WO2018058494A1 - Organic compound and electronic device comprising organic layer comprising organic compound - Google Patents

Organic compound and electronic device comprising organic layer comprising organic compound Download PDF

Info

Publication number
WO2018058494A1
WO2018058494A1 PCT/CN2016/100992 CN2016100992W WO2018058494A1 WO 2018058494 A1 WO2018058494 A1 WO 2018058494A1 CN 2016100992 W CN2016100992 W CN 2016100992W WO 2018058494 A1 WO2018058494 A1 WO 2018058494A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
unsubstituted
aryl
organic compound
heteroaryl
Prior art date
Application number
PCT/CN2016/100992
Other languages
French (fr)
Inventor
Chong XING
Zhengming TANG
Shaoguang Feng
Robert Wright
David Dayton DEVORE
Minrong ZHU
Hong Yeop NA
Yan Luo
Yuchen Liu
Hua Ren
Jichang FENG
Sukrit MUKHOPADHYAY
Bruce M. Bell
Kenneth Kearns
Original Assignee
Dow Global Technologies Llc
Rohm And Haas Electronic Materials Korea Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Global Technologies Llc, Rohm And Haas Electronic Materials Korea Ltd. filed Critical Dow Global Technologies Llc
Priority to PCT/CN2016/100992 priority Critical patent/WO2018058494A1/en
Publication of WO2018058494A1 publication Critical patent/WO2018058494A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/58[b]- or [c]-condensed
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/008Triarylamine dyes containing no other chromophores
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom

Definitions

  • the present invention relates to organic compounds, and an electronic device comprising an organic layer comprising the organic compounds.
  • OLEDs are display devices that employ stacks of organic layers including electron transport layers (ETLs) and hole transport layers (HTLs) .
  • ETLs electron transport layers
  • HTLs hole transport layers
  • OLEDs have drawn much attention in recent years as one of the most promising next-generation displays because of their many performance advantages including light weight, energy saving and high contrast.
  • the present invention provides organic compounds having a structure represented by Formula (1) :
  • R 1 , R 2 , R 3 , and R 4 are each independently selected from the group consisting of hydrogen, deuterium ( “D” ) , a substituted or unsubstituted C 1 -C 50 alkyl, a substituted or unsubstituted C 1 -C 50 alkoxy, a substituted or unsubstituted C 1 -C 50 alkoxycarbonyl, a substituted or unsubstituted C 6 -C 60 aryl, a substituted or unsubstituted C 1 -C 60 heteroaryl, a substituted or unsubstituted C 6 -C 60 aryloxy, a substituted or unsubstituted C 6 -C 50 arylthio, a halogen, a cyano, a hydroxyl, and a carbonyl;
  • R 5 is a substituted or unsubstituted C 1 -C 30 alkyl, a substituted or unsubstituted C 3 -C 50 cycloalkyl, a substituted or unsubstituted C 6 -C 60 aryl, or a substituted or unsubstituted C 1 -C 60 heteroaryl;
  • R 6 and R 7 are each independently selected from the group consisting of hydrogen, deuterium, a substituted or unsubstituted C 1 -C 50 alkyl, a substituted or unsubstituted C 1 -C 50 alkoxy, a substituted or unsubstituted C 1 -C 50 alkoxycarbonyl, a substituted or unsubstituted C 6 -C 60 aryl, a substituted or unsubstituted C 1 -C 60 heteroaryl, a substituted or unsubstituted C 6 -C 50 aryloxy, a substituted or unsubstituted C 6 -C 50 arylthio, a halogen, a cyano, a hydroxyl, a carbonyl, and a substituted amino group having the structure of wherein Ar 1 and Ar 2 are each independently selected from the group consisting of a substituted or unsubstituted C 6 -C 60 aryl and a substituted or unsub
  • X 1 and X 2 are each independently a chemical bond, or selected from the group consisting of a substituted or unsubstituted C 1 -C 50 alkylene, a substituted or unsubstituted C 3 -C 50 cycloalkylene, a substituted or unsubstituted C 6 -C 60 arylene, and a substituted or unsubstituted C 1 -C 60 heteroarylene; and X may form one or more fused rings with the adjacent phenyl ring.
  • the present invention further provides an electronic device comprising an organic layer comprising the organic compounds.
  • the organic compounds of the present invention have the structure represented by Formula (1) :
  • R 1 , R 2 , R 3 , and R 4 are each independently selected from the group consisting of hydrogen; deuterium ( “D” ) ; a substituted or unsubstituted C 1 -C 50 alkyl, C 1 -C 30 alkyl, C 1 - C 20 alkyl, or C 1 -C 10 alkyl; a substituted or unsubstituted C 1 -C 50 alkoxy, C 1 -C 30 alkoxy, C 1 -C 20 alkoxy, or C 1 -C 10 alkoxy; a substituted or unsubstituted C 1 -C 50 alkoxycarbonyl, C 1 -C 30 alkoxycarbonyl, C 1 -C 20 alkoxycarbonyl, or C 1 -C 10 alkoxycarbonyl; a substituted or unsubstituted C 6 -C 60 aryl, C 6 -C 30 aryl, C 6 -C 20 aryl, or C 6 -C
  • R 1 , R 2 , R 3 and R 4 are each independently selected from hydrogen, a halogen, a substituted or unsubstituted C 1 -C 3 alkyl, and a substituted or unsubstituted C 6 -C 60 aryl. More preferably, R 1 , R 2 , R 3 and R 4 are each independently selected from hydrogen, F, methyl, phenyl, naphthyl, and biphenyl.
  • At least two of R 1 through R 4 are hydrogen. Preferably, all R 1 through R 4 are hydrogen.
  • R 5 is a substituted or unsubstituted C 1 -C 30 alkyl, C 1 -C 20 alkyl, C 1 -C 10 alkyl, C 1 -C 5 alkyl, or C 1 -C 3 alkyl; a substituted or unsubstituted C 3 -C 50 cycloalkyl, C 4 -C 30 cycloalkyl, C 4 -C 20 cycloalkyl, or C 4 -C 12 cycloalkyl; a substituted or unsubstituted C 6 -C 60 aryl, C 6 -C 30 aryl, C 6 -C 20 aryl, or C 6 -C 12 aryl; or a substituted or unsubstituted C 1 -C 60 heteroaryl, C 1 -C 30 heteroaryl, C 2 -C 20 heteroaryl, or C 4 -C 12 heteroaryl.
  • R 5 is selected from -CH 3 , -CH 2 CH 3
  • R 6 and R 7 are each independently selected from the group consisting of hydrogen; deuterium; a substituted or unsubstituted C 1 -C 50 alkyl, C 1 -C 30 alkyl, C 1 -C 20 alkyl, or C 1 -C 10 alkyl; a substituted or unsubstituted C 1 -C 50 alkoxy, C 1 -C 30 alkoxy, C 1 -C 20 alkoxy, or C 1 -C 10 alkoxy; a substituted or unsubstituted C 1 -C 50 alkoxycarbonyl, C 1 -C 30 alkoxycarbonyl, C 1 -C 20 alkoxycarbonyl, or C 1 -C 10 alkoxycarbonyl; a substituted or unsubstituted C 6 -C 60 aryl, C 6 -C 30 aryl, C 6 -C 20 aryl, or C 6 -C 12 aryl; a substituted or unsubstituted C 1
  • Ar 1 and Ar 2 are each independently selected from the group consisting of a substituted or unsubstituted C 6 -C 60 aryl, C 6 -C 30 aryl, C 6 -C 20 aryl, or C 6 -C 15 aryl; and a substituted or unsubstituted C 1 -C 60 heteroaryl, C 1 -C 30 heteroaryl, C 2 -C 20 heteroaryl, or C 4 -C 12 heteroaryl.
  • Ar 1 and Ar 2 are each independently a substituted or unsubstituted C 6 -C 60 aryl. More preferably, Ar 1 and Ar 2 are each independently a substituted or unsubstituted C 12 -C 30 aryl.
  • R 6 and R 7 are the substituted amino group.
  • one of R 6 and R 7 is the substituted amino group, and the other one of R 6 and R 7 is selected from hydrogen, a halogen, or a substituted or unsubstituted C 6 -C 60 aryl.
  • the substituted amino group is selected from the following structures represented by Formula (a) through Formula (c) :
  • Ar 3 and Ar 4 are each independently an unsubstituted C 6 -C 60 aryl
  • Ar 5 through Ar 7 are each independently an unsubstituted C 6 -C 40 aryl
  • Ar 8 through Ar 11 are each independently an unsubstituted C 6 -C 30 aryl
  • L 1 through L 3 are each independently selected from the group consisting of a substituted or unsubstituted C 6 -C 60 arylene and a substituted or unsubstituted C 1 -C 60 heteroarylene.
  • Ar 3 through Ar 11 may be each independently an unsubstituted C 6 -C 30 aryl, C 6 -C 20 aryl, C 6 -C 15 aryl, or C 6 -C 12 aryl.
  • Suitable examples of the substituted amino groups comprise the following structures (1) through (6) :
  • X 1 and X 2 may be the same or different.
  • X 1 and X 2 are each independently a chemical bond, or selected from the group consisting of a substituted or unsubstituted C 1 -C 50 alkylene, a substituted or unsubstituted C 3 -C 50 cycloalkylene, a substituted or unsubstituted C 6 -C 60 arylene, and a substituted or unsubstituted C 1 -C 60 heteroarylene.
  • X 1 or X 2 is a chemical bond
  • R 6 or R 7 is directly linked to its adjacent phenyl ring through X 1 or X 2 .
  • X l or X 2 may form one or more fused rings with the adjacent phenyl ring.
  • Suitable examples of X l or X 2 comprise
  • the organic compounds of the present invention have the structure represented by Formula (2) or (3) :
  • Suitable examples of the organic compounds are selected from the following structures (7) through (22) :
  • the organic compounds of the present invention may have a molecular weight of 500 g/mole or more, 600 g/mole or more, or even 700 g/mole or more, and at the same time, 1,000 g/mole or less, 900 g/mole or less, or even 800 g/mole or less.
  • the organic compounds of the present invention may have a glass transition temperature (Tg) of 110 °C or higher, 130 °C or higher, or 150 °C or higher, and at the same time, 250 °C or lower, 220 °C or lower, or even 200 °C or lower, as measured according to the test method described in the Examples section below.
  • Tg glass transition temperature
  • the organic compounds of the present invention may have a decomposition temperature (Td, 5%weight loss) of 300 °C or higher, 350 °C or higher, or 400 °C or higher, and at the same time, 650 °C or lower, 600 °C or lower, or even 550 °C or lower, as measured according to the test method described in the Examples section below.
  • Td decomposition temperature
  • the organic compounds of the present invention may be prepared as shown in Scheme 1 below. Aldehyde derivatives were first reacted through Stetter reaction with unsaturated ketone derivatives to produce Structure A product, which were then condensed with amines under the catalysis of p-toluenesulfonic acid to produce Structure B product. Under the catalytic condition of palladium acetate and ligand, Structure B product could be cyclized to produce Structure C products having a fused pyrrole ring. Structure C products were then treated with N-Iodosuccinimide (NIS) , followed by the coupling reaction with phenylboronic acid to produce Structure D products. After a final Buchwald-Hartwig reaction, Formula (1) of the present invention could be obtained.
  • NIS N-Iodosuccinimide
  • the organic compounds of the present invention may be used in organic layers including hole transport layers (HTL) , electron transport layers (ETL) , hole injection layers (HIL) , charge blocking layers, charge generation layers, and emissive layers (EML) in electronic devices.
  • the organic layer is a hole transport layer or a hole injection layer.
  • charge blocking layer herein refers to certain layers of structures blocking charge transfer to improve efficiency.
  • charge generation layer herein refers to certain layers of structures which can generate charges.
  • Organic compounds of the present invention may be used in electronic devices including organic photovoltaic cells, organic field effect transistors (OFETs) , and light emitting devices.
  • OFETs organic field effect transistors
  • Light emitting devices are electronic devices emitting lights when electrical currents were applied across two electrodes in the devices.
  • the electronic device of the present invention may comprise an anode, a cathode, and at least one organic layer interposed between the anode and the cathode. At least one of the organic layers comprises at least one of the organic compounds of the present invention.
  • the organic layer can be a charge transfer layer that can transport charge carrying moieties, either holes or electrons.
  • the organic layer may be a hole transport layer, an emissive layer, an electron transport layer, or a hole injection layer.
  • the organic layer is a hole transport layer or a hole injection layer.
  • the organic layer may comprise one or more “dopants” .
  • Dopants are impurities deliberately added in small amounts to a pure substance (i.e., a “host” ) to alter its properties such as conductivity and emitting property. It has the effect of shifting the Fermi level of the original material (i.e., the “host” ) , which results in a material with predominantly negative (n-type) or positive (p-type) charge carriers depending on the dopant variety.
  • the organic layer comprising the organic compounds of the present invention may be prepared by evaporative vacuum deposition or solution process such as spin coating, slot die coating and ink-jet printing.
  • the organic compounds of the present invention may be a part of polymer resin of Mn higher than 6,000 Dalton.
  • the polymer resin can be synthesized by a mixture of the organic compounds of the present invention, where the concentration of individual monomers can vary from 0.1%to 99.9%.
  • the polymer resin can be deposited using spin coating, slot die coating or ink-jet printing.
  • aryl refers to an organic radical derived from aromatic hydrocarbon by the removal of one hydrogen atom therefrom.
  • An aryl group may be a monocyclic and/or fused ring system each ring of which suitably contains from 4 to 6, preferably from 5 or 6 atoms. Structures wherein two or more aryl groups are combined through single bond (s) are also comprised.
  • aryls comprise phenyl, naphthyl, biphenyl, anthryl, indenyl, fluorenyl, benzofluorenyl, phenanthryl, triphenylenyl, pyrenyl, perylenyl, chrysenyl, naphtacenyl, fluoranthenyl and the like.
  • the naphthyl may be 1-naphthyl or 2-naphthyl.
  • the anthryl may be 1-anthryl, 2-anthryl or 9-anthryl.
  • the fluorenyl may be any one of 1-fluorenyl, 2-fluorenyl, 3-fluorenyl, 4-fluorenyl and 9-fluorenyl.
  • substituted aryl refers to an aryl in which at least one hydrogen atom is substituted with a heteroatom or a chemical group containing at least one heteroatom.
  • Heteroatoms comprise O, N, P and S.
  • the heteroaryl may be a 5-or 6-membered monocyclic heteroaryl or a polycyclic heteroaryl which is fused with one or more benzene ring (s) , and may be partially saturated.
  • the structures having one or more heteroaryl group (s) bonded through a single bond are also comprised.
  • the heteroaryl groups comprise divalent aryl groups of which the heteroatoms are oxidized or quarternized to form N-oxides, quaternary salts, or the like.
  • Specific examples comprise monocyclic heteroaryl groups, such as furyl, thiophenyl, pyrrolyl, imidazolyl, pyrazolyl, thiazolyl, thiadiazolyl, isothiazolyl, isoxazolyl, oxazolyl, oxadiazolyl, triazinyl, tetrazinyl, triazolyl, tetrazolyl, furazanyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl; polycyclic heteroaryl groups, such as benzofuranyl, fluoreno [4, 3-b] benzofuranyl, benzothiophenyl, fluoreno [4, 3-b] benzothiophenyl, isobenzofur
  • substituted heteroaryl refers to a heteroaryl in which at least one hydrogen atom is substituted with a heteroatom or a chemical group containing at least one heteroatom.
  • Heteroatoms comprise O, N, P and S.
  • hydrocarbyl refers to a chemical group containing only hydrogen and carbon atoms.
  • Alkyl, ” and other substituents containing “alkyl” moiety comprises both linear and branched species. Examples of alkyls comprise methyl, ethyl, propyl, iso-propyl, butyl, iso-butyl, tert-butyl, pentyl, and hexyl.
  • substituted alkyl refers to an alkyl in which at least one hydrogen atom is substituted with a heteroatom or a chemical group containing at least one heteroatom.
  • Heteroatoms comprise O, N, P and S.
  • cycloalkyl refers to a monocyclic hydrocarbon and a polycyclic hydrocarbon such as substituted or unsubstituted adamantyl, and substituted or unsubstituted C 7 -C 30 bicycloalkyl.
  • the triplet energies are determined as the difference between the total energy of the optimized triplet state and the optimized singlet state.
  • a procedure as described in Lin, B. C et al., J. Phys. Chem. A 2003, 107, 5241-5251, is applied to calculate the reorganization energy of each molecule, with which as the indicator of electron and hole mobility.
  • DSC Differential scanning calorimetry
  • DSC measurements were carried out on Q2000 differential scanning calorimeter of TA Instruments at a scan rate of 10 °C/min under N 2 atmosphere for all cycles. Each sample (about 7-10 mg) was scanned from room temperature to 300 °C (first heating scan) , cooled to -60 °C, and then reheated to 300 °C (second heating scan) . Tg was measured on the second heating scan. Data analysis was performed using Universal Analysis 2000 software of TA Instruments. The Tg value was calculated using an “onset-at-inflection” methodology.
  • TGA measurements were carried out on TGA-Q500 thermo gravimetric analyzer of TA Instruments under N 2 atmosphere. Each sample (about 7-10 mg) was weighed in a platinum standard plate and loaded into the instrument. Each sample was first heated to 60 °Cand equilibrated for 30 minutes to remove solvent residues in the sample. Then the sample was cooled to 30 °C. The temperature was ramped from 30 °C to 600 °C with 10 °C/min rate and the weight change was recorded to determine the decomposition temperature (Td) of the sample. The temperature-weight % (T-Wt %) curve was obtained by TGA scan. The temperature at the 5 %weight loss was determined as Td.
  • sample was dissolved in tetrahydrofuran (THF) at around 0.6 mg/mL. 5 ⁇ L sample solution was injected on an Agilent 1220 HPLC/G6224A time-of-flight mass spectrometer. The following analysis conditions were used:
  • MS conditions Capillary Voltage: 3500 kV (Pos) ; Mode: Pos; Scan: 100-2000 amu; Rate: 1 s/scan; and Desolvation temperature: 300 °C.
  • Each sample was dissolved in THF at around 0.6 mg/mL.
  • the sample solution was at last filtrated through a 0.45 ⁇ m syringe filter and 5 ⁇ L of the filtrate was injected to HPLC system.
  • the following analysis conditions were used:
  • Structure A1 3-Ethyl-5- (2-hydroxyethyl) -4-methylthiazol-3-ium bromide catalyst (504 mg, 2 mmol) and potassium carbonate (276 mg, 2 mmol) were added at room temperature to a solution of benzaldehyde (1.27 g, 12 mmol) and (E) -3- (2-bromo-4-chlorophenyl) -1-phenylprop-2-en-1-one (3.22 g, 10 mmol) in THF (20 mL) . The reaction mixture was stirred in N 2 atmosphere at 60 °C for 2 days to produce Structure A1 product.
  • Structure B1 Thin Layer Chromatography (TLC) was used to monitor the reaction. Solvent was removed by rotation evaporator right after the completion of the reaction. Aniline (1.86 g, 20 mmol) and p-toluenesulfonic acid (5.71 g, 30 mmol) were added into the reaction mixture of Structure A1 together with 50 mL ethanol and 4A molecular sieves. The mixture was stirred at reflux for 24 h. After that, DI water was added and the precipitate was filtered out. The precipitate could be further purified by column chromatography to give the pure product.
  • TLC Thin Layer Chromatography
  • Structure C1 Potassium carbonate (5.52 g, 40 mmol) was added to a mixture of Structure B1 (9.6g, 20 mmol) , palladium acetate (224 mg, 1 mmol) and tricyclohexylphosphine tetrafluoroborate (740 mg, 2 mmol) in dimethylacetamide (DMA) (50 mL) . The reaction mixture was stirred at reflux overnight under N 2 atmosphere. TLC was used to monitor the reaction. After completion of the reaction, DI water was added and the precipitate was filtered out. The precipitate was purified directly by column chromatography to give pure product of Structure C1.
  • DMA dimethylacetamide
  • N-Iodosuccinimide (2.36 g, 10.5 mmol) was added to a solution of structure C1 (4.04 g, 10 mmol) in dichloromethane (20 mL) at 0 °C. The reaction mixture was stirred at room temperature for 2 hours. TLC was used to monitor the reaction. After completion of the reaction, DI water was added to quench the reaction and the crude product G1 was filtered to be used directly in the next step without any purification.
  • Structure 9 Palladium acetate (89.6 mg, 0.4 mmol) , tricyclohexylphosphine tetrafluoroborate (296 mg, 0.8 mmol) and sodium tert-butoxide (1.08 g, 11.2 mmol) were added to a solution of structure D1 (3.84 g, 8 mmol) and N- ( [1, 1'-biphenyl] -4-yl) -9, 9-dimethyl-9H-fluoren-2-amine (3.18 g, 8.8 mmol) in toluene (50 mL) . The reaction mixture was stirred at 100 °C in N 2 atmosphere for overnight. TLC was used to monitor the reaction.
  • Structure A2 3-Ethyl-5- (2-hydroxyethyl) -4-methylthiazol-3-ium bromide catalyst (504 mg 2 mmol) and potassium carbonate (276 mg, 2 mmol) were added at room temperature to a solution of benzaldehyde (1.27 g, 12 mmol) and (E) -3- (2-bromo-4-chlorophenyl) -1-phenylprop-2-en-1-one (3.22 g, 10 mmol) in THF (20 mL) . The reaction mixture was stirred in N 2 atmosphere at 60 °C for 2 days to produce Structure A2 product.
  • Structure B2 TLC was used to monitor the reaction. After completion of the reaction, solvent was removed. Methylamine (1.55 g, 50 mmol) and p-toluenesulfonic acid (5.71 g, 30 mmol) were added into the reaction mixture of Structure A2 together with 50 mL ethanol and 4A molecular sieves. The mixture was stirred at reflux for 24 h. After that, DI water was added and the precipitate was filtered out. The precipitate was further purified by column chromatography to give the pure product.
  • Structure C2 Potassium carbonate (5.52 g, 40 mmol) was added to a mixture of structure B2 (8.44 g, 20 mmol) , palladium acetate (224 mg, 1 mmol) and tricyclohexylphosphine tetrafluoroborate (740 mg, 2 mmol) in DMA (50 mL) . The reaction mixture was stirred at reflux overnight under N 2 atmosphere. TLC was used to monitor the reaction. After completion of the reaction, DI water was added and the precipitate was filtered out. The precipitate was further purified by column chromatography to give the pure product.
  • Structure D2 NIS (2.362 g, 10.5 mmol) was added to a solution of structure C2 (3.42 g, 10 mmol) in DCM (20 mL) at 0 °C. The reaction mixture was stirred at room temperature for 2 hours. TLC was used to monitor the reaction. After completion of the reaction, DI water was added to quench the reaction and the crude product G2 was filtered to be used directly in the next step without any purification.
  • Structure 10 Palladium acetate (89.6 mg, 0.4 mmol) , tricyclohexylphosphine tetrafluoroborate (296 mg, 0.8 mmol) and sodium tert-butoxide (1.08 g, 11.2 mmol) were added to a solution of Structure D2 (3.34 g, 8 mmol) and N- ( [1, 1'-biphenyl] -4-yl) -9, 9-dimethyl-9H-fluoren-2-amine (3.18 g, 8.8 mmol) in toluene (50 mL) . The reaction mixture was stirred at 100 °C in N 2 atmosphere for overnight. TLC was used to monitor the reaction.
  • organic compound Structure 9 had a Tg of 164.5 °C and a Td of 416.2 °C and organic compound Structure 10 had a Tg of 161.4 °C and a Td of 402.7°C.
  • An OLED device containing organic compound Structure 10 as the hole transport layer was fabricated by thermally depositing organic layers, from bottom to top, electron injection layer (EIL) , electron transport layer (ETL) , emitting material layer (EML) , hole transport layer (HTL) , and hole injection layer (HIL) , onto an indium tin oxide (ITO) coated glass substrate that served as an anode, and topped with an aluminum cathode.
  • Thermal deposition was conducted by chemical vapor deposition in a vacuum chamber with a base pressure of ⁇ 10 -7 torr. The deposition rates of organic layers were maintained at 0.1-0.05 nm/s.
  • the aluminum cathode was deposited at 0.5 nm/s.
  • the active area of the OLED device was “3 mm x 3 mm. ”
  • Organic materials used in organic layers were all purified by sublimation before deposition, and were placed inside the vacuum chamber until it reached 10 -6 torr. To evaporate each material, a controlled current was applied between the anode and the cathode to raise the temperature to keep the constant evaporation rate of 1A/s for each organic material.
  • a comparative OLED device containing N4, N4'-di (naphthalen-1-yl) -N4, N4'-diphenyl-[1, 1'-biphenyl] -4, 4'-diamine (NPB) as the hole transport layer was prepared with the similar procedure described above.
  • J-V-L current density-voltage-luminance
  • Inventive OLED Device had higher luminous and power efficiencies at a lower driving voltage compared to those of Comparative Device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Organic compounds suitable for organic layers of electronic devices that have reduced driving voltage, increased luminous efficiency and increased power efficiency.

Description

ORGANIC COMPOUND AND ELECTRONIC DEVICE COMPRISING AN ORGANIC LAYER COMPRISING THE ORGANIC COMPOUND FIELD OF THE INVENTION
The present invention relates to organic compounds, and an electronic device comprising an organic layer comprising the organic compounds.
INTRODUCTION
Organic light emitting diodes (OLEDs) are display devices that employ stacks of organic layers including electron transport layers (ETLs) and hole transport layers (HTLs) . OLEDs have drawn much attention in recent years as one of the most promising next-generation displays because of their many performance advantages including light weight, energy saving and high contrast.
There is still a desire to provide OLEDs with improved device performance including minimized power consumption, especially for battery-powered mobile applications.
SUMMARY OF THE INVENTION
The present invention provides organic compounds having a structure represented by Formula (1) :
Figure PCTCN2016100992-appb-000001
 Formula (1) ,
wherein R1, R2, R3, and R4 are each independently selected from the group consisting of hydrogen, deuterium ( “D” ) , a substituted or unsubstituted C1-C50 alkyl, a substituted or unsubstituted C1-C50 alkoxy, a substituted or unsubstituted C1-C50 alkoxycarbonyl, a substituted or unsubstituted C6-C60 aryl, a substituted or unsubstituted C1-C60 heteroaryl, a substituted or unsubstituted C6-C60 aryloxy, a substituted or unsubstituted C6-C50 arylthio, a halogen, a cyano, a hydroxyl, and a carbonyl;
R5 is a substituted or unsubstituted C1-C30 alkyl, a substituted or unsubstituted C3-C50  cycloalkyl, a substituted or unsubstituted C6-C60 aryl, or a substituted or unsubstituted C1-C60 heteroaryl;
R6 and R7 are each independently selected from the group consisting of hydrogen, deuterium, a substituted or unsubstituted C1-C50 alkyl, a substituted or unsubstituted C1-C50 alkoxy, a substituted or unsubstituted C1-C50 alkoxycarbonyl, a substituted or unsubstituted C6-C60 aryl, a substituted or unsubstituted C1-C60 heteroaryl, a substituted or unsubstituted C6-C50 aryloxy, a substituted or unsubstituted C6-C50 arylthio, a halogen, a cyano, a hydroxyl, a carbonyl, and a substituted amino group having the structure of 
Figure PCTCN2016100992-appb-000002
 wherein Ar1 and Ar2 are each independently selected from the group consisting of a substituted or unsubstituted C6-C60 aryl and a substituted or unsubstituted C1-C60 heteroaryl; with the proviso that at least one of R6 and R7 is the substituted amino group; and
X1 and X2 are each independently a chemical bond, or selected from the group consisting of a substituted or unsubstituted C1-C50 alkylene, a substituted or unsubstituted C3-C50 cycloalkylene, a substituted or unsubstituted C6-C60 arylene, and a substituted or unsubstituted C1-C60 heteroarylene; and X may form one or more fused rings with the adjacent phenyl ring.
The present invention further provides an electronic device comprising an organic layer comprising the organic compounds.
DETAILED DESCRIPTION OF THE INVENTION
The organic compounds of the present invention have the structure represented by Formula (1) :
Figure PCTCN2016100992-appb-000003
 Formula (1) ,
wherein R1, R2, R3, and R4 are each independently selected from the group consisting of hydrogen; deuterium ( “D” ) ; a substituted or unsubstituted C1-C50 alkyl, C1-C30 alkyl, C1- C20 alkyl, or C1-C10 alkyl; a substituted or unsubstituted C1-C50 alkoxy, C1-C30 alkoxy, C1-C20 alkoxy, or C1-C10 alkoxy; a substituted or unsubstituted C1-C50 alkoxycarbonyl, C1-C30 alkoxycarbonyl, C1-C20 alkoxycarbonyl, or C1-C10 alkoxycarbonyl; a substituted or unsubstituted C6-C60 aryl, C6-C30 aryl, C6-C20 aryl, or C6-C12 aryl; a substituted or unsubstituted C1-C60 heteroaryl, C1-C30 heteroaryl, C2-C20 heteroaryl, or C4-C12 heteroaryl; a substituted or unsubstituted C6-C60 aryloxy, C6-C30 aryloxy, C6-C20 aryloxy, or C6-C10 aryloxy; a substituted or unsubstituted C6-C50 arylthio, C6-C30 arylthio, C6-C20 arylthio, or C6-C10 arylthio; a halogen such as F, Cl, Br or I; a cyano; a hydroxyl; and a carbonyl. R1 and R2, R2 and R3, or R3 and R4 may respectively and independently form a 4-to 8-membered fused ring.
Preferably, R1, R2, R3 and R4 are each independently selected from hydrogen, a halogen, a substituted or unsubstituted C1-C3 alkyl, and a substituted or unsubstituted C6-C60 aryl. More preferably, R1, R2, R3 and R4 are each independently selected from hydrogen, F, methyl, phenyl, naphthyl, and biphenyl.
In some embodiments, at least two of R1 through R4 are hydrogen. Preferably, all R1 through R4 are hydrogen.
R5 is a substituted or unsubstituted C1-C30 alkyl, C1-C20 alkyl, C1-C10 alkyl, C1-C5 alkyl, or C1-C3 alkyl; a substituted or unsubstituted C3-C50 cycloalkyl, C4-C30 cycloalkyl, C4-C20 cycloalkyl, or C4-C12 cycloalkyl; a substituted or unsubstituted C6-C60 aryl, C6-C30 aryl, C6-C20 aryl, or C6-C12 aryl; or a substituted or unsubstituted C1-C60 heteroaryl, C1-C30 heteroaryl, C2-C20 heteroaryl, or C4-C12 heteroaryl. Preferably, R5 is selected from -CH3 , -CH2CH3
Figure PCTCN2016100992-appb-000004
R6 and R7 are each independently selected from the group consisting of hydrogen; deuterium; a substituted or unsubstituted C1-C50 alkyl, C1-C30 alkyl, C1-C20 alkyl, or C1-C10 alkyl; a substituted or unsubstituted C1-C50 alkoxy, C1-C30 alkoxy, C1-C20 alkoxy, or C1-C10 alkoxy; a substituted or unsubstituted C1-C50 alkoxycarbonyl, C1-C30 alkoxycarbonyl, C1-C20 alkoxycarbonyl, or C1-C10 alkoxycarbonyl; a substituted or unsubstituted C6-C60 aryl, C6-C30 aryl, C6-C20 aryl, or C6-C12 aryl; a substituted or unsubstituted C1-C60 heteroaryl, C1-C30 heteroaryl, C2-C20 heteroaryl, or C4-C12 heteroaryl; a substituted or unsubstituted C6-C60  aryloxy, C6-C30 aryloxy, C6-C20 aryloxy, or C6-C10 aryloxy; a substituted or unsubstituted C6-C50 arylthio, C6-C30 arylthio, C6-C20 arylthio, or C6-C10 arylthio; a halogen such as F, Cl, Br or I; a cyano; a hydroxyl; a carbonyl; and a substituted amino group having the structure of 
Figure PCTCN2016100992-appb-000005
 with the proviso that at least one of R6 and R7 is the substituted amino group. Ar1 and Ar2 are each independently selected from the group consisting of a substituted or unsubstituted C6-C60 aryl, C6-C30 aryl, C6-C20 aryl, or C6-C15 aryl; and a substituted or unsubstituted C1-C60 heteroaryl, C1-C30 heteroaryl, C2-C20 heteroaryl, or C4-C12 heteroaryl. Preferably, Ar1 and Ar2 are each independently a substituted or unsubstituted C6-C60 aryl. More preferably, Ar1 and Ar2 are each independently a substituted or unsubstituted C12-C30 aryl.
In some embodiments, only one of R6 and R7 is the substituted amino group. Preferably, one of R6 and R7 is the substituted amino group, and the other one of R6 and R7 is selected from hydrogen, a halogen, or a substituted or unsubstituted C6-C60 aryl.
In some embodiments, the substituted amino group is selected from the following structures represented by Formula (a) through Formula (c) :
Figure PCTCN2016100992-appb-000006
 Formula (a) , 
Figure PCTCN2016100992-appb-000007
 Formula (b) , and 
Figure PCTCN2016100992-appb-000008
 Formula (c) ,
wherein Ar3 and Ar4 are each independently an unsubstituted C6-C60 aryl, Ar5 through Ar7 are each independently an unsubstituted C6-C40 aryl, and Ar8 through Ar11 are each independently an unsubstituted C6-C30 aryl; and L1 through L3 are each independently selected from the group consisting of a substituted or unsubstituted C6-C60 arylene and a substituted or unsubstituted C1-C60 heteroarylene. Preferably, Ar3 through Ar11 may be each independently an unsubstituted C6-C30 aryl, C6-C20 aryl, C6-C15 aryl, or C6-C12 aryl.
Suitable examples of the substituted amino groups comprise the following structures (1) through (6) :
Figure PCTCN2016100992-appb-000009
X1 and X2 may be the same or different.
X1 and X2 are each independently a chemical bond, or selected from the group consisting of a substituted or unsubstituted C1-C50 alkylene, a substituted or unsubstituted C3-C50 cycloalkylene, a substituted or unsubstituted C6-C60 arylene, and a substituted or unsubstituted C1-C60 heteroarylene.
In the embodiments where X1 or X2 is a chemical bond, it means that R6 or R7 is directly linked to its adjacent phenyl ring through X1 or X2.
In some embodiments, Xl or X2 may form one or more fused rings with the adjacent phenyl ring.
Suitable examples of Xl or X2 comprise 
Figure PCTCN2016100992-appb-000010
Figure PCTCN2016100992-appb-000011
Preferably, the organic compounds of the present invention have the structure represented by Formula (2) or (3) :
Figure PCTCN2016100992-appb-000012
 Formula (2) , or 
Figure PCTCN2016100992-appb-000013
 Formula (3) , 
wherein Xl and X2, Ar1 and Ar2, and R1 through R5, are as previously defined with reference to Formula (1) .
Suitable examples of the organic compounds are selected from the following structures (7) through (22) :
Figure PCTCN2016100992-appb-000014
Figure PCTCN2016100992-appb-000015
Figure PCTCN2016100992-appb-000016
The organic compounds of the present invention may have a molecular weight of 500 g/mole or more, 600 g/mole or more, or even 700 g/mole or more, and at the same time, 1,000 g/mole or less, 900 g/mole or less, or even 800 g/mole or less.
The organic compounds of the present invention may have a glass transition temperature (Tg) of 110 ℃ or higher, 130 ℃ or higher, or 150 ℃ or higher, and at the same time, 250 ℃ or lower, 220 ℃ or lower, or even 200 ℃ or lower, as measured according to the test method described in the Examples section below.
The organic compounds of the present invention may have a decomposition temperature (Td, 5%weight loss) of 300 ℃ or higher, 350 ℃ or higher, or 400 ℃ or higher, and at the same time, 650 ℃ or lower, 600 ℃ or lower, or even 550 ℃ or lower, as measured according to the test method described in the Examples section below.
The organic compounds of the present invention may be prepared as shown in Scheme 1 below. Aldehyde derivatives were first reacted through Stetter reaction with unsaturated ketone derivatives to produce Structure A product, which were then condensed with amines under the catalysis of p-toluenesulfonic acid to produce Structure B product. Under the catalytic condition of palladium acetate and ligand, Structure B product could be cyclized to produce Structure C products having a fused pyrrole ring. Structure C products were then treated with N-Iodosuccinimide (NIS) , followed by the coupling reaction with phenylboronic acid to produce Structure D products. After a final Buchwald-Hartwig reaction, Formula (1) of the present invention could be obtained.
Figure PCTCN2016100992-appb-000017
SCHEME 1
The organic compounds of the present invention may be used in organic layers including hole transport layers (HTL) , electron transport layers (ETL) , hole injection layers (HIL) , charge blocking layers, charge generation layers, and emissive layers (EML) in electronic devices. Preferably, the organic layer is a hole transport layer or a hole injection layer. The term “charge blocking layer” herein refers to certain layers of structures blocking charge transfer to improve efficiency. The term “charge generation layer” herein refers to certain layers of structures which can generate charges.
Electronic devices are devices depending on the principles of electronics and using the manipulation of electron flow for its operation. The organic compounds of the present invention may be used in electronic devices including organic photovoltaic cells, organic field effect transistors (OFETs) , and light emitting devices. Light emitting devices are electronic devices emitting lights when electrical currents were applied across two electrodes in the devices.
The electronic device of the present invention may comprise an anode, a cathode, and at least one organic layer interposed between the anode and the cathode. At least one of the organic layers comprises at least one of the organic compounds of the present invention. The organic layer can be a charge transfer layer that can transport charge carrying moieties, either holes or electrons. The organic layer may be a hole transport layer, an emissive layer, an electron transport layer, or a hole injection layer. Preferably, the organic layer is a hole  transport layer or a hole injection layer. In addition to the organic compounds of the present invention, the organic layer may comprise one or more “dopants” . Dopants are impurities deliberately added in small amounts to a pure substance (i.e., a “host” ) to alter its properties such as conductivity and emitting property. It has the effect of shifting the Fermi level of the original material (i.e., the “host” ) , which results in a material with predominantly negative (n-type) or positive (p-type) charge carriers depending on the dopant variety. The organic layer comprising the organic compounds of the present invention may be prepared by evaporative vacuum deposition or solution process such as spin coating, slot die coating and ink-jet printing. The organic compounds of the present invention may be a part of polymer resin of Mn higher than 6,000 Dalton. The polymer resin can be synthesized by a mixture of the organic compounds of the present invention, where the concentration of individual monomers can vary from 0.1%to 99.9%. The polymer resin can be deposited using spin coating, slot die coating or ink-jet printing.
The term “aryl, ” as described herein, refers to an organic radical derived from aromatic hydrocarbon by the removal of one hydrogen atom therefrom. An aryl group may be a monocyclic and/or fused ring system each ring of which suitably contains from 4 to 6, preferably from 5 or 6 atoms. Structures wherein two or more aryl groups are combined through single bond (s) are also comprised. Examples of aryls comprise phenyl, naphthyl, biphenyl, anthryl, indenyl, fluorenyl, benzofluorenyl, phenanthryl, triphenylenyl, pyrenyl, perylenyl, chrysenyl, naphtacenyl, fluoranthenyl and the like. The naphthyl may be 1-naphthyl or 2-naphthyl. The anthryl may be 1-anthryl, 2-anthryl or 9-anthryl. The fluorenyl may be any one of 1-fluorenyl, 2-fluorenyl, 3-fluorenyl, 4-fluorenyl and 9-fluorenyl.
The term “substituted aryl, ” as described herein, refers to an aryl in which at least one hydrogen atom is substituted with a heteroatom or a chemical group containing at least one heteroatom. Heteroatoms comprise O, N, P and S. The chemical group containing at least one heteroatom herein comprise OR’ , NR’ 2, PR’ 2, P (=O) R’ 2, and SiR’ 3; wherein each R’ is hydrogen or a C1-C30 hydrocarbyl.
The term “heteroaryl, ” as described herein, refers to an aryl group, in which at least one carbon atom or CH group or CH2 group is substituted with a heteroatom (for example, B, N, O, S, P (=O) , Si and P) or a chemical group containing at least one heteroatom. The heteroaryl may be a 5-or 6-membered monocyclic heteroaryl or a polycyclic heteroaryl which  is fused with one or more benzene ring (s) , and may be partially saturated. The structures having one or more heteroaryl group (s) bonded through a single bond are also comprised. The heteroaryl groups comprise divalent aryl groups of which the heteroatoms are oxidized or quarternized to form N-oxides, quaternary salts, or the like. Specific examples comprise monocyclic heteroaryl groups, such as furyl, thiophenyl, pyrrolyl, imidazolyl, pyrazolyl, thiazolyl, thiadiazolyl, isothiazolyl, isoxazolyl, oxazolyl, oxadiazolyl, triazinyl, tetrazinyl, triazolyl, tetrazolyl, furazanyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl; polycyclic heteroaryl groups, such as benzofuranyl, fluoreno [4, 3-b] benzofuranyl, benzothiophenyl, fluoreno [4, 3-b] benzothiophenyl, isobenzofuranyl, benzimidazolyl, benzothiazolyl, benzisothiazolyl, benzisoxazolyl, benzoxazolyl, isoindolyl, indolyl, indazolyl, benzothiadiazolyl, quinolyl, isoquinolyl, cinnolinyl, quinazolinyl, quinoxalinyl, carbazolyl, phenanthridinyl and benzodioxolyl; and corresponding N-oxides (for example, pyridyl N-oxide, quinolyl N-oxide) and quaternary salts thereof.
The term “substituted heteroaryl, ” as described herein, refers to a heteroaryl in which at least one hydrogen atom is substituted with a heteroatom or a chemical group containing at least one heteroatom. Heteroatoms comprise O, N, P and S. The chemical group containing at least one heteroatom comprise OR’ , NR’ 2, PR’ 2, P (=O) R’ 2, and SiR’ 3; wherein each R’ is hydrogen or a C1-C30 hydrocarbyl.
The term “hydrocarbyl, ” as described herein, refers to a chemical group containing only hydrogen and carbon atoms.
“Alkyl, ” and other substituents containing “alkyl” moiety, comprises both linear and branched species. Examples of alkyls comprise methyl, ethyl, propyl, iso-propyl, butyl, iso-butyl, tert-butyl, pentyl, and hexyl.
The term “substituted alkyl, ” as described herein, refers to an alkyl in which at least one hydrogen atom is substituted with a heteroatom or a chemical group containing at least one heteroatom. Heteroatoms comprise O, N, P and S. The chemical group containing at least one heteroatom herein comprise OR’ , NR’ 2, PR’ 2, P (=O) R’ 2, and SiR’ 3; wherein each R’ is hydrogen or a C1-C30 hydrocarbyl.
The term “cycloalkyl, ” as described herein, refers to a monocyclic hydrocarbon and a polycyclic hydrocarbon such as substituted or unsubstituted adamantyl, and substituted or unsubstituted C7-C30 bicycloalkyl.
EXAMPLES
The following examples illustrate embodiments of the present invention. All parts and percentages are by weight unless otherwise indicated.
Materials and NMR information
Commercially available materials purchased from Sinopharm Chemical Reagent Co., Ltd. (SCRC) or Energy Chemicals were used as received. Proton nuclear magnetic resonance (1H NMR) spectra were recorded on Bruker AVANCE III (400 MHz) spectrometer. Chemical shifts were recorded in parts per million (ppm) relative to tetramethylsilane (0.00) . 1H NMR splitting patterns were designated as singlet (s) , doublet (d) , triplet (t) , quartet (q) , doublet of doublets (dd) , multiplet (m) , and etc. All first-order splitting patterns were assigned on the basis of the appearance of the multiplet. Splitting patterns that could not be easily interpreted are designated as multiplet (m) or broad (br) .
Modeling
All computations utilized the Gaussian 09 program as described in Gaussian 09, Revision A. 02, Frisch, M.J. et al., Gaussian, Inc., Wallingford CT, 2009. The calculations were performed with the hybrid Density Functional Theory (DFT) method, Becke, 3-parameter, Lee-Yang-Parr (B3LYP) , as described in Becke, A.D. J. Chem. Phys. 1993, 98, 5648; Lee, C. et al., Phys. Rev B 1988, 37, 785; and Miehlich, B. et al. Chem. Phys. Lett. 1989, 157, 200; and the 6-31G* (5d) basis set as described in Ditchfield, R. et al., J. Chem. Phys. 1971, 54, 724; Hehre, W.J. et al., J. Chem. Phys. 1972, 56, 2257; and Gordon, M.S. Chem. Phys. Lett. 1980, 76, 163. The singlet state calculations use the closed shell approximation, and the triplet state calculations use the open shell approximation. All values are quoted in electron volts (eV) . The Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) values are determined from the orbital energies of the optimized geometry of the singlet ground state. The triplet energies are determined as the difference between the total energy of the optimized triplet state and the optimized singlet state. A procedure, as described in Lin, B. C et al., J. Phys. Chem. A 2003, 107, 5241-5251, is applied to calculate the reorganization energy of each molecule, with which as the indicator of electron and hole mobility.
Differential scanning calorimetry (DSC)
DSC measurements were carried out on Q2000 differential scanning calorimeter of TA Instruments at a scan rate of 10 ℃/min under N2 atmosphere for all cycles. Each sample (about 7-10 mg) was scanned from room temperature to 300 ℃ (first heating scan) , cooled to -60 ℃, and then reheated to 300 ℃ (second heating scan) . Tg was measured on the second heating scan. Data analysis was performed using Universal Analysis 2000 software of TA Instruments. The Tg value was calculated using an “onset-at-inflection” methodology.
Thermo gravimetric analysis (TGA)
TGA measurements were carried out on TGA-Q500 thermo gravimetric analyzer of TA Instruments under N2 atmosphere. Each sample (about 7-10 mg) was weighed in a platinum standard plate and loaded into the instrument. Each sample was first heated to 60 ℃and equilibrated for 30 minutes to remove solvent residues in the sample. Then the sample was cooled to 30 ℃. The temperature was ramped from 30 ℃ to 600 ℃ with 10 ℃/min rate and the weight change was recorded to determine the decomposition temperature (Td) of the sample. The temperature-weight % (T-Wt %) curve was obtained by TGA scan. The temperature at the 5 %weight loss was determined as Td.
Liquid Chromatography-Mass Spectrometry (LC-MS)
Each sample was dissolved in tetrahydrofuran (THF) at around 0.6 mg/mL. 5 μL sample solution was injected on an Agilent 1220 HPLC/G6224A time-of-flight mass spectrometer. The following analysis conditions were used:
Column: 4.6 x 150 mm, 3.5 μm ZORBAX Eclipse Plus C18; column temperature: 40 ℃; Mobile phase: THF/deioned (DI) water = 65/35 volume ratio (Isocratic method) ; Flow rate: 1.0 mL/min; and
MS conditions: Capillary Voltage: 3500 kV (Pos) ; Mode: Pos; Scan: 100-2000 amu; Rate: 1 s/scan; and Desolvation temperature: 300 ℃.
High Performance Liquid Chromatography (HPLC)
Each sample was dissolved in THF at around 0.6 mg/mL. The sample solution was at last filtrated through a 0.45 μm syringe filter and 5 μL of the filtrate was injected to HPLC system. The following analysis conditions were used:
Injection volume: 5 μL; Instrument: Agilent 1200 HPLC; Column: 4.6 x 150mm, 3.5μm ZORBAX Eclipse Plus C18; Column temperature: 40 ℃; Detector: DAD=250, 280, 350 nm; Mobile Phase: THF/DI water = 65/35 volume ratio (Isocratic method) ; and Flow rate:  1 mL/min.
Example 1: Synthesis Route of Organic Compound Structures 9 and 10
Synthesis of organic compound Structure 9
Figure PCTCN2016100992-appb-000018
Structure A1: 3-Ethyl-5- (2-hydroxyethyl) -4-methylthiazol-3-ium bromide catalyst (504 mg, 2 mmol) and potassium carbonate (276 mg, 2 mmol) were added at room temperature to a solution of benzaldehyde (1.27 g, 12 mmol) and (E) -3- (2-bromo-4-chlorophenyl) -1-phenylprop-2-en-1-one (3.22 g, 10 mmol) in THF (20 mL) . The reaction mixture was stirred in N2 atmosphere at 60 ℃ for 2 days to produce Structure A1 product.
Structure B1: Thin Layer Chromatography (TLC) was used to monitor the reaction. Solvent was removed by rotation evaporator right after the completion of the reaction. Aniline (1.86 g, 20 mmol) and p-toluenesulfonic acid (5.71 g, 30 mmol) were added into the reaction mixture of Structure A1 together with 50 mL ethanol and 4A molecular sieves. The mixture was stirred at reflux for 24 h. After that, DI water was added and the precipitate was filtered out. The precipitate could be further purified by column chromatography to give the pure product. 1H NMR (400 MHz, CDCl3, ppm) : 7.60 (d, 1H, J = 2.0 Hz) , 7.15-7.25 (m, 6H) , 7.00-7.11 (m, 9H) , 6.85 (d, 1H, J = 8.0 Hz) , 6.64 (s, 1H) . LC-MS-ESI (m/z) : calcd for C28H20BrClN: 483.04, found (M+H) +: 484.0482.
Structure C1: Potassium carbonate (5.52 g, 40 mmol) was added to a mixture of Structure B1 (9.6g, 20 mmol) , palladium acetate (224 mg, 1 mmol) and tricyclohexylphosphine tetrafluoroborate (740 mg, 2 mmol) in dimethylacetamide (DMA) (50 mL) . The reaction mixture was stirred at reflux overnight under N2 atmosphere. TLC was used to monitor the reaction. After completion of the reaction, DI water was added and the  precipitate was filtered out. The precipitate was purified directly by column chromatography to give pure product of Structure C1. 1H NMR (400 MHz, CDCl3, ppm) : 8.61-8.64 (m, 2H) , 8.22 (d, 1H, J = 10.0 Hz) , 7.59 (d, 1H, J = 6.8 Hz) , 7.40-7.50 (m, 6H) , 7.16-7.26 (m, 8H) . LC-MS-ESI (m/z) : calcd for C28H18NCl: 403.11, found (M+H) +: 404.1211.
Structure D1: N-Iodosuccinimide (NIS) (2.36 g, 10.5 mmol) was added to a solution of structure C1 (4.04 g, 10 mmol) in dichloromethane (20 mL) at 0 ℃. The reaction mixture was stirred at room temperature for 2 hours. TLC was used to monitor the reaction. After completion of the reaction, DI water was added to quench the reaction and the crude product G1 was filtered to be used directly in the next step without any purification. To a solution of Compound G1 (1.06 g, 2 mmol) and phenylboric acid (0.29 g, 2.4 mmol) in toluene (20 mL) was added palladium acetate (22.4 mg, 0.1 mmol) , tricyclohexylphosphine tetrafluoroborate (74 mg, 0.2 mmol) and potassium phosphate (424 mg, 4 mmol) . The reaction mixture was stirred at 60 ℃ in N2 atmosphere for overnight. TLC was used to monitor the reaction. After completion of the reaction, DI water was added and the precipitate was filtered out. The precipitate was further purified by column chromatography to give the pure product. 1H NMR (400 MHz, CDCl3, ppm) : 8.61-8.63 (m, 2H) , 7.75 (d, 1H, J = 8.8 Hz) , 7.30-7.50 (m, 12H) , 7.15-7.25 (m, 2H) , 6.93-7.10 (m, 5H) . LC-MS-ESI (m/z) : calcd for C34H22NCl: 479.14, found (M+H) +: 480.1533.
Structure 9: Palladium acetate (89.6 mg, 0.4 mmol) , tricyclohexylphosphine tetrafluoroborate (296 mg, 0.8 mmol) and sodium tert-butoxide (1.08 g, 11.2 mmol) were added to a solution of structure D1 (3.84 g, 8 mmol) and N- ( [1, 1'-biphenyl] -4-yl) -9, 9-dimethyl-9H-fluoren-2-amine (3.18 g, 8.8 mmol) in toluene (50 mL) . The reaction mixture was stirred at 100 ℃ in N2 atmosphere for overnight. TLC was used to monitor the reaction. After completion of the reaction, DI water was added and the precipitate was filtered out. The precipitate was further purified by column chromatography to give the pure product. Repeated column chromatography or recrystallization was applied to further improve the purity to >99.5%. 1H NMR (400 MHz, CDCl3, ppm) : 8.40 (d, 1H, J = 8.4 Hz) , 7.76 (d, 1H, J = 8.8 Hz) , 7.26-7.45 (m, 29H) , 6.95-7.10 (m, 7H) , 1.41 (s, 6H) . LC-MS-ESI (m/z) : calcd for C61H44N2: 804.35, found (M+H) +: 805.3587.
Synthesis of organic compound Structure 10
Figure PCTCN2016100992-appb-000019
Structure A2: 3-Ethyl-5- (2-hydroxyethyl) -4-methylthiazol-3-ium bromide catalyst (504 mg 2 mmol) and potassium carbonate (276 mg, 2 mmol) were added at room temperature to a solution of benzaldehyde (1.27 g, 12 mmol) and (E) -3- (2-bromo-4-chlorophenyl) -1-phenylprop-2-en-1-one (3.22 g, 10 mmol) in THF (20 mL) . The reaction mixture was stirred in N2 atmosphere at 60 ℃ for 2 days to produce Structure A2 product.
Structure B2: TLC was used to monitor the reaction. After completion of the reaction, solvent was removed. Methylamine (1.55 g, 50 mmol) and p-toluenesulfonic acid (5.71 g, 30 mmol) were added into the reaction mixture of Structure A2 together with 50 mL ethanol and 4A molecular sieves. The mixture was stirred at reflux for 24 h. After that, DI water was added and the precipitate was filtered out. The precipitate was further purified by column chromatography to give the pure product. 1H NMR (400 MHz, CDCl3, ppm) : 7.57 (d, 1H, J =2.0 Hz) , 7.52-7.54 (m, 2H) , 7.43 (t, 2H) , 7.20-7.34 (m, 6H) , 7.06 (dd, 1H, J = 2.4, 2.4 Hz) , 6.98 (d, 1H, J = 8.4 Hz) , 6.45 (s, 1H) , 3.56 (s, 3H) . LC-MS-ESI (m/z) : calcd for C23H17BrClN: 421.02, found (M+H) +: 422.0263.
Structure C2: Potassium carbonate (5.52 g, 40 mmol) was added to a mixture of structure B2 (8.44 g, 20 mmol) , palladium acetate (224 mg, 1 mmol) and tricyclohexylphosphine tetrafluoroborate (740 mg, 2 mmol) in DMA (50 mL) . The reaction mixture was stirred at reflux overnight under N2 atmosphere. TLC was used to monitor the reaction. After completion of the reaction, DI water was added and the precipitate was filtered out. The precipitate was further purified by column chromatography to give the pure product. 1H NMR (400 MHz, CDCl3, ppm) : 8.70 (d, 1H, J = 8.0 Hz) , 8.62 (d, 1H, J = 2.0 Hz) , 8.54 (d, 1H, J = 8.4 Hz) , 8.16 (d, 1H, J = 8.8 Hz) , 7.64-7.68 (m, 1H) , 7.50-7.60 (m, 6H) , 7.41-7.46 (m,  1H) , 7.07 (s, 1H) , 4.21 (s, 3H) . LC-MS-ESI (m/z) : calcd for C23H16NCl: 341.10, found (M+H) +: 342.1081
Structure D2: NIS (2.362 g, 10.5 mmol) was added to a solution of structure C2 (3.42 g, 10 mmol) in DCM (20 mL) at 0 ℃. The reaction mixture was stirred at room temperature for 2 hours. TLC was used to monitor the reaction. After completion of the reaction, DI water was added to quench the reaction and the crude product G2 was filtered to be used directly in the next step without any purification. To a solution of Compound G2 (0.93 g, 2 mmol) and phenylboric acid (0.29 g, 2.4 mmol) in toluene (20 mL) was added palladium acetate (22.4 mg, 0.1 mmol) , tricyclohexylphosphine tetrafluoroborate (74 mg, 0.2 mmol) and potassium phosphate (424 mg, 4 mmol) . The reaction mixture was stirred at 60 ℃ in N2 atmosphere for overnight. TLC was used to monitor the reaction. After completion of the reaction, DI water was added and the precipitate was filtered out. The precipitate was further purified by column chromatography to give the pure product. 1H NMR (400 MHz, CDCl3, ppm) : 8.70 (d, 1H, J =8.4 Hz) , 8.58-8.62 (m, 2H) , 7.64-7.70 (m, 2H) , 7.55-7.62 (m, 1H) , 7.24-7.35 (m, 10H) , 7.20 (d, 1H, J = 9.2 Hz) , 4.14 (s, 3H) . LC-MS-ESI (m/z) : calcd for C29H21NCl: 418.139, found (M+H) +: 418.1832.
Structure 10: Palladium acetate (89.6 mg, 0.4 mmol) , tricyclohexylphosphine tetrafluoroborate (296 mg, 0.8 mmol) and sodium tert-butoxide (1.08 g, 11.2 mmol) were added to a solution of Structure D2 (3.34 g, 8 mmol) and N- ( [1, 1'-biphenyl] -4-yl) -9, 9-dimethyl-9H-fluoren-2-amine (3.18 g, 8.8 mmol) in toluene (50 mL) . The reaction mixture was stirred at 100 ℃ in N2 atmosphere for overnight. TLC was used to monitor the reaction. After completion of the reaction, DI water was added and the precipitate was filtered out. The precipitate was further purified by column chromatography to give the pure product. Repeated column chromatography or to recrystallization was applied to further improve the purity to >99.5%. 1H NMR (400 MHz, CDCl3, ppm) : 8.50 (br, 1H) , 8.42 (d, 1H, J = 8.4 Hz) , 8.15-8.62 (m, 31H) , 4.37-4.44 (br, 3H) , 1.33 (s, 6H) . LC-MS-ESI (m/z) : calcd for C56H42N2: 743.33, found (M+H) +: 743.2-743.4.
Thermal property of organic compound Structures 9 and 10
Thermal properties of organic compounds Structures 9 and 10 were analyzed by DSC and TGA. As shown in Table 1, organic compound Structure 9 had a Tg of 164.5 ℃ and a Td of 416.2 ℃ and organic compound Structure 10 had a Tg of 161.4 ℃ and a Td of 402.7℃.
Table 1
Sample Name Td (℃)  Tg (℃)
Structure 9 416.2 164.5
Structure 10 161.4 402.7
Example 2: OLED Device Fabrication
An OLED device containing organic compound Structure 10 as the hole transport layer was fabricated by thermally depositing organic layers, from bottom to top, electron injection layer (EIL) , electron transport layer (ETL) , emitting material layer (EML) , hole transport layer (HTL) , and hole injection layer (HIL) , onto an indium tin oxide (ITO) coated glass substrate that served as an anode, and topped with an aluminum cathode. Thermal deposition was conducted by chemical vapor deposition in a vacuum chamber with a base pressure of <10-7 torr. The deposition rates of organic layers were maintained at 0.1-0.05 nm/s. The aluminum cathode was deposited at 0.5 nm/s. The active area of the OLED device was “3 mm x 3 mm. ” Organic materials used in organic layers were all purified by sublimation before deposition, and were placed inside the vacuum chamber until it reached 10-6 torr. To evaporate each material, a controlled current was applied between the anode and the cathode to raise the temperature to keep the constant evaporation rate of 1A/s for each organic material.
Material and thickness of each organic layer were shown in Table 2.
A comparative OLED device containing N4, N4'-di (naphthalen-1-yl) -N4, N4'-diphenyl-[1, 1'-biphenyl] -4, 4'-diamine (NPB) as the hole transport layer was prepared with the similar procedure described above.
Table 2
Figure PCTCN2016100992-appb-000020
Figure PCTCN2016100992-appb-000021
The current density-voltage-luminance (J-V-L) characterizations for the OLED devices were performed with a KEITHLEY 2635A-SYS Single-channel System Source Meter and a MINOLTA CS-100A Chroma Meter.
As shown in Table 3, Inventive OLED Device had higher luminous and power efficiencies at a lower driving voltage compared to those of Comparative Device.
Table 3
Figure PCTCN2016100992-appb-000022

Claims (16)

  1. An organic compound having a structure represented by Formula (1) :
    Figure PCTCN2016100992-appb-100001
    wherein R1, R2, R3, and R4 are each independently selected from the group consisting of hydrogen, deuterium, a substituted or unsubstituted C1-C50 alkyl, a substituted or unsubstituted C1-C50 alkoxy, a substituted or unsubstituted C1-C50 alkoxycarbonyl, a substituted or unsubstituted C6-C60 aryl, a substituted or unsubstituted C1-C60 heteroaryl, a substituted or unsubstituted C6-C60 aryloxy, a substituted or unsubstituted C6-C50 arylthio, a halogen, a cyano, a hydroxyl, and a carbonyl;
    R5 is a substituted or unsubstituted C1-C30 alkyl; a substituted or unsubstituted C3-C50 cycloalkyl; a substituted or unsubstituted C6-C60 aryl; or a substituted or unsubstituted C1-C60 heteroaryl;
    R6 and R7 are each independently selected from the group consisting of hydrogen, deuterium, a substituted or unsubstituted C1-C50 alkyl, a substituted or unsubstituted C1-C50 alkoxy, a substituted or unsubstituted C1-C50 alkoxycarbonyl, a substituted or unsubstituted C6-C60 aryl, a substituted or unsubstituted C1-C60 heteroaryl, a substituted or unsubstituted C6-C60 aryloxy, a substituted or unsubstituted C6-C50 arylthio, a halogen, a cyano, a hydroxyl, a carbonyl, and a substituted amino group having the structure of
    Figure PCTCN2016100992-appb-100002
    wherein Ar1 and Ar2 are each independently selected from the group consisting of a substituted or unsubstituted C6-C60 aryl, and a substituted or unsubstituted C1-C60 heteroaryl; with the proviso that at least one of R6 and R7 is the substituted amino group; and
    X1 and X2 are each independently a chemical bond, or selected from the group consisting of a substituted or unsubstituted C1-C50 alkylene, a substituted or unsubstituted C3-C50 cycloalkylene, a substituted or unsubstituted C6-C60 arylene, and a substituted or unsubstituted C1-C60 heteroarylene.
  2. The organic compound of Claim 1, wherein R1 and R2, R2 and R3, or R3 and R4 may respectively and independently form a 4- to 8-membered fused ring.
  3. The organic compound of Claim 1, wherein R1, R2, R3 and R4 are each independently selected from hydrogen, F, methyl, phenyl, naphthyl, and biphenyl.
  4. The organic compound of Claim 1, wherein R1 through R4 are all hydrogen.
  5. The organic compound of Claim 1, wherein R5 is selected from -CH3, -CH2CH3,
    Figure PCTCN2016100992-appb-100003
  6. The organic compound of Claim 1, wherein one of R6 and R7 is the substituted amino group, and the other one of R6 and R7 is selected from hydrogen, a halogen, or a substituted or unsubstituted C6-C60 aryl.
  7. The organic compound of Claim 1, wherein the substituted amino group is selected from the following structures represented by Formula (a) through Formula (c) :
    Figure PCTCN2016100992-appb-100004
    wherein Ar3 and Ar4 are each independently an unsubstituted C6-C60 aryl, Ar5 through Ar7 are each independently an unsubstituted C6-C40 aryl, and Ar8 through Ar11 are each independently an unsubstituted C6-C30 aryl; and L1 through L3 are each independently selected from a substituted or unsubstituted C6-C60 arylene, and a substituted or unsubstituted C1-C60 heteroarylene.
  8. The organic compound of Claim 7, wherein Ar3 through Ar11 may be each independently an unsubstituted C6-C30 aryl.
  9. The organic compound of Claim 1, wherein the substituted amino groups comprise the following structures (1) through (6) :
    Figure PCTCN2016100992-appb-100005
  10. The organic compound of Claim 1, wherein Xl or X2 comprise
    Figure PCTCN2016100992-appb-100006
    Figure PCTCN2016100992-appb-100007
  11. The organic compound of Claim 1, wherein X1 or X2 may form one or more fused rings with the adjacent phenyl ring.
  12. The organic compound of Claim 1, wherein the organic compounds of the present invention have the structure represented by Formula (2) or (3) :
    Figure PCTCN2016100992-appb-100008
    wherein R1, R2, R3, and R4 are each independently selected from the group consisting of hydrogen, deuterium, a substituted or unsubstituted C1-C50 alkyl, a substituted or unsubstituted C1-C50 alkoxy, a substituted or unsubstituted C1-C50 alkoxycarbonyl, a substituted or unsubstituted C6-C60 aryl, a substituted or unsubstituted C1-C60 heteroaryl, a substituted or unsubstituted C6-C60 aryloxy, a substituted or unsubstituted C6-C50 arylthio, a halogen, a cyano, a hydroxyl, and a carbonyl;
    R5 is a substituted or unsubstituted C1-C30 alkyl; a substituted or unsubstituted C3-C50 cycloalkyl; a substituted or unsubstituted C6-C60 aryl; or a substituted or unsubstituted C1-C60 heteroaryl;
    Ar1 and Ar2 are each independently selected from the group consisting of a substituted or unsubstituted C6-C60 aryl, and a substituted or unsubstituted C1-C60 heteroaryl; and
    X1 and X2 are each independently a chemical bond, or selected from the group consisting of a substituted or unsubstituted C1-C50 alkylene, a substituted or unsubstituted C3-C50 cycloalkylene, a substituted or unsubstituted C6-C60 arylene, and a substituted or unsubstituted C1-C60 heteroarylene.
  13. The organic compound of Claim 1, wherein the organic compounds are selected from the following structures (7) through (22) :
    Figure PCTCN2016100992-appb-100009
    Figure PCTCN2016100992-appb-100010
  14. An electronic device comprising an organic layer, wherein the organic layer comprises the organic compound of any one of Claims 1-13.
  15. The electronic device of Claim 14, wherein the organic layer is a hole transport  layer, an emissive layer, an electron transport layer, or a hole injection layer.
  16. The electronic device of claim 14, wherein the electronic device is a light emitting device.
PCT/CN2016/100992 2016-09-30 2016-09-30 Organic compound and electronic device comprising organic layer comprising organic compound WO2018058494A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/100992 WO2018058494A1 (en) 2016-09-30 2016-09-30 Organic compound and electronic device comprising organic layer comprising organic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/100992 WO2018058494A1 (en) 2016-09-30 2016-09-30 Organic compound and electronic device comprising organic layer comprising organic compound

Publications (1)

Publication Number Publication Date
WO2018058494A1 true WO2018058494A1 (en) 2018-04-05

Family

ID=61762406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/100992 WO2018058494A1 (en) 2016-09-30 2016-09-30 Organic compound and electronic device comprising organic layer comprising organic compound

Country Status (1)

Country Link
WO (1) WO2018058494A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021251661A1 (en) * 2020-06-11 2021-12-16 주식회사 엘지화학 Novel compound and organic light emitting device comprising same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007090773A1 (en) * 2006-02-10 2007-08-16 Ciba Holding Inc. Novel polymers
US20110240978A1 (en) * 2010-04-06 2011-10-06 Samsung Mobile Display Co., Ltd Heterocyclic compound and organic light-emitting device including the same
US20110240977A1 (en) * 2010-04-06 2011-10-06 Samsung Mobile Display Co., Ltd. Heterocyclic compound and organic light-emitting device including the same
US20140361259A1 (en) * 2013-06-03 2014-12-11 Samsung Display Co., Ltd. Arylamine-based compound and organic light emitting diode comprising the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007090773A1 (en) * 2006-02-10 2007-08-16 Ciba Holding Inc. Novel polymers
US20110240978A1 (en) * 2010-04-06 2011-10-06 Samsung Mobile Display Co., Ltd Heterocyclic compound and organic light-emitting device including the same
US20110240977A1 (en) * 2010-04-06 2011-10-06 Samsung Mobile Display Co., Ltd. Heterocyclic compound and organic light-emitting device including the same
US20140361259A1 (en) * 2013-06-03 2014-12-11 Samsung Display Co., Ltd. Arylamine-based compound and organic light emitting diode comprising the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021251661A1 (en) * 2020-06-11 2021-12-16 주식회사 엘지화학 Novel compound and organic light emitting device comprising same
CN114144402A (en) * 2020-06-11 2022-03-04 株式会社Lg化学 Novel compound and organic light emitting device comprising same
CN114144402B (en) * 2020-06-11 2024-02-27 株式会社Lg化学 Compound and organic light emitting device comprising the same
CN114144402B9 (en) * 2020-06-11 2024-04-26 株式会社Lg化学 Compound and organic light emitting device comprising the same

Similar Documents

Publication Publication Date Title
EP3919500A1 (en) Compound and organic light-emitting device comprising same
EP3266779B1 (en) Heterocyclic compound and organic light emitting element comprising same
CN111574543A (en) Organic compound containing boron and application thereof in organic electroluminescent device
EP3919482A1 (en) Organic light-emitting compound, and organic electroluminescent device using same
EP4137488A1 (en) Heterocyclic compound, organic light emitting device comprising same, composition for organic layer of organic light emitting device
CN114773286B (en) Nitrogen-containing heterocyclic organic compound and organic light-emitting device thereof
EP3208271B1 (en) Nitrogen-containing polycyclic compound and organic light emitting element using same
CN112778312B (en) Organic material containing indoloquinazolinedione heterocyclic structure and application thereof
WO2018058493A1 (en) Organic compound and electronic device comprising an organic layer comprising the organic compound
US10005729B2 (en) Organic compounds and electronic device comprising an organic layer comprising the organic compounds
KR102627027B1 (en) Method for preparing deuteated anthracene-based compound and organic light emitting device comprising deuteated anthracene-based compound manufactured using the same
EP3266780B1 (en) Heterocyclic compound and organic light emitting element comprising same
EP3303514A1 (en) Organic composition and electronic device comprising organic layer comprising said composition
JP2018504484A (en) Polymer charge transport layer and organic electronic device containing the same
WO2018058494A1 (en) Organic compound and electronic device comprising organic layer comprising organic compound
US10294203B2 (en) Organic compound and electronic device comprising an organic layer comprising the organic compound
KR101306426B1 (en) New compounds and organic electronic device using the same
WO2018058496A1 (en) Organic compound and electronic device
CN111362812A (en) Compound with ethylenic fluorene as core and application thereof
WO2018058492A1 (en) Organic compound and electronic device comprising an organic layer comprising the organic compound
WO2018058497A1 (en) Organic compound and electronic device comprising organic layer comprising organic compound
KR102629455B1 (en) Novel compound and organic light emitting device comprising the same
KR102654810B1 (en) Novel compound and organic light emitting device comprising the same
WO2018119729A1 (en) Organic compound and electronic device comprising an organic layer comprising the organic compound
KR20200067105A (en) Novel hetero-cyclic compound and organic light emitting device comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16917246

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16917246

Country of ref document: EP

Kind code of ref document: A1