WO2018119729A1 - Organic compound and electronic device comprising an organic layer comprising the organic compound - Google Patents

Organic compound and electronic device comprising an organic layer comprising the organic compound Download PDF

Info

Publication number
WO2018119729A1
WO2018119729A1 PCT/CN2016/112579 CN2016112579W WO2018119729A1 WO 2018119729 A1 WO2018119729 A1 WO 2018119729A1 CN 2016112579 W CN2016112579 W CN 2016112579W WO 2018119729 A1 WO2018119729 A1 WO 2018119729A1
Authority
WO
WIPO (PCT)
Prior art keywords
unsubstituted
substituted
aryl
organic compound
group
Prior art date
Application number
PCT/CN2016/112579
Other languages
French (fr)
Inventor
Chong XING
Zhengming TANG
Shaoguang Feng
Robert Wright
Sukrit MUKHOPADHYAY
David Dayton DEVORE
Hong Yeop NA
Anatoliy Sokolov
Original Assignee
Dow Global Technologies Llc
Rohm And Haas Electronic Materials Korea Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Global Technologies Llc, Rohm And Haas Electronic Materials Korea Ltd. filed Critical Dow Global Technologies Llc
Priority to PCT/CN2016/112579 priority Critical patent/WO2018119729A1/en
Priority to PCT/US2017/039191 priority patent/WO2018005318A1/en
Priority to JP2018564920A priority patent/JP7068199B2/en
Priority to US16/311,186 priority patent/US10818860B2/en
Priority to EP17734967.7A priority patent/EP3475995B1/en
Priority to CN201780034785.6A priority patent/CN109328402B/en
Priority to KR1020197001628A priority patent/KR102329405B1/en
Priority to TW106136322A priority patent/TWI808948B/en
Publication of WO2018119729A1 publication Critical patent/WO2018119729A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/10Indoles; Hydrogenated indoles with substituted hydrocarbon radicals attached to carbon atoms of the hetero ring
    • C07D209/14Radicals substituted by nitrogen atoms, not forming part of a nitro radical
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials

Definitions

  • the present invention relates to organic compounds, and an electronic device comprising an organic layer comprising the organic compounds.
  • OLEDs are display devices that employ stacks of organic layers including electron transport layers (ETLs) and hole transport layers (HTLs) .
  • ETLs electron transport layers
  • HTLs hole transport layers
  • OLEDs have drawn much attention in recent years as one of the most promising next-generation displays because of their many performance advantages including light weight, energy saving and high contrast.
  • the present invention provides organic compounds having a structure represented by Formula (1) :
  • R 1 , R 2 , R 3 , and R 4 are each independently selected from the group consisting of hydrogen, deuterium ( “D” ) , a substituted or unsubstituted C 1 -C 50 alkyl, a substituted or unsubstituted C 1 -C 50 alkoxy, a substituted or unsubstituted C 1 -C 50 alkoxycarbonyl, a substituted or unsubstituted C 6 -C 60 aryl, a substituted or unsubstituted C 1 -C 60 heteroaryl, a substituted or unsubstituted C 6 -C 60 aryloxy, a substituted or unsubstituted C 6 -C 50 arylthio, a halogen, a cyano, a hydroxyl, and a carbonyl;
  • R 5 is selected from the group consisting of hydrogen, deuterium ( “D” ) , a substituted or unsubstituted C 1 -C 30 alkyl, a substituted or unsubstituted C 3 -C 50 cycloalkyl, a substituted or unsubstituted C 6 -C 60 aryl, or a substituted or unsubstituted C 1 -C 60 heteroaryl;
  • R 6 is selected from the group consisting of hydrogen, deuterium ( “D” ) , a substituted or unsubstituted C 1 -C 30 alkyl, or a substituted or unsubstituted C 3 -C 50 cycloalkyl;
  • R 7 is selected from the group consisting of hydrogen, deuterium ( “D” ) , a substituted or unsubstituted C 1 -C 50 alkyl, a substituted or unsubstituted C 1 -C 50 alkoxy, a substituted or unsubstituted C 1 -C 50 alkoxycarbonyl, a substituted or unsubstituted C 6 -C 60 aryl, a substituted or unsubstituted C 1 -C 60 heteroaryl, a substituted or unsubstituted C 6 -C 50 aryloxy, a substituted or unsubstituted C 6 -C 50 arylthio, a halogen, a cyano, a hydroxyl, a carbonyl, and a substituted amino group having the structure of wherein Ar 1 and Ar 2 are each independently selected from the group consisting of a substituted or unsubstituted C 6 -C 60 aryl and a substituted or
  • X 1 is a chemical bond, or selected from the group consisting of a substituted or unsubstituted C 1 -C 50 alkylene, a substituted or unsubstituted C 3 -C 50 cycloalkylene, a substituted or unsubstituted C 6 -C 60 arylene, and a substituted or unsubstituted C 1 -C 60 heteroarylene; and X 1 may form one or more fused rings with the adjacent phenyl ring.
  • the present invention further provides an electronic device comprising an organic layer comprising the organic compounds.
  • the organic compounds of the present invention have the structure represented by Formula (1) :
  • R 1 , R 2 , R 3 , and R 4 are each independently selected from the group consisting of hydrogen; deuterium ( “D” ) ; a substituted or unsubstituted C 1 -C 50 alkyl, C 1 -C 30 alkyl, C 1 -C 20 alkyl, or C 1 -C 10 alkyl; a substituted or unsubstituted C 1 -C 50 alkoxy, C 1 -C 30 alkoxy, C 1 -C 20 alkoxy, or C 1 -C 10 alkoxy; a substituted or unsubstituted C 1 -C 50 alkoxycarbonyl, C 1 -C 30 alkoxycarbonyl, C 1 -C 20 alkoxycarbonyl, or C 1 -C 10 alkoxycarbonyl; a substituted or unsubstituted C 6 -C 60 aryl, C 6 -C 30 aryl, C 6 -C 20 aryl, or C 6 -C
  • R 1 , R 2 , R 3 and R 4 are each independently selected from hydrogen, a halogen, a substituted or unsubstituted C 1 -C 3 alkyl, and a substituted or unsubstituted C 6 -C 60 aryl. More preferably, R 1 , R 2 , R 3 and R 4 are each independently selected from hydrogen, F, methyl, phenyl, naphthyl, and biphenyl.
  • At least two of R 1 through R 4 are hydrogen. Preferably, all R 1 through R 4 are hydrogen.
  • R 5 is selected from the group consisting of hydrogen, deuterium ( “D” ) , a substituted or unsubstituted C 1 -C 30 alkyl, C 1 -C 20 alkyl, C 1 -C 10 alkyl, C 1 -C 5 alkyl, or C 1 -C 3 alkyl; a substituted or unsubstituted C 3 -C 50 cycloalkyl, C 4 -C 30 cycloalkyl, C 4 -C 20 cycloalkyl, or C 4 -C 12 cycloalkyl; a substituted or unsubstituted C 6 -C 60 aryl, C 6 -C 30 aryl, C 6 -C 20 aryl, or C 6 -C 12 aryl; or a substituted or unsubstituted C 1 -C 60 heteroaryl, C 1 -C 30 heteroaryl, C 2 -C 20 heteroaryl, or C 4 -C 12 heteroaryl.
  • R 6 is selected from the group consisting of hydrogen, deuterium ( “D” ) , a substituted or unsubstituted C 1 -C 30 alkyl, a substituted or unsubstituted C 3 -C 50 cycloalkyl.
  • R 6 is selected from -CH 3 , -CH 2 CH 3 , and -C (CH 3 ) 3 .
  • R 7 is selected from the group consisting of hydrogen; deuterium ( “D” ) ; a substituted or unsubstituted C 1 -C 50 alkyl, C 1 -C 30 alkyl, C 1 -C 20 alkyl, or C 1 -C 10 alkyl; a substituted or unsubstituted C 1 -C 50 alkoxy, C 1 -C 30 alkoxy, C 1 -C 20 alkoxy, or C 1 -C 10 alkoxy; a substituted or unsubstituted C 1 -C 50 alkoxycarbonyl, C 1 -C 30 alkoxycarbonyl, C 1 -C 20 alkoxycarbonyl, or C 1 -C 10 alkoxycarbonyl; a substituted or unsubstituted C 6 -C 60 aryl, C 6 -C 30 aryl, C 6 -C 20 aryl, or C 6 - C 12 aryl; a substituted or unsubstituted
  • Ar 1 and Ar 2 are each independently a substituted or unsubstituted C 6 -C 60 aryl. More preferably, Ar 1 and Ar 2 are each independently a substituted or unsubstituted C 12 -C 30 aryl.
  • the substituted amino group is selected from the following structures represented by Formula (a) through Formula (c) :
  • Ar 3 and Ar 4 are each independently an unsubstituted C 6 -C 60 aryl
  • Ar 5 through Ar 7 are each independently an unsubstituted C 6 -C 40 aryl
  • Ar 8 through Ar 11 are each independently an unsubstituted C 6 -C 30 aryl
  • L 1 through L 3 are each independently selected from a substituted or unsubstituted C 6 -C 60 arylene, C 6 -C 30 arylene, C 6 -C 20 arylene, or C 6 -C 12 arylene
  • Ar 3 through Ar 11 may be each independently an unsubstituted C 6 -C 30 aryl, C 6 -C 20 aryl, C 6 -C 15 aryl, or C 6 -C 12 aryl.
  • Suitable examples of the substituted amino groups comprise the following structures (1) through (6) :
  • X 1 is a chemical bond, or selected from the group consisting of a substituted or unsubstituted C 1 -C 50 alkylene, a substituted or unsubstituted C 3 -C 50 cycloalkylene, a substituted or unsubstituted C 6 -C 60 arylene, and a substituted or unsubstituted C 1 -C 60 heteroarylene.
  • Suitable examples of X l comprise
  • the organic compounds of the present invention have the structure represented by Formula (2) :
  • Suitable examples of the organic compounds are selected from the following structures (7) through (22) :
  • the organic compounds of the present invention may have a molecular weight of 500 g/mole or more, 600 g/mole or more, or even 700 g/mole or more, and at the same time, 1, 000 g/mole or less, 900 g/mole or less, or even 800 g/mole or less.
  • the organic compounds of the present invention may have a glass transition temperature (Tg) of 110 °C or higher, 130 °C or higher, or 150 °C or higher, and at the same time, 250 °C or lower, 220 °C or lower, or even 200 °C or lower, as measured according to the test method described in the Examples section below.
  • Tg glass transition temperature
  • the organic compounds of the present invention may have a decomposition temperature (Td, 5%weight loss) of 300 °C or higher, 350 °C or higher, or 400 °C or higher, and at the same time, 650 °C or lower, 600 °C or lower, or even 550 °C or lower, as measured according to the test method described in the Examples section below.
  • Td decomposition temperature
  • the organic compound of the present invention may be prepared as shown in, for example, Scheme 1 below.
  • An arylhydrazine hydrochloride may react with a ketone derivative of Structure A through Fischer indole synthesis reaction to give an indole derivative of Structure B.
  • Conditions and raw materials used in Fischer indole synthesis reaction may be described in J. Org. Chem., 2012, 77, 8049.
  • suitable catalysts for the Fischer indole synthesis include acids such as HCl, H 2 SO 4 , polyphosphoric acid, and p-toluenesulfonic acid; and Lewis acids such as boron trifluoride, zinc chloride, iron chloride, and aluminium chloride; or mixtures thereof.
  • the indole derivative may react with a halogen containing compound with the structure of R 5 Y 1 , wherein X 1 and R 1 through R 6 are as previously defined with reference to Formula (1) and Y 1 is a halogen such as F, Cl, Br or I, and preferably Br or I.
  • Y 1 is a halogen such as F, Cl, Br or I, and preferably Br or I.
  • the resultant compound of Structure C may undergo a Buchwald-Hartwig coupling reaction with an amine compound substituted with a substituted or unsubstituted C 6 -C 60 aryl or a substituted or unsubstituted C 1 -C 60 heteroaryl and Formula (1) of the present invention could be obtained.
  • the organic compounds of the present invention may be used in organic layers including hole transport layers (HTL) , electron transport layers (ETL) , hole injection layers (HIL) , charge blocking layers, charge generation layers, and emissive layers (EML) in electronic devices.
  • the organic layer is a hole transport layer or a hole injection layer.
  • charge blocking layer herein refers to certain layers of structures blocking charge transfer to improve efficiency.
  • charge generation layer herein refers to certain layers of structures which can generate charges.
  • Organic compounds of the present invention may be used in electronic devices including organic photovoltaic cells, organic field effect transistors (OFETs) , and light emitting devices.
  • OFETs organic field effect transistors
  • Light emitting devices are electronic devices emitting lights when electrical current is applied across two electrodes in the devices.
  • the electronic device of the present invention may comprise an anode, a cathode, and at least one organic layer interposed between the anode and the cathode. At least one of the organic layers comprises at least one of the organic compounds of the present invention.
  • the organic layer can be a charge transfer layer that can transport charge carrying moieties, either holes or electrons.
  • the organic layer may be a hole transport layer, an emissive layer, an electron transport layer, or a hole injection layer.
  • the organic layer is a hole transport layer or a hole injection layer.
  • the organic layer may comprise one or more “dopants” .
  • Dopants are impurities deliberately added in small amounts to a pure substance (i.e., a “host” ) to alter its properties such as conductivity and emitting property.
  • the organic layer comprising the organic compounds of the present invention may be prepared by evaporative vacuum deposition or solution process such as spin coating and ink-jet printing.
  • aryl refers to an organic radical derived from aromatic hydrocarbon by the removal of one hydrogen atom therefrom.
  • An aryl group may be a monocyclic and/or fused ring system each ring of which suitably contains from 4 to 6, preferably from 5 or 6 atoms. Structures wherein two or more aryl groups are combined through single bond (s) are also comprised.
  • aryls comprise phenyl, naphthyl, biphenyl, anthryl, indenyl, fluorenyl, benzofluorenyl, phenanthryl, triphenylenyl, pyrenyl, perylenyl, chrysenyl, naphtacenyl, fluoranthenyl and the like.
  • the naphthyl may be 1-naphthyl or 2-naphthyl.
  • the anthryl may be 1-anthryl, 2-anthryl or 9-anthryl.
  • the fluorenyl may be any one of 1-fluorenyl, 2-fluorenyl, 3-fluorenyl, 4-fluorenyl and 9-fluorenyl.
  • substituted aryl refers to an aryl in which at least one hydrogen atom is substituted with a heteroatom or a chemical group containing at least one heteroatom.
  • Heteroatoms comprise O, N, P and S.
  • the heteroaryl may be a 5-or 6-membered monocyclic heteroaryl or a polycyclic heteroaryl which is fused with one or more benzene ring (s) , and may be partially saturated.
  • the structures having one or more heteroaryl group (s) bonded through a single bond are also comprised.
  • the heteroaryl groups comprise divalent aryl groups of which the heteroatoms are oxidized or quarternized to form N-oxides, quaternary salts, or the like.
  • Specific examples comprise monocyclic heteroaryl groups, such as furyl, thiophenyl, pyrrolyl, imidazolyl, pyrazolyl, thiazolyl, thiadiazolyl, isothiazolyl, isoxazolyl, oxazolyl, oxadiazolyl, triazinyl, tetrazinyl, triazolyl, tetrazolyl, furazanyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl; polycyclic heteroaryl groups, such as benzofuranyl, fluoreno [4, 3-b] benzofuranyl, benzothiophenyl, fluoreno [4, 3-b] benzothiophenyl, isobenzofur
  • substituted heteroaryl refers to a heteroaryl in which at least one hydrogen atom is substituted with a heteroatom or a chemical group containing at least one heteroatom.
  • Heteroatoms comprise O, N, P and S.
  • hydrocarbyl refers to a chemical group containing only hydrogen and carbon atoms.
  • Alkyl, ” and other substituents containing “alkyl” moiety comprises both linear and branched species. Examples of alkyls comprise methyl, ethyl, propyl, iso-propyl, butyl, iso-butyl, tert-butyl, pentyl, and hexyl.
  • substituted alkyl refers to an alkyl in which at least one hydrogen atom is substituted with a heteroatom or a chemical group containing at least one heteroatom.
  • Heteroatoms comprise O, N, P and S.
  • cycloalkyl refers to a monocyclic hydrocarbon and a polycyclic hydrocarbon such as substituted or unsubstituted adamantyl, and substituted or unsubstituted C 7 -C 30 bicycloalkyl.
  • the triplet energies are determined as the difference between the total energy of the optimized triplet state and the optimized singlet state.
  • a procedure as described in Lin, B. C et al., J. Phys. Chem. A 2003, 107, 5241-5251, is applied to calculate the reorganization energy of each molecule, with which as the indicator of electron and hole mobility.
  • DSC Differential scanning calorimetry
  • DSC measurements were carried out on Q2000 differential scanning calorimeter of TA Instruments at a scan rate of 10 °C/min under N 2 atmosphere for all cycles. Each sample (about 7-10 mg) was scanned from room temperature to 300 °C (first heating scan) , cooled to -60 °C, and then reheated to 300 °C (second heating scan) . Tg was measured on the second heating scan. Data analysis was performed using Universal Analysis 2000 software of TA Instruments. The Tg value was calculated using an “onset-at-inflection” methodology.
  • TGA measurements were carried out on TGA-Q500 thermo gravimetric analyzer of TA Instruments under N 2 atmosphere. Each sample (about 7-10 mg) was weighed in a platinum standard plate and loaded into the instrument. Each sample was first heated to 60 °Cand equilibrated for 30 minutes to remove solvent residues in the sample. Then the sample was cooled to 30 °C. The temperature was ramped from 30 °C to 600 °C with 10 °C/min rate and the weight change was recorded to determine the decomposition temperature (Td) of the sample. The temperature-weight % (T-Wt %) curve was obtained by TGA scan. The temperature at the 5 %weight loss was determined as Td.
  • sample was dissolved in tetrahydrofuran (THF) at around 0.6 mg/mL. 5 ⁇ L sample solution was injected on an Agilent 1220 HPLC/G6224A time-of-flight mass spectrometer. The following analysis conditions were used:
  • MS conditions Capillary Voltage: 3500 kV (Pos) ; Mode: Pos; Scan: 100-2000 amu; Rate: 1 s/scan; and Desolvation temperature: 300 °C.
  • Each sample was dissolved in THF at around 0.6 mg/mL.
  • the sample solution was at last filtrated through a 0.45 ⁇ m syringe filter and 5 ⁇ L of the filtrate was injected to HPLC system.
  • the following analysis conditions were used:
  • Structure 7 Palladium acetate (89.6 mg, 0.4 mmol) , tricyclohexylphosphine tetrafluoroborate (296 mg, 0.8 mmol) and sodium tert-butoxide (1.08 g, 11.2 mmol) were added to a solution of Structure A (2.74 g, 8 mmol) and N- ( [1, 1'-biphenyl] -4-yl) -9, 9-dimethyl-9H-fluoren-2-amine (3.18 g, 8.8 mmol) in toluene (50 mL) . The reaction mixture was stirred at 100 °C in N 2 atmosphere for overnight. TLC was used to monitor the reaction.
  • organic compound Structure 7 had a T g of 113.3 °C and a T d of 366.4 °C.
  • OLED devices were constructed as follows. Glass substrates (20 mm ⁇ 15 mm) with pixelated tin-doped indium oxide (ITO) electrodes (Ossila Inc. ) were used. The ITO was treated using oxygen plasma.
  • the hole transport layer (HTL) , emitting layer (EML) , hole blocking layer (HBL) , electron transport layer (ETL) , and cathode were formed as follows. A 40 nm layer of the inventive material as the HTL was deposited by thermal evaporation under high vacuum from an alumina crucible through an active area shadow mask.
  • a 40 nm layer of a host/emitter mixture having 3 mole%emitter (Tris [3- [4- (1, 1-dimethylethyl) -2-pyridinyl- ⁇ N] [1, 1'-biphenyl] -4-yl- ⁇ C] iridium) in a host was deposited by thermal evaporation under high vacuum from an alumina crucible through an active area shadow mask.
  • the host was 9- (3- (4, 6-diphenyl-1, 3, 5-triazin-2-yl) phenyl) -9'-phenyl-9H, 9'H-3, 3'-bicarbazole.
  • a 5 nm layer of 5- (4- ( [1, 1'-biphenyl] -3-yl) -6-phenyl-1, 3, 5-triazin-2-yl) -7, 7-diphenyl-5, 7-dihydroindeno [2, 1-b] carbazole as HBL material was deposited by thermal evaporation under high vacuum from an alumina crucible through an active area shadow mask.
  • a 35 nm layer of 2, 4-bis (9, 9-dimethyl-9H-fluoren-2-yl) -6- (naphthalen-2-yl) -1, 3, 5-triazine as ETL material was deposited by thermal evaporation under high vacuum from an alumina crucible through an active area shadow mask.
  • a 2 nm layer of lithium quinolate (liq) was deposited by thermal evaporation under high vacuum from an alumina crucible through a cathode shadow mask.
  • a 100 nm layer of aluminum was deposited by thermal evaporation under high vacuum from a graphite crucible through a cathode shadow mask.
  • the OLED devices were tested as follows. Current-Voltage-Light (JVL) data was collected on un-encapsulated devices inside a N 2 glovebox using a custom-made test board from Ossila Inc.
  • the board contained two components: 1) X100 Xtralien TM precision testing source, and 2) Smart PV and OLED Board; in combination, these components were used to test OLED devices over a voltage range of -2 V to 8 V at increments of 0.1 V while measuring current and light output.
  • the light output was measured using an eye response photodiode which includes an optical filter that mimics photopic eye sensitivity (Centronic E Series) .
  • the devices were placed inside of the testing chamber on the board and covered with the photodiode assembly.
  • a comparative OLED device containing N- ( [1, 1'-biphenyl] -4-yl) -9, 9-dimethyl-N- (4- (1-methyl-2-phenyl-1H-indol-3-yl) phenyl) -9H-fluoren-2-amine (HTL-1) as the hole transport layer was prepared with the similar procedure described above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Organic compounds suitable for organic layers of electronic devices that have reduced driving voltage, increased luminous efficiency and increased power efficiency.

Description

ORGANIC COMPOUND AND ELECTRONIC DEVICE COMPRISING AN ORGANIC LAYER COMPRISING THE ORGANIC COMPOUND FIELD OF THE INVENTION
The present invention relates to organic compounds, and an electronic device comprising an organic layer comprising the organic compounds.
INTRODUCTION
Organic light emitting diodes (OLEDs) are display devices that employ stacks of organic layers including electron transport layers (ETLs) and hole transport layers (HTLs) . OLEDs have drawn much attention in recent years as one of the most promising next-generation displays because of their many performance advantages including light weight, energy saving and high contrast.
There is still desire to provide OLEDs with improved device performance including minimized power consumption, especially for battery-powered mobile applications.
SUMMARY OF THE INVENTION
The present invention provides organic compounds having a structure represented by Formula (1) :
Figure PCTCN2016112579-appb-000001
wherein R1, R2, R3, and R4 are each independently selected from the group consisting of hydrogen, deuterium ( “D” ) , a substituted or unsubstituted C1-C50 alkyl, a substituted or unsubstituted C1-C50 alkoxy, a substituted or unsubstituted C1-C50 alkoxycarbonyl, a substituted or unsubstituted C6-C60 aryl, a substituted or unsubstituted C1-C60 heteroaryl, a substituted or unsubstituted C6-C60 aryloxy, a substituted or unsubstituted C6-C50 arylthio, a halogen, a cyano, a hydroxyl, and a carbonyl;
R5 is selected from the group consisting of hydrogen, deuterium ( “D” ) , a substituted or  unsubstituted C1-C30 alkyl, a substituted or unsubstituted C3-C50 cycloalkyl, a substituted or unsubstituted C6-C60 aryl, or a substituted or unsubstituted C1-C60 heteroaryl;
R6 is selected from the group consisting of hydrogen, deuterium ( “D” ) , a substituted or unsubstituted C1-C30 alkyl, or a substituted or unsubstituted C3-C50 cycloalkyl;
R7 is selected from the group consisting of hydrogen, deuterium ( “D” ) , a substituted or unsubstituted C1-C50 alkyl, a substituted or unsubstituted C1-C50 alkoxy, a substituted or unsubstituted C1-C50 alkoxycarbonyl, a substituted or unsubstituted C6-C60 aryl, a substituted or unsubstituted C1-C60 heteroaryl, a substituted or unsubstituted C6-C50 aryloxy, a substituted or unsubstituted C6-C50 arylthio, a halogen, a cyano, a hydroxyl, a carbonyl, and a substituted amino group having the structure of
Figure PCTCN2016112579-appb-000002
wherein Ar1 and Ar2 are each independently selected from the group consisting of a substituted or unsubstituted C6-C60 aryl and a substituted or unsubstituted C1-C60 heteroaryl; and
X1 is a chemical bond, or selected from the group consisting of a substituted or unsubstituted C1-C50 alkylene, a substituted or unsubstituted C3-C50 cycloalkylene, a substituted or unsubstituted C6-C60 arylene, and a substituted or unsubstituted C1-C60 heteroarylene; and X1 may form one or more fused rings with the adjacent phenyl ring.
The present invention further provides an electronic device comprising an organic layer comprising the organic compounds.
DETAILED DESCRIPTION OF THE INVENTION
The organic compounds of the present invention have the structure represented by Formula (1) :
Figure PCTCN2016112579-appb-000003
wherein R1, R2, R3, and R4 are each independently selected from the group consisting of hydrogen; deuterium ( “D” ) ; a substituted or unsubstituted C1-C50 alkyl, C1-C30 alkyl, C1-C20 alkyl, or C1-C10 alkyl; a substituted or unsubstituted C1-C50 alkoxy, C1-C30 alkoxy, C1-C20  alkoxy, or C1-C10 alkoxy; a substituted or unsubstituted C1-C50 alkoxycarbonyl, C1-C30 alkoxycarbonyl, C1-C20 alkoxycarbonyl, or C1-C10 alkoxycarbonyl; a substituted or unsubstituted C6-C60 aryl, C6-C30 aryl, C6-C20 aryl, or C6-C12 aryl; a substituted or unsubstituted C1-C60 heteroaryl, C1-C30 heteroaryl, C2-C20 heteroaryl, or C4-C12 heteroaryl; a substituted or unsubstituted C6-C50 aryloxy, C6-C30 aryloxy, C6-C20 aryloxy, or C6-C10 aryloxy; a substituted or unsubstituted C6-C50 arylthio, C6-C30 arylthio, C6-C20 arylthio, or C6-C10 arylthio; a halogen such as F, Cl, Br or I; a cyano; a hydroxyl; and a carbonyl. R1 and R2, R2 and R3, or R3 and R4 may respectively and independently form a 4-to 8-membered fused ring.
Preferably, R1, R2, R3 and R4 are each independently selected from hydrogen, a halogen, a substituted or unsubstituted C1-C3 alkyl, and a substituted or unsubstituted C6-C60 aryl. More preferably, R1, R2, R3 and R4 are each independently selected from hydrogen, F, methyl, phenyl, naphthyl, and biphenyl.
In some embodiments, at least two of R1 through R4 are hydrogen. Preferably, all R1 through R4 are hydrogen.
R5 is selected from the group consisting of hydrogen, deuterium ( “D” ) , a substituted or unsubstituted C1-C30 alkyl, C1-C20 alkyl, C1-C10 alkyl, C1-C5 alkyl, or C1-C3 alkyl; a substituted or unsubstituted C3-C50 cycloalkyl, C4-C30 cycloalkyl, C4-C20 cycloalkyl, or C4-C12 cycloalkyl; a substituted or unsubstituted C6-C60 aryl, C6-C30 aryl, C6-C20 aryl, or C6-C12 aryl; or a substituted or unsubstituted C1-C60 heteroaryl, C1-C30 heteroaryl, C2-C20 heteroaryl, or C4-C12 heteroaryl. Preferably, R5 is selected from -CH3, -CH2CH3, -C (CH33
Figure PCTCN2016112579-appb-000004
Figure PCTCN2016112579-appb-000005
R6 is selected from the group consisting of hydrogen, deuterium ( “D” ) , a substituted or unsubstituted C1-C30 alkyl, a substituted or unsubstituted C3-C50 cycloalkyl. Preferably, R6 is selected from -CH3, -CH2CH3, and -C (CH33.
R7 is selected from the group consisting of hydrogen; deuterium ( “D” ) ; a substituted or unsubstituted C1-C50 alkyl, C1-C30 alkyl, C1-C20 alkyl, or C1-C10 alkyl; a substituted or unsubstituted C1-C50 alkoxy, C1-C30 alkoxy, C1-C20 alkoxy, or C1-C10 alkoxy; a substituted or unsubstituted C1-C50 alkoxycarbonyl, C1-C30 alkoxycarbonyl, C1-C20 alkoxycarbonyl, or C1-C10 alkoxycarbonyl; a substituted or unsubstituted C6-C60 aryl, C6-C30 aryl, C6-C20 aryl, or C6- C12 aryl; a substituted or unsubstituted C1-C60 heteroaryl, C1-C30 heteroaryl, C2-C20 heteroaryl, or C4-C12 heteroaryl; a substituted or unsubstituted C6-C50 aryloxy, C6-C30 aryloxy, C6-C20 aryloxy, or C6-C10 aryloxy; a substituted or unsubstituted C6-C50 arylthio, C6-C30 arylthio, C6-C20 arylthio, or C6-C10 arylthio; a halogen such as F, Cl, Br or I; a cyano; a hydroxyl; a carbonyl; and a substituted amino group having the structure of
Figure PCTCN2016112579-appb-000006
Ar1 and Ar2 are each independently selected from the group consisting of a substituted or unsubstituted C6-C60 aryl, C6-C30 aryl, C6-C20 aryl, or C6-C15 aryl; and a substituted or unsubstituted C1-C60 heteroaryl, C1-C30 heteroaryl, C2-C20 heteroaryl, or C4-C12 heteroaryl. Preferably, Ar1 and Ar2 are each independently a substituted or unsubstituted C6-C60 aryl. More preferably, Ar1 and Ar2 are each independently a substituted or unsubstituted C12-C30 aryl.
In some embodiments, the substituted amino group is selected from the following structures represented by Formula (a) through Formula (c) :
Figure PCTCN2016112579-appb-000007
wherein Ar3 and Ar4 are each independently an unsubstituted C6-C60 aryl, Ar5 through Ar7 are each independently an unsubstituted C6-C40 aryl, and Ar8 through Ar11 are each independently an unsubstituted C6-C30 aryl; and L1 through L3 are each independently selected from a substituted or unsubstituted C6-C60 arylene, C6-C30 arylene, C6-C20 arylene, or C6-C12 arylene; and a substituted or unsubstituted C1-C60 heteroarylene, C1-C30 heteroarylene, C2-C20 heteroarylene, or C4-C12 heteroarylene. Preferably, Ar3 through Ar11 may be each independently an unsubstituted C6-C30 aryl, C6-C20 aryl, C6-C15 aryl, or C6-C12 aryl.
Suitable examples of the substituted amino groups comprise the following structures (1) through (6) :
Figure PCTCN2016112579-appb-000008
X1 is a chemical bond, or selected from the group consisting of a substituted or unsubstituted C1-C50 alkylene, a substituted or unsubstituted C3-C50 cycloalkylene, a substituted or unsubstituted C6-C60 arylene, and a substituted or unsubstituted C1-C60 heteroarylene.
In the embodiments where X1 is a chemical bond, it means that R7 is directly linked to its adjacent phenyl ring through X1.
Suitable examples of Xl comprise
Figure PCTCN2016112579-appb-000009
Figure PCTCN2016112579-appb-000010
Preferably, the organic compounds of the present invention have the structure represented by Formula (2) :
Figure PCTCN2016112579-appb-000011
wherein Xl , Ar1 and Ar2, and R1 through R6, are as previously defined with reference to Formula (1) .
Suitable examples of the organic compounds are selected from the following structures  (7) through (22) :
Figure PCTCN2016112579-appb-000012
Figure PCTCN2016112579-appb-000013
The organic compounds of the present invention may have a molecular weight of 500 g/mole or more, 600 g/mole or more, or even 700 g/mole or more, and at the same time, 1, 000 g/mole or less, 900 g/mole or less, or even 800 g/mole or less.
The organic compounds of the present invention may have a glass transition temperature (Tg) of 110 ℃ or higher, 130 ℃ or higher, or 150 ℃ or higher, and at the same time, 250 ℃ or lower, 220 ℃ or lower, or even 200 ℃ or lower, as measured according to the test method described in the Examples section below.
The organic compounds of the present invention may have a decomposition temperature (Td, 5%weight loss) of 300 ℃ or higher, 350 ℃ or higher, or 400 ℃ or higher, and at the same time, 650 ℃ or lower, 600 ℃ or lower, or even 550 ℃ or lower, as measured according to the test method described in the Examples section below.
The organic compound of the present invention may be prepared as shown in, for example, Scheme 1 below. An arylhydrazine hydrochloride may react with a ketone derivative of Structure A through Fischer indole synthesis reaction to give an indole derivative of Structure B. Conditions and raw materials used in Fischer indole synthesis reaction may be described in J. Org. Chem., 2012, 77, 8049. Examples of suitable catalysts for the Fischer indole synthesis include 
Figure PCTCN2016112579-appb-000014
acids such as HCl, H2SO4, polyphosphoric acid, and p-toluenesulfonic acid; and Lewis acids such as boron trifluoride, zinc chloride, iron chloride, and aluminium chloride; or mixtures thereof. Then the indole derivative may react with a halogen containing compound with the structure of R5Y1, wherein X1 and R1 through R6 are as previously defined with reference to Formula (1) and Y1 is a halogen such as F, Cl, Br or I, and preferably Br or I. The resultant compound of Structure C may undergo a Buchwald-Hartwig coupling reaction with an amine compound substituted with a substituted or unsubstituted C6-C60 aryl or a substituted or unsubstituted C1-C60 heteroaryl and Formula (1) of the present invention could be obtained.
Figure PCTCN2016112579-appb-000015
SCHEME 1
The organic compounds of the present invention may be used in organic layers including hole transport layers (HTL) , electron transport layers (ETL) , hole injection layers (HIL) , charge blocking layers, charge generation layers, and emissive layers (EML) in electronic devices. Preferably, the organic layer is a hole transport layer or a hole injection layer. The term “charge blocking layer” herein refers to certain layers of structures blocking charge transfer to improve efficiency. The term “charge generation layer” herein refers to certain layers of structures which can generate charges.
Electronic devices are devices depending on the principles of electronics and using the manipulation of electron flow for its operation. The organic compounds of the present invention may be used in electronic devices including organic photovoltaic cells, organic field effect transistors (OFETs) , and light emitting devices. Light emitting devices are electronic devices emitting lights when electrical current is applied across two electrodes in the devices.
The electronic device of the present invention may comprise an anode, a cathode, and at least one organic layer interposed between the anode and the cathode. At least one of the organic layers comprises at least one of the organic compounds of the present invention. The organic layer can be a charge transfer layer that can transport charge carrying moieties, either holes or electrons. The organic layer may be a hole transport layer, an emissive layer, an electron transport layer, or a hole injection layer. Preferably, the organic layer is a hole transport layer or a hole injection layer. In addition to the organic compounds of the present invention, the organic layer may comprise one or more “dopants” . Dopants are impurities deliberately added in small amounts to a pure substance (i.e., a “host” ) to alter its properties such as conductivity and emitting property. The organic layer comprising the organic compounds of the present invention may be prepared by evaporative vacuum deposition or solution process such as spin coating and ink-jet printing.
The term “aryl, ” as described herein, refers to an organic radical derived from aromatic hydrocarbon by the removal of one hydrogen atom therefrom. An aryl group may be a monocyclic and/or fused ring system each ring of which suitably contains from 4 to 6, preferably from 5 or 6 atoms. Structures wherein two or more aryl groups are combined through single bond (s) are also comprised. Examples of aryls comprise phenyl, naphthyl,  biphenyl, anthryl, indenyl, fluorenyl, benzofluorenyl, phenanthryl, triphenylenyl, pyrenyl, perylenyl, chrysenyl, naphtacenyl, fluoranthenyl and the like. The naphthyl may be 1-naphthyl or 2-naphthyl. The anthryl may be 1-anthryl, 2-anthryl or 9-anthryl. The fluorenyl may be any one of 1-fluorenyl, 2-fluorenyl, 3-fluorenyl, 4-fluorenyl and 9-fluorenyl.
The term “substituted aryl, ” as described herein, refers to an aryl in which at least one hydrogen atom is substituted with a heteroatom or a chemical group containing at least one heteroatom. Heteroatoms comprise O, N, P and S. The chemical group containing at least one heteroatom herein comprise OR’, NR’2, PR’2, P (=O) R’2, and SiR’3; wherein each R’is hydrogen or a C1-C30 hydrocarbyl.
The term “heteroaryl, ” as described herein, refers to an aryl group, in which at least one carbon atom or CH group or CH2 group is substituted with a heteroatom (for example, B, N, O, S, P (=O) , Si and P) or a chemical group containing at least one heteroatom. The heteroaryl may be a 5-or 6-membered monocyclic heteroaryl or a polycyclic heteroaryl which is fused with one or more benzene ring (s) , and may be partially saturated. The structures having one or more heteroaryl group (s) bonded through a single bond are also comprised. The heteroaryl groups comprise divalent aryl groups of which the heteroatoms are oxidized or quarternized to form N-oxides, quaternary salts, or the like. Specific examples comprise monocyclic heteroaryl groups, such as furyl, thiophenyl, pyrrolyl, imidazolyl, pyrazolyl, thiazolyl, thiadiazolyl, isothiazolyl, isoxazolyl, oxazolyl, oxadiazolyl, triazinyl, tetrazinyl, triazolyl, tetrazolyl, furazanyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl; polycyclic heteroaryl groups, such as benzofuranyl, fluoreno [4, 3-b] benzofuranyl, benzothiophenyl, fluoreno [4, 3-b] benzothiophenyl, isobenzofuranyl, benzimidazolyl, benzothiazolyl, benzisothiazolyl, benzisoxazolyl, benzoxazolyl, isoindolyl, indolyl, indazolyl, benzothiadiazolyl, quinolyl, isoquinolyl, cinnolinyl, quinazolinyl, quinoxalinyl, carbazolyl, phenanthridinyl and benzodioxolyl; and corresponding N-oxides (for example, pyridyl N-oxide, quinolyl N-oxide) and quaternary salts thereof.
The term “substituted heteroaryl, ” as described herein, refers to a heteroaryl in which at least one hydrogen atom is substituted with a heteroatom or a chemical group containing at least one heteroatom. Heteroatoms comprise O, N, P and S. The chemical group containing at least one heteroatom comprise OR’, NR’2, PR’2, P (=O) R’2, and SiR’3; wherein each R’is hydrogen or a C1-C30 hydrocarbyl.
The term “hydrocarbyl, ” as described herein, refers to a chemical group containing only hydrogen and carbon atoms.
“Alkyl, ” and other substituents containing “alkyl” moiety, comprises both linear and branched species. Examples of alkyls comprise methyl, ethyl, propyl, iso-propyl, butyl, iso-butyl, tert-butyl, pentyl, and hexyl.
The term “substituted alkyl, ” as described herein, refers to an alkyl in which at least one hydrogen atom is substituted with a heteroatom or a chemical group containing at least one heteroatom. Heteroatoms comprise O, N, P and S. The chemical group containing at least one heteroatom herein comprise OR’, NR’2, PR’2, P (=O) R’2, and SiR’3; wherein each R’is hydrogen or a C1-C30 hydrocarbyl.
The term “cycloalkyl, ” as described herein, refers to a monocyclic hydrocarbon and a polycyclic hydrocarbon such as substituted or unsubstituted adamantyl, and substituted or unsubstituted C7-C30 bicycloalkyl.
EXAMPLES
The following examples illustrate embodiments of the present invention. All parts and percentages are by weight unless otherwise indicated.
Materials and NMR information
Commercially available materials purchased from Sinopharm Chemical Reagent Co., Ltd. (SCRC) or Energy Chemicals were used as received. Proton nuclear magnetic resonance (1H NMR) spectra were recorded on Bruker AVANCE III (400 MHz) spectrometer. Chemical shifts were recorded in parts per million (ppm) relative to tetramethylsilane (0.00) . 1H NMR splitting patterns were designated as singlet (s) , doublet (d) , triplet (t) , quartet (q) , doublet of doublets (dd) , multiplet (m) , and etc. All first-order splitting patterns were assigned on the basis of the appearance of the multiplet. Splitting patterns that could not be easily interpreted are designated as multiplet (m) or broad (br) .
Modeling
All computations utilized the Gaussian 09 program as described in Gaussian 09, Revision A. 02, Frisch, M.J. et al., Gaussian, Inc., Wallingford CT, 2009. The calculations were performed with the hybrid Density Functional Theory (DFT) method, Becke, 3-parameter, Lee-Yang-Parr (B3LYP) , as described in Becke, A. D. J. Chem. Phys. 1993, 98,  5648; Lee, C. et al., Phys. Rev B 1988, 37, 785; and Miehlich, B. et al. Chem. Phys. Lett. 1989, 157, 200; and the 6-31G* (5d) basis set as described in Ditchfield, R. et al., J. Chem. Phys. 1971, 54, 724; Hehre, W.J. et al., J. Chem. Phys. 1972, 56, 2257; and Gordon, M.S. Chem. Phys. Lett. 1980, 76, 163. The singlet state calculations use the closed shell approximation, and the triplet state calculations use the open shell approximation. All values are quoted in electron volts (eV) . The Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) values are determined from the orbital energies of the optimized geometry of the singlet ground state. The triplet energies are determined as the difference between the total energy of the optimized triplet state and the optimized singlet state. A procedure, as described in Lin, B. C et al., J. Phys. Chem. A 2003, 107, 5241-5251, is applied to calculate the reorganization energy of each molecule, with which as the indicator of electron and hole mobility.
Differential scanning calorimetry (DSC)
DSC measurements were carried out on Q2000 differential scanning calorimeter of TA Instruments at a scan rate of 10 ℃/min under N2 atmosphere for all cycles. Each sample (about 7-10 mg) was scanned from room temperature to 300 ℃ (first heating scan) , cooled to -60 ℃, and then reheated to 300 ℃ (second heating scan) . Tg was measured on the second heating scan. Data analysis was performed using Universal Analysis 2000 software of TA Instruments. The Tg value was calculated using an “onset-at-inflection” methodology.
Thermo gravimetric analysis (TGA)
TGA measurements were carried out on TGA-Q500 thermo gravimetric analyzer of TA Instruments under N2 atmosphere. Each sample (about 7-10 mg) was weighed in a platinum standard plate and loaded into the instrument. Each sample was first heated to 60 ℃and equilibrated for 30 minutes to remove solvent residues in the sample. Then the sample was cooled to 30 ℃. The temperature was ramped from 30 ℃ to 600 ℃ with 10 ℃/min rate and the weight change was recorded to determine the decomposition temperature (Td) of the sample. The temperature-weight % (T-Wt %) curve was obtained by TGA scan. The temperature at the 5 %weight loss was determined as Td.
Liquid Chromatography-Mass Spectrometry (LC-MS)
Each sample was dissolved in tetrahydrofuran (THF) at around 0.6 mg/mL. 5 μL sample solution was injected on an Agilent 1220 HPLC/G6224A time-of-flight mass  spectrometer. The following analysis conditions were used:
Column: 4.6 x 150 mm, 3.5 μm ZORBAX Eclipse Plus C18; column temperature: 40 ℃;Mobile phase: THF/deionized (DI) water = 65/35 volume ratio (Isocratic method) ; Flow rate: 1.0 mL/min; and
MS conditions: Capillary Voltage: 3500 kV (Pos) ; Mode: Pos; Scan: 100-2000 amu; Rate: 1 s/scan; and Desolvation temperature: 300 ℃.
High Performance Liquid Chromatography (HPLC)
Each sample was dissolved in THF at around 0.6 mg/mL. The sample solution was at last filtrated through a 0.45 μm syringe filter and 5 μL of the filtrate was injected to HPLC system. The following analysis conditions were used:
Injection volume: 5 μL; Instrument: Agilent 1200 HPLC; Column: 4.6 x 150mm, 3.5μm ZORBAX Eclipse Plus C18; Column temperature: 40 ℃; Detector: DAD=250, 280, 350 nm; Mobile Phase: THF/DI water = 65/35 volume ratio (Isocratic method) ; and Flow rate: 1 mL/min.
Example 1: Synthesis Route of Organic Compound Structure 7
Synthesis of organic compound structure 7
Figure PCTCN2016112579-appb-000016
Structure D: To a solution of phenylhydrazine hydrochloride (2.89 g, 20 mmol) in acetic acid (20 mL) was added 1- (4-bromophenyl) -3, 3-dimethylbutan-2-one (5.1 g, 20 mmol) at room temperature. . The reaction mixture was stirred in N2 atmosphere at 100℃ for overnight. TLC was used to monitor the reaction. After completion of the reaction, DI water was added to the reaction mixture to precipitate the product. It was filtered and washed with  aq. NaHCO3 and water, then used in the next step directly. NaH (960 mg, 40 mmol) was added into this reaction mixture in 20 mL Dimethylformamide. After stirring at room temperature for 30 min, methyl iodide (4.26 g, 30 mmol) was added into the solution and the reaction mixture was further stirred at room temperature for overnight. After the completion of the reaction, DI water was added and the precipitate was filtered out. The precipitate was further purified by column chromatography to give the pure product. 1H NMR (400 MHz, CDCl3, ppm) : 7.49 (d, 2H, J = 8 Hz) , 7.18-7.30 (m, 4H) , 7.00-7.02 (m, 2H) , 3.95 (s, 3H) , 1.36 (s, 9H) . LC-MS-ESI (m/z) : calcd for C19H21BrN: 341.08, found (M+H) +: 342.1027.
Structure 7: Palladium acetate (89.6 mg, 0.4 mmol) , tricyclohexylphosphine tetrafluoroborate (296 mg, 0.8 mmol) and sodium tert-butoxide (1.08 g, 11.2 mmol) were added to a solution of Structure A (2.74 g, 8 mmol) and N- ( [1, 1'-biphenyl] -4-yl) -9, 9-dimethyl-9H-fluoren-2-amine (3.18 g, 8.8 mmol) in toluene (50 mL) . The reaction mixture was stirred at 100 ℃ in N2 atmosphere for overnight. TLC was used to monitor the reaction. After completion of the reaction, DI water was added and the precipitate was filtered out. The precipitate was further purified by column chromatography to give the pure product. Repeated column chromatography or recrystallization was applied to further improve the purity to >99.5%. 1H NMR (400 MHz, CDCl3, ppm) : 7.60-7.67 (m, 4H) , 7.52-7.54 (m, 2H) , 7.39-7.45 (m, 3H) , 7.18-7.31 (m, 16H) , 7.04-7.07 (m, 1H) , 3.96 (s, 3H) , 1.44 (s, 6H) , 1.43 (s, 9H) . LC-MS-ESI (m/z) : calcd for C46H43N2: 622.33, found (M+H) +: 623.3413. The obtained Structure 7 has a HOMO level of -4.76 eV, a LUMO level of -0.89 eV and a triplet energy of 2.63 eV as determined by the modeling method described above.
Thermal property of organic compound Structure 7
Thermal properties of organic compound Structure 7 were analyzed by DSC and TGA. As shown in Table 1, organic compound Structure 7 had a Tg of 113.3 ℃ and a Td of 366.4 ℃.
Table 1
Sample Name Tg (℃) Td (℃)
Structure 7 113.3 366.4
Example 2: Green Evaporative OLED Device Fabrication
OLED devices were constructed as follows. Glass substrates (20 mm × 15 mm) with pixelated tin-doped indium oxide (ITO) electrodes (Ossila Inc. ) were used. The ITO was  treated using oxygen plasma. The hole transport layer (HTL) , emitting layer (EML) , hole blocking layer (HBL) , electron transport layer (ETL) , and cathode were formed as follows. A 40 nm layer of the inventive material as the HTL was deposited by thermal evaporation under high vacuum from an alumina crucible through an active area shadow mask. A 40 nm layer of a host/emitter mixture having 3 mole%emitter (Tris [3- [4- (1, 1-dimethylethyl) -2-pyridinyl-κN] [1, 1'-biphenyl] -4-yl-κC] iridium) in a host was deposited by thermal evaporation under high vacuum from an alumina crucible through an active area shadow mask. The host was 9- (3- (4, 6-diphenyl-1, 3, 5-triazin-2-yl) phenyl) -9'-phenyl-9H, 9'H-3, 3'-bicarbazole. A 5 nm layer of 5- (4- ( [1, 1'-biphenyl] -3-yl) -6-phenyl-1, 3, 5-triazin-2-yl) -7, 7-diphenyl-5, 7-dihydroindeno [2, 1-b] carbazole as HBL material was deposited by thermal evaporation under high vacuum from an alumina crucible through an active area shadow mask. A 35 nm layer of 2, 4-bis (9, 9-dimethyl-9H-fluoren-2-yl) -6- (naphthalen-2-yl) -1, 3, 5-triazine as ETL material was deposited by thermal evaporation under high vacuum from an alumina crucible through an active area shadow mask. A 2 nm layer of lithium quinolate (liq) was deposited by thermal evaporation under high vacuum from an alumina crucible through a cathode shadow mask. A 100 nm layer of aluminum was deposited by thermal evaporation under high vacuum from a graphite crucible through a cathode shadow mask.
The OLED devices were tested as follows. Current-Voltage-Light (JVL) data was collected on un-encapsulated devices inside a N2 glovebox using a custom-made test board from Ossila Inc. The board contained two components: 1) X100 XtralienTM precision testing source, and 2) Smart PV and OLED Board; in combination, these components were used to test OLED devices over a voltage range of -2 V to 8 V at increments of 0.1 V while measuring current and light output. The light output was measured using an eye response photodiode which includes an optical filter that mimics photopic eye sensitivity (Centronic E Series) . The devices were placed inside of the testing chamber on the board and covered with the photodiode assembly. Electrical contact was made to the ITO electrodes by a series of spring-actuated gold probes inside of the Smart Board assembly. The photodiode was located at a distance of 3 mm above the ITO substrate. From the JVL data, critical device parameters were determined including the voltage required to reach 1000 cd/m2 of brightness and the current efficiency (in cd/A) of the OLED at 1000 cd/m2. A geometric factor was applied to  the measured photodiode current to account for distance between the photodiode and the substrate (3 mm) and the relative positioning from each pixel on the substrate.
A comparative OLED device containing N- ( [1, 1'-biphenyl] -4-yl) -9, 9-dimethyl-N- (4- (1-methyl-2-phenyl-1H-indol-3-yl) phenyl) -9H-fluoren-2-amine (HTL-1) as the hole transport layer was prepared with the similar procedure described above.
As shown in Table 2, Inventive OLED Device had higher luminous and power efficiencies compared to those of Comparative Device.
Table 2
Device @1000nits HTL Driving Voltage (V) Luminous Efficiency (Cd/A) Power Efficiency (lm/W)
Comparative Device HTL-1 4.80 32.8 21.6
Inventive Device Structure 7 5.25 40.4 24.1

Claims (15)

  1. An organic compound having a structure represented by Formula (1) :
    Figure PCTCN2016112579-appb-100001
    wherein R1, R2, R3, and R4 are each independently selected from the group consisting of hydrogen, deuterium, a substituted or unsubstituted C1-C50 alkyl, a substituted or unsubstituted C1-C50 alkoxy, a substituted or unsubstituted C1-C50 alkoxycarbonyl, a substituted or unsubstituted C6-C60 aryl, a substituted or unsubstituted C1-C60 heteroaryl, a substituted or unsubstituted C6-C60 aryloxy, a substituted or unsubstituted C6-C50 arylthio, a halogen, a cyano, a hydroxyl, and a carbonyl;
    R5 is selected from the group consisting of hydrogen, deuterium, a substituted or unsubstituted C1-C30 alkyl, a substituted or unsubstituted C3-C50 cycloalkyl, a substituted or unsubstituted C6-C60 aryl, or a substituted or unsubstituted C1-C60 heteroaryl;
    R6 is selected from the group consisting of hydrogen, deuterium, a substituted or unsubstituted C1-C30 alkyl, or a substituted or unsubstituted C3-C50 cycloalkyl;
    R7 is selected from the group consisting of hydrogen, deuterium, a substituted or unsubstituted C1-C50 alkyl, a substituted or unsubstituted C1-C50 alkoxy, a substituted or unsubstituted C1-C50 alkoxycarbonyl, a substituted or unsubstituted C6-C60 aryl, a substituted or unsubstituted C1-C60 heteroaryl, a substituted or unsubstituted C6-C50 aryloxy, a substituted or unsubstituted C6-C50 arylthio, a halogen, a cyano, a hydroxyl, a carbonyl, and a substituted amino group having the structure of
    Figure PCTCN2016112579-appb-100002
    wherein Ar1 and Ar2 are each independently selected from the group consisting of a substituted or unsubstituted C6-C60 aryl and a substituted or unsubstituted C1-C60 heteroaryl; and
    X1 is a chemical bond, or selected from the group consisting of a substituted or unsubstituted C1-C50 alkylene, a substituted or unsubstituted C3-C50 cycloalkylene, a substituted or unsubstituted C6-C60 arylene, and a substituted or unsubstituted C1-C60 heteroarylene.
  2. The organic compound of Claim 1, wherein R1 and R2, R2 and R3, or R3 and R4 may respectively and independently form a 4- to 8-membered fused ring.
  3. The organic compound of Claim 1, wherein R1, R2, R3 and R4 are each independently selected from hydrogen, F, methyl, phenyl, naphthyl, and biphenyl.
  4. The organic compound of Claim 1, wherein R1 through R4 are all hydrogen.
  5. The organic compound of Claim 1, wherein R5 is selected from -CH3, -CH2CH3, -C(CH3)3,
    Figure PCTCN2016112579-appb-100003
    Figure PCTCN2016112579-appb-100004
  6. The organic compound of Claim 1, wherein R6 is selected from -CH3, -CH2CH3, -C(CH3)3
  7. The organic compound of Claim 1, wherein R7 is a substituted amino group selected from the following structures represented by Formula (a) through Formula (c) :
    Figure PCTCN2016112579-appb-100005
    wherein Ar3 and Ar4 are each independently an unsubstituted C6-C60 aryl, Ar5 through Ar7 are each independently an unsubstituted C6-C40 aryl, and Ar8 through Ar11 are each independently an unsubstituted C6-C30 aryl; and L1 through L3 are each independently selected from a substituted or unsubstituted C6-C60 arylene, and a substituted or unsubstituted C1-C60 heteroarylene.
  8. The organic compound of Claim 7, wherein Ar3 through Ar11 may be each independently an unsubstituted C6-C30 aryl.
  9. The organic compound of Claim 1, wherein the substituted amino groups comprise the following structures (1) through (6) :
    Figure PCTCN2016112579-appb-100006
  10. The organic compound of Claim 1, wherein Xl comprise
    Figure PCTCN2016112579-appb-100007
    Figure PCTCN2016112579-appb-100008
  11. The organic compound of Claim 1, wherein the organic compounds of the present invention have the structure represented by Formula (2) :
    Figure PCTCN2016112579-appb-100009
    wherein R1, R2, R3, and R4 are each independently selected from the group consisting of hydrogen, deuterium, a substituted or unsubstituted C1-C50 alkyl, a substituted or unsubstituted C1-C50 alkoxy, a substituted or unsubstituted C1-C50 alkoxycarbonyl, a substituted or unsubstituted C6-C60 aryl, a substituted or unsubstituted C1-C60 heteroaryl, a substituted or unsubstituted C6-C50 aryloxy, a substituted or unsubstituted C6-C50 arylthio, a halogen, a cyano, a hydroxyl, and a carbonyl;
    R5 is selected from the group consisting of hydrogen, deuterium, a substituted or unsubstituted C1-C30 alkyl, a substituted or unsubstituted C3-C50 cycloalkyl, a substituted or unsubstituted C6-C60 aryl, or a substituted or unsubstituted C1-C60 heteroaryl;
    R6 is selected from the group consisting of hydrogen, deuterium, a substituted or unsubstituted C1-C30 alkyl, or a substituted or unsubstituted C3-C50 cycloalkyl;
    X1 is a chemical bond, or selected from the group consisting of a substituted or unsubstituted C1-C50 alkylene, a substituted or unsubstituted C3-C50 cycloalkylene, a substituted or unsubstituted C6-C60 arylene, and a substituted or unsubstituted C1-C60 heteroarylene.
  12. The organic compound of Claim 1, wherein the organic compounds are selected from the following structures (7) through (22) :
    Figure PCTCN2016112579-appb-100010
    Figure PCTCN2016112579-appb-100011
  13. An electronic device comprising an organic layer, wherein the organic layer  comprises the organic compound of any one of Claims 1-12.
  14. The electronic device of Claim 13, wherein the organic layer is a hole transport layer, an emissive layer, an electron transport layer, or a hole injection layer.
  15. The electronic device of claim 13, wherein the electronic device is a light emitting device.
PCT/CN2016/112579 2016-06-28 2016-12-28 Organic compound and electronic device comprising an organic layer comprising the organic compound WO2018119729A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
PCT/CN2016/112579 WO2018119729A1 (en) 2016-12-28 2016-12-28 Organic compound and electronic device comprising an organic layer comprising the organic compound
PCT/US2017/039191 WO2018005318A1 (en) 2016-06-28 2017-06-26 Quantum dot light emitting devices
JP2018564920A JP7068199B2 (en) 2016-06-28 2017-06-26 Quantum dot light emitting device
US16/311,186 US10818860B2 (en) 2016-06-28 2017-06-26 Quantum dot light emitting devices
EP17734967.7A EP3475995B1 (en) 2016-06-28 2017-06-26 Quantum dot light emitting devices
CN201780034785.6A CN109328402B (en) 2016-06-28 2017-06-26 Quantum dot light emitting device
KR1020197001628A KR102329405B1 (en) 2016-06-28 2017-06-26 quantum dot light emitting device
TW106136322A TWI808948B (en) 2016-11-04 2017-10-23 Quantum dot light emitting devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/112579 WO2018119729A1 (en) 2016-12-28 2016-12-28 Organic compound and electronic device comprising an organic layer comprising the organic compound

Publications (1)

Publication Number Publication Date
WO2018119729A1 true WO2018119729A1 (en) 2018-07-05

Family

ID=62706595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/112579 WO2018119729A1 (en) 2016-06-28 2016-12-28 Organic compound and electronic device comprising an organic layer comprising the organic compound

Country Status (1)

Country Link
WO (1) WO2018119729A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150121626A (en) * 2014-04-21 2015-10-29 (주)피엔에이치테크 Novel compound for organic electroluminescent device and organic electroluminescent device comprising the same
WO2016021923A2 (en) * 2014-08-04 2016-02-11 주식회사 동진쎄미켐 Novel compound and orgarnic light emitting device containing same
WO2016060463A2 (en) * 2014-10-14 2016-04-21 주식회사 동진쎄미켐 Novel compound and organic light-emitting element comprising same
WO2016101865A1 (en) * 2014-12-26 2016-06-30 Dow Global Technologies Llc Organic compounds and electronic device comprising organic layer comprising organic compounds

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150121626A (en) * 2014-04-21 2015-10-29 (주)피엔에이치테크 Novel compound for organic electroluminescent device and organic electroluminescent device comprising the same
WO2016021923A2 (en) * 2014-08-04 2016-02-11 주식회사 동진쎄미켐 Novel compound and orgarnic light emitting device containing same
WO2016060463A2 (en) * 2014-10-14 2016-04-21 주식회사 동진쎄미켐 Novel compound and organic light-emitting element comprising same
WO2016101865A1 (en) * 2014-12-26 2016-06-30 Dow Global Technologies Llc Organic compounds and electronic device comprising organic layer comprising organic compounds

Similar Documents

Publication Publication Date Title
JP2017533575A (en) Polymer charge transport layer and organic electronic device comprising the same
CN102449106A (en) Novel organic electroluminescent compounds and organic electroluminescent device using the same
KR20110086043A (en) Host material for light-emitting diodes
KR20190010500A (en) Novel hetero-cyclic compound and organic light emitting device comprising the same
KR102627027B1 (en) Method for preparing deuteated anthracene-based compound and organic light emitting device comprising deuteated anthracene-based compound manufactured using the same
CN112778312B (en) Organic material containing indoloquinazolinedione heterocyclic structure and application thereof
US10005729B2 (en) Organic compounds and electronic device comprising an organic layer comprising the organic compounds
WO2018058493A1 (en) Organic compound and electronic device comprising an organic layer comprising the organic compound
KR20190033901A (en) Heterocyclic compound and organic light emitting device comprising the same
EP3303514A1 (en) Organic composition and electronic device comprising organic layer comprising said composition
CN109251203A (en) Pyrazolo indazole derivative and its application
WO2018119729A1 (en) Organic compound and electronic device comprising an organic layer comprising the organic compound
KR20230007853A (en) Heterocyclic compound, organic light emitting device comprising the same, manufacturing method of the same and composition for organic layer of organic light emitting device
KR20220069352A (en) Heterocyclic compound based on spiro acridine and organic light emitting device comprising the same
WO2018058494A1 (en) Organic compound and electronic device comprising organic layer comprising organic compound
US10294203B2 (en) Organic compound and electronic device comprising an organic layer comprising the organic compound
KR101306426B1 (en) New compounds and organic electronic device using the same
WO2018058492A1 (en) Organic compound and electronic device comprising an organic layer comprising the organic compound
WO2018058496A1 (en) Organic compound and electronic device
WO2018058497A1 (en) Organic compound and electronic device comprising organic layer comprising organic compound
EP4134370A1 (en) Heterocyclic compound and organic light-emitting device comprising same
CN108570047B (en) Pyridinoquinoline derivatives and use thereof
KR20220069345A (en) Heterocyclic compound and organic light emitting device comprising the same
CN117551110A (en) Organic compound, and electronic component and electronic device using same
KR20200067105A (en) Novel hetero-cyclic compound and organic light emitting device comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16925081

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16925081

Country of ref document: EP

Kind code of ref document: A1