WO2018058496A1 - Organic compound and electronic device - Google Patents

Organic compound and electronic device Download PDF

Info

Publication number
WO2018058496A1
WO2018058496A1 PCT/CN2016/100995 CN2016100995W WO2018058496A1 WO 2018058496 A1 WO2018058496 A1 WO 2018058496A1 CN 2016100995 W CN2016100995 W CN 2016100995W WO 2018058496 A1 WO2018058496 A1 WO 2018058496A1
Authority
WO
WIPO (PCT)
Prior art keywords
unsubstituted
substituted
aryl
heteroaryl
group
Prior art date
Application number
PCT/CN2016/100995
Other languages
French (fr)
Inventor
Zhengming TANG
Chong XING
Shaoguang Feng
Hong Yeop NA
Hee Choon Ahn
Hua Ren
Robert Wright
David Dayton DEVORE
Liam Patrick SPENCER
Bruce M. Bell
Timothy S. DE VRIES
Kenneth Kearns
Sukrit MUKHOPADHYAY
Original Assignee
Dow Global Technologies Llc
Rohm And Haas Electronic Materials Korea Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Global Technologies Llc, Rohm And Haas Electronic Materials Korea Ltd. filed Critical Dow Global Technologies Llc
Priority to PCT/CN2016/100995 priority Critical patent/WO2018058496A1/en
Publication of WO2018058496A1 publication Critical patent/WO2018058496A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/58[b]- or [c]-condensed
    • C07D209/60Naphtho [b] pyrroles; Hydrogenated naphtho [b] pyrroles

Definitions

  • the present invention relates to organic compounds, and an electronic device comprising an organic layer comprising the organic compounds.
  • OLEDs are display devices that employ stacks of organic layers including electron transport layers (ETLs) and hole transport layers (HTLs) .
  • ETLs electron transport layers
  • HTLs hole transport layers
  • OLEDs have drawn much attention in recent years as one of the most promising next-generation displays because of their many performance advantages including light weight, energy saving and high contrast.
  • R 1 , R 2 , R 3 , and R 4 are each independently selected from the group consisting of hydrogen, deuterium ( “D” ) , a substituted or unsubstituted C 1 -C 50 alkyl, a substituted or unsubstituted C 1 -C 50 alkoxy, a substituted or unsubstituted C 1 -C 50 alkoxycarbonyl, a substituted or unsubstituted C 6 -C 60 aryl, a substituted or unsubstituted C 1 -C 60 heteroaryl, a substituted or unsubstituted C 6 -C 60 aryloxy, a substituted or unsubstituted C 6 -C 50 arylthio, a halogen, a cyano, a hydroxyl, and a carbonyl;
  • R 5 is a substituted or unsubstituted C 1 -C 30 alkyl, a substituted or unsubstituted C 3 -C 50 cycloalkyl, a substituted or unsubstituted C 6 -C 60 aryl, or a substituted or unsubstituted C 1 -C 60 heteroaryl;
  • R a , R b , R a ’ , and R b ’ are each independently selected from the group consisting of hydrogen, deuterium, a substituted or unsubstituted C 1 -C 50 alkyl, a substituted or unsubstituted C 3 -C 50 cycloalkyl, a substituted or unsubstituted C 6 -C 60 aryl, and a substituted or unsubstituted C 1 -C 60 heteroaryl;
  • X 1 is a chemical bond, or selected from the group consisting of a substituted or unsubstituted C 1 -C 50 alkylene, a substituted or unsubstituted C 3 -C 50 cycloalkylene, a substituted or unsubstituted C 6 -C 60 arylene, and a substituted or unsubstituted C 1 -C 60 heteroarylene; and X 1 may form one or more fused rings with the adjacent phenyl ring.
  • R 1 , R 2 , R 3 and R 4 are each independently selected from hydrogen, a halogen, a substituted or unsubstituted C 1 -C 3 alkyl, and a substituted or unsubstituted C 6 -C 60 aryl. More preferably, R 1 , R 2 , R 3 and R 4 are each independently selected from hydrogen, F, methyl, phenyl, naphthyl, or biphenyl.
  • R 5 is a substituted or unsubstituted C 1 -C 30 alkyl, C 1 -C 20 alkyl, C 1 -C 10 alkyl, C 1 -C 5 alkyl, or C 1 -C 3 alkyl; a substituted or unsubstituted C 3 -C 50 cycloalkyl, C 4 -C 30 cycloalkyl, C 4 -C 20 cycloalkyl, or C 4 -C 12 cycloalkyl; a substituted or unsubstituted C 6 -C 60 aryl, C 6 -C 30 aryl, C 6 -C 20 aryl, or C 6 -C 12 aryl; or a substituted or unsubstituted C 1 -C 60 heteroaryl, C 1 -C 30 heteroaryl, C 2 -C 20 heteroaryl, or C 4 -C 12 heteroaryl.
  • R 5 is selected from -CH 3 ,-CH 2 CH 3
  • R a , R b , R a ’ , and R b ’ are each independently selected from the group consisting of hydrogen, deuterium, a substituted or unsubstituted C 1 -C 50 alkyl, a substituted or unsubstituted C 3 -C 50 cycloalkyl, a substituted or unsubstituted C 6 -C 60 aryl, and a substituted or unsubstituted C 1 -C 60 heteroaryl.
  • Ar 3 and Ar 4 are each independently an unsubstituted C 6 -C 60 aryl
  • Ar 5 through Ar 7 are each independently an unsubstituted C 6 -C 40 aryl
  • Ar 8 through Ar 11 are each independently an unsubstituted C 6 -C 30 aryl
  • L 1 through L 3 are each independently selected from the group consisting of a substituted or unsubstituted C 6 -C 60 arylene and a substituted or unsubstituted C 1 -C 60 heteroarylene.
  • Ar 3 through Ar 11 may be each independently an unsubstituted C 6 -C 30 aryl, C 6 -C 20 aryl, C 6 -C 15 aryl, or C 6 -C 12 aryl.
  • Suitable examples of the substituted amino groups comprise the following structures (1) through (6) :
  • X 1 is a chemical bond, or selected from the group consisting of a substituted or unsubstituted C 1 -C 50 alkylene, a substituted or unsubstituted C 3 -C 50 cycloalkylene, a substituted or unsubstituted C 6 -C 60 arylene, and a substituted or unsubstituted C 1 -C 60 heteroarylene.
  • X 1 is a chemical bond
  • R 6 is directly linked to its adjacent phenyl ring through X 1 .
  • X l may form one or more fused rings with the adjacent phenyl ring.
  • Suitable examples of X l comprise
  • the organic compounds of the present invention have the structure represented by Formula (2) ,
  • organic compounds of the present invention have the structure represented by Formula (3) or (4) :
  • organic compounds of the present invention have the structure represented by Formula (5) or (6) :
  • the organic compounds of the present invention may be prepared as shown in Scheme 1 below.
  • An arylhydrazine hydrochloride may react with a ketone derivative of Structure A through a Fischer indole synthesis reaction to give an indole derivative of Structure B.
  • the indole derivative may react with a halogen containing compound with the structure of R 5 Y, Y is a halogen such as F, Cl, Br or I, and preferably Br or I.
  • the resultant compound of Structure C may undergo a Buchwald-Hartwig coupling reaction and Formula (1) of the present invention could be obtained.
  • Organic compounds of the present invention may be used in electronic devices including organic photovoltaic cells, organic field effect transistors (OFETs) , and light emitting devices.
  • OFETs organic field effect transistors
  • Light emitting devices are electronic devices emitting lights when electrical currents were applied across two electrodes in the devices.
  • Dopants are impurities deliberately added in small amounts to a pure substance (i.e., a “host” ) to alter its properties such as conductivity and emitting property. It has the effect of shifting the Fermi level of the original material (i.e., the “host” ) , which results in a material with predominantly negative (n-type) or positive (p-type) charge carriers depending on the dopant variety.
  • the organic layer comprising the organic compounds of the present invention may be prepared by evaporative vacuum deposition or solution process such as spin coating, slot die coating and ink-jet printing.
  • the organic compounds of the present invention may be a part of polymer resin of Mn higher than 6,000 Dalton.
  • the polymer resin can be synthesized by a mixture of the organic compounds of the present invention, where the concentration of individual monomers can vary from 0.1%to 99.9%.
  • the polymer resin can be deposited using spin coating, slot die coating or ink-jet printing.
  • hydrocarbyl refers to a chemical group containing only hydrogen and carbon atoms.
  • Alkyl, ” and other substituents containing “alkyl” moiety comprises both linear and branched species. Examples of alkyls comprise methyl, ethyl, propyl, iso-propyl, butyl, iso-butyl, tert-butyl, pentyl, and hexyl.
  • cycloalkyl refers to a monocyclic hydrocarbon and a polycyclic hydrocarbon such as substituted or unsubstituted adamantyl, and substituted or unsubstituted C 7 -C 30 bicycloalkyl.
  • the triplet energies are determined as the difference between the total energy of the optimized triplet state and the optimized singlet state.
  • a procedure as described in Lin, B. C et al., J. Phys. Chem. A 2003, 107, 5241-5251, is applied to calculate the reorganization energy of each molecule, with which as the indicator of electron and hole mobility.
  • DSC measurements were carried out on Q2000 differential scanning calorimeter of TA Instruments at a scan rate of 10 °C/min under N 2 atmosphere for all cycles. Each sample (about 7-10 mg) was scanned from room temperature to 300 °C (first heating scan) , cooled to -60 °C, and then reheated to 300 °C (second heating scan) . Tg was measured on the second heating scan. Data analysis was performed using Universal Analysis 2000 software of TA Instruments. The Tg value was calculated using an “onset-at-inflection” methodology.
  • MS conditions Capillary Voltage: 3500 kV (Pos) ; Mode: Pos; Scan: 100-2000 amu; Rate: 1 s/scan; and Desolvation temperature: 300 °C.
  • Each sample was dissolved in THF at around 0.6 mg/mL.
  • the sample solution was at last filtrated through a 0.45 ⁇ m syringe filter and 5 ⁇ L of the filtrate was injected to HPLC system.
  • the following analysis conditions were used:
  • Structure C1 A solution of Structure A product obtained above (1.0 mmol, 398 g/mol, 398 mg) in DMA (20 mL) was added into a three-neck flask, and then cooled to 0 °C. NaH (1.5 mmol, 24 g/mol, 36 mg) was added into the solution at 0 °C. After 30 mins, CH 3 I (1.5 mmol, 142 g/mol, 213 mg) was added and TLC was utilized to monitor the reaction. After completion of the reaction, alcohol was added to quench the reaction and then DI water (30 mL) was added.
  • Structure 7 Pd (PPh 3 ) 4 (12 mg, 1%, 1154 g/mol) and Na 2 CO 3 (212 mg, 2.0 mmol, 106 g/mol, 2M in DI water) were added to a mixture of Structure C1 product (412 mg, 1.0 mmol, 412 g/mol) and N- ( [1, 1'-biphenyl] -4-yl) -9, 9-dimethyl-N- (4- (4, 4, 5, 5-tetramethyl-1, 3, 2- dioxaborolan-2-yl) phenyl) -9H-fluoren-2-amine (564 mg, 1.0 eq, 564 g/mol) in THF (20 mL) .
  • the active area of the OLED device was “3 mm x 3 mm. ”
  • Organic materials used in organic layers were all purified by sublimation before deposition, and were placed inside the vacuum chamber until it reached 10 -6 torr. To evaporate each material, a controlled current was applied between the anode and the cathode to raise the temperature to keep the constant evaporation rate of 1A/s for each organic material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Organic compounds suitable for organic layers of electronic devices that show increased luminous efficiency.

Description

[Title established by the ISA under Rule 37.2] ORGANIC COMPOUND AND ELECTRONIC DEVICE FIELD OF THE INVENTION
The present invention relates to organic compounds, and an electronic device comprising an organic layer comprising the organic compounds.
INTRODUCTION
Organic light emitting diodes (OLEDs) are display devices that employ stacks of organic layers including electron transport layers (ETLs) and hole transport layers (HTLs) . OLEDs have drawn much attention in recent years as one of the most promising next-generation displays because of their many performance advantages including light weight, energy saving and high contrast.
There is still desire to provide OLEDs with improved device performance including minimized power consumption, especially for battery-powered mobile applications.
SUMMARY OF THE INVENTION
The present invention provides organic compounds having a structure represented by Formula (1) :
Figure PCTCN2016100995-appb-000001
wherein R1, R2, R3, and R4 are each independently selected from the group consisting of hydrogen, deuterium ( “D” ) , a substituted or unsubstituted C1-C50 alkyl, a substituted or unsubstituted C1-C50 alkoxy, a substituted or unsubstituted C1-C50 alkoxycarbonyl, a substituted or unsubstituted C6-C60 aryl, a substituted or unsubstituted C1-C60 heteroaryl, a substituted or unsubstituted C6-C60 aryloxy, a substituted or unsubstituted C6-C50 arylthio, a halogen, a cyano, a hydroxyl, and a carbonyl;
R5 is a substituted or unsubstituted C1-C30 alkyl, a substituted or unsubstituted C3-C50 cycloalkyl, a substituted or unsubstituted C6 -C60 aryl, or a substituted or unsubstituted C1-C60 heteroaryl;
Ra, Rb, Ra’ , and Rb’ are each independently selected from the group consisting of hydrogen, deuterium, a substituted or unsubstituted C1-C50 alkyl, a substituted or unsubstituted C3-C50 cycloalkyl, a substituted or unsubstituted C6-C60 aryl, and a substituted or unsubstituted C1-C60 heteroaryl;
R6 is a substituted amino group having the structure of 
Figure PCTCN2016100995-appb-000002
 wherein Ar1 and Ar2 are each independently selected from the group consisting of a substituted or unsubstituted C6-C60 aryl and a substituted or unsubstituted C1-C60 heteroaryl; and
X1 is a chemical bond, or selected from the group consisting of a substituted or unsubstituted C1-C50 alkylene, a substituted or unsubstituted C3-C50 cycloalkylene, a substituted or unsubstituted C6-C60 arylene, and a substituted or unsubstituted C1-C60 heteroarylene; and X1 may form one or more fused rings with the adjacent phenyl ring.
The present invention further provides an electronic device comprising an organic layer comprising the organic compounds.
DETAILED DESCRIPTION OF THE INVENTION
The organic compounds of the present invention have the structure represented by Formula (1) :
Figure PCTCN2016100995-appb-000003
wherein R1, R2, R3, and R4 are each independently selected from the group consisting of hydrogen; deuterium; a substituted or unsubstituted C1-C50 alkyl, C1-C30 alkyl, C1-C20 alkyl, or C1-C10 alkyl; a substituted or unsubstituted C1-C50 alkoxy, C1-C30 alkoxy, C1-C20 alkoxy, or C1-C10 alkoxy; a substituted or unsubstituted C1-C50 alkoxycarbonyl, C1-C30 alkoxycarbonyl,  C1-C20 alkoxycarbonyl, or C1-C10 alkoxycarbonyl; a substituted or unsubstituted C6-C60 aryl, C6-C30 aryl, C6-C20 aryl, or C6-C12 aryl; a substituted or unsubstituted C1-C60 heteroaryl, C1-C30 heteroaryl, C2-C20 heteroaryl, or C4-C12 heteroaryl; a substituted or unsubstituted C6-C60 aryloxy, C6-C30 aryloxy, C6-C20 aryloxy, or C6-C10 aryloxy; a substituted or unsubstituted C6-C50 arylthio, C6-C30 arylthio, C6-C20 arylthio, or C6-C10 arylthio; a halogen such as F, Cl, Br or I; a cyano; a hydroxyl; and a carbonyl. R1 and R2, R2 and R3, or R3 and R4 may respectively and independently form a 4-to 8-membered fused ring.
Preferably, R1, R2, R3 and R4 are each independently selected from hydrogen, a halogen, a substituted or unsubstituted C1-C3 alkyl, and a substituted or unsubstituted C6-C60 aryl. More preferably, R1, R2, R3 and R4 are each independently selected from hydrogen, F, methyl, phenyl, naphthyl, or biphenyl.
In some embodiments, at least two of R1 through R4 are hydrogen. Preferably, all R1 through R4 are hydrogen.
R5 is a substituted or unsubstituted C1-C30 alkyl, C1-C20 alkyl, C1-C10 alkyl, C1-C5 alkyl, or C1-C3 alkyl; a substituted or unsubstituted C3-C50 cycloalkyl, C4-C30 cycloalkyl, C4-C20 cycloalkyl, or C4-C12 cycloalkyl; a substituted or unsubstituted C6-C60 aryl, C6 -C30 aryl, C6-C20 aryl, or C6-C12 aryl; or a substituted or unsubstituted C1-C60 heteroaryl, C1-C30 heteroaryl, C2-C20 heteroaryl, or C4-C12 heteroaryl. Preferably, R5 is selected from -CH3,-CH2CH3
Figure PCTCN2016100995-appb-000004
Figure PCTCN2016100995-appb-000005
 More preferably, R5 is -CH3.
Ra, Rb, Ra’ , and Rb’ are each independently selected from the group consisting of hydrogen, deuterium, a substituted or unsubstituted C1-C50 alkyl, a substituted or unsubstituted C3-C50 cycloalkyl, a substituted or unsubstituted C6-C60 aryl, and a substituted or unsubstituted C1-C60 heteroaryl.
R6 is a substituted amino group having the structure of 
Figure PCTCN2016100995-appb-000006
 wherein Ar1 and Ar2 are each independently selected from the group consisting of a substituted or unsubstituted C6-C60 aryl, C6-C30 aryl, C6-C20 aryl, or C6-C15 aryl; or a substituted or unsubstituted C1-C60  heteroaryl, C1-C30 heteroaryl, C2-C20 heteroaryl, or C4-C12 heteroaryl. Preferably, Ar1 and Ar2 are each independently selected from a substituted or unsubstituted C6-C60 aryl. More preferably, Ar1 and Ar2 are each independently a substituted or unsubstituted C12-C30 aryl.
In some embodiments, the substituted amino group is selected from the following structures represented by Formula (a) through Formula (c) :
Figure PCTCN2016100995-appb-000007
 Formula (a) , 
Figure PCTCN2016100995-appb-000008
 Formula (b) , and 
Figure PCTCN2016100995-appb-000009
 Formula (c) ,
wherein Ar3 and Ar4 are each independently an unsubstituted C6-C60 aryl, Ar5 through Ar7 are each independently an unsubstituted C6-C40 aryl, and Ar8 through Ar11 are each independently an unsubstituted C6-C30 aryl; and L1 through L3 are each independently selected from the group consisting of a substituted or unsubstituted C6-C60 arylene and a substituted or unsubstituted C1-C60 heteroarylene. Preferably, Ar3 through Ar11 may be each independently an unsubstituted C6-C30 aryl, C6-C20 aryl, C6-C15 aryl, or C6-C12 aryl.
Suitable examples of the substituted amino groups comprise the following structures (1) through (6) :
Figure PCTCN2016100995-appb-000010
X1 is a chemical bond, or selected from the group consisting of a substituted or unsubstituted C1-C50 alkylene, a substituted or unsubstituted C3-C50 cycloalkylene, a substituted or unsubstituted C6-C60 arylene, and a substituted or unsubstituted C1-C60 heteroarylene.
In the embodiments where X1 is a chemical bond, it means that R6 is directly linked to  its adjacent phenyl ring through X1.
In some embodiments, Xl may form one or more fused rings with the adjacent phenyl ring.
Suitable examples of Xl comprise 
Figure PCTCN2016100995-appb-000011
Figure PCTCN2016100995-appb-000012
Preferably, the organic compounds of the present invention have the structure represented by Formula (2) ,
Figure PCTCN2016100995-appb-000013
 Formula (2) ,
wherein Xl, Ra, Rb, Ra’ , Rb’ , and R1 through R6 are as previously defined with reference to Formula (1) .
More preferably, the organic compounds of the present invention have the structure represented by Formula (3) or (4) :
Figure PCTCN2016100995-appb-000014
 Formula (3) , and 
Figure PCTCN2016100995-appb-000015
 Formula (4) ,
wherein Xl, Ra, Rb, Ra’ , Rb’ , and R1 through R6 are as previously defined with reference to Formula (1) .
More preferably, the organic compounds of the present invention have the structure represented by Formula (5) or (6) :
Figure PCTCN2016100995-appb-000016
 Formula (5) , and 
Figure PCTCN2016100995-appb-000017
 Formula (6) ,
wherein Xl, Ra, Rb, Ra’ , Rb’ , R1 through R5, and Ar1 and Ar2 are as previously defined with reference to Formula (1) .
Suitable examples of the organic compounds are selected from the following structures (7) through (32) :
Figure PCTCN2016100995-appb-000018
Figure PCTCN2016100995-appb-000019
Figure PCTCN2016100995-appb-000020
Figure PCTCN2016100995-appb-000021
The organic compounds of the present invention may have a molecular weight of 500 g/mole or more, 600 g/mole or more, or even 700 g/mole or more, and at the same time, 1,000 g/mole or less, 900 g/mole or less, or even 800 g/mole or less.
The organic compounds of the present invention may have a glass transition temperature (Tg) of 110 ℃ or higher, 130 ℃ or higher, or 150 ℃ or higher, and at the same time, 250 ℃ or lower, 220 ℃ or lower, or even 200 ℃ or lower, as measured according to the test method described in the Examples section below.
The organic compounds of the present invention may have a decomposition temperature (Td, 5%weight loss) of 300 ℃ or higher, 350 ℃ or higher, or 400 ℃ or higher, and at the same time, 650 ℃ or lower, 600 ℃ or lower, or even 550 ℃ or lower, as measured according to the test method described in the Examples section below.
The organic compounds of the present invention may be prepared as shown in Scheme 1 below. An arylhydrazine hydrochloride may react with a ketone derivative of Structure A through a Fischer indole synthesis reaction to give an indole derivative of Structure B. Then the indole derivative may react with a halogen containing compound with the structure of R5Y, Y is a halogen such as F, Cl, Br or I, and preferably Br or I. The resultant compound of Structure C may undergo a Buchwald-Hartwig coupling reaction and Formula (1) of the present invention could be obtained.
Figure PCTCN2016100995-appb-000022
SCHEME 1
The organic compounds of the present invention may be used in organic layers including hole transport layers (HTL) , electron transport layers (ETL) , hole injection layers (HIL) , charge blocking layers, charge generation layers, and emissive layers (EML) in electronic devices. Preferably, the organic layer is a hole transport layer or a hole injection layer. The term “charge blocking layer” herein refers to certain layers of structures blocking charge transfer to improve efficiency. The term “charge generation layer” herein refers to certain layers of structures which can generate charges.
Electronic devices are devices depending on the principles of electronics and using the manipulation of electron flow for its operation. The organic compounds of the present invention may be used in electronic devices including organic photovoltaic cells, organic field effect transistors (OFETs) , and light emitting devices. Light emitting devices are electronic devices emitting lights when electrical currents were applied across two electrodes in the devices.
The electronic device of the present invention may comprise an anode, a cathode, and at least one organic layer interposed between the anode and the cathode. At least one of the organic layers comprises at least one of the organic compounds of the present invention. The organic layer can be a charge transfer layer that can transport charge carrying moieties, either holes or electrons. The organic layer may be a hole transport layer, an emissive layer, an electron transport layer, or a hole injection layer. Preferably, the organic layer is a hole transport layer or a hole injection layer. In addition to the organic compounds of the present invention, the organic layer may comprise one or more “dopants” . Dopants are impurities deliberately added in small amounts to a pure substance (i.e., a “host” ) to alter its properties such as conductivity and emitting property. It has the effect of shifting the Fermi level of the original material (i.e., the “host” ) , which results in a material with predominantly negative (n-type) or positive (p-type) charge carriers depending on the dopant variety. The organic layer  comprising the organic compounds of the present invention may be prepared by evaporative vacuum deposition or solution process such as spin coating, slot die coating and ink-jet printing. The organic compounds of the present invention may be a part of polymer resin of Mn higher than 6,000 Dalton. The polymer resin can be synthesized by a mixture of the organic compounds of the present invention, where the concentration of individual monomers can vary from 0.1%to 99.9%. The polymer resin can be deposited using spin coating, slot die coating or ink-jet printing.
The term “aryl, ” as described herein, refers to an organic radical derived from aromatic hydrocarbon by the removal of one hydrogen atom therefrom. An aryl group may be a monocyclic and/or fused ring system each ring of which suitably contains from 4 to 6, preferably from 5 or 6 atoms. Structures wherein two or more aryl groups are combined through single bond (s) are also comprised. Examples of aryls comprise phenyl, naphthyl, biphenyl, anthryl, indenyl, fluorenyl, benzofluorenyl, phenanthryl, triphenylenyl, pyrenyl, perylenyl, chrysenyl, naphtacenyl, fluoranthenyl and the like. The naphthyl may be 1-naphthyl or 2-naphthyl. The anthryl may be 1-anthryl, 2-anthryl or 9-anthryl. The fluorenyl may be any one of 1-fluorenyl, 2-fluorenyl, 3-fluorenyl, 4-fluorenyl and 9-fluorenyl.
The term “substituted aryl, ” as described herein, refers to an aryl in which at least one hydrogen atom is substituted with a heteroatom or a chemical group containing at least one heteroatom. Heteroatoms comprise O, N, P and S. The chemical group containing at least one heteroatom herein comprise OR’ , NR’ 2, PR’ 2, P (=O) R’ 2, and SiR’ 3; wherein each R’ is hydrogen or a C1-C30 hydrocarbyl.
The term “heteroaryl, ” as described herein, refers to an aryl group, in which at least one carbon atom or CH group or CH2 group is substituted with a heteroatom (for example, B, N, O, S, P (=O) , Si and P) or a chemical group containing at least one heteroatom. The heteroaryl may be a 5-or 6-membered monocyclic heteroaryl or a polycyclic heteroaryl which is fused with one or more benzene ring (s) , and may be partially saturated. The structures having one or more heteroaryl group (s) bonded through a single bond are also comprised. The heteroaryl groups comprise divalent aryl groups of which the heteroatoms are oxidized or quarternized to form N-oxides, quaternary salts, or the like. Specific examples comprise monocyclic heteroaryl groups, such as furyl, thiophenyl, pyrrolyl, imidazolyl, pyrazolyl, thiazolyl, thiadiazolyl, isothiazolyl, isoxazolyl, oxazolyl, oxadiazolyl, triazinyl, tetrazinyl,  triazolyl, tetrazolyl, furazanyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl; polycyclic heteroaryl groups, such as benzofuranyl, fluoreno [4, 3-b] benzofuranyl, benzothiophenyl, fluoreno [4, 3-b] benzothiophenyl, isobenzofuranyl, benzimidazolyl, benzothiazolyl, benzisothiazolyl, benzisoxazolyl, benzoxazolyl, isoindolyl, indolyl, indazolyl, benzothiadiazolyl, quinolyl, isoquinolyl, cinnolinyl, quinazolinyl, quinoxalinyl, carbazolyl, phenanthridinyl and benzodioxolyl; and corresponding N-oxides (for example, pyridyl N-oxide, quinolyl N-oxide) and quaternary salts thereof.
The term “substituted heteroaryl, ” as described herein, refers to a heteroaryl in which at least one hydrogen atom is substituted with a heteroatom or a chemical group containing at least one heteroatom. Heteroatoms comprise O, N, P and S. The chemical group containing at least one heteroatom comprise OR’ , NR’ 2, PR’ 2, P (=O) R’ 2, and SiR’ 3; wherein each R’ is hydrogen or a C1-C30 hydrocarbyl.
The term “hydrocarbyl, ” as described herein, refers to a chemical group containing only hydrogen and carbon atoms.
“Alkyl, ” and other substituents containing “alkyl” moiety, comprises both linear and branched species. Examples of alkyls comprise methyl, ethyl, propyl, iso-propyl, butyl, iso-butyl, tert-butyl, pentyl, and hexyl.
The term “substituted alkyl, ” as described herein, refers to an alkyl in which at least one hydrogen atom is substituted with a heteroatom or a chemical group containing at least one heteroatom. Heteroatoms comprise O, N, P and S. The chemical group containing at least one heteroatom herein comprise OR’ , NR’ 2, PR’ 2, P (=O) R’ 2, and SiR’ 3; wherein each R’ is hydrogen or a C1-C30 hydrocarbyl.
The term “cycloalkyl, ” as described herein, refers to a monocyclic hydrocarbon and a polycyclic hydrocarbon such as substituted or unsubstituted adamantyl, and substituted or unsubstituted C7-C30 bicycloalkyl.
EXAMPLES
The following examples illustrate embodiments of the present invention. All parts and percentages are by weight unless otherwise indicated.
Materials and NMR information
Commercially available materials purchased from Sinopharm Chemical Reagent Co., Ltd. (SCRC) or Energy Chemicals were used as received. Proton nuclear magnetic resonance (1H NMR) spectra were recorded on Bruker AVANCE III (400 MHz) spectrometer. Chemical shifts were recorded in parts per million (ppm) relative to tetramethylsilane (0.00) . 1H NMR splitting patterns were designated as singlet (s) , doublet (d) , triplet (t) , quartet (q) , doublet of doublets (dd) , multiplet (m) , and etc. All first-order splitting patterns were assigned on the basis of the appearance of the multiplet. Splitting patterns that could not be easily interpreted are designated as multiplet (m) or broad (br) .
Modeling
All computations utilized the Gaussian 09 program as described in Gaussian 09, Revision A. 02, Frisch, M.J. et al., Gaussian, Inc., Wallingford CT, 2009. The calculations were performed with the hybrid Density Functional Theory (DFT) method, Becke, 3-parameter, Lee-Yang-Parr (B3LYP) , as described in Becke, A.D. J. Chem. Phys. 1993, 98, 5648; Lee, C. et al., Phys. Rev B 1988, 37, 785; and Miehlich, B. et al. Chem. Phys. Lett. 1989, 157, 200; and the 6-31G* (5d) basis set as described in Ditchfield, R. et al., J. Chem. Phys. 1971, 54, 724; Hehre, W.J. et al., J. Chem. Phys. 1972, 56, 2257; and Gordon, M. S. Chem. Phys. Lett. 1980, 76, 163. The singlet state calculations use the closed shell approximation, and the triplet state calculations use the open shell approximation. All values are quoted in electron volts (eV) . The Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) values are determined from the orbital energies of the optimized geometry of the singlet ground state. The triplet energies are determined as the difference between the total energy of the optimized triplet state and the optimized singlet state. A procedure, as described in Lin, B. C et al., J. Phys. Chem. A 2003, 107, 5241-5251, is applied to calculate the reorganization energy of each molecule, with which as the indicator of electron and hole mobility.
Differential scanning calorimetry (DSC)
DSC measurements were carried out on Q2000 differential scanning calorimeter of TA Instruments at a scan rate of 10 ℃/min under N2 atmosphere for all cycles. Each sample (about 7-10 mg) was scanned from room temperature to 300 ℃ (first heating scan) , cooled to -60 ℃, and then reheated to 300 ℃ (second heating scan) . Tg was measured on the second  heating scan. Data analysis was performed using Universal Analysis 2000 software of TA Instruments. The Tg value was calculated using an “onset-at-inflection” methodology.
Thermo gravimetric analysis (TGA)
TGA measurements were carried out on TGA-Q500 thermo gravimetric analyzer of TA Instruments under N2 atmosphere. Each sample (about 7-10 mg) was weighed in a platinum standard plate and loaded into the instrument. Each sample was first heated to 60 ℃and equilibrated for 30 minutes to remove solvent residues in the sample. Then the sample was cooled to 30 ℃. The temperature was ramped from 30 ℃ to 600 ℃ with 10 ℃/min rate and the weight change was recorded to determine the decomposition temperature (Td) of the sample. The temperature-weight % (T-Wt %) curve was obtained by TGA scan. The temperature at the 5 %weight loss was determined as Td.
Liquid Chromatography-Mass Spectrometry (LC-MS)
Each sample was dissolved in tetrahydrofuran (THF) at around 0.6 mg/mL. 5 μL sample solution was injected on an Agilent 1220 HPLC/G6224A time-of-flight mass spectrometer. The following analysis conditions were used:
Column: 4.6 x 150 mm, 3.5 μm ZORBAX Eclipse Plus C18; column temperature: 40 ℃; Mobile phase: THF/deioned (DI) water = 65/35 volume ratio (Isocratic method) ; Flow rate: 1.0 mL/min; and
MS conditions: Capillary Voltage: 3500 kV (Pos) ; Mode: Pos; Scan: 100-2000 amu; Rate: 1 s/scan; and Desolvation temperature: 300 ℃.
High Performance Liquid Chromatography (HPLC)
Each sample was dissolved in THF at around 0.6 mg/mL. The sample solution was at last filtrated through a 0.45 μm syringe filter and 5 μL of the filtrate was injected to HPLC system. The following analysis conditions were used:
Injection volume: 5 μL; Instrument: Agilent 1200 HPLC; Column: 4.6 x 150mm, 3.5μm ZORBAX Eclipse Plus C18; Column temperature: 40 ℃; Detector: DAD=250, 280, 350 nm; Mobile Phase: THF/DI water = 65/35 volume ratio (Isocratic method) ; and Flow rate: 1 mL/min.
Example 1: Synthesis Route of Organic Compound Structure 7
Synthesis of organic compound Structure 7
Figure PCTCN2016100995-appb-000023
Structure B1: (6-bromonaphthalen-2-yl) hydrazine hydrochloride (2.86 mmol) was added to a solution of diphenylethanone (2.86 mmol) in AcOH (30 mL) , and the mixture was stirred at 120 ℃ overnight. After the completion of the reaction, the organic phase was poured into 50 mL DI water. The formed powders were filtered and washed with a saturated solution of NaHCO3 (50 mL) , followed by DI water (50 mL) and EtOH (10 mL) to give the Structure A product (light yellow powders, 65%yield) . 1H NMR (400 MHz, CDCl3, ppm) : 9.04 (1, 1H) , 8.10-8.12 (d, J = 8.0 Hz, 1H) , 7.96-7.98 (d, J = 8.0 Hz, 1H) , 7.71-7.73 (d, J = 8.8 Hz, 1H) , 7.47-7.61 (m, 7H) , 7.35-7.43 (m, 5H) . LC-MS-ESI (m/z) : calcd for C24H16BrN: 397.05, found (M+H) +: 398.0538.
Structure C1: A solution of Structure A product obtained above (1.0 mmol, 398 g/mol, 398 mg) in DMA (20 mL) was added into a three-neck flask, and then cooled to 0 ℃. NaH (1.5 mmol, 24 g/mol, 36 mg) was added into the solution at 0 ℃. After 30 mins, CH3I (1.5 mmol, 142 g/mol, 213 mg) was added and TLC was utilized to monitor the reaction. After completion of the reaction, alcohol was added to quench the reaction and then DI water (30 mL) was added. The formed powders were filtered and washed with DI water (50 mL) and EtOH (10 mL) to give the Structure B product (light yellow powders, 90%yield) . 1H NMR (400 MHz, CDCl3, ppm) : 8.50-8.52 (d, J = 8.0 Hz, 1H) , 7.90-7.92 (m, J = 8.0 Hz, 1H) , 7.69-7.71 (m, J = 8.0 Hz, 1H) , 7.50-7.52 (m, J = 8.0 Hz, 2H) , 7.32-7.49 (m, 6H) , 7.26-7.28 (m, 2H) , 7.10-7.13 (m, 2H) , 4.08 (s, 3H) . LC-MS-ESI (m/z) : calcd for C25H18BrN: 411.06, found (M+H) +: 412.0698.
Structure 7: Pd (PPh34 (12 mg, 1%, 1154 g/mol) and Na2CO3 (212 mg, 2.0 mmol, 106 g/mol, 2M in DI water) were added to a mixture of Structure C1 product (412 mg, 1.0 mmol, 412 g/mol) and N- ( [1, 1'-biphenyl] -4-yl) -9, 9-dimethyl-N- (4- (4, 4, 5, 5-tetramethyl-1, 3, 2- dioxaborolan-2-yl) phenyl) -9H-fluoren-2-amine (564 mg, 1.0 eq, 564 g/mol) in THF (20 mL) . The reaction mixture was stirred at reflux overnight under N2 atmosphere. TLC was utilized to monitor the reaction. After completion of the reaction, DI water was added to quench the reaction and EtOAc (60 mL) was added. The organic phase was washed with brine (2 × 30 mL) and dried over anhydrous Na2SO4. The solvent was removed by distillation under reduced pressure affording the crude products. The crude products were purified via silica gel column (eluent: PE:DCM = 10:1-5:1) to give the final Structure C product (white powders, 85%yield) . 1H NMR (400 MHz, CDCl3, ppm) : 8.13 (s, 1H) , 7.87-7.89 (d, J = 8.8 Hz, 1H) , 7.73-7.75 (m, J = 8.8 Hz, 1H) , 7.60-7.66 (m, 7H) , 7.51-7.55 (m, 3H) , 7.39-7.45 (m, 5H) , 7.26-7.37 (m, 14H) , 7.23-7.24 (m, 2H) , 7.12-7.14 (d, J = 7.2 Hz, 1H) , 3.82 (s, 3H) , 1.44 (s, 6H) . LC-MS-ESI (m/z) : calcd for C58H44N2: 768.35, found (M+H) +: 769.3584. The obtained Structure 7 has a HOMO level of -4.66 eV, a LUMO level of -0.89 eV, a triplet energy of 2.61 eV, and a hole mobility level of 0.14, as determined by the modeling method described above.
Thermal properties of organic compound Structure 7
Thermal properties of organic compound Structure 7 were analyzed by DSC and TGA. As shown in Table 1, organic compound Structure 7 has a Tg of 132.5 ℃ and a Td of 418.1 ℃.
Table 1
Sample Name Td (℃) Tg (℃)
Structure 7 431.7 150.1
Example 2: OLED Device Fabrication
An OLED device containing organic compound Structure 7 as the hole transport layer was fabricated by thermally depositing organic layers, from bottom to top, electron injection layer (EIL) , electron transport layer (ETL) , emitting material layer (EML) , hole transport layer (HTL) , and hole injection layer (HIL) , onto an indium tin oxide (ITO) coated glass substrate that served as an anode, and topped with an aluminum cathode. Thermal deposition was conducted by chemical vapor deposition in a vacuum chamber with a base pressure of <10-7 torr. The deposition rates of organic layers were maintained at 0.1-0.05 nm/s. The aluminum cathode was deposited at 0.5 nm/s. The active area of the OLED device was “3 mm x 3 mm. ” Organic materials used in organic layers were all purified by sublimation before deposition, and were placed inside the vacuum chamber until it reached 10-6 torr. To  evaporate each material, a controlled current was applied between the anode and the cathode to raise the temperature to keep the constant evaporation rate of 1A/s for each organic material.
Material and thickness of each organic layer were shown in Table 2.
A comparative OLED device containing N4, N4'-di (naphthalen-1-yl) -N4, N4'-diphenyl-[1, 1'-biphenyl] -4, 4'-diamine (NPB) as the hole transport layer was prepared with the similar procedure described above.
Table 2
Figure PCTCN2016100995-appb-000024
The current density-voltage-luminance (J-V-L) characterizations for the OLED devices were performed with a KEITHLEY 2635A-SYS Single-channel System Source Meter and a MINOLTA CS-100A Chroma Meter.
As shown in Table 3, Inventive OLED Device had a higher luminous efficiency compared to that of Comparative Device.
Table 3
Device (@2000nit) HTL Luminous Efficiency (Cd/A)
Comparative Device NPB 3.4
Inventive Device Structure 7 3.9

Claims (17)

  1. An organic compound having the structure represented by Formula (1) :
    Figure PCTCN2016100995-appb-100001
    wherein R1, R2, R3, and R4 are each independently selected from the group consisting of hydrogen, deuterium, a substituted or unsubstituted C1-C50 alkyl, a substituted or unsubstituted C1-C50 alkoxy, a substituted or unsubstituted C1-C50 alkoxycarbonyl, a substituted or unsubstituted C6-C60 aryl, a substituted or unsubstituted C1-C60 heteroaryl, a substituted or unsubstituted C6-C60 aryloxy, a substituted or unsubstituted C6-C50 arylthio, a halogen, a cyano, a hydroxyl, and a carbonyl;
    R5 is a substituted or unsubstituted C1-C30 alkyl, a substituted or unsubstituted C3-C50 cycloalkyl, a substituted or unsubstituted C6-C60 aryl, or a substituted or unsubstituted C1-C60 heteroaryl;
    Ra, Rb, Ra’ , and Rb’ are each independently selected from the group consisting of hydrogen, deuterium, a substituted or unsubstituted C1-C50 alkyl, a substituted or unsubstituted C3-C50 cycloalkyl, a substituted or unsubstituted C6 -C60 aryl, and a substituted or unsubstituted C1-C60 heteroaryl;
    R6 is a substituted amino group having the structure of
    Figure PCTCN2016100995-appb-100002
    wherein Ar1 and Ar2 are each independently selected from the group consisting of a substit uted or unsubstituted C6-C60 aryl and a substituted or unsubstituted C1-C60 heteroaryl; and
    X1 is a chemical bond, or selected from the group consisting of a substituted or unsubstituted C1-C50 alkylene, a substituted or unsubstituted C3-C50 cycloalkylene, a substituted or unsubstituted C6-C60 arylene, and a substituted or unsubstituted C1-C60 heteroarylene.
  2. The organic compound according to Claim 1, wherein R1 and R2, R2 and R3, or R3 and R4 may respectively and independently form a 4-to 8-membered fused ring.
  3. The organic compound of Claim 1, wherein R1, R2, R3 and R4 are each independently selected from hydrogen, F, methyl, phenyl, naphthyl, and biphenyl.
  4. The organic compound of Claim 1, wherein R1 through R4 are all hydrogen.
  5. The organic compound of Claim 1, wherein R5 is selected from -CH3, -CH2CH3
    Figure PCTCN2016100995-appb-100003
  6. The organic compound of Claim 1, wherein the substituted amino group is selected from the following structures represented by Formula (a) through Formula (c) :
    Figure PCTCN2016100995-appb-100004
    wherein Ar3 and Ar4 are each independently an unsubstituted C6-C60 aryl, Ar5 through Ar7 are each independently an unsubstituted C6-C40 aryl, and Ar8 through Ar11 are each independently an unsubstituted C6-C30 aryl; and L1 through L3 are each independently selected from a substituted or unsubstituted C6-C60 arylene, and a substituted or unsubstituted C1-C60 heteroarylene.
  7. The organic compound of Claim 7, wherein Ar3 through Ar11 may be each independently an unsubstituted C6-C30 aryl.
  8. The organic compound of Claim 1, wherein the substituted amino groups comprise  the following structures (1) through (6) :
    Figure PCTCN2016100995-appb-100005
  9. The organic compound of Claim 1, wherein Xl comprises
    Figure PCTCN2016100995-appb-100006
    Figure PCTCN2016100995-appb-100007
  10. The organic compound of Claim 1, wherein X1 may form one or more fused rings with the adjacent phenyl ring.
  11. The organic compound of Claim 1, wherein the organic compounds of the present invention have the structure represented by Formula (2) ,
    Figure PCTCN2016100995-appb-100008
    wherein R1, R2, R3, and R4 are each independently selected from the group consisting  of hydrogen, deuterium, a substituted or unsubstituted C1-C50 alkyl, a substituted or unsubstituted C1-C50 alkoxy, a substituted or unsubstituted C1-C50 alkoxycarbonyl, a substituted or unsubstituted C6-C60 aryl, a substituted or unsubstituted C1-C60 heteroaryl, a substituted or unsubstituted C6-C60 aryloxy, a substituted or unsubstituted C6-C50 arylthio, a halogen, a cyano, a hydroxyl, and a carbonyl;
    R5 is a substituted or unsubstituted C1-C30 alkyl, a substituted or unsubstituted C3-C50 cycloalkyl, a substituted or unsubstituted C6-C60 aryl, or a substituted or unsubstituted C1-C60 heteroaryl;
    Ra, Rb, Ra’ , and Rb’ are each independently selected from the group consisting of hydrogen, deuterium, a substituted or unsubstituted C1-C50 alkyl, a substituted or unsubstituted C3-C50 cycloalkyl, a substituted or unsubstituted C6-C60 aryl, and a substituted or unsubstituted C1-C60 heteroaryl;
    R6 is a substituted amino group having the structure of
    Figure PCTCN2016100995-appb-100009
    wherein Ar1 and Ar2 are each independently selected from the group consisting of a substituted or unsubstituted C6-C60 aryl and a substituted or unsubstituted C1-C60 heteroaryl; and
    Xl is a chemical bond, or selected from the group consisting of a substituted or unsubstituted C1-C50 alkylene, a substituted or unsubstituted C3-C50 cycloalkylene, a substituted or unsubstituted C6-C60 arylene, and a substituted or unsubstituted C1-C60 heteroarylene.
  12. The organic compound of Claim 11, wherein the organic compounds of the present invention have the structure represented by Formula (3) or (4) :
    Figure PCTCN2016100995-appb-100010
    wherein R1, R2, R3, and R4 are each independently selected from the group consisting  of hydrogen, deuterium, a substituted or unsubstituted C1-C50 alkyl, a substituted or unsubstituted C1-C50 alkoxy, a substituted or unsubstituted C1-C50 alkoxycarbonyl, a substituted or unsubstituted C6-C60 aryl, a substituted or unsubstituted C1-C60 heteroaryl, a substituted or unsubstituted C6-C60 aryloxy, a substituted or unsubstituted C6-C50 arylthio, a halogen, a cyano, a hydroxyl, and a carbonyl;
    R5 is a substituted or unsubstituted C1-C30 alkyl, a substituted or unsubstituted C3-C50 cycloalkyl, a substituted or unsubstituted C6 -C60 aryl, or a substituted or unsubstituted C1-C60 heteroaryl;
    Ra, Rb, Ra’ , and Rb’ are each independently selected from the group consisting of hydrogen, deuterium, a substituted or unsubstituted C1-C50 alkyl, a substituted or unsubstituted C3-C50 cycloalkyl, a substituted or unsubstituted C6-C60 aryl, and a substituted or unsubstituted C1-C60 heteroaryl;
    R6 is a substituted amino group having the structure of
    Figure PCTCN2016100995-appb-100011
    wherein Ar1 and Ar2 are each independently selected from the group consisting of a substituted or unsubstituted C6-C60 aryl and a substituted or unsubstituted C1-C60 heteroaryl; and
    Xl is a chemical bond, or selected from the group consisting of a substituted or unsubstituted C1-C50 alkylene, a substituted or unsubstituted C3-C50 cycloalkylene, a substituted or unsubstituted C6-C60 arylene, and a substituted or unsubstituted C1-C60 heteroarylene.
  13. The organic compound of Claim 11, wherein the organic compounds of the present invention have the structure represented by Formula (5) or (6) :
    Figure PCTCN2016100995-appb-100012
    wherein R1, R2, R3, and R4 are each independently selected from the group consisting  of hydrogen, deuterium, a substituted or unsubstituted C1-C50 alkyl, a substituted or unsubstituted C1-C50 alkoxy, a substituted or unsubstituted C1-C50 alkoxycarbonyl, a substituted or unsubstituted C6-C60 aryl, a substituted or unsubstituted C1-C60 heteroaryl, a substituted or unsubstituted C6-C60 aryloxy, a substituted or unsubstituted C6-C50 arylthio, a halogen, a cyano, a hydroxyl, and a carbonyl;
    R5 is a substituted or unsubstituted C1-C30 alkyl, a substituted or unsubstituted C3-C50 cycloalkyl, a substituted or unsubstituted C6 -C60 aryl, or a substituted or unsubstituted C1-C60 heteroaryl;
    Ra, Rb, Ra’ , and Rb’ are each independently selected from the group consisting of hydrogen, deuterium, a substituted or unsubstituted C1-C50 alkyl, a substituted or unsubstituted C3-C50 cycloalkyl, a substituted or unsubstituted C6 -C60 aryl, and a substituted or unsubstituted C1-C60 heteroaryl;
    Ar1 and Ar2 are each independently selected from the group consisting of a substituted or unsubstituted C6-C60 aryl and a substituted or unsubstituted C1-C60 heteroaryl; and
    Xl is a chemical bond, or selected from the group consisting of a substituted or unsubstituted C1-C50 alkylene, a substituted or unsubstituted C3-C50 cycloalkylene, a substituted or unsubstituted C6-C60 arylene, and a substituted or unsubstituted C1-C60 heteroarylene.
  14. The organic compound of Claim 1, wherein the organic compounds are selected from the following structures (7) through (32) :
    Figure PCTCN2016100995-appb-100013
    Figure PCTCN2016100995-appb-100014
    Figure PCTCN2016100995-appb-100015
    Figure PCTCN2016100995-appb-100016
  15. An electronic device comprising an organic layer, wherein the organic layer comprises the organic compound of any one of Claims 1-14.
  16. The electronic device of Claim 15, wherein the organic layer is a hole transport layer, an emissive layer, an electron transport layer, or a hole injection layer.
  17. The electronic device of claim 15, wherein the electronic device is a light emitting device.
PCT/CN2016/100995 2016-09-30 2016-09-30 Organic compound and electronic device WO2018058496A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/100995 WO2018058496A1 (en) 2016-09-30 2016-09-30 Organic compound and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/100995 WO2018058496A1 (en) 2016-09-30 2016-09-30 Organic compound and electronic device

Publications (1)

Publication Number Publication Date
WO2018058496A1 true WO2018058496A1 (en) 2018-04-05

Family

ID=61763619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/100995 WO2018058496A1 (en) 2016-09-30 2016-09-30 Organic compound and electronic device

Country Status (1)

Country Link
WO (1) WO2018058496A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102001989A (en) * 2009-08-28 2011-04-06 三星移动显示器株式会社 Heteroarylamine compounds, organic light-emitting devices and panel display devices
KR20140141004A (en) * 2013-05-31 2014-12-10 덕산하이메탈(주) Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
WO2016101865A1 (en) * 2014-12-26 2016-06-30 Dow Global Technologies Llc Organic compounds and electronic device comprising organic layer comprising organic compounds

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102001989A (en) * 2009-08-28 2011-04-06 三星移动显示器株式会社 Heteroarylamine compounds, organic light-emitting devices and panel display devices
KR20140141004A (en) * 2013-05-31 2014-12-10 덕산하이메탈(주) Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
WO2016101865A1 (en) * 2014-12-26 2016-06-30 Dow Global Technologies Llc Organic compounds and electronic device comprising organic layer comprising organic compounds

Similar Documents

Publication Publication Date Title
CN113348172B (en) Compound and organic light emitting device including the same
CN112236434B (en) Polycyclic compound and organic light emitting device including the same
EP3266779B1 (en) Heterocyclic compound and organic light emitting element comprising same
JP2020147563A (en) Polycyclic aromatic compound and polymer thereof
EP4137488A1 (en) Heterocyclic compound, organic light emitting device comprising same, composition for organic layer of organic light emitting device
EP3208271B1 (en) Nitrogen-containing polycyclic compound and organic light emitting element using same
CN107257787A (en) Heterocyclic compound and the organic illuminating element comprising it
CN112778312B (en) Organic material containing indoloquinazolinedione heterocyclic structure and application thereof
WO2018058493A1 (en) Organic compound and electronic device comprising an organic layer comprising the organic compound
US10005729B2 (en) Organic compounds and electronic device comprising an organic layer comprising the organic compounds
WO2016191914A1 (en) Organic composition and electronic device comprising organic layer comprising said composition
CN111909171B (en) Electron transport material and application thereof
WO2018058494A1 (en) Organic compound and electronic device comprising organic layer comprising organic compound
US10294203B2 (en) Organic compound and electronic device comprising an organic layer comprising the organic compound
WO2018058496A1 (en) Organic compound and electronic device
WO2018058497A1 (en) Organic compound and electronic device comprising organic layer comprising organic compound
WO2018058492A1 (en) Organic compound and electronic device comprising an organic layer comprising the organic compound
KR20200043755A (en) Novel compound and organic light emitting device comprising the same
KR102629455B1 (en) Novel compound and organic light emitting device comprising the same
KR102654810B1 (en) Novel compound and organic light emitting device comprising the same
WO2018119729A1 (en) Organic compound and electronic device comprising an organic layer comprising the organic compound
JP6783254B2 (en) Cyclic urea compounds for electronic devices
KR20200067105A (en) Novel hetero-cyclic compound and organic light emitting device comprising the same
KR20180133396A (en) The phenanthroquinazoline-core compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16917248

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16917248

Country of ref document: EP

Kind code of ref document: A1