WO2018058493A1 - Organic compound and electronic device comprising an organic layer comprising the organic compound - Google Patents

Organic compound and electronic device comprising an organic layer comprising the organic compound Download PDF

Info

Publication number
WO2018058493A1
WO2018058493A1 PCT/CN2016/100990 CN2016100990W WO2018058493A1 WO 2018058493 A1 WO2018058493 A1 WO 2018058493A1 CN 2016100990 W CN2016100990 W CN 2016100990W WO 2018058493 A1 WO2018058493 A1 WO 2018058493A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
unsubstituted
aryl
group
organic compound
Prior art date
Application number
PCT/CN2016/100990
Other languages
French (fr)
Inventor
Zhengming TANG
Shaoguang Feng
Chong XING
Hong Yeop NA
Minrong ZHU
Robert Wright
Hua Ren
Yang Li
Yuchen Liu
Sukrit MUKHOPADHYAY
Timothy S. DE VRIES
Liam Patrick SPENCER
Yoo Jin Doh
David Dayton DEVORE
Original Assignee
Dow Global Technologies Llc
Rohm And Haas Electronic Materials Korea Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Global Technologies Llc, Rohm And Haas Electronic Materials Korea Ltd. filed Critical Dow Global Technologies Llc
Priority to PCT/CN2016/100990 priority Critical patent/WO2018058493A1/en
Publication of WO2018058493A1 publication Critical patent/WO2018058493A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/008Triarylamine dyes containing no other chromophores
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers

Definitions

  • the present invention relates to organic compounds, and an electronic device comprising an organic layer comprising the organic compounds.
  • OLEDs are display devices that employ stacks of organic layers including electron transport layers (ETLs) and hole transport layers (HTLs) .
  • ETLs electron transport layers
  • HTLs hole transport layers
  • OLEDs have drawn much attention in recent years as one of the most promising next-generation displays because of their many performance advantages including light weight, energy saving and high contrast.
  • the present invention provides organic compounds having a structure represented by Formula (1) :
  • R 1 through R 8 are each independently selected from the group consisting of hydrogen, deuterium ( “D” ) , a substituted or unsubstituted C 1 -C 50 alkyl, a substituted or unsubstituted C 1 -C 50 alkoxy, a substituted or unsubstituted C 1 -C 50 alkoxycarbonyl, a substituted or unsubstituted C 6 -C 60 aryl, a substituted or unsubstituted C 1 -C 60 heteroaryl, a substituted or unsubstituted C 6 -C 60 aryloxy, a substituted or unsubstituted C 6 -C 50 arylthio, a halogen, a cyano, a hydroxyl, and a carbonyl;
  • R a , R b , R a ’ , R b ’ , R a ” and R b ” are each independently selected from the group consisting of hydrogen, deuterium, a substituted or unsubstituted C 1 -C 50 alkyl, a substituted or unsubstituted C 3 -C 50 cycloalkyl, a substituted or unsubstituted C 6 -C 60 aryl, and a substituted or unsubstituted C 1 -C 60 heteroaryl;
  • R 9 , R 10 and R 11 are each independently selected from the group consisting of hydrogen, deuterium, a substituted or unsubstituted C 1 -C 50 alkyl, a substituted or unsubstituted C 1 -C 50 alkoxy, a substituted or unsubstituted C 1 -C 50 alkoxycarbonyl, a substituted or unsubstituted C 6 -C 60 aryl, a substituted or unsubstituted C 1 -C 60 heteroaryl, a substituted or unsubstituted C 6 -C 60 aryloxy, a substituted or unsubstituted C 6 -C 50 arylthio, a halogen, a cyano, a hydroxyl, a carbonyl, and a substituted amino group having the structure of wherein Ar 1 and Ar 2 are each independently selected from the group consisting of a substituted or unsubstituted C 6 -C 60 aryl, and a
  • X 1 , X 2 and X 3 are each independently a chemical bond, or selected from the group consisting of a substituted or unsubstituted C 1 -C 50 alkylene, a substituted or unsubstituted C 3 -C 50 cycloalkylene, a substituted or unsubstituted C 6 -C 60 arylene, and a substituted or unsubstituted C 1 -C 60 heteroarylene; and X 1 , X 2 and X 3 may form one or more fused rings with the adjacent phenyl ring.
  • the present invention further provides an electronic device comprising an organic layer comprising the organic compounds.
  • the organic compounds of the present invention have the structure represented by Formula (1) :
  • R 1 through R 8 are each independently selected from the group consisting of hydrogen; deuterium ( “D” ) ; a substituted or unsubstituted C 1 -C 50 alkyl, C 1 -C 30 alkyl, C 1 -C 20 alkyl, or C 1 -C 10 alkyl; a substituted or unsubstituted C 1 -C 50 alkoxy, C 1 -C 30 alkoxy, C 1 -C 20 alkoxy, or C 1 -C 10 alkoxy; a substituted or unsubstituted C 1 -C 50 alkoxycarbonyl, C 1 -C 30 alkoxycarbonyl, C 1 -C 20 alkoxycarbonyl, or C 1 -C 10 alkoxycarbonyl; a substituted or unsubstituted C 6 -C 60 aryl, C 6 -C 30 aryl, C 6 -C 20 aryl, or C 6 -C 12 aryl; a substituted or un
  • R 1 through R 8 are each independently selected from hydrogen, a halogen, a substituted or unsubstituted C 1 -C 3 alkyl, and a substituted or unsubstituted C 6 -C 60 aryl. More preferably, R 1 through R 8 are each independently selected from hydrogen, F, methyl, phenyl, naphthyl, and biphenyl.
  • At least two of R 1 through R 8 are hydrogen. Preferably, all R 1 through R 8 are hydrogen.
  • R a , R b , R a ’ , R b ’ , R a ” and R b ” are each independently selected from the group consisting of hydrogen, deuterium, a substituted or unsubstituted C 1 -C 50 alkyl, a substituted or unsubstituted C 3 -C 50 cycloalkyl, a substituted or unsubstituted C 6 -C 60 aryl, and a substituted or unsubstituted C 1 -C 60 heteroaryl.
  • R 9 , R 10 and R 11 are each independently selected from the group consisting of hydrogen, deuterium, a substituted or unsubstituted C 1 -C 50 alkyl, C 1 -C 30 alkyl, C 1 -C 20 alkyl, or C 1 -C 10 alkyl; a substituted or unsubstituted C 1 -C 50 alkoxy, C 1 -C 30 alkoxy, C 1 -C 20 alkoxy, or C 1 -C 10 alkoxy; a substituted or unsubstituted C 1 -C 50 alkoxycarbonyl, C 1 -C 30 alkoxycarbonyl, C 1 -C 20 alkoxycarbonyl, or C 1 -C 10 alkoxycarbonyl; a substituted or unsubstituted C 6 -C 60 aryl, C 6 -C 30 aryl, C 6 -C 20 aryl, or C 6 -C 12 aryl; a substituted or unsubstit
  • Ar 1 and Ar 2 are each independently selected from the group consisting of a substituted or unsubstituted C 6 -C 60 aryl, C 6 -C 30 aryl, C 6 -C 20 aryl, or C 6 -C 15 aryl; and a substituted or unsubstituted C 1 -C 60 heteroaryl, C 1 -C 30 heteroaryl, C 2 -C 20 heteroaryl, or C 4 -C 12 heteroaryl.
  • Ar 1 and Ar 2 are each independently a substituted or unsubstituted C 6 -C 60 aryl. More preferably, Ar 1 and Ar 2 are each independently a substituted or unsubstituted C 12 -C 30 aryl.
  • R 9 , R 10 and R 11 are the substituted amino group.
  • two of R 9 , R 10 and R 11 are the substituted amino group, and the other one of R 9 , R 10 and R 11 is selected from hydrogen, a halogen, and a substituted or unsubstituted C 6 -C 60 aryl.
  • the substituted amino group is selected from the following structures represented by Formula (a) through Formula (c) :
  • Ar 3 and Ar 4 are each independently an unsubstituted C 6 -C 60 aryl
  • Ar 5 through Ar 7 are each independently an unsubstituted C 6 -C 40 aryl
  • Ar 8 through Ar 11 are each independently an unsubstituted C 6 -C 30 aryl
  • L 1 through L 3 are each independently selected from the group consisting of a substituted or unsubstituted C 6 -C 60 arylene and a substituted or unsubstituted C 1 -C 60 heteroarylene.
  • Ar 3 through Ar 11 may be each independently an unsubstituted C 6 -C 30 aryl, C 6 -C 20 aryl, C 6 -C 15 aryl, or C 6 -C 12 aryl.
  • Suitable examples of the substituted amino groups comprise the following structures (1) through (6) :
  • X 1 , X 2 and X 3 may be the same or different.
  • X 1 , X 2 and X 3 are each independently a chemical bond, or selected from the group consisting of a substituted or unsubstituted C 1 -C 50 alkylene, a substituted or unsubstituted C 3 -C 50 cycloalkylene, a substituted or unsubstituted C 6 -C 60 arylene, and a substituted or unsubstituted C 1 -C 60 heteroarylene.
  • X 1 , X 2 or X 3 is a chemical bond
  • R 9 , R 10 or R 11 is directly linked to its adjacent phenyl ring through X 1 , X 2 or X 3 .
  • X 1 , X 2 or X 3 may form one or more fused rings with the adjacent phenyl ring.
  • Suitable examples of X l , X 2 or X 2 comprise
  • the organic compounds of the present invention have the structure represented by Formula (2) ,
  • the organic compounds of the present invention have the structure represented by Formula (3) , (4) or (5) :
  • the organic compounds of the present invention have the structure represented by Formula (6) , (7) or (8) :
  • Suitable examples of the organic compounds are selected from the following structures (7) through (32) :
  • the organic compounds of the present invention may have a molecular weight of 500 g/mole or more, 600 g/mole or more, or even 700 g/mole or more, and at the same time, 1,000 g/mole or less, 900 g/mole or less, or even 800 g/mole or less.
  • the organic compounds of the present invention may have a glass transition temperature (Tg) of 110 °C or higher, 130 °C or higher, or 150 °C or higher, and at the same time, 250 °C or lower, 220 °C or lower, or even 200 °C or lower, as measured according to the test method described in the Examples section below.
  • Tg glass transition temperature
  • the organic compounds of the present invention may have a decomposition temperature (Td, 5%weight loss) of 300 °C or higher, 350 °C or higher, or 400 °C or higher, and at the same time, 650 °C or lower, 600 °C or lower, or even 550 °C or lower, as measured according to the test method described in the Examples section below.
  • Td decomposition temperature
  • the organic compounds of the present invention may be prepared in a facile way starting from very basic chemicals, as shown in Scheme 1 below.
  • An Aldol reaction was firstly conducted to form Structure A.
  • Structure A was reacted through Stetter reaction and condensation reaction with amines under the catalysis of p-toluenesulfonic acid to get Structure B.
  • Structure B Under the catalytic condition of palladium acetate and ligand, Structure B could be cyclized to produce Structure C having a fused pyrrole ring.
  • Structure C products were then treated with N-Iodosuccinimide (NIS) , followed by the coupling reaction with phenylboronic acid to produce Structure D.
  • N-Iodosuccinimide N-Iodosuccinimide
  • Formula (4) of the present invention could be obtained.
  • Formula (3) and Formula (5) could be synthesized via the same strategy.
  • the organic compounds of the present invention may be used in organic layers including hole transport layers (HTL) , electron transport layers (ETL) , hole injection layers (HIL) , charge blocking layers, charge generation layers, and emissive layers (EML) in electronic devices.
  • the organic layer is a hole transport layer or a hole injection layer.
  • charge blocking layer herein refers to certain layers of structures blocking charge transfer to improve efficiency.
  • charge generation layer herein refers to certain layers of structures which can generate charges.
  • Organic compounds of the present invention may be used in electronic devices including organic photovoltaic cells, organic field effect transistors (OFETs) , and light emitting devices.
  • OFETs organic field effect transistors
  • Light emitting devices are electronic devices emitting lights when electrical currents were applied across two electrodes in the devices.
  • the electronic device of the present invention may comprise an anode, a cathode, and at least one organic layer interposed between the anode and the cathode. At least one of the organic layers comprises at least one of the organic compounds of the present invention.
  • the organic layer can be a charge transfer layer that can transport charge carrying moieties, either holes or electrons.
  • the organic layer may be a hole transport layer, an emissive layer, an electron transport layer, or a hole injection layer.
  • the organic layer is a hole transport layer or a hole injection layer.
  • the organic layer may comprise one or more “dopants” .
  • Dopants are impurities deliberately added in small amounts to a pure substance (i.e., a “host” ) to alter its properties such as conductivity and emitting property. It has the effect of shifting the Fermi level of the original material (i.e., the “host” ) , which results in a material with predominantly negative (n-type) or positive (p-type) charge carriers depending on the dopant variety.
  • the organic layer comprising the organic compounds of the present invention may be prepared by evaporative vacuum deposition or solution process such as spin coating, slot die coating and ink-jet printing.
  • the organic compounds of the present invention may be a part of polymer resin of Mn higher than 6, 000 Dalton.
  • the polymer resin can be synthesized by a mixture of the organic compounds of the present invention, where the concentration of individual monomers can vary from 0.1%to 99.9%.
  • the polymer resin can be deposited using spin coating, slot die coating or ink-jet printing.
  • aryl refers to an organic radical derived from aromatic hydrocarbon by the removal of one hydrogen atom therefrom.
  • An aryl group may be a monocyclic and/or fused ring system each ring of which suitably contains from 4 to 6, preferably from 5 or 6 atoms. Structures wherein two or more aryl groups are combined through single bond (s) are also comprised.
  • aryls comprise phenyl, naphthyl, biphenyl, anthryl, indenyl, fluorenyl, benzofluorenyl, phenanthryl, triphenylenyl, pyrenyl, perylenyl, chrysenyl, naphtacenyl, fluoranthenyl and the like.
  • the naphthyl may be 1-naphthyl or 2-naphthyl.
  • the anthryl may be 1-anthryl, 2-anthryl or 9-anthryl.
  • the fluorenyl may be any one of 1-fluorenyl, 2-fluorenyl, 3-fluorenyl, 4-fluorenyl and 9-fluorenyl.
  • substituted aryl refers to an aryl in which at least one hydrogen atom is substituted with a heteroatom or a chemical group containing at least one heteroatom.
  • Heteroatoms comprise O, N, P and S.
  • the heteroaryl may be a 5-or 6-membered monocyclic heteroaryl or a polycyclic heteroaryl which is fused with one or more benzene ring (s) , and may be partially saturated.
  • the structures having one or more heteroaryl group (s) bonded through a single bond are also comprised.
  • the heteroaryl groups comprise divalent aryl groups of which the heteroatoms are oxidized or quarternized to form N-oxides, quaternary salts, or the like.
  • Specific examples comprise monocyclic heteroaryl groups, such as furyl, thiophenyl, pyrrolyl, imidazolyl, pyrazolyl, thiazolyl, thiadiazolyl, isothiazolyl, isoxazolyl, oxazolyl, oxadiazolyl, triazinyl, tetrazinyl, triazolyl, tetrazolyl, furazanyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl; polycyclic heteroaryl groups, such as benzofuranyl, fluoreno [4, 3-b] benzofuranyl, benzothiophenyl, fluoreno [4, 3-b] benzothiophenyl, isobenzofur
  • substituted heteroaryl refers to a heteroaryl in which at least one hydrogen atom is substituted with a heteroatom or a chemical group containing at least one heteroatom.
  • Heteroatoms comprise O, N, P and S.
  • hydrocarbyl refers to a chemical group containing only hydrogen and carbon atoms.
  • Alkyl, ” and other substituents containing “alkyl” moiety comprises both linear and branched species. Examples of alkyls comprise methyl, ethyl, propyl, iso-propyl, butyl, iso-butyl, tert-butyl, pentyl, and hexyl.
  • substituted alkyl refers to an alkyl in which at least one hydrogen atom is substituted with a heteroatom or a chemical group containing at least one heteroatom.
  • Heteroatoms comprise O, N, P and S.
  • cycloalkyl refers to a monocyclic hydrocarbon and a polycyclic hydrocarbon such as substituted or unsubstituted adamantyl, and substituted or unsubstituted C 7 -C 30 bicycloalkyl.
  • the triplet energies are determined as the difference between the total energy of the optimized triplet state and the optimized singlet state.
  • a procedure as described in Lin, B. C et al., J. Phys. Chem. A 2003, 107, 5241-5251, is applied to calculate the reorganization energy of each molecule, with which as the indicator of electron and hole mobility.
  • DSC Differential scanning calorimetry
  • DSC measurements were carried out on Q2000 differential scanning calorimeter of TA Instruments at a scan rate of 10 °C/min under N 2 atmosphere for all cycles. Each sample (about 7-10 mg) was scanned from room temperature to 300 °C (first heating scan) , cooled to -60 °C, and then reheated to 300 °C (second heating scan) . Tg was measured on the second heating scan. Data analysis was performed using Universal Analysis 2000 software of TA Instruments. The Tg value was calculated using an “onset-at-inflection” methodology.
  • TGA measurements were carried out on TGA-Q500 thermo gravimetric analyzer of TA Instruments under N2 atmosphere. Each sample (about 7-10 mg) was weighed in a platinum standard plate and loaded into the instrument. Each sample was first heated to 60 °Cand equilibrated for 30 minutes to remove solvent residues in the sample. Then the sample was cooled to 30 °C. The temperature was ramped from 30 °C to 600 °C with 10 °C/min rate and the weight change was recorded to determine the decomposition temperature (Td) of the sample. The temperature-weight % (T-Wt %) curve was obtained by TGA scan. The temperature at the 5 %weight loss was determined as Td.
  • sample was dissolved in tetrahydrofuran (THF) at around 0.6 mg/mL. 5 ⁇ L sample solution was injected on an Agilent 1220 HPLC/G6224A time-of-flight mass spectrometer. The following analysis conditions were used:
  • MS conditions Capillary Voltage: 3500 kV (Pos) ; Mode: Pos; Scan: 100-2000 amu; Rate: 1 s/scan; and Desolvation temperature: 300 °C.
  • Each sample was dissolved in THF at around 0.6 mg/mL.
  • the sample solution was at last filtrated through a 0.45 ⁇ m syringe filter and 5 ⁇ L of the filtrate was injected to HPLC system.
  • the following analysis conditions were used:
  • Structure B1 THF (40 mL) was added to a mixture of Structure A1 (3.21 g, 10.00 mmol, 321 g/mol) , benzaldehyde (1.17 g, 11.00 mmol, 106 g/mol) , 3-Ethyl-5- (2-hydroxyethyl) -4-methylthiazolium bromide (505 mg, 252 g/mol, 2.0 mmol) and K 2 CO 3 (276 mg, 138 g/mol, 2.0 mmol) at room temperature. The mixture was stirred for 48 h at reflux. After completion of the reaction, the mixture was filtered to remove the salts and the solvents were removed by distillation under reduced pressure to afford crude products as yellow powders.
  • Structure C1 Pd (OAc) 2 (2 mol%, 224 g/mmol, ) and PCy 3 .
  • BF 4 (4 mol%, 338 g/mol) were added to a solution of Structure B1 (485 mg, 1.0 mmol, 485 g/mol) and K 2 CO 3 (2 mmol, 276 mg, 138 g/mol) in N, N-Dimethylacetamide (DMA) (20 mL) .
  • DMA N, N-Dimethylacetamide
  • Structure D1 NIS (248 mg, 1.10 mmol, 225 g/mol) was slowly added to a solution of Structure C1 (403.9mg, 1.0 mmol, 403.9 g/mol) in N, N-Dimethylformamide (DMF) (20 mL) at room temperature. The mixture was stirred at room temperature overnight. TLC was utilized to monitor the reaction. After completion of the reaction, DI water was added to quench the reaction and was extracted with DCM. The combined extracts were washed with water, brine, dried over Na 2 SO 4 and filtered. The solvents were removed and recrystallized in EtOH to give the crude products.
  • DMF N, N-Dimethylformamide
  • Structure 7 In a 100 mL three-neck flask, Structure D1 obtained above (480 mg, 1.0 mmol, 480 g/mol) , N- ( [1, 1’ -biphenyl] -4-yl) -9, 9-dimethyl-9H-fluoren-2-amine (434 mg, 1.2 mmol, 361.5 g/mol) , NaOBu -t (115 mg, 1.2 mmol, 96 g/mol) , P (Cy) 3 .
  • HBF 4 (18 mg, 5%mmol, 368.2 g/mol) and Pd (OAc) 2 (11 mg, 5%mmol, 224.5 g/mol) were added into Toluene (30 mL) , and the solution was stirred at reflux under N 2 atmosphere for 4 h. After completion of the reaction, EtOAc (60 mL) was added, the organic phase was washed with brine (2 ⁇ 150 mL) and a saturated solution of NaHCO 3 (150 mL) and dried over Na 2 SO 4 , and the solvent was removed by distillation under reduced pressure affording the crude products.
  • Pd (OAc) 2 11 mg, 5%mmol, 224.5 g/mol
  • the obtained Structure 7 has a HOMO level of -4.68 eV, a LUMO level of -0.99 eV, a triplet energy of 2.61 eV, and a hole mobility level of 0.20, as determined by the modeling method described above.
  • An OLED device containing organic compound Structure 7 as the hole transport layer was fabricated by thermally depositing organic layers, from bottom to top, electron injection layer (EIL) , electron transport layer (ETL) , emitting material layer (EML) , hole transport layer (HTL) , and hole injection layer (HIL) , onto an indium tin oxide (ITO) coated glass substrate that served as an anode, and topped with an aluminum cathode.
  • Thermal deposition was conducted by chemical vapor deposition in a vacuum chamber with a base pressure of ⁇ 10 -7 torr. The deposition rates of organic layers were maintained at 0.1-0.05 nm/s.
  • the aluminum cathode was deposited at 0.5 nm/s.
  • the active area of the OLED device was “3 mm x 3 mm. ”
  • Organic materials used in organic layers were all purified by sublimation before deposition, and were placed inside the vacuum chamber until it reached 10 -6 torr. To evaporate each material, a controlled current was applied between the anode and the cathode to raise the temperature to keep the constant evaporation rate of 1A/sfor each organic material.
  • a comparative OLED device containing N- ( [1, 1'-biphenyl] -4-yl) -9, 9-dimethyl-N- (4- (9-phenyl-9H-carbazol-3-yl) phenyl) -9H-fluoren-2-amine (HTL-C) as the hole transport layer was prepared with the similar procedure described above.
  • J-V-L current density-voltage-luminance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Organic compounds suitable for organic layers of electronic devices that show increased luminous efficiency.

Description

ORGANIC COMPOUND AND ELECTRONIC DEVICE COMPRISING AN ORGANIC LAYER COMPRISING THE ORGANIC COMPOUND FIELD OF THE INVENTION
The present invention relates to organic compounds, and an electronic device comprising an organic layer comprising the organic compounds.
INTRODUCTION
Organic light emitting diodes (OLEDs) are display devices that employ stacks of organic layers including electron transport layers (ETLs) and hole transport layers (HTLs) . OLEDs have drawn much attention in recent years as one of the most promising next-generation displays because of their many performance advantages including light weight, energy saving and high contrast.
There is still desire to develop new materials with ease of synthesis and good thermal features for OLEDs with improved device performance including minimized power consumption, especially for battery-powered mobile applications.
SUMMARY OF THE INVENTION
The present invention provides organic compounds having a structure represented by Formula (1) :
Figure PCTCN2016100990-appb-000001
wherein R1 through R8 are each independently selected from the group consisting of hydrogen, deuterium ( “D” ) , a substituted or unsubstituted C1-C50 alkyl, a substituted or unsubstituted C1-C50 alkoxy, a substituted or unsubstituted C1-C50 alkoxycarbonyl, a substituted or unsubstituted C6-C60 aryl, a substituted or unsubstituted C1-C60 heteroaryl, a  substituted or unsubstituted C6-C60 aryloxy, a substituted or unsubstituted C6-C50 arylthio, a halogen, a cyano, a hydroxyl, and a carbonyl;
Ra, Rb, Ra’ , Rb’ , Ra” and Rb” are each independently selected from the group consisting of hydrogen, deuterium, a substituted or unsubstituted C1-C50 alkyl, a substituted or unsubstituted C3-C50 cycloalkyl, a substituted or unsubstituted C6 -C60 aryl, and a substituted or unsubstituted C1-C60 heteroaryl;
R9, R10 and R11 are each independently selected from the group consisting of hydrogen, deuterium, a substituted or unsubstituted C1-C50 alkyl, a substituted or unsubstituted C1-C50 alkoxy, a substituted or unsubstituted C1-C50 alkoxycarbonyl, a substituted or unsubstituted C6-C60 aryl, a substituted or unsubstituted C1-C60 heteroaryl, a substituted or unsubstituted C6-C60 aryloxy, a substituted or unsubstituted C6-C50 arylthio, a halogen, a cyano, a hydroxyl, a carbonyl, and a substituted amino group having the structure of
Figure PCTCN2016100990-appb-000002
wherein Ar1 and Ar2 are each independently selected from the group consisting of a substituted or unsubstituted C6-C60 aryl, and a substituted or unsubstituted C1-C60 heteroaryl, with the proviso that at least one of R9, R10 and R11 is the substituted amino group; and
X1, X2 and X3 are each independently a chemical bond, or selected from the group consisting of a substituted or unsubstituted C1-C50 alkylene, a substituted or unsubstituted C3-C50 cycloalkylene, a substituted or unsubstituted C6-C60 arylene, and a substituted or unsubstituted C1-C60 heteroarylene; and X1, X2 and X3 may form one or more fused rings with the adjacent phenyl ring.
The present invention further provides an electronic device comprising an organic layer comprising the organic compounds.
DETAILED DESCRIPTION OF THE INVENTION
The organic compounds of the present invention have the structure represented by Formula (1) :
Figure PCTCN2016100990-appb-000003
wherein R1 through R8 are each independently selected from the group consisting of hydrogen; deuterium ( “D” ) ; a substituted or unsubstituted C1-C50 alkyl, C1-C30 alkyl, C1-C20 alkyl, or C1-C10 alkyl; a substituted or unsubstituted C1-C50 alkoxy, C1-C30 alkoxy, C1-C20 alkoxy, or C1-C10 alkoxy; a substituted or unsubstituted C1-C50 alkoxycarbonyl, C1-C30 alkoxycarbonyl, C1-C20 alkoxycarbonyl, or C1-C10 alkoxycarbonyl; a substituted or unsubstituted C6-C60 aryl, C6-C30 aryl, C6-C20 aryl, or C6-C12 aryl; a substituted or unsubstituted C1-C60 heteroaryl, C1-C30 heteroaryl, C2-C20 heteroaryl, or C4-C12 heteroaryl; a substituted or unsubstituted C6-C60 aryloxy, C6-C30 aryloxy, C6-C20 aryloxy, or C6-C10 aryloxy; a substituted or unsubstituted C6-C50 arylthio, C6-C30 arylthio, C6-C20 arylthio, or C6-C10 arylthio; a halogen such as F, Cl, Br or I; a cyano; a hydroxyl; and a carbonyl. R1 and R2, R2 and R3, R3 and R4, R5 and R6, R6 and R7, or R7 and R8 may respectively and independently form a 4-to 8-membered fused ring.
Preferably, R1 through R8 are each independently selected from hydrogen, a halogen, a substituted or unsubstituted C1-C3 alkyl, and a substituted or unsubstituted C6 -C60 aryl. More preferably, R1 through R8 are each independently selected from hydrogen, F, methyl, phenyl, naphthyl, and biphenyl.
In some embodiments, at least two of R1 through R8 are hydrogen. Preferably, all R1 through R8 are hydrogen.
Ra, Rb, Ra’ , Rb’ , Ra” and Rb” are each independently selected from the group consisting of hydrogen, deuterium, a substituted or unsubstituted C1-C50 alkyl, a substituted or unsubstituted C3-C50 cycloalkyl, a substituted or unsubstituted C6 -C60 aryl, and a substituted or unsubstituted C1-C60 heteroaryl.
R9, R10 and R11 are each independently selected from the group consisting of hydrogen,  deuterium, a substituted or unsubstituted C1-C50 alkyl, C1-C30 alkyl, C1-C20 alkyl, or C1-C10 alkyl; a substituted or unsubstituted C1-C50 alkoxy, C1-C30 alkoxy, C1-C20 alkoxy, or C1-C10 alkoxy; a substituted or unsubstituted C1-C50 alkoxycarbonyl, C1-C30 alkoxycarbonyl, C1-C20 alkoxycarbonyl, or C1-C10 alkoxycarbonyl; a substituted or unsubstituted C6-C60 aryl, C6-C30 aryl, C6-C20 aryl, or C6-C12 aryl; a substituted or unsubstituted C1-C60 heteroaryl, C1-C30 heteroaryl, C2-C20 heteroaryl, or C4-C12 heteroaryl; a substituted or unsubstituted C6-C60 aryloxy, a substituted or unsubstituted C6-C50 arylthio; such as F, Cl, Br or I; a cyano; a hydroxyl; a carbonyl; and a substituted amino group having the structure of
Figure PCTCN2016100990-appb-000004
with the proviso that at least one of R9, R10 and R11 is the substituted amino group. Ar1 and Ar2 are each independently selected from the group consisting of a substituted or unsubstituted C6-C60 aryl, C6-C30 aryl, C6-C20 aryl, or C6-C15 aryl; and a substituted or unsubstituted C1-C60 heteroaryl, C1-C30 heteroaryl, C2-C20 heteroaryl, or C4-C12 heteroaryl. Preferably, Ar1 and Ar2 are each independently a substituted or unsubstituted C6-C60 aryl. More preferably, Ar1 and Ar2 are each independently a substituted or unsubstituted C12-C30 aryl.
In some embodiments, only one of R9, R10 and R11 is the substituted amino group. Preferably, two of R9, R10 and R11 are the substituted amino group, and the other one of R9, R10 and R11 is selected from hydrogen, a halogen, and a substituted or unsubstituted C6-C60 aryl.
In some embodiments, the substituted amino group is selected from the following structures represented by Formula (a) through Formula (c) :
Figure PCTCN2016100990-appb-000005
wherein Ar3 and Ar4 are each independently an unsubstituted C6-C60 aryl, Ar5 through Ar7 are each independently an unsubstituted C6-C40 aryl, and Ar8 through Ar11 are each independently an unsubstituted C6-C30 aryl; and L1 through L3 are each independently selected from the group consisting of a substituted or unsubstituted C6-C60 arylene and a substituted or unsubstituted C1-C60 heteroarylene. Preferably, Ar3 through Ar11 may be each independently  an unsubstituted C6-C30 aryl, C6-C20 aryl, C6-C15 aryl, or C6-C12 aryl.
Suitable examples of the substituted amino groups comprise the following structures (1) through (6) :
Figure PCTCN2016100990-appb-000006
X1, X2 and X3 may be the same or different.
X1, X2 and X3 are each independently a chemical bond, or selected from the group consisting of a substituted or unsubstituted C1-C50 alkylene, a substituted or unsubstituted C3-C50 cycloalkylene, a substituted or unsubstituted C6-C60 arylene, and a substituted or unsubstituted C1-C60 heteroarylene.
In the embodiments where X1, X2 or X3 is a chemical bond, it means that R9, R10 or R11 is directly linked to its adjacent phenyl ring through X1, X2 or X3.
In some embodiments, X1, X2 or X3 may form one or more fused rings with the adjacent phenyl ring.
Suitable examples of Xl, X2 or X2 comprise
Figure PCTCN2016100990-appb-000007
Figure PCTCN2016100990-appb-000008
Preferably, the organic compounds of the present invention have the structure represented by Formula (2) ,
Figure PCTCN2016100990-appb-000009
wherein Xl, X2 and X3, and R1 through R11 are as previously defined with reference to Formula (1) .
More preferably, the organic compounds of the present invention have the structure represented by Formula (3) , (4) or (5) :
Figure PCTCN2016100990-appb-000010
wherein Xl, X2 and X3, and R1 through R11 are as previously defined with reference to Formula (1) .
More preferably, the organic compounds of the present invention have the structure represented by Formula (6) , (7) or (8) :
Figure PCTCN2016100990-appb-000011
wherein Xl, X2 and X3, and R1 through R11 are as previously defined with reference to Formula (1) .
Suitable examples of the organic compounds are selected from the following structures (7) through (32) :
Figure PCTCN2016100990-appb-000012
Figure PCTCN2016100990-appb-000013
Figure PCTCN2016100990-appb-000014
Figure PCTCN2016100990-appb-000015
The organic compounds of the present invention may have a molecular weight of 500 g/mole or more, 600 g/mole or more, or even 700 g/mole or more, and at the same time, 1,000 g/mole or less, 900 g/mole or less, or even 800 g/mole or less.
The organic compounds of the present invention may have a glass transition temperature (Tg) of 110 ℃ or higher, 130 ℃ or higher, or 150 ℃ or higher, and at the same time, 250 ℃ or lower, 220 ℃ or lower, or even 200 ℃ or lower, as measured according to the test method described in the Examples section below.
The organic compounds of the present invention may have a decomposition temperature (Td, 5%weight loss) of 300 ℃ or higher, 350 ℃ or higher, or 400 ℃ or higher, and at the same time, 650 ℃ or lower, 600 ℃ or lower, or even 550 ℃ or lower, as measured according to the test method described in the Examples section below.
The organic compounds of the present invention may be prepared in a facile way starting from very basic chemicals, as shown in Scheme 1 below. An Aldol reaction was firstly conducted to form Structure A. Structure A was reacted through Stetter reaction and condensation reaction with amines under the catalysis of p-toluenesulfonic acid to get Structure B. Under the catalytic condition of palladium acetate and ligand, Structure B could be cyclized to produce Structure C having a fused pyrrole ring. Structure C products were then treated with N-Iodosuccinimide (NIS) , followed by the coupling reaction with phenylboronic acid to produce Structure D. After a final Buchwald-Hartwig reaction, Formula (4) of the present invention could be obtained. Formula (3) and Formula (5) could be synthesized via the same strategy.
Figure PCTCN2016100990-appb-000016
The organic compounds of the present invention may be used in organic layers including hole transport layers (HTL) , electron transport layers (ETL) , hole injection layers (HIL) , charge blocking layers, charge generation layers, and emissive layers (EML) in electronic devices. Preferably, the organic layer is a hole transport layer or a hole injection layer. The term “charge blocking layer” herein refers to certain layers of structures blocking charge transfer to improve efficiency. The term “charge generation layer” herein refers to certain layers of structures which can generate charges.
Electronic devices are devices depending on the principles of electronics and using the manipulation of electron flow for its operation. The organic compounds of the present invention may be used in electronic devices including organic photovoltaic cells, organic field effect transistors (OFETs) , and light emitting devices. Light emitting devices are electronic devices emitting lights when electrical currents were applied across two electrodes in the devices.
The electronic device of the present invention may comprise an anode, a cathode, and at least one organic layer interposed between the anode and the cathode. At least one of the organic layers comprises at least one of the organic compounds of the present invention. The organic layer can be a charge transfer layer that can transport charge carrying moieties, either holes or electrons. The organic layer may be a hole transport layer, an emissive layer, an electron transport layer, or a hole injection layer. Preferably, the organic layer is a hole transport layer or a hole injection layer. In addition to the organic compounds of the present invention, the organic layer may comprise one or more “dopants” . Dopants are impurities deliberately added in small amounts to a pure substance (i.e., a “host” ) to alter its properties such as conductivity and emitting property. It has the effect of shifting the Fermi level of the  original material (i.e., the “host” ) , which results in a material with predominantly negative (n-type) or positive (p-type) charge carriers depending on the dopant variety. The organic layer comprising the organic compounds of the present invention may be prepared by evaporative vacuum deposition or solution process such as spin coating, slot die coating and ink-jet printing. The organic compounds of the present invention may be a part of polymer resin of Mn higher than 6, 000 Dalton. The polymer resin can be synthesized by a mixture of the organic compounds of the present invention, where the concentration of individual monomers can vary from 0.1%to 99.9%. The polymer resin can be deposited using spin coating, slot die coating or ink-jet printing.
The term “aryl, ” as described herein, refers to an organic radical derived from aromatic hydrocarbon by the removal of one hydrogen atom therefrom. An aryl group may be a monocyclic and/or fused ring system each ring of which suitably contains from 4 to 6, preferably from 5 or 6 atoms. Structures wherein two or more aryl groups are combined through single bond (s) are also comprised. Examples of aryls comprise phenyl, naphthyl, biphenyl, anthryl, indenyl, fluorenyl, benzofluorenyl, phenanthryl, triphenylenyl, pyrenyl, perylenyl, chrysenyl, naphtacenyl, fluoranthenyl and the like. The naphthyl may be 1-naphthyl or 2-naphthyl. The anthryl may be 1-anthryl, 2-anthryl or 9-anthryl. The fluorenyl may be any one of 1-fluorenyl, 2-fluorenyl, 3-fluorenyl, 4-fluorenyl and 9-fluorenyl.
The term “substituted aryl, ” as described herein, refers to an aryl in which at least one hydrogen atom is substituted with a heteroatom or a chemical group containing at least one heteroatom. Heteroatoms comprise O, N, P and S. The chemical group containing at least one heteroatom herein comprise OR’ , NR’ 2, PR’ 2, P (=O) R’ 2, and SiR’ 3; wherein each R’ is hydrogen or a C1-C30 hydrocarbyl.
The term “heteroaryl, ” as described herein, refers to an aryl group, in which at least one carbon atom or CH group or CH2 group is substituted with a heteroatom (for example, B, N, O, S, P (=O) , Si and P) or a chemical group containing at least one heteroatom. The heteroaryl may be a 5-or 6-membered monocyclic heteroaryl or a polycyclic heteroaryl which is fused with one or more benzene ring (s) , and may be partially saturated. The structures having one or more heteroaryl group (s) bonded through a single bond are also comprised. The heteroaryl groups comprise divalent aryl groups of which the heteroatoms are oxidized or quarternized to form N-oxides, quaternary salts, or the like. Specific examples comprise  monocyclic heteroaryl groups, such as furyl, thiophenyl, pyrrolyl, imidazolyl, pyrazolyl, thiazolyl, thiadiazolyl, isothiazolyl, isoxazolyl, oxazolyl, oxadiazolyl, triazinyl, tetrazinyl, triazolyl, tetrazolyl, furazanyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl; polycyclic heteroaryl groups, such as benzofuranyl, fluoreno [4, 3-b] benzofuranyl, benzothiophenyl, fluoreno [4, 3-b] benzothiophenyl, isobenzofuranyl, benzimidazolyl, benzothiazolyl, benzisothiazolyl, benzisoxazolyl, benzoxazolyl, isoindolyl, indolyl, indazolyl, benzothiadiazolyl, quinolyl, isoquinolyl, cinnolinyl, quinazolinyl, quinoxalinyl, carbazolyl, phenanthridinyl and benzodioxolyl; and corresponding N-oxides (for example, pyridyl N-oxide, quinolyl N-oxide) and quaternary salts thereof.
The term “substituted heteroaryl, ” as described herein, refers to a heteroaryl in which at least one hydrogen atom is substituted with a heteroatom or a chemical group containing at least one heteroatom. Heteroatoms comprise O, N, P and S. The chemical group containing at least one heteroatom comprise OR’ , NR’ 2, PR’ 2, P (=O) R’ 2, and SiR’ 3; wherein each R’ is hydrogen or a C1-C30 hydrocarbyl.
The term “hydrocarbyl, ” as described herein, refers to a chemical group containing only hydrogen and carbon atoms.
“Alkyl, ” and other substituents containing “alkyl” moiety, comprises both linear and branched species. Examples of alkyls comprise methyl, ethyl, propyl, iso-propyl, butyl, iso-butyl, tert-butyl, pentyl, and hexyl.
The term “substituted alkyl, ” as described herein, refers to an alkyl in which at least one hydrogen atom is substituted with a heteroatom or a chemical group containing at least one heteroatom. Heteroatoms comprise O, N, P and S. The chemical group containing at least one heteroatom herein comprise OR’ , NR’ 2, PR’ 2, P (=O) R’ 2, and SiR’ 3; wherein each R’ is hydrogen or a C1-C30 hydrocarbyl.
The term “cycloalkyl, ” as described herein, refers to a monocyclic hydrocarbon and a polycyclic hydrocarbon such as substituted or unsubstituted adamantyl, and substituted or unsubstituted C7-C30 bicycloalkyl.
EXAMPLES
The following examples illustrate embodiments of the present invention. All parts and percentages are by weight unless otherwise indicated.
Materials and NMR information
Commercially available materials purchased from Sinopharm Chemical Reagent Co., Ltd. (SCRC) or Energy Chemicals were used as received. Proton nuclear magnetic resonance (1H NMR) spectra were recorded on Bruker AVANCE III (400 MHz) spectrometer. Chemical shifts were recorded in parts per million (ppm) relative to tetramethylsilane (0.00) . 1H NMR splitting patterns were designated as singlet (s) , doublet (d) , triplet (t) , quartet (q) , doublet of doublets (dd) , multiplet (m) , and etc. All first-order splitting patterns were assigned on the basis of the appearance of the multiplet. Splitting patterns that could not be easily interpreted are designated as multiplet (m) or broad (br) .
Modeling
All computations utilized the Gaussian 09 program as described in Gaussian 09, Revision A. 02, Frisch, M. J. et al., Gaussian, Inc., Wallingford CT, 2009. The calculations were performed with the hybrid Density Functional Theory (DFT) method, Becke, 3-parameter, Lee-Yang-Parr (B3LYP) , as described in Becke, A. D. J. Chem. Phys. 1993, 98, 5648; Lee, C. et al., Phys. Rev B 1988, 37, 785; and Miehlich, B. et al. Chem. Phys. Lett. 1989, 157, 200; and the 6-31G* (5d) basis set as described in Ditchfield, R. et al., J. Chem. Phys. 1971, 54, 724; Hehre, W. J. et al., J. Chem. Phys. 1972, 56, 2257; and Gordon, M. S. Chem. Phys. Lett. 1980, 76, 163. The singlet state calculations use the closed shell approximation, and the triplet state calculations use the open shell approximation. All values are quoted in electron volts (eV) . The Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) values are determined from the orbital energies of the optimized geometry of the singlet ground state. The triplet energies are determined as the difference between the total energy of the optimized triplet state and the optimized singlet state. A procedure, as described in Lin, B. C et al., J. Phys. Chem. A 2003, 107, 5241-5251, is applied to calculate the reorganization energy of each molecule, with which as the indicator of electron and hole mobility.
Differential scanning calorimetry (DSC)
DSC measurements were carried out on Q2000 differential scanning calorimeter of TA Instruments at a scan rate of 10 ℃/min under N2 atmosphere for all cycles. Each sample (about 7-10 mg) was scanned from room temperature to 300 ℃ (first heating scan) , cooled to -60 ℃, and then reheated to 300 ℃ (second heating scan) . Tg was measured on the second  heating scan. Data analysis was performed using Universal Analysis 2000 software of TA Instruments. The Tg value was calculated using an “onset-at-inflection” methodology.
Thermo gravimetric analysis (TGA)
TGA measurements were carried out on TGA-Q500 thermo gravimetric analyzer of TA Instruments under N2 atmosphere. Each sample (about 7-10 mg) was weighed in a platinum standard plate and loaded into the instrument. Each sample was first heated to 60 ℃and equilibrated for 30 minutes to remove solvent residues in the sample. Then the sample was cooled to 30 ℃. The temperature was ramped from 30 ℃ to 600 ℃ with 10 ℃/min rate and the weight change was recorded to determine the decomposition temperature (Td) of the sample. The temperature-weight % (T-Wt %) curve was obtained by TGA scan. The temperature at the 5 %weight loss was determined as Td.
Liquid Chromatography-Mass Spectrometry (LC-MS)
Each sample was dissolved in tetrahydrofuran (THF) at around 0.6 mg/mL. 5 μL sample solution was injected on an Agilent 1220 HPLC/G6224A time-of-flight mass spectrometer. The following analysis conditions were used:
Column: 4.6 x 150 mm, 3.5 μm ZORBAX Eclipse Plus C18; column temperature: 40 ℃;Mobile phase: THF/deioned (DI) water = 65/35 volume ratio (Isocratic method) ; Flow rate: 1.0 mL/min; and
MS conditions: Capillary Voltage: 3500 kV (Pos) ; Mode: Pos; Scan: 100-2000 amu; Rate: 1 s/scan; and Desolvation temperature: 300 ℃.
High Performance Liquid Chromatography (HPLC)
Each sample was dissolved in THF at around 0.6 mg/mL. The sample solution was at last filtrated through a 0.45 μm syringe filter and 5 μL of the filtrate was injected to HPLC system. The following analysis conditions were used:
Injection volume: 5 μL; Instrument: Agilent 1200 HPLC; Column: 4.6 x 150mm, 3.5μm ZORBAX Eclipse Plus C18; Column temperature: 40 ℃; Detector: DAD=250, 280, 350 nm; Mobile Phase: THF/DI water = 65/35 volume ratio (Isocratic method) ; and Flow rate: 1 mL/min.
Example 1: Synthesis Route of Organic Compound Structures 7 and 10
Synthesis of organic compound Structure 7
Figure PCTCN2016100990-appb-000017
Structure B1: THF (40 mL) was added to a mixture of Structure A1 (3.21 g, 10.00 mmol, 321 g/mol) , benzaldehyde (1.17 g, 11.00 mmol, 106 g/mol) , 3-Ethyl-5- (2-hydroxyethyl) -4-methylthiazolium bromide (505 mg, 252 g/mol, 2.0 mmol) and K2CO3 (276 mg, 138 g/mol, 2.0 mmol) at room temperature. The mixture was stirred for 48 h at reflux. After completion of the reaction, the mixture was filtered to remove the salts and the solvents were removed by distillation under reduced pressure to afford crude products as yellow powders. The obtained powders and aniline (1.86 g, 20 mmol, 93 g/mol) were dissolved into EtOH (100 mL) , TsOH (20 mmol) and molecular sieves (10 g) were added. The mixture was stirred at 80 ℃ overnight. After completion of the reaction, DI water was added to quench the reaction. The mixture was filtered first and washed with dichloromethane (DCM) . The solvents in the combined organic phase were removed and purified using silica gel column (eluent PE/DCM = 10: 1) to give the products as white crystals (yield about 60%over 2 steps) . 1H NMR (400 MHz, CDCl3, ppm) : 7.52-7.54 (dd, J = 8.0 Hz, 1H) , 7.12-7.17 (m, 9H) , 7.04-7.09 (m, 6H) , 6.90-6.92 (m, 2H) , 6.62 (s, 1H) . LC-MS-ESI (m/z) : calcd for C28H19BrClN: 483.04, found (M+H) +: 484.0486.
Structure C1: Pd (OAc) 2 (2 mol%, 224 g/mmol, ) and PCy3. BF4 (4 mol%, 338 g/mol) were added to a solution of Structure B1 (485 mg, 1.0 mmol, 485 g/mol) and K2CO3 (2 mmol, 276 mg, 138 g/mol) in N, N-Dimethylacetamide (DMA) (20 mL) . The reaction mixture was stirred at 130 ℃ overnight. TLC was utilized to monitor the reaction. After completion of the reaction, DI water was added to quench the reaction and was extracted with DCM. The combined extracts were washed with water, brine, dried over Na2SO4 and filtered. The solvents were removed and recrystallized in EtOH to give the crude products as white  powders, which were used directly for next step (yield about 90%) . 1H NMR (400 MHz, CDCl3, ppm) : 8.31-8.34 (d, J = 8.0 Hz, 1H) , 8.25-8.27 (d, J = 8.0 Hz, 1H) , 8.07-8.09 (d, J =8.0 Hz, 1H) , 7.45-7.51 (m, J = 8.0 Hz, 1H) , 7.38-7.46 (m, 6H) , 7.22-7.27 (m, 2H) , 7.17-7.19 (m, 3H) , 7.06-7.12 (m, 3H) . LC-MS-ESI (m/z) : calcd for C28H18ClN: 403.11, found (M+H) +: 404.1219.
Structure D1: NIS (248 mg, 1.10 mmol, 225 g/mol) was slowly added to a solution of Structure C1 (403.9mg, 1.0 mmol, 403.9 g/mol) in N, N-Dimethylformamide (DMF) (20 mL) at room temperature. The mixture was stirred at room temperature overnight. TLC was utilized to monitor the reaction. After completion of the reaction, DI water was added to quench the reaction and was extracted with DCM. The combined extracts were washed with water, brine, dried over Na2SO4 and filtered. The solvents were removed and recrystallized in EtOH to give the crude products. added Pd (OAc) 2 (2.5%mol) , X-Phos (2.5%mol) , and K3PO4 (955 mg, 4.5 eq, 212 g/mol) were added to a solution of the obtained crude products and phenylboronic acid (183 mg, 1.5 eq, 122 g/mol) in toluene (20 mL) . The reaction mixture was stirred at 60 ℃ overnight under N2 atmosphere. TLC was utilized to monitor the reaction. After completion of the reaction, DI water was added to quench the reaction and was extracted with EtOAc. The combined extracts were washed with water, brine, dried over Na2SO4. The solvents were removed and recrystallized in EtOH to give to give needle like crystals (yield about 70%over 2 steps) . 1H NMR (400 MHz, CDCl3, ppm) : 8.29-8.31 (d, J = 8.0 Hz, 1H) , 8.23-8.25 (d, J = 8.0 Hz, 1H) , 7.50-7.52 (d, J = 8.0 Hz, 1H) , 7.27-7.37 (m, 12H) , 7.21-7.23 (d, J = 8.0 Hz, 1H) , 7.05-7.14 (m, 2H) , 6.97-6.99 (d, J = 8.0 Hz, 2H) , 6.72-6.74 (d, J = 8.0 Hz, 2H) . LC-MS-ESI (m/z) : calcd for C34H22ClN: 479.14, found (M+H) +: 480.1534.
Structure 7: In a 100 mL three-neck flask, Structure D1 obtained above (480 mg, 1.0 mmol, 480 g/mol) , N- ( [1, 1’ -biphenyl] -4-yl) -9, 9-dimethyl-9H-fluoren-2-amine (434 mg, 1.2 mmol, 361.5 g/mol) , NaOBu-t (115 mg, 1.2 mmol, 96 g/mol) , P (Cy) 3. HBF4 (18 mg, 5%mmol, 368.2 g/mol) and Pd (OAc) 2 (11 mg, 5%mmol, 224.5 g/mol) were added into Toluene (30 mL) , and the solution was stirred at reflux under N2 atmosphere for 4 h. After completion of the reaction, EtOAc (60 mL) was added, the organic phase was washed with brine (2 × 150 mL) and a saturated solution of NaHCO3 (150 mL) and dried over Na2SO4, and the solvent was removed by distillation under reduced pressure affording the crude products. The crude products were separated via silica gel column (eluent PE/DCM = 10: 1-5: 1) to afford final  products as white powders (yield about 85%) . 1H NMR (400 MHz, CDCl3, ppm) : 8.22-8.24 (d, J = 8.0 Hz, 1H) , 8.17-8.19 (d, J = 8.0 Hz, 1H) , 7.55-7.57 (d, J = 8.0 Hz, 1H) , 7.47-7.52 (m, 4H) , 7.18-7.39 (m, 21H) , 6.99-7.09 (m, 5H) , 6.93-6.95 (d, J = 8.0 Hz, 1H) , 6.76-6.78 (d, J =8.4 Hz, 2H) , 6.64-6.66 (d, J = 8.4 Hz, 2H) , 1.34 (s, 6H) . LC-MS-ESI (m/z) : calcd for C61H44N2: 804.35, found (M+H) +: 805.3597. The obtained Structure 7 has a HOMO level of -4.68 eV, a LUMO level of -0.99 eV, a triplet energy of 2.61 eV, and a hole mobility level of 0.20, as determined by the modeling method described above.
Thermal property of organic compound Structure 7
Thermal properties of Structure 7 were analyzed by DSC and TGA and results are shown in Table 1. As shown in Table 1, Structure 7 has very good thermal features with Tg at 145.2 ℃ and Td at 431.8 ℃.
Table 1
Sample Name Td (℃) Tg (℃)
Structure 7 431.8 145.2
Example 2: OLED Device Fabrication
An OLED device containing organic compound Structure 7 as the hole transport layer was fabricated by thermally depositing organic layers, from bottom to top, electron injection layer (EIL) , electron transport layer (ETL) , emitting material layer (EML) , hole transport layer (HTL) , and hole injection layer (HIL) , onto an indium tin oxide (ITO) coated glass substrate that served as an anode, and topped with an aluminum cathode. Thermal deposition was conducted by chemical vapor deposition in a vacuum chamber with a base pressure of <10-7 torr. The deposition rates of organic layers were maintained at 0.1-0.05 nm/s. The aluminum cathode was deposited at 0.5 nm/s. The active area of the OLED device was “3 mm x 3 mm. ” Organic materials used in organic layers were all purified by sublimation before deposition, and were placed inside the vacuum chamber until it reached 10-6 torr. To evaporate each material, a controlled current was applied between the anode and the cathode to raise the temperature to keep the constant evaporation rate of 1A/sfor each organic material. 
Material and thickness of each organic layer were shown in Table 2.
A comparative OLED device containing N- ( [1, 1'-biphenyl] -4-yl) -9, 9-dimethyl-N- (4- (9-phenyl-9H-carbazol-3-yl) phenyl) -9H-fluoren-2-amine (HTL-C) as the hole transport layer  was prepared with the similar procedure described above.
Table 2
Figure PCTCN2016100990-appb-000018
The current density-voltage-luminance (J-V-L) characterizations for the OLED devices were performed with a KEITHLEY 2635A-SYS Single-channel System Source Meter and a MINOLTA CS-100A Chroma Meter.
As shown in Table 3, Inventive OLED Device had higher luminous efficiency compared to that of Comparative Device.
Table 3
Figure PCTCN2016100990-appb-000019

Claims (18)

  1. An organic compound having a structure represented by Formula (1) :
    Figure PCTCN2016100990-appb-100001
    wherein R1 through R8 are each independently selected from the group consisting of hydrogen, deuterium, a substituted or unsubstituted C1-C50 alkyl, a substituted or unsubstituted C1-C50 alkoxy, a substituted or unsubstituted C1-C50 alkoxycarbonyl, a substituted or unsubstituted C6 -C60 aryl, a substituted or unsubstituted C1-C60 heteroaryl, a substituted or unsubstituted C6-C60 aryloxy, a substituted or unsubstituted C6-C50 arylthio, a halogen, a cyano, a hydroxyl, and a carbonyl;
    Ra, Rb, Ra’ , Rb’ , Ra” and Rb” are each independently selected from the group consisting of hydrogen, deuterium, a substituted or unsubstituted C1-C50 alkyl, a substituted or unsubstituted C3-C50 cycloalkyl, a substituted or unsubstituted C6 -C60 aryl, and a substituted or unsubstituted C1-C60 heteroaryl;
    R9, R10 and R11 are each independently selected from the group consisting of hydrogen, deuterium, a substituted or unsubstituted C1-C50 alkyl, a substituted or unsubstituted C1-C50 alkoxy, a substituted or unsubstituted C1-C50 alkoxycarbonyl, a substituted or unsubstituted C6-C60 aryl, a substituted or unsubstituted C1-C60 heteroaryl, a substituted or unsubstituted C6-C60 aryloxy, a substituted or unsubstituted C6-C50 arylthio, a halogen, a cyano, a hydroxyl, a carbonyl, and a substituted amino group having the structure of
    Figure PCTCN2016100990-appb-100002
    wherein Ar1 and Ar2 are each independently selected from the group consisting of a substituted or unsubstituted C6-C60 aryl, and a substituted or unsubstituted C1-C60 heteroaryl, with the proviso that at least one of R9, R10 and R11 is the substituted amino group; and
    X1, X2 and X3 are each independently a chemical bond, or selected from the group consisting of a substituted or unsubstituted C1-C50 alkylene, a substituted or unsubstituted C3-C50 cycloalkylene, a substituted or unsubstituted C6-C60 arylene, and a substituted or unsubstituted C1-C60 heteroarylene; and X1, X2 and X3 may form one or more fused rings with the adjacent phenyl ring.
  2. The organic compound of Claim 1, wherein R1 and R2, R2 and R3, R3 and R4, R5 and R6, R6 and R7, or R7 and R8 may respectively and independently form a 4- to 8-membered fused ring.
  3. The organic compound of Claim 1, R1 through R8 are each independently selected from hydrogen, F, methyl, phenyl, naphthyl, and biphenyl.
  4. The organic compound of Claim 1, wherein R1 through R8 are hydrogen.
  5. The organic compound of Claim 1, wherein one of R9, R10 and R11 is the substituted amino group.
  6. The organic compound of Claim 1, wherein two of R9, R10 and R11 is selected from hydrogen, a halogen, and a substituted or unsubstituted C6-C60 aryl.
  7. The organic compound of Claim 1, wherein the substituted amino group is selected from the following structures represented by Formula (a) through Formula (c) :
    Figure PCTCN2016100990-appb-100003
    wherein Ar3 and Ar4 are each independently an unsubstituted C6-C60 aryl, Ar5 through Ar7 are each independently an unsubstituted C6-C40 aryl, and Ar8 through Ar11 are each independently an unsubstituted C6-C30 aryl; and L1 through L3 are each independently selected  from the group consisting of a substituted or unsubstituted C6-C60 arylene and a substituted or unsubstituted C1-C60 heteroarylene.
  8. The organic compound of Claim 7, wherein Ar3 through Ar11 may be each independently an unsubstituted C6-C30 aryl.
  9. The organic compound of Claim 1, wherein the substituted amino groups comprise the following structures (1) through (6) :
    Figure PCTCN2016100990-appb-100004
  10. The organic compound of Claim 1, wherein Xl, X2 or X3 comprise
    Figure PCTCN2016100990-appb-100005
    Figure PCTCN2016100990-appb-100006
  11. The organic compound of Claim 1, wherein X1, X2 or X3 may form one or more fused rings with the adjacent phenyl ring.
  12. The organic compound of Claim 1, wherein the organic compounds of the present invention have the structure represented by Formula (2) ,
    Figure PCTCN2016100990-appb-100007
    wherein R1 through R8 are each independently selected from the group consisting of hydrogen, deuterium, a substituted or unsubstituted C1-C50 alkyl, a substituted or unsubstituted C1-C50 alkoxy, a substituted or unsubstituted C1-C50 alkoxycarbonyl, a substituted or unsubstituted C6 -C60 aryl, a substituted or unsubstituted C1-C60 heteroaryl, a substituted or unsubstituted C6-C60 aryloxy, a substituted or unsubstituted C6-C50 arylthio, a halogen, a cyano, a hydroxyl, and a carbonyl;
    R9, R10 and R11 are each independently selected from the group consisting of hydrogen, deuterium, a substituted or unsubstituted C1-C50 alkyl, a substituted or unsubstituted C1-C50 alkoxy, a substituted or unsubstituted C1-C50 alkoxycarbonyl, a substituted or unsubstituted C6-C60 aryl, a substituted or unsubstituted C1-C60 heteroaryl, a substituted or unsubstituted C6-C60 aryloxy, a substituted or unsubstituted C6-C50 arylthio, a halogen, a cyano, a hydroxyl, a carbonyl, and a substituted amino group having the structure of
    Figure PCTCN2016100990-appb-100008
    wherein Ar1 and Ar2 are each independently selected from the group consisting of a substituted or unsubstituted C6-C60 aryl, and a substituted or unsubstituted C1-C60 heteroaryl, with the proviso that at least one of R9, R10 and R11 is the substituted amino group; and
    X1, X2 and X3 are each independently a chemical bond, or selected from the group consisting of a substituted or unsubstituted C1-C50 alkylene, a substituted or unsubstituted C3-C50 cycloalkylene, a substituted or unsubstituted C6-C60 arylene, and a substituted or unsubstituted C1-C60 heteroarylene; and X1, X2 and X3 may form one or more fused rings with the adjacent phenyl ring.
  13. The organic compound of Claim 1, the organic compounds of the present invention have the structure represented by Formula (3) , (4) or (5) :
    Figure PCTCN2016100990-appb-100009
    wherein R1 through R8 are each independently selected from the group consisting of hydrogen, deuterium, a substituted or unsubstituted C1-C50 alkyl, a substituted or unsubstituted C1-C50 alkoxy, a substituted or unsubstituted C1-C50 alkoxycarbonyl, a substituted or unsubstituted C6 -C60 aryl, a substituted or unsubstituted C1-C60 heteroaryl, a substituted or unsubstituted C6-C60 aryloxy, a substituted or unsubstituted C6-C50 arylthio, a halogen, a cyano, a hydroxyl, and a carbonyl;
    R9, R10 and R11 are each independently selected from the group consisting of hydrogen, deuterium, a substituted or unsubstituted C1-C50 alkyl, a substituted or unsubstituted C1-C50 alkoxy, a substituted or unsubstituted C1-C50 alkoxycarbonyl, a substituted or unsubstituted C6-C60 aryl, a substituted or unsubstituted C1-C60 heteroaryl, a substituted or unsubstituted C6-C60 aryloxy, a substituted or unsubstituted C6-C50 arylthio, a halogen, a cyano, a hydroxyl, a carbonyl, and a substituted amino group having the structure of
    Figure PCTCN2016100990-appb-100010
    wherein Ar1 and Ar2 are each independently selected from the group consisting of a substituted or unsubstituted C6-C60 aryl, and a substituted or unsubstituted C1-C60 heteroaryl, with the proviso that at least one of R9, R10 and R11 is the substituted amino group; and
    X1, X2 and X3 are each independently a chemical bond, or selected from the group consisting of a substituted or unsubstituted C1-C50 alkylene, a substituted or unsubstituted C3- C50 cycloalkylene, a substituted or unsubstituted C6-C60 arylene, and a substituted or unsubstituted C1-C60 heteroarylene; and X1, X2 and X3 may form one or more fused rings with the adjacent phenyl ring.
  14. The organic compound of Claim 1, the organic compounds of the present invention have the structure represented by Formula (6) , (7) , or (8) :
    Figure PCTCN2016100990-appb-100011
    wherein R1 through R8 are each independently selected from the group consisting of hydrogen, deuterium, a substituted or unsubstituted C1-C50 alkyl, a substituted or unsubstituted C1-C50 alkoxy, a substituted or unsubstituted C1-C50 alkoxycarbonyl, a substituted or unsubstituted C6 -C60 aryl, a substituted or unsubstituted C1-C60 heteroaryl, a substituted or unsubstituted C6-C60 aryloxy, a substituted or unsubstituted C6-C50 arylthio, a halogen, a cyano, a hydroxyl, and a carbonyl;
    R9, R10 and R11 are each independently selected from the group consisting of hydrogen, deuterium, a substituted or unsubstituted C1-C50 alkyl, a substituted or unsubstituted C1-C50 alkoxy, a substituted or unsubstituted C1-C50 alkoxycarbonyl, a substituted or unsubstituted C6-C60 aryl, a substituted or unsubstituted C1-C60 heteroaryl, a substituted or unsubstituted C6-C60 aryloxy, a substituted or unsubstituted C6-C50 arylthio, a halogen, a cyano, a hydroxyl, a  carbonyl, and a substituted amino group having the structure of
    Figure PCTCN2016100990-appb-100012
    wherein Ar1 and Ar2 are each independently selected from the group consisting of a substituted or unsubstituted C6-C60 aryl, and a substituted or unsubstituted C1-C60 heteroaryl, with the proviso that at least one of R9, R10 and R11 is the substituted amino group; and
    X1, X2 and X3 are each independently a chemical bond, or selected from the group consisting of a substituted or unsubstituted C1-C50 alkylene, a substituted or unsubstituted C3-C50 cycloalkylene, a substituted or unsubstituted C6-C60 arylene, and a substituted or unsubstituted C1-C60 heteroarylene; and X1, X2 and X3 may form one or more fused rings with the adjacent phenyl ring.
  15. The organic compound of Claim 1, wherein the organic compounds are selected from the following structures (7) through (32) :
    Figure PCTCN2016100990-appb-100013
    Figure PCTCN2016100990-appb-100014
    Figure PCTCN2016100990-appb-100015
    Figure PCTCN2016100990-appb-100016
  16. An electronic device comprising an organic layer, wherein the organic layer comprises the organic compound of any one of Claims 1-15.
  17. The electronic device of Claim 16, wherein the organic layer is a hole transport layer, an emissive layer, an electron transport layer, or a hole injection layer.
  18. The electronic device of claim 17, wherein the electronic device is a light emitting device.
PCT/CN2016/100990 2016-09-30 2016-09-30 Organic compound and electronic device comprising an organic layer comprising the organic compound WO2018058493A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/100990 WO2018058493A1 (en) 2016-09-30 2016-09-30 Organic compound and electronic device comprising an organic layer comprising the organic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/100990 WO2018058493A1 (en) 2016-09-30 2016-09-30 Organic compound and electronic device comprising an organic layer comprising the organic compound

Publications (1)

Publication Number Publication Date
WO2018058493A1 true WO2018058493A1 (en) 2018-04-05

Family

ID=61762397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/100990 WO2018058493A1 (en) 2016-09-30 2016-09-30 Organic compound and electronic device comprising an organic layer comprising the organic compound

Country Status (1)

Country Link
WO (1) WO2018058493A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180050217A (en) * 2016-11-04 2018-05-14 롬엔드하스전자재료코리아유한회사 Organic electroluminescent compound and organic electroluminescent device comprising the same
CN111393458A (en) * 2020-04-08 2020-07-10 长春海谱润斯科技有限公司 Heterocyclic compound and organic electroluminescent device thereof
CN111875609A (en) * 2019-08-08 2020-11-03 广州华睿光电材料有限公司 Pyrrole group-containing compound, high polymer, mixture, composition and organic electronic device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015099483A1 (en) * 2013-12-27 2015-07-02 주식회사 두산 Organic compound and organic electroluminescent element comprising same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015099483A1 (en) * 2013-12-27 2015-07-02 주식회사 두산 Organic compound and organic electroluminescent element comprising same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180050217A (en) * 2016-11-04 2018-05-14 롬엔드하스전자재료코리아유한회사 Organic electroluminescent compound and organic electroluminescent device comprising the same
KR102530705B1 (en) 2016-11-04 2023-05-11 롬엔드하스전자재료코리아유한회사 Organic electroluminescent compound and organic electroluminescent device comprising the same
CN111875609A (en) * 2019-08-08 2020-11-03 广州华睿光电材料有限公司 Pyrrole group-containing compound, high polymer, mixture, composition and organic electronic device
CN111393458A (en) * 2020-04-08 2020-07-10 长春海谱润斯科技有限公司 Heterocyclic compound and organic electroluminescent device thereof
CN111393458B (en) * 2020-04-08 2021-01-01 长春海谱润斯科技股份有限公司 Heterocyclic compound and organic electroluminescent device thereof

Similar Documents

Publication Publication Date Title
EP3919500B1 (en) Compound and organic light-emitting device comprising same
CN112236434B (en) Polycyclic compound and organic light emitting device including the same
EP3266779B1 (en) Heterocyclic compound and organic light emitting element comprising same
EP3919482A1 (en) Organic light-emitting compound, and organic electroluminescent device using same
CN114773286B (en) Nitrogen-containing heterocyclic organic compound and organic light-emitting device thereof
EP4137488A1 (en) Heterocyclic compound, organic light emitting device comprising same, composition for organic layer of organic light emitting device
CN107257787A (en) Heterocyclic compound and the organic illuminating element comprising it
WO2018058493A1 (en) Organic compound and electronic device comprising an organic layer comprising the organic compound
CN112778312B (en) Organic material containing indoloquinazolinedione heterocyclic structure and application thereof
US10005729B2 (en) Organic compounds and electronic device comprising an organic layer comprising the organic compounds
WO2016191914A1 (en) Organic composition and electronic device comprising organic layer comprising said composition
KR101513987B1 (en) Aromatic amine derivative and organic electroluminescent device including the same
WO2018058494A1 (en) Organic compound and electronic device comprising organic layer comprising organic compound
US10294203B2 (en) Organic compound and electronic device comprising an organic layer comprising the organic compound
WO2018058496A1 (en) Organic compound and electronic device
WO2018058497A1 (en) Organic compound and electronic device comprising organic layer comprising organic compound
WO2018058492A1 (en) Organic compound and electronic device comprising an organic layer comprising the organic compound
KR102629455B1 (en) Novel compound and organic light emitting device comprising the same
CN114516803B (en) Fused ring compound and application thereof
CN113121508B (en) Organic electroluminescent material containing metal platinum and application thereof
WO2018119729A1 (en) Organic compound and electronic device comprising an organic layer comprising the organic compound
CN112661752A (en) Phenanthroimidazole condensed ring compound, preparation method thereof and organic electroluminescent device
KR20200067105A (en) Novel hetero-cyclic compound and organic light emitting device comprising the same
KR20180133396A (en) The phenanthroquinazoline-core compound
US20180108845A1 (en) Cyclic urea compounds for electronic devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16917245

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16917245

Country of ref document: EP

Kind code of ref document: A1