WO2018119591A1 - 一种光信号调制电路和装置 - Google Patents

一种光信号调制电路和装置 Download PDF

Info

Publication number
WO2018119591A1
WO2018119591A1 PCT/CN2016/112158 CN2016112158W WO2018119591A1 WO 2018119591 A1 WO2018119591 A1 WO 2018119591A1 CN 2016112158 W CN2016112158 W CN 2016112158W WO 2018119591 A1 WO2018119591 A1 WO 2018119591A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
operational amplifier
modulator
optical signal
modulation circuit
Prior art date
Application number
PCT/CN2016/112158
Other languages
English (en)
French (fr)
Inventor
余力强
方李明
杨素林
张晓风
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/112158 priority Critical patent/WO2018119591A1/zh
Priority to CN201680089043.9A priority patent/CN109690889B/zh
Priority to EP16925566.8A priority patent/EP3550681B1/en
Publication of WO2018119591A1 publication Critical patent/WO2018119591A1/zh
Priority to US16/452,389 priority patent/US10897311B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0121Operation of devices; Circuit arrangements, not otherwise provided for in this subclass
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0121Operation of devices; Circuit arrangements, not otherwise provided for in this subclass
    • G02F1/0123Circuits for the control or stabilisation of the bias voltage, e.g. automatic bias control [ABC] feedback loops
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements with at least one potential jump barrier, e.g. PN, PIN junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0085Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for modulating the output, i.e. the laser beam is modulated outside the laser cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/564Power control
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements with at least one potential jump barrier, e.g. PN, PIN junction
    • G02F1/0155Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements with at least one potential jump barrier, e.g. PN, PIN junction modulating the optical absorption
    • G02F1/0157Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements with at least one potential jump barrier, e.g. PN, PIN junction modulating the optical absorption using electro-absorption effects, e.g. Franz-Keldysh [FK] effect or quantum confined stark effect [QCSE]

Definitions

  • the present application relates to the field of communications technologies, and in particular, to an optical signal modulation circuit and apparatus.
  • Optical fiber communication technology is one of the hot technologies in the communication industry and even the entire information industry, and it is also the main direction for the future development of communication technology.
  • a passive optical network consists of an optical line terminal (OLT) on the central office, an optical network unit (ONU) on the user side, or an optical network terminal (optical network terminal).
  • ONT optical line terminal
  • ODN Optical Distribution Network
  • representative PON technologies are GPON (Gigabit-Capable Passive Optical Network), EPON (Ethernet Passive Optical Network), and 10G-GPON (also known as XG).
  • -PON Gigabit-Capable Passive Optical Network
  • EPON Ethernet Passive Optical Network
  • 10G-GPON also known as XG
  • -PON 10G-EPON
  • TWDM-PON Time and Wavelength Division Multiplexed Passive Optical Network
  • the optical module is an indispensable and important component.
  • the optical module includes a Bi-Directional Optical Sub-Assembly (BOSA), and the BOSA includes a TOSA (Transmitter Optical Subassembly).
  • ROSA Receiveiver Optical Subassembly
  • Figure 2 shows the TOSA structure in the form of a TO-CAN (transistor-outline window-can).
  • the TOSA uses a header with a pin 1 and a cap with a window 7. Cap) 6 is assembled, and a laser diode (LD) 4 is placed on the head 1 in a certain form.
  • LD laser diode
  • the pins on the header 1 are respectively connected to the signal electrodes of the laser diode (LD) 4 by gold wires, so that external electrical signals can be transmitted to the laser diode (LD) 4 for electro-optical conversion.
  • Photo-Diode (PD) 2 monitors the operation of the laser diode (LD) 4, which is placed on the carrier (Submount) 3 on.
  • a laser diode (LD) 4 is placed on the heat sink 5 for heat dissipation.
  • the BOSA can be divided into a direct modulation method and an external modulation method using an external modulator depending on the modulation mode of the light source. Although the direct modulation method has a low cost, the transmission distance is limited ( ⁇ 20km).
  • signals transmitted over long distances are generated by means of an external modulator, and there are many external modulators, such as an electroabsorption modulator, a MZI (Mach-Zehnder interferometer) modulator, and the like.
  • an electroabsorption modulator such as an electroabsorption modulator, a MZI (Mach-Zehnder interferometer) modulator, and the like.
  • MZI Machine-Zehnder interferometer
  • the embodiment of the present application provides an optical signal modulation circuit and device, which realizes a linear relationship between the output optical power of the EAM and the input voltage, greatly reduces nonlinear distortion of the optical signal generated during the modulation process, and improves the quality of long-distance optical fiber transmission.
  • a first aspect of an embodiment of the present application provides an optical signal modulation circuit including a laser, a modulator, and an operational amplifier, wherein the laser generates a laser to excite the modulator to generate a photo-generated current, the first port of the modulator Connected to a first input voltage, the second port is coupled to an inverting input of the operational amplifier; the non-inverting input of the operational amplifier is coupled to a second input voltage, an output of the operational amplifier and the modulator The first port is connected.
  • the modulator is an electroabsorption modulator, a P electrode of the electroabsorption modulator is connected to a first input voltage, and an N electrode is connected to an inverting input end of the operational amplifier; An output of the operational amplifier is coupled to the P electrode of the electroabsorption modulator.
  • the laser is a distributed Bragg reflection laser
  • the distributed Bragg reflection laser P electrode is connected to a third input voltage
  • the N electrode is grounded.
  • the optical signal modulation circuit further includes a first capacitor, the first capacitor One end is connected to the output of the operational amplifier, and the other end is connected to the P electrode of the electroabsorption modulator.
  • the optical signal generating circuit further includes a first resistor, one end of the first resistor is connected to the N electrode of the electroabsorption modulator, and the other end is grounded.
  • the optical signal modulation circuit further includes a second capacitor, one end of the second capacitor is connected to the inverting input end of the operational amplifier, and the other end is connected to the N electrode of the electroabsorption modulator.
  • the optical signal modulation circuit further includes a second resistor, one end of the second resistor is connected to the P electrode of the electroabsorption modulator, and the other end is grounded.
  • the operational amplifier includes: a first triode, a second triode, a second resistor, a third resistor, a fourth resistor, and a fifth resistor; and the first triode base a pole connected to the second capacitor, a collector connected to the first end of the third resistor, a base of the second transistor and a first end of the fifth resistor and the second input voltage Connecting, the collector is connected to the first end of the fourth resistor; the first end of the second resistor is connected to the base of the first transistor, the first transistor and the second three pole
  • the emitters of the tubes are commonly connected to the negative pole of the working power source, and the second ends of the second resistor, the third resistor, the fourth resistor and the fifth resistor are connected in common to the positive pole of the working power source.
  • a second aspect of the embodiments of the present application further discloses a light emitting component, including the above optical signal modulating circuit.
  • the third aspect of the embodiment of the present application further discloses an optical line terminal, including the above-mentioned light emitting component.
  • the fourth aspect of the embodiments of the present application further discloses an optical network unit, including the above-mentioned light emitting component.
  • the photo-generated current signal of the EAM is fed back to the operational amplifier to realize a linear relationship between the second input voltage and the photo-generated current signal of the EAM, and the photo-generated current signal of the EAM is linearly related to the output optical power, so that the EAM output optical power is obtained.
  • the signal is linear with the second input voltage, which reduces the nonlinear distortion of the optical signal generated during the modulation process and improves the quality of the long-distance optical fiber transmission.
  • FIG. 1 is a schematic structural diagram of a passive optical network system
  • FIG. 2 is a schematic diagram of a TOSA structure in the form of a TO-CAN of a passive optical network optical module
  • FIG. 3 is a schematic diagram of an optical signal modulation circuit according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of an optical signal modulation circuit according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of an optical signal modulation circuit according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of an optical signal modulation circuit according to an embodiment of the present application.
  • the embodiment of the present application discloses an optical signal modulation circuit including a laser, a modulator, and an operational amplifier, wherein the first port a of the modulator and the first input voltage (also called a bias) Connected to voltage), the second port b is connected to the inverting input of the operational amplifier, and the third port c is grounded.
  • the non-inverting input of the operational amplifier is coupled to a second input voltage, and the output of the operational amplifier is coupled to the first port a of the modulator.
  • the laser is coupled to a third input voltage, the laser produces a continuous laser, and the output laser is received by the modulator to produce a photo-generated current that is linear with the optical power absorbed by the modulator.
  • the third input voltage may be the voltage provided by the internal power supply of the laser, or may be the voltage provided by the external power supply of the modulation circuit.
  • the optical signal modulation circuit introduced in the above embodiment realizes the linear relationship between the output optical power and the driving voltage by using the linear relationship between the output power of the modulator and the photo-generated current, reduces the nonlinear distortion of the optical signal generated during the modulation process, and improves the transmission of the long-distance optical fiber. quality.
  • FIG. 4 is a specific implementation manner, and the modulator is explained by taking an Electro-absorption Modulator (EAM) as an example.
  • the P electrode of the electroabsorption modulator EAM is The first input voltage Vbias is connected, the N electrode is connected to the inverting input terminal of the operational amplifier, and the laser is explained by a distributed feedback laser (DFB), wherein the electroabsorption modulator EAM and the distributed Bragg reflector laser DFB are explained. Both constitute an Electrol-absorption Modulated Laser (EML).
  • EML Electrol-absorption Modulated Laser
  • the distributed Bragg reflection laser P electrode is connected to the third input voltage DFB bias , and the N electrode is grounded.
  • the output of the operational amplifier is connected to the P electrode of the electroabsorption modulator.
  • the electroabsorption modulator EAM is driven by voltage, the input signal is voltage, and the output signal is power. As long as the output power signal and the input voltage signal satisfy a linear relationship, EAM (or EML) achieve
  • the use of the EAM photocurrent signal, the feedback to the operational amplifier, the voltage for different photocurrent magnitude, output ends compensates EAM case operational amplifier, realized photocurrent second input voltage V in and the EAM
  • the signal i p is in a linear relationship.
  • the photo-generated current signal i p of the EAM is linearly related to the output optical power P out , so that the output optical power signal P out is linearly related to the second input voltage V in , that is, the output optical power of the EAM is linearly related to the input voltage.
  • the nonlinear distortion of the optical signal generated during the modulation process is reduced, and the quality of long-distance optical fiber transmission is improved.
  • the optical signal modulation circuit further includes a first capacitor C 1 and a first resistor R 1 .
  • the first capacitor C 1 has one end connected to the output end of the operational amplifier, and the other end is connected to the P electrode of the electroabsorption modulator EAM. connection.
  • the first capacitor C 1 functions as a DC-connected alternating current.
  • the first resistor R 1 has one end connected to the N electrode of the electroabsorption modulator EAM and the other end grounded.
  • the optical signal modulation circuit further includes a second capacitor C 2 and a second resistor R 2 , the second capacitor C 2 functions as a DC blocking, and the second resistor R 2 functions as an impedance matching, and second One end of the capacitor C 2 is connected to the inverting input of the operational amplifier, N electrode of the other end of the electro-absorption modulator connected.
  • the second resistor R 2 has one end connected to the P electrode of the electroabsorption modulator and the other end grounded.
  • the second input voltage V in , the operational amplifier, the first capacitor C 1 , the EAM, and the second resistor R 2 form a negative feedback circuit.
  • the second capacitor C 2 is an optional device, and the capacitance value is selected according to the actual circuit or whether it is selected.
  • the resistance of the first capacitor C 1 is adjusted according to the actual circuit.
  • the EML laser can be a monolithic integrated structure of DFB lasers and EAM, or it can be a separate device for DFB and EAM. If the EML is a monolithic integrated device, the N-electrode of the DFB and EAM needs to be separated.
  • the second electrode R 2 is connected in series with the N electrode of the EAM, and then grounded, and the N electrode of the DFB is directly grounded, so the N electrodes of the EAM and the DFB need to be processed separately, so the N electrodes of the EAM and the DFB need to be separated.
  • the operational amplifier includes: a first transistor M 1 , a second transistor M 2 , a third resistor R 3 , a fourth resistor R 4 , and a fifth resistor R 5 and a sixth resistor R 6 .
  • the base of the first transistor M 1 is connected to the second capacitor C 2
  • the collector is connected to the first end of the fourth resistor R 4
  • One end is connected to the second input voltage V in
  • the collector is connected to the first end of the fifth resistor R 5 .
  • a first end of the third resistor R 3 is connected to the base of the first transistor M 1, and the emitter of the first transistor M 1 M 2 of the second transistor connected to the power supply common negative pole -V cc, of
  • the third ends of the three resistors R 3 , the fourth resistor R 4 , the fifth resistor R 5 and the sixth resistor R 6 are connected in common to the positive power supply +V cc .
  • the resistance values of the third resistor R 3 , the fourth resistor R 4 , the fifth resistor R 5 and the sixth resistor R 6 are adjusted according to actual conditions.
  • a third capacitor C 3 is further connected between the base of the second transistor M 2 and the second input voltage V in .
  • the third capacitor C 3 acts as a DC-connected alternating current, and its capacitance value is adjusted according to actual conditions.
  • the first transistor M 1 and the second transistor M 2 are exemplified by a Bipolar Junction Transistor (BJT), and the first transistor M 1 and the second transistor M 2 can also be a Field Effect Transistor (FET), as shown in FIG.
  • BJT Bipolar Junction Transistor
  • FET Field Effect Transistor
  • the optical signal modulation circuit including the EMA disclosed in the above embodiments may be placed in the TOSA of the optical line terminal or the optical network unit.
  • the laser diode in FIG. 2 may be replaced by the optical signal modulation circuit including the EMA provided by the embodiment of the present application.
  • the present invention also discloses a light emitting component such as TOSA or ROSA, TOSA or ROSA including the optical signal modulation circuit described in the previous embodiments.
  • the optical line terminal or the optical network unit adopts the high linearity light emitting component disclosed in this embodiment, which greatly reduces the nonlinear distortion of the optical signal generated during the modulation process, and improves the quality of long-distance optical fiber transmission.
  • optical signal modulation circuit described above may be an integrated circuit (IC) package.
  • IC integrated circuit
  • the examples disclosed in the examples are to be considered as illustrative and not restrictive, and are not intended to For example, elements or components may be combined or integrated in another system, or some features may be omitted or not implemented.

Abstract

一种光信号调制电路和装置,光信号调制电路包括激光器(DFB)、调制器(EAM)和运算放大器,其中激光器(DFB)产生激光激发调制器(EAM)产生光生电流(i p),调制器(EAM)的第一端口(a)与第一输入电压(V bias)连接,第二端口(b)与运算放大器的反向输入端连接;运算放大器的同相输入端与第二输入电压(V in)连接,运算放大器的输出端与调制器的第一端口(a)连接。该调制电路利用EAM的光生电流信号(i p),反馈给运算放大器,实现第二输入电压(V in)与EAM的光生电流信号(i p)成线性关系,获得线性的EML传输曲线,即高线性度的EML,大大降低调制过程中产生的光信号非线性失真,提高长距离光纤传输的质量。

Description

一种光信号调制电路和装置 技术领域
本申请涉及通信技术领域,特别涉及一种光信号调制电路和装置。
背景技术
光纤通信技术是现今通信行业甚至整个信息产业的热门技术之一,同时也是通信技术未来发展的主要方向。如图1所示,无源光网络(Passive Optical Network,PON)由局侧的光线路终端(Optical Line Terminal,OLT)、用户侧的光网络单元(Optical Network Unit,ONU)或者光网络终端(Optical Network Terminal,ONT)以及光分配网络(Optical Distribute Network,ODN)组成。目前,具有代表性的PON技术是GPON(Gigabit-Capable Passive Optical Network,千兆无源光网络)、EPON(Ethernet Passive Optical Network,以太网无源光网络)、10G-GPON(也可以称为XG-PON)、10G-EPON以及时分和波分复用无源光网络(Time and Wavelength Division Multiplexed Passive Optical Network,TWDM-PON)。
对于OLT和ONU来说,光模块是不可或缺的重要组成部分,光模块包括收发光组件(Bi-Directional Optical Sub-Assembly,BOSA),BOSA包括TOSA(Transmitter Optical Subassembly,光发射次模块)和ROSA(Receiver Optical Subassembly,光接收次模块)。图2为TO-CAN(transistor-outline window-can,同轴窗口式封装)形式的TOSA结构,TOSA采用一个带管脚的管座(Header)1与外加一个视窗(Window)7的管帽(Cap)6集合而成,激光二极管(Laser Diode,LD)4按照一定的形式放置在管座(Header)1上。管座1上的管脚利用金线分别与激光二极管(LD)4信号电极进行连接,这样就可以将外部的电信号传输到激光二极管(LD)4上进行电光转化。光电二极管(Photo-Diode,PD)2监控激光二极管(LD)4的工作情况,其放置于载体 (Submount)3上。激光二极管(LD)4置于热沉(Heat sink)5上用于散热。BOSA根据光源的调制方式不同可以分为直接调制方式和利用外部调制器的外调制方式。直接调制方式虽然成本低,但是传输距离有限(<20km)。目前长距离传输的信号都是利用外部调制器的方式产生,外部调制器有很多种,比如电吸收调制器,MZI(Mach-Zehnder interferometer,马赫-曾德尔干涉仪)调制器等。对于电吸收调制器(Electro-absorption Modulation,EAM)来说,由于其输出光功率与偏置电压全部或者绝大部分是非线性关系,这就使得如果利用电吸收调制器来产生模拟信号,产生的模拟信号线性度差,调制过程中产生的光信号非线性失真很大,导致长距离传输效果不理想。
发明内容
本申请实施例提供了一种光信号调制电路和装置,实现EAM的输出光功率与输入电压呈线性关系,大大降低调制过程中产生的光信号非线性失真,提高长距离光纤传输的质量。
本申请实施例第一方面提供了一种光信号调制电路,该电路包括激光器、调制器和运算放大器,其中所述激光器产生激光激发所述调制器产生光生电流,所述调制器的第一端口与第一输入电压连接,第二端口与所述运算放大器的反向输入端连接;所述运算放大器与的同相输入端与第二输入电压连接,所述运算放大器的输出端与所述调制器的第一端口连接。
一种可能的实现方式中,所述调制器为电吸收调制器,所述电吸收调制器的P电极与第一输入电压连接,N电极与所述运算放大器的反向输入端连接;所述运算放大器的输出端与所述电吸收调制器的P电极连接。
一种可能的实现方式中,所述激光器为分布布拉格反射激光器,所述分布布拉格反射激光器P电极与第三输入电压连接,N电极接地。
一种可能的实现方式中,光信号调制电路还包括第一电容,所述第一电容 一端连接所述运算放大器的输出端,另一端与所述电吸收调制器的P电极连接。
一种可能的实现方式中,光信号产生电路还包括第一电阻,所述第一电阻一端与所述电吸收调制器的N电极连接,另一端接地。
一种可能的实现方式中,光信号调制电路还包括第二电容,所述第二电容一端与所述运算放大器的反向输入端连接,另一端与所述电吸收调制器的N电极连接。
一种可能的实现方式中,光信号调制电路还包括第二电阻,所述第二电阻一端与所述电吸收调制器的P电极连接,另一端接地。
一种可能的实现方式中,所述运算放大器包括:第一三极管,第二三极管,第二电阻,第三电阻,第四电阻,第五电阻;所述第一三极管基极与所述第二电容连接,集电极与所述第三电阻的第一端连接,所述第二三极管的基极与所述第五电阻的第一端以及所述第二输入电压连接,集电极与所述第四电阻的第一端连接;所述第二电阻的第一端与所述第一三极管的基极连接,所述第一三极管和第二三极管的发射极共同连接工作电源负极,所述第二电阻、第三电阻、第四电阻和第五电阻的第二端共同连接工作电源正极。
本申请实施例第二方面还公开了一种光发射组件,包括上述的光信号调制电路。
本申请实施例第三方面还公开了一种光线路终端,包括上述的光发射组件。
本申请实施例第四方面还公开了一种光网络单元,包括上述的光发射组件。
本申请实施例利用EAM的光生电流信号,反馈给运算放大器,实现第二输入电压与EAM的光生电流信号成线性关系,利用EAM的光生电流信号与输出光功率成线性关系,使得EAM输出光功率信号与第二输入电压成线性关系,降低调制过程中产生的光信号非线性失真,提高长距离光纤传输的质量。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅仅是本发明的 一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为无源光网络系统结构示意图;
图2为无源光网络光模块TO-CAN形式的TOSA结构示意图;
图3为本申请实施例提供的一种光信号调制电路示意图;
图4为本申请实施例提供的一种光信号调制电路示意图;
图5为本申请实施例提供的一种光信号调制电路示意图;
图6为本申请实施例提供的一种光信号调制电路示意图。
具体实施方式
下面结合附图,对本发明的实施例进行描述。
如图3所示,本申请实施例公开了一种光信号调制电路,该光信号调制电路包括激光器、调制器和运算放大器,其中调制器的第一端口a与第一输入电压(也叫偏置电压)连接,第二端口b与运算放大器的反向输入端连接,第三端口c接地。运算放大器的同相输入端与第二输入电压连接,运算放大器的输出端与调制器的第一端口a连接。激光器与第三输入电压连接,激光器产生连续的激光,输出的激光被调制器接收产生光生电流,光生电流与调制器吸收的光功率成线性关系。需要说明的是,第三输入电压可以是激光器内部电源提供的电压,也可以是该调制电路外部电源提供的电压。
上述实施例介绍的光信号调制电路利用调制器的输出功率与光生电流的线性关系实现输出光功率与驱动电压的线性关系,降低调制过程中产生的光信号非线性失真,提高长距离光纤传输的质量。
如图4所示,图4作为一个具体的实施方式,调制器以电吸收调制器(Electro-absorption Modulator,EAM)为例解释说明,如图4中所示电吸收调制器EAM的P电极与第一输入电压Vbias连接,N电极与运算放大器的反向输入端连接,激光器以分布布拉格反射激光器(Distributed Feedback Laser,DFB)为例解释说明,其中电吸收调制器EAM与分布布拉格反射激光器DFB 两者构成电吸收调制激光器(Electlro-absorption Modulated Laser,EML)。分布布拉格反射激光器P电极与第三输入电压DFBbias连接,N电极接地。运算放大器的输出端与电吸收调制器的P电极连接。其中电吸收调制器EAM通过电压驱动工作,输入信号是电压,输出信号是功率,只要输出的功率信号与输入电压信号满足线性关系,则EAM(或EML)就实现了线性度。
图4所示的光信号调制电路,根据运算放大器的“虚短”原理,运算放大器输入两端的电压等电位,因此反向输入端电压V-等于第二输入电压Vin;然后根据运算放大器的“虚短”原理,运算放大器输入端的电流为零,因此流过第二电阻R2的电流等于流过EAM的电流,因此光生电流ip=V-/R2,整个电路中,ip=Vin/R2。根据图4可以知道,利用EAM的光生电流信号,反馈给运算放大器,针对不同的光生电流大小,此时运算放大器的输出会补偿EAM两端的电压,实现第二输入电压Vin与EAM的光生电流信号ip成线性关系。利用EAM的光生电流信号ip与输出光功率Pout成线性关系,使得输出光功率信号Pout与第二输入电压Vin成线性关系,即实现EAM的输出光功率与输入电压呈线性关系,降低调制过程中产生的光信号非线性失真,提高了长距离光纤传输的质量。
一种可能的实现方式中,光信号调制电路还包括第一电容C1和第一电阻R1,第一电容C1一端连接运算放大器的输出端,另一端与电吸收调制器EAM的P电极连接。第一电容C1起到隔直流通交流的作用。第一电阻R1一端与电吸收调制器EAM的N电极连接,另一端接地。
一种可能的实现方式中,光信号调制电路还包括第二电容C2和第二电阻R2,第二电容C2起隔直的作用,第二电阻R2起阻抗匹配的作用,第二电容C2一端与运算放大器的反向输入端连接,另一端与所述电吸收调制器的N电极连接。第二电阻R2一端与电吸收调制器的P电极连接,另一端接地。
其中,第二输入电压Vin,运算放大器、第一电容C1、EAM、第二电阻R2构成一个负反馈电路。第二电容C2为可选器件,根据实际电路选择电容值或者选择是否需要。第一电容C1的阻值根据实际电路进行调整。EML激光器可以是 DFB激光器和EAM的单片集成结构,也可以是DFB与EAM的独立器件。如果EML选用单片集成器件,则需要将DFB和EAM的N电极分开。本实施例中在EAM的N电极串联第二电阻R2,然后再接地,而DFB的N电极将直接接地,因此EAM和DFB的N电极需要分别处理,因此EAM和DFB的N电极需要分开。
如图5所示,一种可能的实现方式中,运算放大器包括:第一三极管M1,第二三极管M2,第三电阻R3,第四电阻R4,第五电阻R5和第六电阻R6。第一三极管M1的基极与第二电容C2连接,集电极与第四电阻R4的第一端连接,第二三极管M2的基极与第六电阻R6的第一端以及第二输入电压Vin连接,集电极与第五电阻R5的第一端连接。第三电阻R3的第一端与第一三极管M1的基极连接,第一三极管M1和第二三极管M2的发射极共同连接工作电源负极-Vcc,第三电阻R3,第四电阻R4,第五电阻R5和第六电阻R6的第二端共同连接工作电源正极+Vcc。其中第三电阻R3,第四电阻R4,第五电阻R5和第六电阻R6的阻值根据实际情况进行调整。
一种可能的实现方式中,第二三极管M2的基极与第二输入电压Vin之间还连接有第三电容C3。第三电容C3起隔直流通交流的作用,其电容值根据实际情况进行调整。
上述图5中,第一三极管M1和第二三极管M2以双极结型晶体管(Bipolar Junction Transistor,BJT)为例示意,第一三极管M1和第二三极管M2还可以是场效应晶体管(Field Effect Transistor,FET),如图6所示。
上述实施例揭示的包括EMA的光信号调制电路可以放置在光线路终端或者光网络单元的TOSA中,比如图2中激光二极管可以使用本申请实施例提供的包括EMA的光信号调制电路替代。
本发明还公开一种光发射组件,比如TOSA或ROSA,TOSA或ROSA包括前面实施例介绍的光信号调制电路。光线路终端或者光网络单元采用本实施例公开的线性度高的光发射组件,大大降低调制过程中产生的光信号非线性失真,提高了长距离光纤传输的质量。
虽然本申请实施例中已提供了几个实施例,但是可以理解,所公开的电路和装置在不脱离本公开精神或范围的前提下可以以许多其它特定形式进行体现。比如上述的光信号调制电路,可以是集成电路(Integrated Circuit,IC)封装形式。本实施例公开的示例应被认为是说明性而不是限制性的,其意图并不限于本文中所给出的细节。例如,可以将各元件或组件组合或集成在另一系统中,或者可以忽略或不实施某些特征。
此外,在不脱离本公开范围的前提下,可以将各实施例中描述并示意为分离或单独的技术、系统、子系统和方法与其它系统、模块、技术或方法进行组合或结合。所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、设备或中间组件的间接耦合或通信连接,可以是电性、机械或其它的形式。在不脱离本文中所公开的精神和范围的前提下,本领域技术人员可以确定其它改变、替换和修改的示例。

Claims (11)

  1. 一种光信号调制电路,其特征在于,包括激光器、调制器和运算放大器,其中所述激光器产生激光激发所述调制器产生光生电流,所述调制器的第一端口与第一输入电压连接,第二端口与所述运算放大器的反向输入端连接;所述运算放大器与的同相输入端与第二输入电压连接,所述运算放大器的输出端与所述调制器的第一端口连接。
  2. 根据权利要求1所述的光信号调制电路,其特征在于,所述调制器为电吸收调制器,所述电吸收调制器的P电极与第一输入电压连接,N电极与所述运算放大器的反向输入端连接;所述运算放大器的输出端与所述电吸收调制器的P电极连接。
  3. 根据权利要求2所述的光信号调制电路,其特征在于,所述激光器为分布布拉格反射激光器,所述分布布拉格反射激光器P电极与第三输入电压连接,N电极接地。
  4. 根据权利要求2所述的光信号调制电路,其特征在于,还包括第一电容,所述第一电容一端连接所述运算放大器的输出端,另一端与所述电吸收调制器的P电极连接。
  5. 根据权利要求2所述的光信号产生电路,其特征在于,还包括第一电阻,所述第一电阻一端与所述电吸收调制器的N电极连接,另一端接地。
  6. 根据权利要求2所述的光信号调制电路,其特征在于,还包括第二电容,所述第二电容一端与所述运算放大器的反向输入端连接,另一端与所述电吸收调制器的N电极连接。
  7. 根据权利要求6所述的光信号调制电路,其特征在于,还包括第二电阻,所述第二电阻一端与所述电吸收调制器的P电极连接,另一端接地。
  8. 根据权利要求6所述的光信号调制电路,其特征在于,所述运算放大器包括:第一三极管,第二三极管,第三电阻,第四电阻,第五电阻,第六电阻;所述第一三极管基极与所述第二电容连接,集电极与所述第三电阻的第一端连接,所述第二三极管的基极与所述第五电阻的第一端以及所述第二输入电 压连接,集电极与所述第四电阻的第一端连接;所述第二电阻的第一端与所述第一三极管的基极连接,所述第一三极管和第二三极管的发射极共同连接工作电源负极,所述第二电阻、第三电阻、第四电阻和第五电阻的第二端共同连接工作电源正极。
  9. 一种光发射组件,其特征在于,包括权利要求1-8任一项所述的光信号调制电路。
  10. 一种光线路终端,其特征在于,包括权利要求9所述的光发射组件。
  11. 一种光网络单元,其特征在于,包括权利要求9所述的光发射组件。
PCT/CN2016/112158 2016-12-26 2016-12-26 一种光信号调制电路和装置 WO2018119591A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2016/112158 WO2018119591A1 (zh) 2016-12-26 2016-12-26 一种光信号调制电路和装置
CN201680089043.9A CN109690889B (zh) 2016-12-26 2016-12-26 一种光信号调制电路和装置
EP16925566.8A EP3550681B1 (en) 2016-12-26 2016-12-26 Optical signal modulation circuit and device
US16/452,389 US10897311B2 (en) 2016-12-26 2019-06-25 Optical signal modulation circuit and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/112158 WO2018119591A1 (zh) 2016-12-26 2016-12-26 一种光信号调制电路和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/452,389 Continuation US10897311B2 (en) 2016-12-26 2019-06-25 Optical signal modulation circuit and apparatus

Publications (1)

Publication Number Publication Date
WO2018119591A1 true WO2018119591A1 (zh) 2018-07-05

Family

ID=62706534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/112158 WO2018119591A1 (zh) 2016-12-26 2016-12-26 一种光信号调制电路和装置

Country Status (4)

Country Link
US (1) US10897311B2 (zh)
EP (1) EP3550681B1 (zh)
CN (1) CN109690889B (zh)
WO (1) WO2018119591A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009168833A (ja) * 2008-01-10 2009-07-30 Fujikura Ltd 外部変調器のバイアス回路
CN101539591A (zh) * 2009-04-16 2009-09-23 电子科技大学 一种基于电吸收调制器偏振旋转效应的电光采样方法
CN101702489A (zh) * 2009-11-05 2010-05-05 中兴通讯股份有限公司 一种电吸收调制激光器的偏置电路及其调试方法
CN102571003A (zh) * 2010-12-13 2012-07-11 深圳新飞通光电子技术有限公司 一种电吸收调制激光器偏置电路
CN103050887A (zh) * 2012-12-26 2013-04-17 华为技术有限公司 电吸收方式调制激光器系统
CN103399418A (zh) * 2013-07-23 2013-11-20 清华大学 补偿电吸收调制器非线性的方法及装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09307506A (ja) * 1996-05-14 1997-11-28 Toshiba Corp 光受信装置
JPH10163974A (ja) * 1996-11-25 1998-06-19 Fujitsu Ltd 光送信機及び光通信システム
EP1316838A1 (en) * 2001-12-03 2003-06-04 Agilent Technologies, Inc. (a Delaware corporation) Semiconductor optical modulator
AU2002337345A1 (en) * 2002-05-17 2003-12-02 Corning Incorporated Method and apparatus for regulating electroabsorption modulators
US7340184B2 (en) * 2003-05-01 2008-03-04 Optium Corporation Linearized Optical Transmitter Using Feedback Control
FR2857146A1 (fr) * 2003-07-03 2005-01-07 Thomson Licensing Sa Dispositif d'affichage d'images a matrice active
JP5029689B2 (ja) * 2007-03-30 2012-09-19 富士通株式会社 光送信装置およびその制御方法
WO2010035255A1 (en) * 2008-09-28 2010-04-01 Elbit Systems Electro-Optics Elop Ltd. System and method for controlling optical output of a frequency conversion device
CN201413927Y (zh) * 2009-06-17 2010-02-24 深圳新飞通光电子技术有限公司 电吸收外调制激光器用apc与关断电路
US8592746B2 (en) * 2010-12-07 2013-11-26 Honeywell International Inc. Systems and methods for driving an optical modulator
CN201946873U (zh) * 2010-12-13 2011-08-24 深圳新飞通光电子技术有限公司 一种电吸收调制激光器偏置电路
JP2013076776A (ja) * 2011-09-29 2013-04-25 Fujitsu Optical Components Ltd 光送信機、及び波形補償方法
JPWO2014034074A1 (ja) * 2012-08-29 2016-08-08 日本電気株式会社 光送信回路及び光送信方法
JP6413265B2 (ja) * 2014-03-12 2018-10-31 住友電気工業株式会社 光変調器駆動回路
CN103888190B (zh) * 2014-03-18 2017-02-15 青岛海信宽带多媒体技术有限公司 一种光模块
CN104904142B (zh) * 2014-12-23 2019-03-19 索尔思光电(成都)有限公司 适用于双速率功率点补偿的电路,光模块,方法及光通信系统
US10673532B2 (en) * 2018-02-01 2020-06-02 Electrophotonic-Ic Inc. Electro-absorption modulator with integrated control loop for linearization and temperature compensation
US10530484B2 (en) * 2018-02-01 2020-01-07 Electrophotonic-Ic Inc. Integrated control loop for linearization and temperature compensation of an electro-absorption modulator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009168833A (ja) * 2008-01-10 2009-07-30 Fujikura Ltd 外部変調器のバイアス回路
CN101539591A (zh) * 2009-04-16 2009-09-23 电子科技大学 一种基于电吸收调制器偏振旋转效应的电光采样方法
CN101702489A (zh) * 2009-11-05 2010-05-05 中兴通讯股份有限公司 一种电吸收调制激光器的偏置电路及其调试方法
CN102571003A (zh) * 2010-12-13 2012-07-11 深圳新飞通光电子技术有限公司 一种电吸收调制激光器偏置电路
CN103050887A (zh) * 2012-12-26 2013-04-17 华为技术有限公司 电吸收方式调制激光器系统
CN103399418A (zh) * 2013-07-23 2013-11-20 清华大学 补偿电吸收调制器非线性的方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3550681A4 *

Also Published As

Publication number Publication date
EP3550681A1 (en) 2019-10-09
CN109690889A (zh) 2019-04-26
EP3550681B1 (en) 2021-12-01
EP3550681A4 (en) 2019-10-30
CN109690889B (zh) 2020-12-15
US20190319711A1 (en) 2019-10-17
US10897311B2 (en) 2021-01-19

Similar Documents

Publication Publication Date Title
JP5635116B2 (ja) 高速通信
CN110190904B (zh) Wdm pon系统中实现光调顶信号的方法及装置
US20020085266A1 (en) Wavelength converter with an impedance matched electro-absorption modulator pair
US20180191536A1 (en) Pam4 signal generation apparatus
US9653879B2 (en) Optical module
Kanazawa et al. 30-km error-free transmission of directly modulated DFB laser array transmitter optical sub-assembly for 100-Gb application
US9929533B2 (en) Optical module
US9882336B2 (en) Optical module
US10461882B2 (en) Optical network unit for optical transmission in burst mode
CN110192358B (zh) 无源光网络系统、光组件及其匹配阻抗调整方法
US20100028005A1 (en) Bulk modulation of multiple wavelengths for generation of catv optical comb
WO2018119591A1 (zh) 一种光信号调制电路和装置
US8447187B2 (en) Optoelectronic interconnect for high frequency data transmission at low power consumption
JP5669665B2 (ja) 光送受信器
JPH04249930A (ja) 低歪光通信システム
WO2022227577A1 (zh) 一种光信号的获取方法以及相关设备
Velthaus et al. Impedance-engineered low power MZM/driver assembly for CFP4-size pluggable long haul and metro transceiver
NL1018063C2 (nl) Inrichting en werkwijze voor het ontvangen, bewerken en zenden van optische en elektrische signalen en werkwijze voor het vervaardigen van zo een inrichting.
US20230113709A1 (en) Transmitter Circuit, Optical Module, and Communications Device
JP6164961B2 (ja) 光トランシーバ
JP2560528B2 (ja) 双方向光伝送用送信受信方法
Zhang et al. Network Operator Upgrade Opportunities With 50G-PON
CN112865913B (zh) 一种基于移动前传的放大饱和rsoa光源装置
TWI513205B (zh) 一分波多工自由空間光傳輸系統
CN101213479A (zh) 具有放大的偏置电流的吉比特以太网长波光收发器模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16925566

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016925566

Country of ref document: EP

Effective date: 20190704