为Tm,送气时长记为Tg。则在移动时长大于预设提前送气的送气时长的情况下,起弧前所需时长为Tm,而在移动时长小于或等于预设提前送气的送气时长时,起弧前所需时长为Tg,因而无论何种情况均比现有技术中的控制方式所需时间短。综上所述,本发明提供的控制方法缩短了弧焊作业的节拍时间,使得在相同的时间内可以对更多的工件进行焊接作业,有效提高了控制效率。
为了达到上述第二个目的,本发明还提供了一种弧焊控制系统,包括:
运动轨迹读取模块,用于读取焊枪由起始点移动至起弧点的运动轨迹;
移动时长获取模块,用于获取所述焊枪按所述运动轨迹移动所需的移动时长;
处理模块,用于判断所述移动时长是否大于预设提前送气的送气时长,若是,则控制所述焊枪由所述起始点开始按照所述运动轨迹移动并以所述焊枪由所述起始点开始移动的时刻起延时预设时间开始送气,直至所述焊枪移动至所述起弧点,所述预设时间不大于所述移动时长与所述送气时长的差值;否则,所述控制所述焊枪由所述起始点开始按照所述运动轨迹移动并在所述焊枪由所述起始点开始移动的时刻同时开始送气,所述焊枪移动至所述起弧点停止后继续送气直至达到所述送气时长;
起弧模块,当送气结束时用于向焊机发送电流电压参数并控制所述焊机起弧。
优选地,上述弧焊控制系统中,还包括:
报警模块,用于在所述焊机接收电流电压参数并起弧后预定时间内未接收到起弧成功反馈信号时,进行报警提示。
优选地,上述弧焊控制系统中,还包括:
判断模块,用于判断所述焊机是否处于就绪状态,若是,则执行后续步骤;否则,进行报警提示。
优选地,上述弧焊控制系统中,所述运动轨迹包括由首尾依次相连的多条子运动轨迹;所述移动时长获取模块具体包括子时长获取单元和加和单元;
所述子时长获取单元用于分别获取所述焊枪按多条所述子运动轨迹移动所需的子时长;
所述加和单元用于将各条所述子运动轨迹对应的子时长相加,以获得所述移动时长。
优选地,上述弧焊控制系统中,所述报警模块为声光报警器或语音报警器。
应用本发明提供的弧焊控制系统,缩短了弧焊作业的节拍时间,使得在相同的时间内可以对更多的工件进行焊接作业,有效提高了控制效率。
为了达到上述第三个目的,本发明还提供了一种弧焊机器人,包括:
通讯组件,用于获取焊枪由起始点移动至起弧点的运动轨迹;
存储器,用于存储获取所述焊枪按所述运动轨迹移动所需的移动时长的第一指令;并用于存储判断所述移动时长是否大于预设提前送气的送气时长的第二指令,
在所述移动时长大于预设提前送气的送气时长时,控制所述焊枪由所述起始点开始按照所述运动轨迹移动并以所述焊枪由所述起始点开始移动的时刻起延时预设时间开始送气,直至所述焊枪移动至所述起弧点的第三指令;
在所述移动时长不大于预设提前送气的送气时长时,控制所述焊枪由所述起始点开始按照所述运动轨迹移动并在所述焊枪由所述起始点开始移动的时刻同时开始送气,所述焊枪移动至所述起弧点停止后继续送气直至达到所述送气时长的第四指令;所述预设时间不大于所述移动时长与所述送气时长的差值;
第一处理器,用于调取并执行所述第一指令;
第二处理器,用于调取并执行所述第二指令;
第三处理器,用于根据所述第二处理器的处理结果,调取并执行所述第三指令或所述第四指令;
控制器,用于在所述第三处理器执行完毕所述第三指令或所述第四指令时,向焊机发送电流电压参数并控制所述焊机起弧。
优选地,上述弧焊机器人中,所述存储器还用于存储在所述焊机接收
电流电压参数并起弧后预定时间内未接收到起弧成功反馈信号时,进行报警提示的第五指令:
还包括报警装置,用于调取并执行所述第五指令。
优选地,上述弧焊机器人中,所述存储器还用于存储判断所述焊机是否处于就绪状态,并在所述焊机未处于就绪状态时报警的第六指令;
还包括第四处理器,用于调取并执行所述第六指令。
优选地,上述弧焊机器人中,所述运动轨迹包括由首尾依次相连的多条子运动轨迹;
所述存储器,具体用于存储分别获取所述焊枪按多条所述子运动轨迹移动所需的子时长的子时长获取指令,及将各条所述子运动轨迹对应的子时长相加,以获得所述移动时长的加和指令;
所述第一处理器,具体用于调取并执行所述子时长获取指令和所述加和指令。
优选地,上述弧焊机器人中,所述报警装置为声光报警器或语音报警器。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明提供的弧焊控制方法一种具体实施方式的流程示意图;
图2为本发明提供的弧焊控制系统一种具体实施方式的结构示意图;
图3为本发明提供的弧焊机器人一种具体实施方式的结构示意图。
附图中标记如下:
运动轨迹读取模块101,移动时长获取模块102,处理模块103,起弧模块104;通讯组件201,存储器202,第一处理器203,第二处理器204,
第三处理器205,控制器206。
本发明实施例公开了一种弧焊控制方法,以缩短弧焊时间,提高弧焊效率。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,图1为本发明提供的弧焊控制方法一种具体实施方式的流程示意图。
在一种具体实施方式中,本发明提供的弧焊控制方法包括以下步骤:
S1:读取焊枪由起始点移动至起弧点的运动轨迹;
机器人控制系统可以首先读取焊枪由起始点移动至起弧点的运动轨迹,运动轨迹的读取为后续移动时长的计算提供依据。具体起始点及起弧点的位置需根据焊接机器人结构及待焊接工件的结构等设置,此处不作具体限定。起始点至起弧点的移动路径具体可以通过预先程序设定。优选的,可以将读取的运动轨迹存储,进而便于后续焊枪的移动的控制。
S2:获取焊枪按运动轨迹移动所需的移动时长;
根据读取的起始点至起弧点的运动轨迹,通过计算等方式获取对应的移动时长,也就是焊枪由起始点移动至起弧点所需的移动时长,具体如根据运动轨迹的位移及焊枪的运动速度计算获得移动时长。
S3:判断移动时长是否大于预设提前送气的送气时长;若是,则执行步骤S4,否则执行步骤S5;
判断移动时长与送气时长的大小,送气时长具体可以为预设的提前送气时间,其数值大小可根据需要进行设置,此处不作具体限定。
S4:控制焊枪由起始点开始按照运动轨迹移动并以焊枪由起始点开始
移动的时刻起延时预设时间开始送气,直至焊枪移动至起弧点,预设时间不大于移动时长与送气时长的差值;
当移动时长大于送气时长时,则控制焊枪由起始点开始按照运动轨迹移动,同时以焊枪由起始点开始移动的时刻起开始延时,当延时达到预设时间后开始送气,具体可以通过向焊机发送送气信号进而开始送气。焊枪按照运动轨迹移动,直至移动至起弧点,焊枪停止移动,预设时间不大于移动时长与送气时长的差值。也就是以焊枪由起始点开始移动的时刻起开始延时预设时间后提前送气,当焊枪移动至起弧点停止时,提前送气的时间正好等于送气时长或大于送气时长,因而能够起到气体保护的作用。优选的,预设时间为移动时长与送气时长的差值,也就是焊枪移动至起弧点时,提前送气的时间等于送气时长,因而达到气体保护目的的同时,避免了气体浪费。
具体的,可以以机器人法兰端固定的焊枪前端的工具中心点(Tool Center Point,TCP)。工具中心点为焊枪移动控制的作用点,也就是控制TCP点由起始点开始按照预定轨迹移动,直至移动至起弧点。
S5:控制焊枪由起始点开始按照运动轨迹移动并在焊枪由起始点开始移动的时刻同时开始送气,焊枪移动至起弧点停止后继续送气直至达到送气时长。
当移动时长不大于送气时长,也就是小于或等于送气时长时,则控制焊枪由起始点开始按照运动轨迹移动,并在焊枪由起始点开始移动的时刻起同时进行送气,具体如通过向焊机发送送气信号以开始送气,焊枪按照运动轨迹移动直至移动至起弧点,焊枪停止移动,由于送气时长大于或等于移动时长,当送气时长大于移动时长时,则焊枪移动至起弧点停止时仍未达到送气时长,故继续送气直至达到送气时长;而当送气时长与移动时长相等时,则焊枪移动至起弧点停止时,刚好达到送气时长。
S6:当送气结束时,向焊机发送电流电压参数并控制焊机起弧。
在移动时长大于送气时长的情况下,当焊枪移动至起弧点停止时则达到送气时长,机器人的控制系统可以向焊机发送电流、电压参数并控制焊机起弧;在移动时长不大于送气时长的情况下,则当达到送气时长时,向
焊机发送电流、电压参数并控制焊机起弧。
应用本发明提供的弧焊控制方法,首先读取焊枪由起始点移动至起弧点的运动轨迹;而后获取焊枪按运动轨迹移动所需的移动时长,当移动时长大于预设提前送气的送气时长时,则控制焊枪由起始点开始按照运动轨迹移动,并以焊枪由起始点开始移动的时刻起延时预设时间开始送气,直至焊枪移动至起弧点,预设时间不大于移动时长与送气时长的差值。当移动时长小于或等于预设提前送气的送气时长时,则控制焊枪由起始点开始按照运动轨迹移动并在焊枪由起始点开始移动的时刻同时开始送气,焊枪移动至起弧点停止后继续送气直至达到送气时长,向焊机发送电流电压参数并控制焊机起弧。上述过程中,若焊枪由起始点按照运动轨迹移动至起弧点的移动时长记为Tm,送气时长记为Tg。则在移动时长大于预设提前送气的送气时长的情况下,起弧前所需时长为Tm,而在移动时长小于或等于预设提前送气的送气时长时,起弧前所需时长为Tg,因而无论何种情况均比现有技术中的控制方式所需时间短。综上,本发明提供的控制方法缩短了弧焊作业的节拍时间,使得在相同的时间内可以对更多的工件进行焊接作业,有效提高了控制效率。
进一步地,上述步骤S6之后,还可以包括:
当预定时间内未接收到起弧成功反馈信号时,进行报警提示。当控制系统向焊机发送起弧信号后,进一步判断预定时间内是否收到起弧成功反馈信号,若是则表明起弧成功,否则表明起弧未成功,则进行报警提示。具体可以监视焊机的arcstable信号,以判断焊机是否起弧成功,具体的判断原理请参考现有技术,此处不再赘述。预定时间的具体数值可以根据实际需要进行设置,具体可以设置为5秒。
更进一步地,上述步骤S1之前,还可以包括:
判断焊机是否处于就绪状态,若是,则执行后续步骤;否则,进行报警提示。也就是预先对焊机的状态进行判断,当其处于就绪状态时再执行后续步骤,而当其未就绪时则进行报警提示,以提醒操作人员进行相应操作,如检查焊机故障等。具体可以通过控制报警装置进行报警提示,报警装置具体可以为声光报警器或语音播报器等。需要说明的是,上述就绪状
态一般指焊机与机器人通讯连接正常,进而焊机可以接受机器人发出的指令(如焊接开关信号、电流电压参数等设定信号),也可以发送状态至机器人。根据需要也可以指焊机各部件正常、无故障,通常焊机内置有判断其是否处于就绪状态的模块,具体结构请参考现有技术。
在上述各实施例的基础上,运动轨迹可以包括首尾依次相连的多条子运动轨迹;则上述步骤S2具体包括:分别获取焊枪按多条子运动轨迹移动所需的子时长,并将各条子运动轨迹对应的子时长相加,以获得移动时长。起始点至起弧点间的运动轨迹可以包括多条子运动轨迹,多条子运动轨迹首尾依次相连。如第一条子运动轨迹为由P0点至P1点,第二条子运动轨迹为由P1点至P2点,依此第k条子运动轨迹为由Pk-1点至Pk点,也就是焊枪依次按照各条子运动轨迹分别运动至P1点、P2点直至Pk点,即起弧点。根据各条子运动轨迹,分别获取焊枪按多条子运动轨迹移动所需的子时长,并将各条子运动轨迹对应的子时长加和获得移动时长,也就是第一条子运动轨迹的时长T1,第二条子运动轨迹的时长T2,直至第k条子运动轨迹的时长Tk,则移动时长Tm=T1+T2+T3……Tk。进而后续可以通过判断Tm与Tg的关系进行提前送气的控制。焊枪运动时依次按照各条子运动轨迹移动。
上述控制过程中,通过先读取焊枪由起始点至起弧点的移动轨迹,通过判断对应的移动时长与送气时长的关系,再控制焊枪的移动及送气,具体可以基于前瞻指令以实现。也就是当程序执行线程解析到一条运动指令时,不会等到该运动指令执行完毕再向下执行,而是将该运动指令规划好后放到一个轨迹队列中交由程序的另一个线程,即插补线程进行处理,而程序执行线程则会继续向下解析执行指令直到轨迹队列中已经存在k条子运动轨迹为止。也就是说如果设置前瞻指令条数为k,则轨迹队列中就始终会存在k条待执行的运动轨迹。通过上述前瞻指令,能够先读取焊枪由起始点至起弧点的移动轨迹并将其存储,而先不控制焊枪按照该移动轨迹移动,根据移动时长与送气时长的关系,控制焊枪移动时则通过调取轨迹队列中存储的k条子运动轨迹,当轨迹列队中的子移动轨迹全部执行完毕时则焊枪移动至起弧点。
上述各实施例中主要说明了弧焊控制过程中提取送气的控制部分,对于起弧后的后续控制可参考现有技术。如成功起弧后,延时预设引燃后停留时间,控制焊枪由起弧点按照预设焊接路径移动至停弧点,焊接完成。
以下以一个具体实施例说明本发明通过的弧焊控制方法:
S101:开始执行起弧指令,此时轨迹队列中已经存在k条规划好并待插补线程执行的子运动轨迹。
S102:检查焊机是否处于就绪状态,若焊机不处于就绪状态,则直接报警返回,指令执行结束,否则执行后续步骤。
S103:向焊机发送机器人就绪信号。
S104:获取当前轨迹队列中所有子运动轨迹的总时长,即移动时长Tm=T1+T2+…+Tk,其中T1为轨迹队列中的第1条子运动轨迹所需的运动时长,T2为轨迹队列中的第2条子运动轨迹所需的运动时长,依次类推,Tk为轨迹队列中的第k条子运动轨迹所需的运动时长。
S105:如果Tm>Tg,说明轨迹队列中的轨迹总时间,也就是移动时长长于提前送气的送气时间,那么从当前时间算起,延时Tm-Tg时长后送气,然后轨迹队列中的轨迹都执行完后立即起弧,实现起弧前提前Tg时长送气。如果Tm<=Tg,则提前送气时间长于轨迹队列中的总时间,因而立即启动送气,在轨迹队列中的轨迹都执行完毕时经过的时间为Tm,尚未达到起弧指令中要求的提前送气时间Tg,因而继续延时Tg-Tm时间后再进行起弧动作,从而达到提前送气时间Tg。
S106:向焊机发送电流电压参数。
S107:向焊机发送起弧信号。
S108:检测焊机的起弧成功反馈信号,如果5s内未检测到焊机的起弧成功信号,则直接报警返回,指令执行结束。
S109:检测到起弧成功信号后,延时预设引燃后停留时间,之后起弧指令执行完毕,继续执行下一条运动指令,也就是焊缝对应的运动指令进行焊接作业。
本发明还提供了一种弧焊控制系统,请参阅图2,图2为本发明提供
的弧焊控制系统一种具体实施方式的结构示意图。下文描述的弧焊控制系统与上文描述的弧焊控制方法可相互对应参照。
在一种具体实施方式中,本发明还提供的一种弧焊控制系统包括:
运动轨迹读取模块101,用于读取焊枪由起始点移动至起弧点的运动轨迹;
移动时长获取模块102,用于获取焊枪按运动轨迹移动所需的移动时长;
处理模块103,用于判断移动时长是否大于预设提前送气的送气时长,若是,则控制焊枪由起始点开始按照运动轨迹移动并以焊枪由起始点开始移动的时刻起延时预设时间开始送气,直至焊枪移动至起弧点,预设时间不大于移动时长与送气时长的差值;否则,控制焊枪由起始点开始按照运动轨迹移动并在焊枪由起始点开始移动的时刻同时开始送气,焊枪移动至起弧点停止后继续送气直至达到送气时长;
起弧模块104,用于当送气结束时向焊机发送电流电压参数并控制焊机起弧。
应用本发明提供的弧焊控制系统,若焊枪由起始点按照运动轨迹移动至起弧点的移动时长记为Tm,送气时长记为Tg。则在移动时长大于预设提前送气的送气时长的情况下,起弧前所需时长为Tm,而在移动时长小于或等于预设提前送气的送气时长时,起弧前所需时长为Tg,因而无论何种情况均比现有技术中的控制方式所需时间短。综上,本发明提供的控制方法缩短了弧焊作业的节拍时间,使得在相同的时间内可以对更多的工件进行焊接作业,有效提高了控制效率。
进一步地,还可以包括报警模块,用于在焊机接收电流电压参数并起弧后预定时间内未接收到起弧成功反馈信号时,进行报警提示。具体预定时间的设置、起弧成功反馈信号的设置等请参考上述弧焊控制方法中的相关表述,此处不再赘述。
更进一步地,还可以包括判断模块,用于判断焊机是否处于就绪状态,并在焊机未就绪时进行报警提示。判断模块可以在读取焊枪由起始点移动至起弧点的运动轨迹,判断焊机是否处于就绪状态,若是,则执行后续步
骤;否则,直接进行报警提示。也就是预先对焊机的状态进行判断,当其处于就绪状态时再执行后续步骤,而当其未就绪时则进行报警提示,以提醒操作人员进行相应操作,如检查焊机故障等。
在上述各实施例的基础上,运动轨迹包括首尾依次相连的多条子运动轨迹;移动时长获取模块102具体包括子时长获取单元和加和单元;子时长获取单元用于分别获取焊枪按多条子运动轨迹移动所需的子时长;加和单元用于将各条子运动轨迹对应的子时长相加,以获得移动时长。
具体的,报警模块为声光报警器或语音报警器。通过声光报警器便于提醒远距离工作人员异常情况,通过语音报警器的设置则能够直观的提醒操作人员故障或异常情况,便于相关人员采取紧急措施。
本发明还提供了一种弧焊机器人,请参阅图3,图3为本发明提供的弧焊机器人一种具体实施方式的结构示意图。下文描述的弧焊机器人与上文描述的弧焊控制方法可相互对应参照。
在一种具体实施方式中,本发明还提供的一种弧焊机器人包括:
通讯组件201,用于获取焊枪由起始点移动至起弧点的运动轨迹;
存储器202,用于存储获取焊枪按运动轨迹移动所需的移动时长的第一指令;并用于存储判断移动时长是否大于预设提前送气的送气时长的第二指令,
在移动时长大于预设提前送气的送气时长时,控制焊枪由起始点开始按照运动轨迹移动并以焊枪由起始点开始移动的时刻起延时预设时间开始送气,直至焊枪移动至起弧点的第三指令;
在移动时长不大于预设提前送气的送气时长时,控制焊枪由起始点开始按照运动轨迹移动并在焊枪由起始点开始移动的时刻同时开始送气,焊枪移动至起弧点停止后继续送气直至达到送气时长的第四指令;预设时间不大于移动时长与送气时长的差值;
第一处理器203,用于调取并执行第一指令;
第二处理器204,用于调取并执行第二指令;
第三处理器205,用于根据第二处理器204的处理结果,调取并执行
第三指令或第四指令;
控制器206,用于在第三处理器205执行完毕第三指令或第四指令时,向焊机发送电流电压参数并控制焊机起弧。
进一步地,存储器202还用于存储在焊机接收电流电压参数并起弧后预定时间内未接收到起弧成功反馈信号时,进行报警提示的第五指令:
还包括报警装置,用于调取并执行第五指令。
更进一步地,存储器202还用于存储判断焊机是否处于就绪状态,并在焊机未处于就绪状态时报警的第六指令;
还包括第四处理器,用于调取并执行第六指令。
在上述各实施例的基础上,运动轨迹可以包括由首尾依次相连的多条子运动轨迹;
存储器202,具体用于存储分别获取焊枪按多条子运动轨迹移动所需的子时长的子时长获取指令,及将各条子运动轨迹对应的子时长相加,以获得移动时长的加和指令;
第一处理器203,具体用于调取并执行子时长获取指令和加和指令。
进一步地,报警装置为声光报警器或语音报警器。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
Claims (15)
- 一种弧焊控制方法,其特征在于,包括:读取焊枪由起始点移动至起弧点的运动轨迹;获取所述焊枪按所述运动轨迹移动所需的移动时长;判断所述移动时长是否大于预设提前送气的送气时长,若是,则控制所述焊枪由所述起始点开始按照所述运动轨迹移动,并以所述焊枪由所述起始点开始移动的时刻起延时预设时间开始送气,直至所述焊枪移动至所述起弧点,所述预设时间不大于所述移动时长与所述送气时长的差值;若否,控制所述焊枪由所述起始点开始按照所述运动轨迹移动并在所述焊枪由所述起始点开始移动的时刻同时开始送气,所述焊枪移动至所述起弧点停止后继续送气直至达到所述送气时长;当送气结束时,向焊机发送电流电压参数并控制所述焊机起弧。
- 根据权利要求1所述的弧焊控制方法,其特征在于,所述预设时间为所述移动时长与所述送气时长的差值。
- 根据权利要求2所述的弧焊控制方法,其特征在于,所述向焊机发送电流电压参数并控制所述焊机起弧后,还包括:当预定时间内未接收到起弧成功反馈信号时,进行报警提示。
- 根据权利要求3所述的弧焊控制方法,其特征在于,所述获取所述焊枪按所述运动轨迹移动所需的移动时长之前,还包括:判断所述焊机是否处于就绪状态,若是,则执行后续步骤;否则,进行报警提示。
- 根据权利要求1-4任一项所述的弧焊控制方法,其特征在于,所述运动轨迹包括首尾依次相连的多条子运动轨迹;所述获取所述焊枪按所述运动轨迹移动所需的移动时长,具体包括:分别获取所述焊枪按多条所述子运动轨迹移动所需的子时长,并将各条所述子运动轨迹对应的子时长相加,以获得所述移动时长。
- 一种弧焊控制系统,其特征在于,包括:运动轨迹读取模块,用于读取焊枪由起始点移动至起弧点的运动轨迹;移动时长获取模块,用于获取所述焊枪按所述运动轨迹移动所需的移 动时长;处理模块,用于判断所述移动时长是否大于预设提前送气的送气时长,若是,则控制所述焊枪由所述起始点开始按照所述运动轨迹移动并以所述焊枪由所述起始点开始移动的时刻起延时预设时间开始送气,直至所述焊枪移动至所述起弧点,所述预设时间不大于所述移动时长与所述送气时长的差值;否则,所述控制所述焊枪由所述起始点开始按照所述运动轨迹移动并在所述焊枪由所述起始点开始移动的时刻同时开始送气,所述焊枪移动至所述起弧点停止后继续送气直至达到所述送气时长;起弧模块,用于当送气结束时向焊机发送电流电压参数并控制所述焊机起弧。
- 根据权利要求6所述的弧焊控制系统,其特征在于,还包括:报警模块,用于在所述焊机接收电流电压参数并起弧后预定时间内未接收到起弧成功反馈信号时,进行报警提示。
- 根据权利要求6所述的弧焊控制系统,其特征在于,还包括:判断模块,用于判断所述焊机是否处于就绪状态,并在所述焊机未就绪时进行报警提示。
- 根据权利要求6-8任一项所述的弧焊控制系统,其特征在于,所述运动轨迹包括由首尾依次相连的多条子运动轨迹;所述移动时长获取模块具体包括子时长获取单元和加和单元;所述子时长获取单元用于分别获取所述焊枪按多条所述子运动轨迹移动所需的子时长;所述加和单元用于将各条所述子运动轨迹对应的子时长相加,以获得所述移动时长。
- 根据权利要求9所述的弧焊控制系统,其特征在于,所述报警模块为声光报警器或语音报警器。
- 一种弧焊机器人,其特征在于,包括:通讯组件,用于获取焊枪由起始点移动至起弧点的运动轨迹;存储器,用于存储获取所述焊枪按所述运动轨迹移动所需的移动时长的第一指令;并用于存储判断所述移动时长是否大于预设提前送气的送气 时长的第二指令,在所述移动时长大于预设提前送气的送气时长时,控制所述焊枪由所述起始点开始按照所述运动轨迹移动并以所述焊枪由所述起始点开始移动的时刻起延时预设时间开始送气,直至所述焊枪移动至所述起弧点的第三指令;在所述移动时长不大于预设提前送气的送气时长时,控制所述焊枪由所述起始点开始按照所述运动轨迹移动并在所述焊枪由所述起始点开始移动的时刻同时开始送气,所述焊枪移动至所述起弧点停止后继续送气直至达到所述送气时长的第四指令;所述预设时间不大于所述移动时长与所述送气时长的差值;第一处理器,用于调取并执行所述第一指令;第二处理器,用于调取并执行所述第二指令;第三处理器,用于根据所述第二处理器的处理结果,调取并执行所述第三指令或所述第四指令;控制器,用于在所述第三处理器执行完毕所述第三指令或所述第四指令时,向焊机发送电流电压参数并控制所述焊机起弧。
- 根据权利要求11所述的弧焊机器人,其特征在于,所述存储器还用于存储在所述焊机接收电流电压参数并起弧后预定时间内未接收到起弧成功反馈信号时,进行报警提示的第五指令:还包括报警装置,用于调取并执行所述第五指令。
- 根据权利要求11所述的弧焊机器人,其特征在于,所述存储器还用于存储判断所述焊机是否处于就绪状态,并在所述焊机未处于就绪状态时报警的第六指令;还包括第四处理器,用于调取并执行所述第六指令。
- 根据权利要求11-13任一项所述的弧焊机器人,其特征在于,所述运动轨迹包括由首尾依次相连的多条子运动轨迹;所述存储器,具体用于存储分别获取所述焊枪按多条所述子运动轨迹移动所需的子时长的子时长获取指令,及将各条所述子运动轨迹对应的子时长相加,以获得所述移动时长的加和指令;所述第一处理器,具体用于调取并执行所述子时长获取指令和所述加和指令。
- 根据权利要求14所述的弧焊机器人,其特征在于,所述报警装置为声光报警器或语音报警器。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680039126.7A CN108064192A (zh) | 2016-12-30 | 2016-12-30 | 一种弧焊控制方法、控制系统及弧焊机器人 |
PCT/CN2016/113918 WO2018120211A1 (zh) | 2016-12-30 | 2016-12-30 | 一种弧焊控制方法、控制系统及弧焊机器人 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2016/113918 WO2018120211A1 (zh) | 2016-12-30 | 2016-12-30 | 一种弧焊控制方法、控制系统及弧焊机器人 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018120211A1 true WO2018120211A1 (zh) | 2018-07-05 |
Family
ID=62138118
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/113918 WO2018120211A1 (zh) | 2016-12-30 | 2016-12-30 | 一种弧焊控制方法、控制系统及弧焊机器人 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN108064192A (zh) |
WO (1) | WO2018120211A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117655601A (zh) * | 2023-12-12 | 2024-03-08 | 中船舰客教育科技(北京)有限公司 | 基于mr的智能焊接方法、装置、计算机设备和介质 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110871315A (zh) * | 2018-09-03 | 2020-03-10 | 苏州睿牛机器人技术有限公司 | 一种爬行弧焊机器人及爬行弧焊机器人的安全检测方法、装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006021241A (ja) * | 2004-07-09 | 2006-01-26 | Daihen Corp | 溶接ロボット制御装置及び溶接ロボットの制御方法 |
CN101041199A (zh) * | 2007-04-29 | 2007-09-26 | 武汉长江融达电子有限公司 | 一种电弧焊接方法及其专用自动焊接机 |
CN101850459A (zh) * | 2009-03-31 | 2010-10-06 | 株式会社三社电机制作所 | 保护气体控制装置 |
CN102886603A (zh) * | 2012-10-26 | 2013-01-23 | 余姚市富达电子有限公司 | 利用激光焊接技术焊接电水壶的方法 |
CN103228390A (zh) * | 2011-10-05 | 2013-07-31 | 松下电器产业株式会社 | 焊接装置 |
-
2016
- 2016-12-30 CN CN201680039126.7A patent/CN108064192A/zh active Pending
- 2016-12-30 WO PCT/CN2016/113918 patent/WO2018120211A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006021241A (ja) * | 2004-07-09 | 2006-01-26 | Daihen Corp | 溶接ロボット制御装置及び溶接ロボットの制御方法 |
CN101041199A (zh) * | 2007-04-29 | 2007-09-26 | 武汉长江融达电子有限公司 | 一种电弧焊接方法及其专用自动焊接机 |
CN101850459A (zh) * | 2009-03-31 | 2010-10-06 | 株式会社三社电机制作所 | 保护气体控制装置 |
CN103228390A (zh) * | 2011-10-05 | 2013-07-31 | 松下电器产业株式会社 | 焊接装置 |
CN102886603A (zh) * | 2012-10-26 | 2013-01-23 | 余姚市富达电子有限公司 | 利用激光焊接技术焊接电水壶的方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117655601A (zh) * | 2023-12-12 | 2024-03-08 | 中船舰客教育科技(北京)有限公司 | 基于mr的智能焊接方法、装置、计算机设备和介质 |
Also Published As
Publication number | Publication date |
---|---|
CN108064192A (zh) | 2018-05-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2714315B1 (en) | System for generating a weld with energy conservation and improved cooling in welding machines ; method of generating a weld using such system | |
US9050677B2 (en) | Arc welding method and arc welding apparatus | |
US20140014638A1 (en) | Method for teaching/testing a motion sequence of a welding robot, welding robot and control system for same | |
US20160221105A1 (en) | Weld ending process and system | |
KR101873621B1 (ko) | 단선 수복 수단을 구비한 와이어 방전 가공기 | |
WO2018120211A1 (zh) | 一种弧焊控制方法、控制系统及弧焊机器人 | |
JPS6328731B2 (zh) | ||
CN114393245A (zh) | 一种自动送料切管方法及系统 | |
JP5575717B2 (ja) | 溶接ロボットの制御装置及び制御方法 | |
CN112721184A (zh) | 一种焊接方法及焊接系统 | |
JP3200825B2 (ja) | アーク溶接ロボットの制御方法及び装置 | |
US20220347785A1 (en) | Systems and methods for automated cleaning of wire electrodes after welding | |
CN110035860B (zh) | 用于具有改进的启动的焊接的方法和设备 | |
JP6034896B2 (ja) | 結線穴位置を補正できるワイヤ放電加工機およびワイヤ放電加工方法 | |
JP2973711B2 (ja) | 自動アーク溶接方法 | |
JP2009190062A (ja) | 溶接ロボット装置、及び自動溶接方法 | |
JP2010172953A (ja) | アークスタート制御方法および溶接ロボットシステム | |
JP4702694B2 (ja) | 溶接システムの制御方法および溶接システム | |
WO2005084869A1 (ja) | 溶接装置 | |
JP7401655B2 (ja) | ろう付けを行う制御装置、ろう付けシステム、及びろう付け方法 | |
JP4624020B2 (ja) | 溶接ロボット制御装置及び溶接ロボットの制御方法 | |
JPH05245638A (ja) | 溶接ロボットの制御方法 | |
JPH06246450A (ja) | 溶接ロボットにおける溶接トーチ接触感度切換装置 | |
US20230018375A1 (en) | Method for preparing an automated welding method for a welding process and welding device for carrying out an automated welding method | |
JP2011062724A (ja) | ガスシールドアーク溶接のアークスタート制御方法およびアーク溶接ロボットの制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16925433 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16925433 Country of ref document: EP Kind code of ref document: A1 |