WO2022227577A1 - 一种光信号的获取方法以及相关设备 - Google Patents

一种光信号的获取方法以及相关设备 Download PDF

Info

Publication number
WO2022227577A1
WO2022227577A1 PCT/CN2021/135997 CN2021135997W WO2022227577A1 WO 2022227577 A1 WO2022227577 A1 WO 2022227577A1 CN 2021135997 W CN2021135997 W CN 2021135997W WO 2022227577 A1 WO2022227577 A1 WO 2022227577A1
Authority
WO
WIPO (PCT)
Prior art keywords
modulated
optical
electrical signal
signal
initial
Prior art date
Application number
PCT/CN2021/135997
Other languages
English (en)
French (fr)
Inventor
程远兵
李胜平
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022227577A1 publication Critical patent/WO2022227577A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • H04B10/5051Laser transmitters using external modulation using a series, i.e. cascade, combination of modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/564Power control

Definitions

  • the present application relates to the technical field of optical fiber communication, and in particular, to a method for acquiring an optical signal and related equipment.
  • An optical fiber communication network includes an optical transmitting device and an optical receiving device, and the optical module included in the optical transmitting device can send an optical signal to the optical receiving device to realize the transmission of the optical signal.
  • the optical transmission device 100 includes an electro-absorption modulated laser (EML) 101 .
  • EML101 is used to convert electrical signals into optical signals.
  • a semiconductor optical amplifier (SOA) 102 is integrated at the light output end of the EML101.
  • SOA102 is used for the output of the EML101.
  • the optical power of the optical signal is amplified.
  • Embodiments of the present invention provide an optical signal acquisition method and related equipment, which can amplify the optical power of an output optical signal and also improve the extinction ratio.
  • a first aspect of the embodiments of the present invention provides a method for acquiring an optical signal, the method includes: a laser sends an initial optical signal to a modulator according to an initial electrical signal; the modulator, under the action of the first modulated electrical signal, The initial optical signal is modulated to generate a first modulated optical signal; the modulator sends the first modulated optical signal to an optical amplifier; the optical amplifier, under the action of the second modulated electrical signal, modulates the first modulated optical signal The modulated optical signal is modulated and the optical power is amplified to obtain a second modulated optical signal, the time delay difference between the first modulated electrical signal and the second modulated electrical signal is less than or equal to a preset threshold, the The modulation rates between the first modulated electrical signal and the second modulated electrical signal are equal.
  • the initial optical signal from the laser is modulated by the modulator and the optical amplifier, so as to improve the extinction ratio and optical power of the second modulated optical signal output by the optical amplifier, and reduce the bit error of the second modulated optical signal rate and jitter, which improves the signal quality of the second modulated optical signal.
  • the extinction ratio of the modulator to modulate the initial optical signal can be relatively small, and the extinction ratio of the optical amplifier to modulate the first modulated optical signal can also be relatively small, and the extinction ratio of the second modulated optical signal output by the optical amplifier is modulated.
  • the extinction ratio modulated by the modulator and the extinction ratio modulated by the optical amplifier are superimposed, so that even if the extinction ratio of the modulator modulates the initial optical signal is relatively small, and the optical amplifier modulates the first modulated optical signal The extinction ratio is relatively small.
  • the extinction ratio of the second modulated optical signal output by the optical amplifier is relatively large, so that both the modulator and the optical amplifier can be modulated at a small current, which effectively reduces the amount of light received by the modulator.
  • the magnitude of the current of the first modulated electrical signal and the second modulated electrical signal received by the optical amplifier effectively reduces the insertion loss and modulation loss of the modulator and the optical amplifier.
  • the optical amplifier can achieve a relatively large extinction ratio of the second modulated optical signal when receiving the first modulated electrical signal and the second modulated electrical signal with a relatively small current value, the current injected into the optical amplifier is effectively reduced. The density of the optical signal is avoided, and the optical catastrophic damage occurs in the optical signal, and the reliability of the optical chip is improved.
  • the preset threshold is half of the signal period of the initial optical signal.
  • the preset threshold value is half of the signal period of the initial optical signal as shown in this aspect
  • the extinction ratio and optical power of the second modulated optical signal output by the optical amplifier can be effectively improved, and the optical power can be reduced.
  • the bit error rate and jitter of the second modulated optical signal are improved, and the signal quality of the second modulated optical signal is improved.
  • the method before the laser sends the initial optical signal to the modulator according to the initial electrical signal, the method further includes: the laser receiving the initial electrical signal, the initial electrical signal The signal is a direct current signal; under the action of the direct current signal, the laser performs electro-optical conversion to obtain the initial optical signal.
  • the laser receives a direct current signal
  • the laser performs electro-optical conversion under the action of the direct current signal without introducing frequency chirp, so that the laser can be used as a light source, suitable for high-speed and long-distance transmission, and is an ideal light source for high-speed optical communication.
  • the modulation is performed by the modulator and optical amplifier external to the laser, it can ensure that the modulation process of the optical signal will not interfere with the operation of the laser, and the stability and rate of the wavelength of the initial optical signal output by the laser can be ensured.
  • the cavity length of the laser can be shortened, which effectively reduces the packaging difficulty and cost of the optical signal.
  • the method before the laser sends the initial optical signal to the modulator according to the initial electrical signal, the method further includes: the laser receiving the initial electrical signal, the initial electrical signal The time delay difference between the signal, the first modulated electrical signal and the second modulated electrical signal is less than or equal to the preset threshold, the initial electrical signal, the first modulated electrical signal and the second modulated electrical signal The modulation rates of the modulated electrical signals are equal; under the action of the initial electrical signal, the laser is modulated to generate the modulated initial optical signal.
  • the laser, the modulator and the optical amplifier can all be modulated to improve the extinction ratio and optical power of the second modulated optical signal output by the optical amplifier, and reduce the bit error rate and jitter of the second modulated optical signal, The signal quality of the second modulated optical signal is improved.
  • the extinction ratio of the modulation by the laser can be relatively small
  • the extinction ratio of the modulation by the modulator can be relatively small
  • the extinction ratio of the modulation by the optical amplifier can also be relatively small.
  • the extinction ratio of the second modulated optical signal output by the optical amplifier is composed of the extinction ratio of laser modulation, the extinction ratio of modulator modulation and the extinction ratio of optical amplifier modulation, which effectively reduces the initial electrical signal received by the laser,
  • the magnitude of the current of the first modulated electrical signal received by the modulator and the second modulated electrical signal received by the optical amplifier effectively reduces the insertion loss and modulation loss of the laser, the modulator and the optical amplifier.
  • the extinction ratio of the modulation by the laser can be relatively small
  • the extinction ratio of the modulation by the modulator can be relatively small
  • the extinction ratio of the modulation by the optical amplifier can also be relatively small
  • the extinction ratio of the second modulated optical signal output by the optical amplifier is The extinction ratio of laser modulation, the extinction ratio of modulator modulation and the extinction ratio of optical amplifier modulation are superimposed. It can be seen that even when the extinction ratio of laser, modulator and optical amplifier is relatively small, the output of the optical amplifier can be effectively guaranteed.
  • the extinction ratio of the second modulated optical signal Effectively reduces the current of the initial electrical signal received by the laser, the first modulated electrical signal received by the modulator and the current of the second modulated electrical signal received by the optical amplifier, effectively reducing the laser, modulator and optical amplifier. insertion loss and modulation loss.
  • the first modulated electrical signal has a first waveform
  • the second modulated electrical signal has a second waveform
  • a change trend of the first waveform and the first waveform The changing trends of the two waveforms are the same or approximately the same.
  • the method further includes: an electrical drive module sending the initial electrical signal to the laser; the electrical drive module sending the first modulation signal to the modulator an electrical signal; the electrical driving module sends the second modulated electrical signal to the optical amplifier.
  • the electrical drive module includes a first electrical driver, a second electrical driver and a third electrical driver, the first electrical driver is connected to the laser, and the second electrical driver is connected to the laser.
  • the driver is connected to the modulator, the third electrical driver is connected to the optical amplifier, and the method further includes:
  • the laser receives an initial electrical signal from a first electrical driver
  • the modulator receives a first modulated electrical signal from a second electrical driver
  • the optical amplifier receives a second modulated electrical signal from a third electrical driver.
  • the electrical drive module includes a fourth electrical driver and a fifth electrical driver, the fourth electrical driver is connected to the laser, and the fifth electrical driver is connected to the laser.
  • the modulator is connected to the optical amplifier, and the method further includes:
  • the laser receives an initial electrical signal from a fourth electrical driver
  • the modulator receives a first modulated electrical signal from a fifth electrical driver
  • the optical amplifier receives a second modulated electrical signal from the fifth electrical driver.
  • an electrical splitter is connected between the fifth electrical driver and the modulator, and the electrical splitter is connected between the fifth electrical driver and the optical amplifier.
  • a splitter, the method further includes:
  • the electrical splitter receives the modulated electrical signal from the fifth electrical drive module, the electrical splitter divides the modulated electrical signal to form the first modulated electrical signal and the second modulated electrical signal; The electrical splitter sends the first modulated electrical signal to the modulator; the electrical splitter sends the second modulated electrical signal to the optical amplifier.
  • the first modulated electrical signal and the second modulated electrical signal are homologous electrical signals.
  • the electrical drive module includes a sixth electrical driver, and the sixth electrical driver is connected to the laser, the modulator and the optical amplifier, and the method Also includes:
  • the laser receives an initial electrical signal from a sixth electrical driver
  • the modulator receives a first modulated electrical signal from the sixth electrical driver
  • the optical amplifier receives a second modulated electrical signal from the sixth electrical driver.
  • an electrical splitter is connected between the sixth electrical driver and the modulator, the laser and the optical amplifier, and the method further includes:
  • the electrical splitter receives the modulated electrical signal from the sixth electrical drive module, the electrical splitter divides the modulated electrical signal to form the initial electrical signal, the first modulated electrical signal and the a second modulated electrical signal; the electrical splitter sends the initial electrical signal to the laser, the electrical splitter sends the first modulated electrical signal to the modulator; the electrical splitter sends the first modulated electrical signal to the modulator The optical amplifier transmits the second modulated electrical signal.
  • the initial electrical signal, the first modulated electrical signal, and the second modulated electrical signal are homologous electrical signals.
  • a second aspect of the embodiments of the present invention provides an optical chip, the optical chip includes a laser, a modulator, and an optical amplifier connected in sequence; the laser is configured to send an initial optical signal to the modulator according to an initial electrical signal; The modulator is configured to modulate the initial optical signal under the action of the first modulated electrical signal to generate a first modulated optical signal; the modulator is configured to send the first modulated optical signal to the optical amplifier; the The optical amplifier is used to modulate the first modulated optical signal and amplify the optical power under the action of the second modulated electrical signal to obtain a second modulated optical signal, the first modulated electrical signal and the The time delay difference between the second modulated electrical signals is less than or equal to a preset threshold, and the modulation rates between the first modulated electrical signal and the second modulated electrical signal are equal.
  • the laser is further configured to: receive the initial electrical signal, where the initial electrical signal is a direct current signal; under the action of the direct current signal, perform electro-optical conversion to Obtain the initial optical signal.
  • the laser is further configured to: receive the initial electrical signal, where the initial electrical signal, the first modulated electrical signal, and the second modulated electrical signal are The time delay difference between the two is less than or equal to the preset threshold, and the modulation rates of the initial electrical signal, the first modulated electrical signal and the second modulated electrical signal are equal; under the action of the initial electrical signal, Modulation is performed to generate the modulated initial optical signal.
  • the laser, the modulator and the optical amplifier are monolithic integrated structures.
  • the laser is a sub-direct modulation laser DFB, or a distributed Bragg reflection DBR laser, or a Fabry-Perot FP laser, or a distributed feedback laser, or an external cavity Laser;
  • the modulator is an electro-absorption modulator, or a micro-ring modulator, or a Mach-Zehnder optical modulator.
  • a third aspect of the embodiments of the present invention provides an optical module.
  • the optical module includes a laser, a modulator, and an optical amplifier connected in sequence, and further includes an electrical circuit connected to the laser, the modulator, and the optical amplifier, respectively.
  • a driving module is used for sending an initial electrical signal to the laser, and for sending a first modulated electrical signal to the modulator, and for sending a second modulated electrical signal to the optical amplifier;
  • the laser for sending an initial optical signal to the modulator according to the initial electrical signal;
  • the modulator is configured to modulate the initial optical signal under the action of the first modulated electrical signal to generate a first modulated optical signal ;
  • the modulator is used for sending the first modulated optical signal to the optical amplifier;
  • the optical amplifier is used for modulating the first modulated optical signal and performing modulation on the first modulated optical signal under the action of the second modulated electrical signal Amplification of optical power to obtain a second modulated optical signal, the time delay difference between the first modulated electrical signal and the second modulated electrical
  • the electrical drive module includes at least one electrical driver, and the at least one electrical driver is configured to send the initial electrical signal, the first modulated electrical signal, and the The second modulated electrical signal.
  • the optical module further includes an electrical splitter, the electrical splitter is connected to the electric drive module, and the electrical splitter is further connected to the electrical splitter respectively.
  • a modulator is connected to the optical amplifier, and the electrical splitter is used for: receiving a modulated electrical signal from the electrical driving module; dividing the modulated electrical signal to form the first modulated electrical signal and the second modulated electrical signal an electrical signal; sending the first modulated electrical signal to the modulator; sending the second modulated electrical signal to the optical amplifier.
  • the optical module further includes an electrical splitter, the electrical splitter is connected to the electric drive module, and the electrical splitter is further connected to the electrical splitter respectively.
  • the laser, the modulator and the optical amplifier are connected, and the electrical splitter is used for: receiving the modulated electrical signal from the electrical driving module; dividing the modulated electrical signal to form the initial electrical signal, the first electrical signal a modulated electrical signal and the second modulated electrical signal; send the initial electrical signal to the laser; send the first modulated electrical signal to the modulator; send the second modulated electrical signal to the optical amplifier Signal.
  • a fourth aspect of the embodiments of the present invention provides a light emitting component, where the light emitting component includes the optical chip described in the second aspect above.
  • a fifth aspect of the embodiments of the present invention provides an optical network device, where the optical network device includes the optical module shown in the third aspect.
  • Fig. 1 is a structural example diagram of an optical transmission device provided by an existing solution
  • FIG. 2 is an exemplary structural diagram of an embodiment of an optical fiber communication network provided by the application.
  • FIG. 3 is a schematic structural diagram of an embodiment of an optical network device provided by the application.
  • FIG. 4 is a structural example diagram of the first embodiment of the optical module provided by the application.
  • FIG. 5 is a cross-sectional view of an embodiment of the optical chip provided by the application along a first direction;
  • FIG. 6 is an example diagram of the overall structure of an embodiment of the optical chip provided by the application.
  • FIG. 7 is a flowchart of steps of the first embodiment of the optical signal acquisition method provided by the present application.
  • Fig. 8a is a structural example diagram of the second embodiment of the optical module provided by the application.
  • Fig. 8b is a structural example diagram of the third embodiment of the optical module provided by the application.
  • FIG. 9 is an example diagram of the first embodiment of the eye diagram provided by the present application.
  • FIG. 10 is an example diagram of the second embodiment of the eye diagram provided by the application.
  • FIG. 11 is a flowchart of steps of the second embodiment of the optical signal acquisition method provided by the present application.
  • FIG. 12 is a structural example diagram of the fourth embodiment of the optical module provided by the application.
  • FIG. 13 is an example diagram of a third embodiment of the eye diagram provided by the application.
  • FIG. 2 is a structural example diagram of an embodiment of the optical fiber communication network provided by the present application.
  • the present application takes the optical fiber communication network as a passive optical network (PON) system as an example to illustrate:
  • PON passive optical network
  • the PON includes an optical line terminal (OLT) 210, and the OLT 210 is used to provide a network-side interface for an optical access network (OAN).
  • OLT210 is connected to the upper-layer network-side devices (such as switches, routers, etc.), and the lower-layer is connected to one or more optical distribution networks (ODNs).
  • the ODN is divided into three parts, an optical splitter 221 , a trunk optical cable 222 connected between the OLT 210 and the optical splitter 221 , and a branch optical cable 223 connected between the optical splitter 221 and the ONU 230 .
  • the trunk optical cable 222 is used to realize the transmission of the optical signal between the OLT 210 and the optical splitter 221
  • the branch optical cable 223 is used to realize the transmission of the optical signal between the optical splitter 221 and the ONU 230. transmission.
  • the ODN When the OLT 210 needs to transmit the downstream optical signal to the ONU 230 , the ODN transmits the downstream optical signal from the OLT 210 to each ONU through the optical splitter 221 . Similarly, when the ONU 230 needs to transmit the upstream optical signal to the OLT 210, the ODN aggregates the upstream optical signal from the ONU 230 through the optical splitter 221 and transmits it to the OLT 210.
  • the ONU230 provides a user-side interface for the OAN and is connected to the ODN at the same time. If the ONU230 provides user port functions at the same time, for example, the ONU provides an Ethernet (Ethernet) user port or a traditional telephone service (plain old telephone service, POTS) user port, it is called an optical network terminal (optical network termination, ONT). In this application, ONUs or ONTs are collectively referred to as optical network units ONUs.
  • Ethernet Ethernet
  • POTS plain old telephone service
  • ONT optical network termination
  • the PON in the process of upgrading the PON to a higher bandwidth, for example, the PON is transformed from a gigabit-capable passive optical network (GPON) to an XG passive optical network (10-gigabit-capable passive optical network, 10GPON) upgrade.
  • GPON gigabit-capable passive optical network
  • 10GPON XG passive optical network
  • Combo PON can reuse the existing PON network architecture, avoid changes to the existing PON network architecture and occupy additional equipment room space, achieve rapid scale deployment, and easy customer operation and maintenance.
  • an important requirement is the high-speed and high-power performance of the transmitted optical signal.
  • existing PONs provide two solutions: direct modulated laser (DML) and externally modulated semiconductor laser.
  • the DML refers to modulating the output optical power of the DML by changing the modulation current injected into the DML.
  • the DML has a simple structure, is easy to implement, and has a low cost. At the same time, since the DML has the advantages of high power output and low power consumption, the packaging requirements of the DML can be reduced.
  • the modulation current injected into the DML will cause the change of the refractive index of the source layer of the DML, resulting in the modulation of the phase of the light, thereby broadening the operating frequency, that is, there is a large frequency chirp, and as the modulation rate increases, the chirp The phenomenon is more and more serious, and the dispersion loss of the transmitted optical pulse is large, thus limiting the transmission distance of the signal.
  • DML is suitable for optical fiber communication network with small extinction ratio, small dispersion and short transmission distance. It can be seen that DML cannot be applied to scenarios with large extinction ratio requirements, large dispersion, and relatively long transmission distances.
  • Externally modulated semiconductor laser means that the optical signal output by the laser is directly coupled into the external modulator, and the modulated signal is loaded on the external modulator.
  • the parameters such as the intensity of the modulated optical signal output by the external modulator change with the modulated signal. Since the laser works in the DC state, the frequency chirp of the optical signal output by the laser is small.
  • the externally modulated semiconductor laser is suitable for high-speed and long-distance transmission, and is an ideal light source for high-speed optical communication systems.
  • a large current needs to be injected into the SOA, which will generate COD.
  • the optical signal acquisition method, optical chip, optical module and optical transmission device provided by the application can effectively avoid COD under the condition that the optical power of the output optical signal can be effectively improved, and can effectively Therefore, the DML chirp can be effectively avoided to meet the requirements of high bandwidth (such as 10GPON) for optical fiber dispersion cost and extinction ratio.
  • high bandwidth such as 10GPON
  • FIG. 3 is a structural example diagram of an embodiment of the optical network device provided by the present application.
  • the optical network device shown in this embodiment includes an optical module (optical module) 300
  • the optical module 300 shown in this embodiment includes a bi-direction optical subassembly (BOSA) 301
  • the BOSA 301 includes a transmitter optical subassembly (TOSA) 302 and a receiver optical subassembly (ROSA) 303 .
  • TOSA302 may also be referred to as an optical transmitting sub-module, an optical transmitter, etc.
  • ROSA303 may also be referred to as an optical receiving sub-module or an optical receiver, etc., which are not specifically limited in this embodiment.
  • the optical module 300 shown in this embodiment further includes an electric driving module 304 connected to the ROSA 303 and the TOSA 302 respectively.
  • the specific form of the electric driving module 304 is not limited in this embodiment.
  • the electric driving module 304 may be one or more A chip, or, one or more integrated circuits.
  • the electric drive module 304 may be one or more field-programmable gate array (FPGA), application specific integrated circuit (ASIC), system on chip (SoC) , Central electric drive module (central processor unit, CPU), network electric drive module (network processor, NP), microcontroller (micro controller unit, MCU), programmable logic device (programmable logic device, PLD) or other integrated chips , or any combination of the above chips, etc., which are not specifically limited.
  • FPGA field-programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • Central electric drive module central processor unit, CPU
  • network electric drive module network processor, NP
  • microcontroller micro controller unit, MCU
  • programmable logic device programmable
  • FIG. 4 is a structural example diagram of the first embodiment of the optical module provided by the application:
  • the TOSA 302 shown in this embodiment includes an optical chip 400, and the optical chip 400 shown in this embodiment may be an enhanced electro-absorption modulated laser (A-EML).
  • the optical chip 400 integrates a laser 401, a modulator 402 and an optical amplifier 403, wherein the laser 401, the modulator 402 and the optical amplifier 403 are connected in sequence, and the electric drive module 304 is respectively connected to the laser 401, the modulator 402 and the optical amplifier 403.
  • FIG. 5 is a cross-sectional view of an embodiment of the optical chip provided in the present application along the first direction.
  • FIG. 6 is an example diagram of the overall structure of an embodiment of the optical chip provided by the application.
  • the optical chip 400 shown in this embodiment has a monolithic integrated structure, that is, the laser 401, the modulator 402, and the optical amplifier 403 included in the optical chip 400 are based on the same substrate. The specific structure is described as follows:
  • the optical chip 400 shown in this embodiment includes a laser 401 , a modulator 402 and an optical amplifier 403 , wherein a first isolation region 541 is formed between the laser 401 and the modulator 402 , and a first isolation region 541 is formed between the modulator 402 and the optical amplifier 403 The second isolation region 542 .
  • the first direction 501 shown in this embodiment is the cavity length direction of the optical chip.
  • the specific lengths of the laser 401 , the modulator 402 and the optical amplifier 403 are not limited.
  • the length of the laser 401 is 400 ⁇ m
  • the length of the modulator 402 is 200 microns
  • the length of the optical amplifier 403 is 300 microns.
  • the laser 401 includes an N+ electrode layer 511, which is gold, germanium, nickel, or an alloy formed by at least two of gold, germanium, and nickel, with a thickness of 200 to 500 nanometers.
  • the surface of the N+ electrode layer 511 forms a substrate 512, and the substrate 512 can be made of a semiconductor material, such as indium phosphide (InP).
  • a semiconductor material such as indium phosphide (InP).
  • a lower confinement layer 513 is formed on the surface of the substrate 512, and the lower confinement layer 513 is used to confine carriers and photons along the second direction 502, wherein the second direction 502 is a direction perpendicular to the first direction 501, as shown in this embodiment
  • the lower confinement layer 513 may be made of quaternary materials such as indium (In), gallium (Ga), aluminum (Al), arsenic (As), and the thickness may be 150 nanometers.
  • a quantum well layer 514 is formed on the surface of the lower confinement layer 513.
  • the quantum well layer 514 is used to convert electrical energy into photons, and is made of non-doped In, Ga, Al, As and other quaternary materials, with a thickness of 100 nm to 200 nm. nanometers, the quantum well layer 514 may be a multi-quantum well active region layer.
  • An upper confinement layer 515 is formed on the surface of the quantum well layer 514.
  • the upper confinement layer 515 is used to confine carriers and photons along the second direction 502, and is made of quaternary materials such as In, Ga, Al, As, and has a thickness of 150 nanometers.
  • a grating layer 517 is formed on the surface of the upper confinement layer 515, and the grating layer 517 is a structure in which InP, In, Ga, Al and As are sequentially overlapped, wherein InP is a group III element indium (In) and a group V element phosphorus (P)
  • InP is a group III element indium (In)
  • P group V element phosphorus
  • the length of the grating layer 517 may be 220 microns.
  • the grating layer 517 adopts a partial gain coupled grating or a ⁇ /4 phase shift grating.
  • the grating layer 517 is an alternate structure of InP and InGaAsP, the length of the grating layer 517 can be 150 microns, and the grating layer 517 can be a uniform grating grating structure.
  • a waveguide layer 518 is formed on the surface of the grating layer 517.
  • the waveguide layer 518 is used to form a waveguide for light transmission, and is made of InP material, with a thickness of 1.5 to 2 microns, and a doping concentration greater than or equal to 1E18cm ⁇ 3 .
  • a contact electrode layer 519 is formed on the surface of the waveguide layer 518.
  • the contact electrode layer 519 is usually heavily doped indium gallium arsenide with a doping concentration greater than or equal to 1E19cm ⁇ 3 and a thickness of 50 to 300 nanometers.
  • a P+ electrode layer 520 is formed on the surface of the contact electrode layer 519 .
  • the P+ electrode layer 520 is made of titanium-platinum alloy or the like, and the thickness of the P+ electrode layer 520 may be between 500 nanometers and 2 micrometers.
  • the first isolation region 541 shown above is usually between the laser 401 and the modulator 402, etched through the P+ electrode layer 520 and the contact electrode layer 519, and etched a certain depth of the waveguide layer 518, so as to realize the modulation of the laser 401 and the modulation. electrical isolation between the devices 402 .
  • the second isolation region 542 is usually between the modulator 402 and the optical amplifier 403, and is etched through the P+ electrode layer 520 and the contact electrode layer 519, and the waveguide layer 518 is etched to a certain depth to realize the connection between the modulator 402 and the optical amplifier 403. electrical isolation between.
  • the isolation resistance of the first isolation region 541 and the second isolation region 542 is greater than 1000 ohms.
  • protons or inert ions may be implanted into the first isolation region 541 and the second isolation region 542 respectively, so as to increase the isolation resistance of the first isolation region 541 and the second isolation region 542 .
  • the modulator 402 shown in this embodiment includes an N+ electrode layer, a substrate, a lower confinement layer, a quantum well layer, an upper confinement layer, a waveguide layer, a contact electrode layer, and a P+ electrode layer.
  • the optical amplifier 403 shown in this embodiment includes an N+ electrode layer, a substrate, a lower confinement layer, a quantum well layer, an upper confinement layer, a waveguide layer, a contact electrode layer, and a P+ electrode layer.
  • the optical amplifier 403 shown in this embodiment includes an N+ electrode layer, a substrate, a lower confinement layer, a quantum well layer, an upper confinement layer, a waveguide layer, a contact electrode layer, and a P+ electrode layer.
  • the laser 401 shown in this embodiment may be a distributed feedback laser (DFB), a distributed Bragg reflector (DBR) laser, or a fabry-perot (FP) laser, etc. .
  • the modulator 402 shown in this embodiment may be an electro-absorption modulator.
  • the optical amplifier 403 shown in this embodiment may be a semiconductor optical amplifier (semiconductor optical amplifier, SOA).
  • the laser, modulator, and optical amplifier are monolithic integrated structures as an example.
  • the laser, modulator, and optical amplifier may also be discrete structures.
  • the laser may be an external cavity laser, and the modulation
  • the device can be a micro-ring modulator, or a Mach-Zehnder optical modulator, or the like.
  • Step 701 The electrical drive module sends an initial electrical signal to the laser.
  • Step 702 The electric drive module sends a first modulated electric signal to the modulator.
  • Step 703 The electrical drive module sends the second modulated electrical signal to the optical amplifier.
  • This embodiment does not limit the execution sequence between step 701 to step 703 .
  • Fig. 8a is a structural example diagram of the second embodiment of the optical module provided by the present application.
  • the electric drive module shown in this embodiment specifically includes a first electric driver 811 , a second electric driver 812 and a third electric driver 813 .
  • a first electric driver 811 a second electric driver 812 and a third electric driver 813 .
  • a second electric driver 812 a third electric driver 813 .
  • a third electric driver 813 for the description of the form of each electric driver, please refer to the description of the form of the electric drive module shown in FIG. 3 . Description, details are not repeated in this embodiment.
  • the first electrical driver 811 shown in this embodiment is connected to the laser 401 , and the first electrical driver 811 is used to send an initial electrical signal to the laser 401 .
  • the second electrical driver 812 is connected to the modulator 402 , and the second electrical driver 812 is used for sending the first modulated electrical signal to the modulator 402 .
  • the third electrical driver 813 is connected to the optical amplifier 403 , and the third electrical driver 813 is used for sending the second modulated electrical signal to the optical amplifier 403 .
  • FIG. 8b is a structural example diagram of the third embodiment of the optical module provided by the present application.
  • FIG. 8b takes the example of the electric drive module including the fourth electric driver 821 and the fifth electric driver 822 for exemplary illustration.
  • the electric drive module shown in FIG. 3 For the description of the form of each electric driver, please refer to the description of the form of the electric drive module shown in FIG. 3 . No further description is given in this embodiment.
  • the fourth electrical driver 821 shown in this embodiment is connected to the laser 401 , and the fourth electrical driver 821 is used to send an initial electrical signal to the laser 401 .
  • the fifth electrical driver 822 is connected to the electrical splitter 823, the electrical splitter 823 is respectively connected to the modulator 402 and the optical amplifier 403, and the fifth electrical driver 822 is used to send the modulated electrical signal to the electrical splitter 823, so the The electrical splitter 823 is used to divide the modulated electrical signal to form a first modulated electrical signal and a second modulated electrical signal.
  • the modulation data of the first modulated electrical signal and the second modulated electrical signal shown in this embodiment are the same, and the power of the first modulated electrical signal is part of the power of the modulated electrical signal, and the second modulated electrical signal The power of the signal is part of the power of the modulated electrical signal.
  • the electrical splitter 823 is further configured to send the first modulated electrical signal to the modulator 402 , and the electrical splitter 823 is further configured to send the second modulated electrical signal to the optical amplifier 403 .
  • first modulated electrical signal and the second modulated electrical signal in this example are electrical signals of the same source.
  • Step 704 Under the action of the initial electrical signal, the laser performs electro-optical conversion to obtain the initial optical signal.
  • the initial electrical signal sent by the electric drive module to the laser is a direct current signal
  • the laser can perform electro-optical conversion under the action of the direct current signal to obtain the initial optical signal
  • the laser performs electro-optical conversion under the action of a DC signal without introducing frequency chirp.
  • the laser shown in this embodiment is used as a light source, suitable for high-speed and long-distance transmission, and is an ideal light source for high-speed optical communication.
  • Step 705 The modulator modulates the initial optical signal according to the first modulated electrical signal to generate the first modulated optical signal.
  • Step 706 The modulator sends the first modulated optical signal to the optical amplifier.
  • Step 707 Under the action of the second modulated electrical signal, the optical amplifier modulates the first modulated optical signal and amplifies the optical power to obtain the second modulated optical signal.
  • the optical amplifier shown in this embodiment receives the second modulated electrical signal
  • the optical amplifier can modulate the first modulated optical signal under the action of the second modulated electrical signal, and modulate the first modulated electrical signal.
  • the optical power of the optical signal is amplified to ensure that the optical power of the second modulated optical signal output by the optical amplifier is greater than the optical power of the first modulated optical signal, and the extinction ratio of the second modulated optical signal output by the optical amplifier is guaranteed.
  • ratio, ER is greater than the extinction ratio of the first modulated optical signal.
  • the electrical drive module shown in this embodiment modulates the initial optical signal from the laser by sending the first modulated electrical signal to the modulator and the second modulated electrical signal to the optical amplifier.
  • the initial optical signal sent by the laser to the modulator is a light wave with an initial waveform
  • the first modulated electrical signal received by the modulator is an electrical bit stream with a first waveform
  • the second modulated electrical signal received by the optical amplifier The electrical signal is an electrical bit stream having a second waveform.
  • the modulator When the modulator receives the initial optical signal and the first modulated electrical signal, the modulator loads the first modulated electrical signal onto the initial waveform of the initial optical signal under the action of the first modulated electrical signal to output the first modulated electrical signal. modulate the optical signal.
  • the optical amplifier When the optical amplifier receives the second modulated electrical signal and the first modulated optical signal from the modulator, the optical amplifier loads the second modulated electrical signal to the first modulated optical signal under the action of the second modulated electrical signal. waveform to output the second modulated optical signal.
  • the modulator and optical amplifier shown in this embodiment can change the parameters of the optical signal by modulating the initial optical signal from the laser.
  • the parameters include one or more of amplitude, phase, frequency, polarization, or wavelength, etc. There is no limitation in this embodiment.
  • the initial optical signal from the laser is modulated by the modulator and the optical amplifier, specifically, the amplitude of the initial optical signal from the laser is modulated by the modulator and the optical amplifier, which can effectively improve the extinction ratio of the optical chip.
  • the extinction ratio refers to the ratio of the high-level optical power to the low-level optical power of the second modulated optical signal output by the optical chip.
  • the optical receiving device receives the second modulated optical signal, the optical receiving device can more easily distinguish the bit "1” from the bit "0", so the bit error rate (BER) will be smaller. .
  • FIG. 9 is an example diagram of the first embodiment of the eye diagram provided by the present application.
  • the eye pattern detector scans the optical signal to obtain an eye pattern 900 corresponding to the optical signal.
  • the eye pattern 900 is actually a display of a series of different binary bits of the optical signal accumulated on the screen of the eye pattern detector according to a certain rule.
  • the eye pattern detector since the eye pattern detector has the persistence function, all the captured waveforms are accumulated and accumulated separately every three bits, thereby forming the eye pattern 900 .
  • the eye diagram 900 reflects the overall characteristics of the optical signal.
  • the eye pattern detector may be an eye pattern instrument with an optical port, also called a digital communications analyzer (DCA).
  • DCA digital communications analyzer
  • the eye height 901 is the difference between the optical power 902 and the optical power 903, wherein the optical power 902 is the average optical power of the bit "1" included in the optical signal, and the optical power 903 is the bit "0" included in the optical signal. average optical power. It can be seen that, the higher the opening degree of the eye height of the eye diagram 900 corresponding to the optical signal, the greater the extinction ratio of the optical signal, and the better the signal quality of the optical signal.
  • FIG. 10 is an example diagram of the second embodiment of the eye diagram provided by the present application.
  • each eye diagram shown in FIG. 10 can refer to that shown in FIG. 9 , and details are not repeated.
  • the eye diagram 1011 shown in FIG. 10 is an eye diagram corresponding to an optical signal output by modulation only by the modulator, and the eye diagram 1011 has an eye height 1012 .
  • the eye diagram 1021 shown in FIG. 10 is an eye diagram corresponding to an optical signal output by modulation only by an optical amplifier, and the eye diagram 1021 has an eye height 1022 .
  • modulation can be performed by both the modulator and the optical amplifier.
  • the eye diagram 1031 shown in FIG. 10 is the eye diagram corresponding to the second modulated optical signal output by the optical amplifier shown in this embodiment.
  • the eye diagram 1031 has Eye height is 1032.
  • the modulation performed by the modulator shown in this embodiment can also be modulated by the optical amplifier to output the second modulated optical signal.
  • the second modulated optical signal shown in this embodiment is modulated by the modulator and also modulated by the optical amplifier, so that the eye height 1032 of the eye diagram 1031 shown in this embodiment has a higher opening degree.
  • the eye height 1032 of the eye diagram 1031 has a relatively high opening degree, it means that the second modulated optical signal according to this embodiment has relatively large optical power and extinction ratio.
  • the first modulated electrical signal and the second modulated electrical signal shown in this embodiment need to satisfy the first preset condition so that the second modulated optical signal has relatively large optical power and extinction ratio.
  • the first preset condition shown is illustrated:
  • the first preset condition shown in this embodiment is that the time delay difference between the first modulated electrical signal and the second modulated electrical signal is less than or equal to a preset threshold, and the first modulated electrical signal and the second modulated electrical signal are equal to or less than a preset threshold.
  • the modulation rates between the second modulated electrical signals are equal.
  • the time delay difference between the first modulated electrical signal and the second modulated electrical signal shown in this embodiment is less than or equal to the preset threshold means that the first modulated electrical signal and the second modulated electrical signal, within the same period,
  • the variation trend of the respective signal amplitudes of the first modulated electrical signal and the second modulated electrical signal with time is the same or approximately the same, it can be known that the time delay difference between the first modulated electrical signal and the second modulated electrical signal is less than or equal to the preset threshold value
  • the change trend of the first waveform of the first modulated electrical signal and the change trend of the second waveform of the second modulated electrical signal are the same or approximately the same.
  • the preset threshold shown in this embodiment may be half of the signal period of the initial optical signal.
  • the signal period shown in this embodiment refers to the time interval between two identical signals of the initial optical signal. For example, if the initial optical signal is a non-return to zero (NRZ) signal, the signal period T Equal to the ratio of 1 to the bit rate.
  • NZ non-return to zero
  • the modulation rates between the first modulated electrical signal and the second modulated electrical signal shown in this embodiment are equal means that the signal period of the first modulated electrical signal and the signal period of the second modulated electrical signal are the same .
  • the eye diagram 1031 shown in FIG. 10 when the first modulated electrical signal and the second modulated electrical signal meet the first preset condition shown in this embodiment, the eye diagram 1031 can be guaranteed.
  • the area 1033 is relatively small, which further indicates that the jitter of the second modulated optical signal output by the optical amplifier is relatively small, and the bit error rate is relatively small, so as to ensure better signal quality.
  • both the modulator and the optical amplifier can modulate the initial optical signal from the laser, so as to improve the extinction ratio and optical power of the second modulated optical signal output by the optical amplifier, and reduce the second modulated optical signal.
  • the bit error rate and jitter of the signal improve the signal quality of the second modulated optical signal.
  • the electric drive module sends a direct current signal to the laser, and the laser performs electro-optical conversion under the action of the direct current signal without introducing frequency chirp, so that the laser can be used as a light source, suitable for high-speed and long-distance transmission, and is a high-speed optical communication. ideal light source.
  • the extinction ratio of the modulator shown in this embodiment to modulate the initial optical signal can be relatively small, and the extinction ratio of the optical amplifier to modulate the first modulated optical signal can also be relatively small, and the second modulated light output by the optical amplifier can be relatively small.
  • the extinction ratio of the signal is the superposition of the extinction ratio modulated by the modulator and the extinction ratio modulated by the optical amplifier, so that even if the extinction ratio of the modulator modulating the initial optical signal is relatively small, and the optical amplifier modulating the first modulated optical signal The extinction ratio of the first modulated optical signal is relatively small.
  • the purpose of relatively large extinction ratio of the second modulated optical signal output by the optical amplifier can also be achieved, so that both the modulator and the optical amplifier can be modulated at a small current, effectively reducing the The magnitude of the current of the first modulated electrical signal received by the modulator and the second modulated electrical signal received by the optical amplifier effectively reduces the insertion loss and modulation loss of the modulator and the optical amplifier.
  • the optical amplifier shown in this embodiment can achieve a relatively large extinction ratio of the second modulated optical signal under the condition of receiving the first modulated electrical signal and the second modulated electrical signal with a relatively small current value, which effectively reduces the The current density injected into the optical amplifier avoids optical catastrophic damage to the optical signal and improves the reliability of the optical chip.
  • Modulation by the modulator and optical amplifier external to the laser can ensure that the modulation process of the optical signal will not interfere with the operation of the laser, and ensure the stability and rate of the wavelength of the initial optical signal output by the laser. Moreover, since the laser does not need to modulate the optical signal, the cavity length of the laser can be shortened compared with the EML, which effectively reduces the packaging difficulty and cost of the optical signal.
  • FIG. 11 is a flowchart of steps of the second embodiment of the optical signal acquisition method provided by the present application.
  • Step 1101 The electrical drive module sends an initial electrical signal that satisfies the second preset condition to the laser.
  • Step 1102 The electric drive module sends a first modulated electric signal to the modulator.
  • Step 1103 The electric drive module sends a second modulated electric signal to the optical amplifier.
  • This embodiment does not limit the execution sequence between step 1101 to step 1103 .
  • the second preset condition in this embodiment is: the delay difference between the initial electrical signal, the first modulated electrical signal, and the second modulated electrical signal is less than or equal to a preset threshold, and the initial electrical signal The modulation rates of the signal, the first modulated electrical signal and the second modulated electrical signal are equal.
  • time delay difference between the initial electrical signal, the first modulated electrical signal, and the second modulated electrical signal is less than or equal to the preset threshold
  • the first embodiment shown in the first embodiment please refer to the first embodiment shown in the first embodiment.
  • the description that the time delay difference between the modulated electrical signal and the second modulated electrical signal is less than or equal to the preset threshold is not described in detail in this embodiment.
  • the equal modulation rates of the initial electrical signal, the first modulated electrical signal, and the second modulated electrical signal shown in this embodiment please refer to the first modulated electrical signal shown in Embodiment 1
  • the description that the modulation rate of the second modulated electrical signal is equal to that of the second modulated electrical signal is not described in detail in this embodiment.
  • the optional structure of the electric drive module is exemplified as follows:
  • the structure of the electric drive module shown in this embodiment may refer to the structure 1 or structure 2 shown in the first embodiment, and the structure of the electric drive module described in this embodiment may also be shown in FIG. 12 , wherein FIG. 12 It is a structural example diagram of the fourth embodiment of the optical module provided in this application.
  • the electric drive module shown in this embodiment includes a sixth electric driver 1202 , the sixth electric driver 1202 is connected to an electrical splitter 1201 , and the electrical splitter 1201 is respectively connected to the laser 401 and the modulator 402 connected to the optical amplifier 403 .
  • the sixth electrical driver 1202 is configured to send the modulated electrical signal to the electrical splitter 1201, and the electrical splitter 1201 is configured to divide the modulated electrical signal to form an initial electrical signal, a first modulated electrical signal and a second modulated electrical signal. Signal.
  • the specific process of dividing the electrical splitter 1201 reference may be made to the relevant description of the electrical splitter shown in the first embodiment, and details are not repeated.
  • the electrical splitter 1201 is further configured to send an initial electrical signal to the laser 401, the electrical splitter 1201 is further configured to send a first modulated electrical signal to the modulator 402, and the electrical splitter 1201 is further configured to send a modulated electrical signal to the modulator 402.
  • the optical amplifier 403 transmits the second modulated electrical signal.
  • the initial electrical signal, the first modulated electrical signal and the second modulated electrical signal in this example are electrical signals of the same source.
  • Step 1104 Under the action of the initial electrical signal, the laser is modulated to generate the modulated initial optical signal.
  • the initial electrical signal shown in this embodiment satisfies the second preset condition shown above, so that when the laser receives the initial electrical signal, the laser can be modulated under the action of the initial electrical signal to generate Modulated initial optical signal.
  • the laser only has the function of electro-optical conversion, while the laser shown in this embodiment receives the initial electrical signal that satisfies the second preset condition. , the modulated initial optical signal can be generated.
  • Step 1105 The modulator modulates the initial optical signal according to the first modulated electrical signal to generate the first modulated optical signal.
  • the initial optical signal from the laser received by the modulator is the optical signal that has been modulated by the laser.
  • Step 1106 The modulator sends the first modulated optical signal to the optical amplifier.
  • Step 1107 Under the action of the second modulated electrical signal, the optical amplifier modulates the first modulated optical signal and amplifies the optical power to obtain the second modulated optical signal.
  • step 1105 and step 1107 shown in this embodiment please refer to step 705 to step 707 shown in FIG. 7 , and the specific execution process is not repeated in this embodiment.
  • FIG. 13 is an example diagram of the third embodiment of the eye diagram provided by the present application.
  • each eye diagram shown in FIG. 13 can refer to that shown in FIG. 9 , and details are not repeated.
  • the eye diagram 1311 shown in FIG. 13 is an eye diagram corresponding to an optical signal output by modulation only by the laser.
  • the eye diagram 1321 shown in FIG. 13 is an eye diagram corresponding to the optical signal output by modulation only by the modulator.
  • An eye diagram 1331 shown in FIG. 13 is an eye diagram corresponding to an optical signal modulated only by an optical amplifier.
  • the laser, modulator and optical amplifier shown in this embodiment can all be modulated.
  • the eye diagram 1341 shown in FIG. 13 is output by the optical amplifier shown in this embodiment, after being modulated by the laser, the modulator and the optical amplifier.
  • the eye diagram 1321, the eye diagram 1331 and the eye diagram 1341 it can be seen that what is shown in this embodiment is modulated by a laser, can also be modulated by a modulator, and can also be modulated by an optical amplifier to output
  • the second modulated optical signal it can be seen that the second modulated optical signal shown in this embodiment is modulated by a laser, modulated by a modulator, and modulated by an optical amplifier, so that the The eye height of the eye diagram 1341 has a relatively high opening degree.
  • the opening degree of the eye diagram please refer to the example shown in the first embodiment, and details are not repeated.
  • the eye height of the eye diagram 1341 has a relatively high opening degree, it means that the second modulated optical signal described in this embodiment has a relatively high extinction ratio.
  • the eye diagram 1341 can be guaranteed when the initial electrical signal, the first modulated electrical signal and the second modulated electrical signal meet the second preset condition as shown in this embodiment.
  • the area 1342 shown is relatively small, which further indicates that the jitter of the second modulated optical signal output by the optical amplifier is relatively small, and the bit error rate is relatively small, so as to ensure better signal quality.
  • the laser, the modulator and the optical amplifier can all be modulated, so as to improve the extinction ratio and optical power of the second modulated optical signal output by the optical amplifier, and reduce the bit error rate of the second modulated optical signal. and jitter, improving the signal quality of the second modulated optical signal.
  • the extinction ratio modulated by the laser shown in this embodiment can be relatively small, the extinction ratio modulated by the modulator can be relatively small, and the extinction ratio modulated by the optical amplifier can also be relatively small, and the second modulated light output by the optical amplifier can be relatively small.
  • the extinction ratio of the signal is composed of the extinction ratio of the laser modulation, the extinction ratio of the modulator modulation and the extinction ratio of the optical amplifier modulation. It can be seen that even when the extinction ratio of the laser, the modulator and the optical amplifier is relatively small, it can be effectively The extinction ratio of the second modulated optical signal output by the optical amplifier is guaranteed. Effectively reduces the current of the initial electrical signal received by the laser, the first modulated electrical signal received by the modulator and the current of the second modulated electrical signal received by the optical amplifier, effectively reducing the laser, modulator and optical amplifier. insertion loss and modulation loss.
  • the optical amplifier shown in this embodiment can receive the first modulated electrical signal and the second modulated electrical signal with a relatively small current value, the current density injected into the optical amplifier can be effectively reduced, and the optical catastrophic damage of the optical signal can be avoided. The reliability of the optical chip is improved.
  • the cavity length of the optical chip shown in this embodiment can be further reduced, reducing the optical chip. the cost of.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本发明实施例提供了一种光信号的获取方法以及相关设备,其能够放大输出的光信号的光功率的同时,还能够提高消光比。所述方法包括:激光器根据初始电信号向调制器发送初始光信号;所述调制器在第一调制电信号的作用下,对所述初始光信号进行调制以生成第一调制光信号;所述调制器向光放大器发送所述第一调制光信号;所述光放大器在第二调制电信号的作用下,对所述第一调制光信号进行调制以及进行光功率的放大,以获取第二调制光信号,所述第一调制电信号和所述第二调制电信号之间的时延差小于或等于预设阈值,所述第一调制电信号和所述第二调制电信号之间的调制速率相等。

Description

一种光信号的获取方法以及相关设备
本申请要求于2021年4月30日提交中国国家知识产权局、申请号为202110484344.4、申请名称为“一种光信号的获取方法以及相关设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光纤通信技术领域,尤其涉及一种光信号的获取方法以及相关设备。
背景技术
随着光纤通信网络应用的快速普及,用户对光纤通信的带宽需求不断增长。光纤通信网络包括光发送设备和光接收设备,光发送设备所包括的光模块能够向光接收设备发送光信号,以实现光信号的传输。
以图1所示为例,光发送设备100包括电吸收调制器激光器(electro-absorption modulated laser,EML)101。该EML101用于将电信号转换为光信号,为提高EML101输出的光信号的光功率,则EML101的出光端集成一个半导体光放大器(semiconductor optical amplifier,SOA)102,该SOA102用于对EML101输出的光信号的光功率进行放大。
但是,SOA102对来自EML101的光信号的光功率进行放大的过程中,需要对SOA102注入较大的电流才能满足光发送设备100对光信号的光功率大小的需求。SOA102在较大的电流的作用下,会产生光学灾变损伤(catastrophic optical damage,COD),该COD会对EML造成不可逆转的破坏。
发明内容
本发明实施例提供了一种光信号的获取方法以及相关设备,其能够放大输出的光信号的光功率的同时,还能够提高消光比。
本发明实施例第一方面提供了一种光信号的获取方法,所述方法包括:激光器根据初始电信号向调制器发送初始光信号;所述调制器在第一调制电信号的作用下,对所述初始光信号进行调制以生成第一调制光信号;所述调制器向光放大器发送所述第一调制光信号;所述光放大器在第二调制电信号的作用下,对所述第一调制光信号进行调制以及进行光功率的放大,以获取第二调制光信号,所述第一调制电信号和所述第二调制电信号之间的时延差小于或等于预设阈值,所述第一调制电信号和所述第二调制电信号之间的调制速率相等。
可见,因通过调制器和光放大器,均对来自激光器的初始光信号进行调制,以提高了光放大器所输出的第二调制光信号的消光比以及光功率,降低了第二调制光信号的误码率和抖动,提高了第二调制光信号的信号质量。
而且调制器对初始光信号进行调制的消光比可比较小,且光放大器对第一调制光信号进行调制的消光比也可以比较小,光放大器所输出的第二调制光信号的消光比为调制器调制的消光比和光放大器调制的消光比叠加而成,使得即便调制器对初始光信号进行调制的消光比比较小,且光放大器对第一调制光信号进行调制的消光比也比较小的情况下,还能够实现光放大器所输出的第二调制光信号的消光比比较大的目的,从而使得调制器和光放 大器均可在较小的电流下进行调制,有效地降低了调制器所接收到的第一调制电信号和光放大器所接收到的第二调制电信号的电流的大小,有效地降低了调制器和光放大器的插入损耗和调制损耗。
因光放大器可以在接收到电流值比较小的第一调制电信号和第二调制电信号的情况下,实现第二调制光信号的比较大的消光比,有效地降低了注入至光放大器的电流密度,避免了光信号出现光学灾变损伤的情况,提高了光芯片的可靠性。
基于第一方面,一种可选地实现方式中,所述预设阈值为所述初始光信号的信号周期的一半。
可见,本方面所示在所述预设阈值为所述初始光信号的信号周期的一半的情况下,能够有效地提高了光放大器所输出的第二调制光信号的消光比以及光功率,降低了第二调制光信号的误码率和抖动,提高了第二调制光信号的信号质量。
基于第一方面,一种可选地实现方式中,所述激光器根据初始电信号向调制器发送初始光信号之前,所述方法还包括:所述激光器接收所述初始电信号,所述初始电信号为直流电信号;所述激光器在所述直流电信号的作用下,进行电光转换以获取所述初始光信号。
可见,因激光器所接收到的为直流电信号,激光器在直流电信号的作用下进行电光转换,不会引入频率啁啾,以使激光器作为光源,适合高速、长距离传输,是高速光通信的理想光源。而且因通过外置于激光器的调制器和光放大器进行调制,可保证光信号的调制过程不会对激光器的工作造成干扰,保证了激光器所输出的初始光信号的波长的稳定和速率。而且因激光器无需对光信号进行调制,则激光器的腔长可缩短,有效地降低了光信号的封装难度和成本。
基于第一方面,一种可选地实现方式中,所述激光器根据初始电信号向调制器发送初始光信号之前,所述方法还包括:所述激光器接收所述初始电信号,所述初始电信号、所述第一调制电信号和所述第二调制电信号之间的时延差小于或等于所述预设阈值,所述初始电信号、所述第一调制电信号和所述第二调制电信号的调制速率相等;所述激光器在所述初始电信号的作用下,进行调制以生成调制后的所述初始光信号。
可见,因能够通过激光器、调制器和光放大器,均进行调制,以提高了光放大器所输出的第二调制光信号的消光比以及光功率,降低了第二调制光信号的误码率和抖动,提高了第二调制光信号的信号质量。而且为实现光放大器所输出的第二调制光信号的消光比,激光器进行调制的消光比可比较小,调制器进行调制的消光比可比较小,且光放大器进行调制的消光比也可以比较小,光放大器所输出的第二调制光信号的消光比为激光器调制的消光比、调制器调制的消光比和光放大器调制的消光比叠加而成,有效地降低了激光器所接收到的初始电信号、调制器所接收到的第一调制电信号和光放大器所接收到的第二调制电信号的电流的大小,有效地降低了激光器、调制器和光放大器的插入损耗和调制损耗。
而且因激光器进行调制的消光比可比较小,调制器进行调制的消光比可比较小,且光放大器进行调制的消光比也可以比较小,光放大器所输出的第二调制光信号的消光比为激光器调制的消光比、调制器调制的消光比和光放大器调制的消光比叠加而成,可见,即便在激光器、调制器和光放大器的消光比比较小的情况下,也能够有效地保证光放大器所输 出的第二调制光信号的消光比。有效地降低了激光器所接收到的初始电信号、调制器所接收到的第一调制电信号和光放大器所接收到的第二调制电信号的电流的大小,有效地降低了激光器、调制器和光放大器的插入损耗和调制损耗。
基于第一方面,一种可选地实现方式中,所述第一调制电信号具有第一波形,所述第二调制电信号具有第二波形,所述第一波形的变化趋势和所述第二波形的变化趋势相同或近似相同。
可见,在所述第一波形的变化趋势和所述第二波形的变化趋势相同或近似相同的情况下,能够有效地降低了第二调制光信号的误码率和抖动,提高了第二调制光信号的信号质量。
基于第一方面,一种可选地实现方式中,所述方法还包括:电驱动模块向所述激光器发送所述初始电信号;所述电驱动模块向所述调制器发送所述第一调制电信号;所述电驱动模块向所述光放大器发送所述第二调制电信号。
基于第一方面,一种可选地实现方式中,所述电驱动模块包括第一电驱动器,第二电驱动器以及第三电驱动器,所述第一电驱动器与激光器连接,所述第二电驱动器与调制器连接,所述第三电驱动器与光放大器连接,所述方法还包括:
所述激光器接收来自第一电驱动器的初始电信号,所述调制器接收来自第二电驱动器的第一调制电信号,所述光放大器接收来自第三电驱动器的第二调制电信号。
基于第一方面,一种可选地实现方式中,所述电驱动模块包括第四电驱动器和第五电驱动器,所述第四电驱动器和所述激光器连接,所述第五电驱动器和所述调制器和所述光放大器连接,所述方法还包括:
所述激光器接收来自第四电驱动器的初始电信号,所述调制器接收来自第五电驱动器的第一调制电信号,所述光放大器接收来自第五电驱动器的第二调制电信号。
基于第一方面,一种可选地实现方式中,所述第五电驱动器和所述调制器之间连接电分路器,所述第五电驱动器和所述光放大器之间连接所述电分路器,所述方法还包括:
所述电分路器接收来自所述第五电驱动模块的调制电信号,所述电分路器划分所述调制电信号以形成所述第一调制电信号和所述第二调制电信号;所述电分路器向所述调制器发送所述第一调制电信号;所述电分路器向所述光放大器发送所述第二调制电信号。
基于第一方面,一种可选地实现方式中,所述第一调制电信号和所述第二调制电信号为同源电信号。
基于第一方面,一种可选地实现方式中,所述电驱动模块包括第六电驱动器,所述第六电驱动器和所述激光器、所述调制器和所述光放大器连接,所述方法还包括:
所述激光器接收来自第六电驱动器的初始电信号,所述调制器接收来自第六电驱动器的第一调制电信号,所述光放大器接收来自第六电驱动器的第二调制电信号。
基于第一方面,一种可选地实现方式中,所述第六电驱动器和所述调制器、所述激光器以及所述光放大器之间连接电分路器,所述方法还包括:
所述电分路器接收来自所述第六电驱动模块的调制电信号,所述电分路器划分所述调制电信号以形成所述初始电信号、所述第一调制电信号和所述第二调制电信号;所述电分 路器向所述激光器发送所述初始电信号,所述电分路器向所述调制器发送所述第一调制电信号;所述电分路器向所述光放大器发送所述第二调制电信号。
基于第一方面,一种可选地实现方式中,所述初始电信号、所述第一调制电信号和所述第二调制电信号为同源电信号。
本发明实施例第二方面提供了一种光芯片,所述光芯片包括依次连接的激光器、调制器以及光放大器;所述激光器用于根据初始电信号向所述调制器发送初始光信号;所述调制器用于在第一调制电信号的作用下,对所述初始光信号进行调制以生成第一调制光信号;所述调制器用于向所述光放大器发送所述第一调制光信号;所述光放大器用于在第二调制电信号的作用下,对所述第一调制光信号进行调制以及进行光功率的放大,以获取第二调制光信号,所述第一调制电信号和所述第二调制电信号之间的时延差小于或等于预设阈值,所述第一调制电信号和所述第二调制电信号之间的调制速率相等。
本方面所示的光芯片的有益效果的说明,请详见第一方面所示,具体不做赘述。
基于第二方面,一种可选地实现方式中,所述激光器还用于:接收所述初始电信号,所述初始电信号为直流电信号;在所述直流电信号的作用下,进行电光转换以获取所述初始光信号。
基于第二方面,一种可选地实现方式中,所述激光器还用于:接收所述初始电信号,所述初始电信号、所述第一调制电信号和所述第二调制电信号之间的时延差小于或等于所述预设阈值,所述初始电信号、所述第一调制电信号和所述第二调制电信号的调制速率相等;在所述初始电信号的作用下,进行调制以生成调制后的所述初始光信号。
基于第二方面,一种可选地实现方式中,所述激光器、所述调制器以及所述光放大器为单片集成结构。
基于第二方面,一种可选地实现方式中,所述激光器为分直接调制激光器DFB、或分布式布拉格反射DBR激光器、或法布里-珀罗FP激光器、或分布反馈激光器,或外腔激光器;所述调制器为电吸收调制器,或微环调制器,或马赫曾德光调制器。
本发明实施例第三方面提供了一种光模块,所述光模块包括依次连接的激光器、调制器以及光放大器,还包括分别与所述激光器、所述调制器以及所述光放大器连接的电驱动模块;所述电驱动模块用于向所述激光器发送初始电信号,并用于向所述调制器发送第一调制电信号,并用于向所述光放大器发送第二调制电信号;所述激光器用于根据所述初始电信号向所述调制器发送初始光信号;所述调制器用于在所述第一调制电信号的作用下,对所述初始光信号进行调制以生成第一调制光信号;所述调制器用于向所述光放大器发送所述第一调制光信号;所述光放大器用于在所述第二调制电信号的作用下,对所述第一调制光信号进行调制以及进行光功率的放大,以获取第二调制光信号,所述第一调制电信号和所述第二调制电信号之间的时延差小于或等于预设阈值,所述第一调制电信号和所述第二调制电信号之间的调制速率相等。
本方面所示的光模块的有益效果的说明,请详见第一方面所示,具体不做赘述。
基于第三方面,一种可选地实现方式中,所述电驱动模块包括至少一个电驱动器,所述至少一个电驱动器用于发送所述初始电信号、所述第一调制电信号以及所述第二调制电 信号。
基于第三方面,一种可选地实现方式中,所述光模块还包括电分路器,所述电分路器与所述电驱动模块连接,所述电分路器还分别与所述调制器和所述光放大器连接,所述电分路器用于:接收来自所述电驱动模块的调制电信号;划分所述调制电信号以形成所述第一调制电信号和所述第二调制电信号;向所述调制器发送所述第一调制电信号;向所述光放大器发送所述第二调制电信号。
基于第三方面,一种可选地实现方式中,所述光模块还包括电分路器,所述电分路器与所述电驱动模块连接,所述电分路器还分别与所述激光器、所述调制器和所述光放大器连接,所述电分路器用于:接收来自所述电驱动模块的调制电信号;划分所述调制电信号以形成所述初始电信号、所述第一调制电信号和所述第二调制电信号;向所述激光器发送所述初始电信号;向所述调制器发送所述第一调制电信号;向所述光放大器发送所述第二调制电信号。
本发明实施例第四方面提供了一种光发射组件,所述光发射组件包括如上述第二方面所述的光芯片。
本发明实施例第五方面提供了一种光网络设备,所述光网络设备包括如第三方面所示的光模块。
附图说明
图1已有方案所提供的光发送设备的结构示例图;
图2为本申请所提供的光纤通信网络的一种实施例结构示例图;
图3为本申请所提供的光网络设备的一种实施例结构示例图;
图4为本申请所提供的光模块的第一种实施例结构示例图;
图5为本申请所提供的光芯片沿第一方向的一种实施例截面图;
图6为本申请所提供的光芯片的一种实施例整体结构示例图;
图7为本申请所提供的光信号的获取方法的第一种实施例步骤流程图;
图8a为本申请所提供的光模块的第二种实施例结构示例图;
图8b为本申请所提供的光模块的第三种实施例结构示例图;
图9为本申请所提供的眼图的第一种实施例示例图;
图10为本申请所提供的眼图的第二种实施例示例图;
图11为本申请所提供的光信号的获取方法的第二种实施例步骤流程图;
图12为本申请所提供的光模块的第四种实施例结构示例图;
图13为本申请所提供的眼图的第三种实施例示例图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
为更好的理解本申请所提供的光信号的获取方法、光芯片、光模块以及光发送设备,以下结合图2所示对本申请所应用的光纤通信网络进行说明。其中,图2为本申请所提供的光纤通信网络的一种实施例结构示例图。由图2所示可知,本申请以光纤通信网络为无源光网络(passive optical network,PON)系统为例进行示例性说明:
PON包括光线路终端(optical line terminal,OLT)210,OLT210用于为光接入网(optical access network,OAN)提供网络侧接口。OLT210连接上层的网络侧设备(如交换机、路由器等),下层连接一个或者多个光分配网络(optical distribution network,ODN)。
ODN分为三部分,分光器221、连接在OLT210和分光器221之间的主干光缆222,连接在分光器221和ONU230之间的分支光缆223。其中,所述主干光缆222用于实现所述OLT210和所述分光器221之间的光信号的传输,所述分支光缆223用于实现所述分光器221和所述ONU230之间的光信号的传输。
在OLT210需要向ONU230传输下行光信号时,ODN将来自OLT210的下行光信号通过分光器221传输到各个ONU。同样地,在ONU230需要向OLT210传输上行光信号时,ODN将来自ONU230的上行光信号,通过分光器221汇聚后传输到OLT210。
ONU230为OAN提供用户侧接口,同时与ODN相连。如果ONU230同时提供用户端口功能,如ONU提供以太网(Ethernet)用户端口或者传统电话业务(plain old telephone service,POTS)用户端口,则称为光网络终端(optical network termination,ONT)。本申请将ONU或ONT统一称为光网络单元ONU。
以下对本申请的应用场景进行可选地说明:在PON向更高的带宽升级的过程中,例如,PON由千兆无源光网络(gigabit-capable passive optical network,GPON)向XG无源光网络(10-gigabit-capable passive optical network,10GPON)升级。在GPON向10GPON升级的过程中,为了实现网络平滑升级,降低PON的建设成本,则能够兼容GPON和10GPON的组合无源光网络(Combo PON)随之出现。
Combo PON可重用现有PON的网络架构,避免对现有的PON的网络架构的改动和额外的机房空间占用,实现规模快速部署,客户运维非常容易。在Combo PON中,一个重要的需求是所发射的光信号的具有高速和高功率的性能。为实现这一需求,已有的PON提供了直接调制激光器(direct modulated laser,DML)和外调制半导体激光器两种方案。
其中,DML是指通过改变注入至DML的调制电流来调制DML的输出光功率,DML结构简单、易于实现且成本低廉。同时,由于DML具备高功率输出且功耗较低的优点,能够降低DML的封装要求。但是,注入DML的调制电流会引起DML的源层折射率的变化,导致光的相位受到调制,从而使工作频率展宽,即存在较大的频率啁啾,而随着调制速率的提高,啁啾现象愈加严重,传输光脉冲色散损耗大,从而限制信号的传输距离。另一方面,DML最高调制速率受限于载流子和光子之间的张弛振荡(relaxation oscillation)。因此,DML适合于消光比小,色散较小,传输距离较短的光纤通信网络。可见,DML无法应用至消光比要求大,色散较大,而且传输距离比较远的场景。
外调制半导体激光器是指,将激光器输出的光信号直接耦合至外调制器中,调制信号加载在外调制器上。利用外调制器的声光、电光效应使外调制器输出的调制光信号的强度等参数随调制信号变化。由于激光器工作在直流状态下,因此激光器输出的光信号的频率啁啾小,可见,外调制半导体激光器是适合于高速、长距离传输,是高速光通信系统的理想光源。已有的外调制半导体激光器,为满足光发送设备所输出的光信号的光功率较大的需求,则可参见图1所示,需要在SOA注入较大的电流,从而会产生COD。
基于上述缺陷,申请所提供的光信号的获取方法、光芯片、光模块以及光发送设备,其能够有效地提高输出的光信号的光功率的情况下,还能够有效地避免COD,而且能够有效地避免DML啁啾较大,从而能够有效地满足高带宽(如10GPON)对光纤色散代价及消光比的需求,以下结合不同的实施例对本申请进行说明。
实施例一
以下结合图3所示对本申请所提供的光网络设备的结构进行说明,本实施例所示的光网络设备可为图2所示的OLT或ONU,本实施例以光网络设备为OLT为例进行示例性说明。其中,图3为本申请所提供的光网络设备的一种实施例结构示例图。
本实施例所示的光网络设备包括光模块(optical module)300,本实施例所示的光模块300包括双向收发光组件(bi-direction optical subassembly,BOSA)301。BOSA301包括光发射组件(transmitter optical subassembly,TOSA)302和光接收组件(receiver optical subassembly,ROSA)303。其中,TOSA302还可称之为光发射次模块,光发射器等,ROSA303还可称之为光接收次模块或光接收器等,具体在本实施例中不做限定。
本实施例所示的光模块300还包括与ROSA303和TOSA302分别连接的电驱动模块304,本实施例对电驱动模块304的具体形态不做限定,例如,电驱动模块304可为一个或多个芯片,或,一个或多个集成电路。例如,所述电驱动模块304可以是一个或多个现场可编程门阵列(field-programmable gate array,FPGA)、专用集成芯片(application specific integrated circuit,ASIC)、系统芯片(system on chip,SoC)、中央电驱动模块(central processor unit,CPU)、网络电驱动模块(network processor,NP)、微控制器(micro controller unit,MCU),可编程控制器(programmable logic device,PLD)或其它集成芯片,或者上述芯片的任意组合等,具体不做限定。
以下结合图4所示对本实施例所提供的TOSA302的结构进行说明,其中,图4为本申请所提供的光模块的第一种实施例结构示例图:
本实施例所示的TOSA302包括光芯片400,本实施例所示的光芯片400可为增强电吸收调制器激光器(amplified electro-absorption modulated laser,A-EML)。该光芯片400集成有激光器401、调制器402以及光放大器403,其中,激光器401、调制器402和光放大器403依次连接,电驱动模块304分别与激光器401、调制器402和光放大器403连接。
以下结合图5和图6所示所示对本实施例所示的光芯片的物理结构进行示例性说明,其中,图5为本申请所提供的光芯片沿第一方向的一种实施例截面图;图6为本申请所提供的光芯片的一种实施例整体结构示例图。本实施例所示的光芯片400呈单片集成结构, 即光芯片400所包括的激光器401、调制器402以及光放大器403基于同一个衬底,具体结构的说明如下所示:
本实施例所示的光芯片400包括激光器401、调制器402以及光放大器403,其中,在激光器401和调制器402之间形成有第一隔离区541,调制器402和光放大器403之间形成有第二隔离区542。
本实施例所示的第一方向501为光芯片的腔长方向,激光器401、调制器402和光放大器403的具体长度不做限定,例如,激光器401的长度为400微米、调制器402的长度为200微米,光放大器403的长度为300微米。
具体地,激光器401包括N+电极层511,该N+电极层511为金、锗、镍,或该N+电极层511为金锗镍中至少两项所形成的合金,厚度为200至500纳米。
所述N+电极层511的表面形成衬底512,该衬底512可由半导体材料制成,例如为磷化铟(InP)。
衬底512的表面形成下限制层513,下限制层513沿用于沿第二方向502限制载流子和光子,其中,第二方向502为与第一方向501垂直的方向,本实施例所示的下限制层513可由铟(In)、镓(Ga)、铝(Al)、砷(As)等四元材料制成,厚度可为150纳米。
下限制层513的表面形成有量子阱层514,量子阱层514用于将电能转化为光子,由非掺杂的In、Ga、Al、As等四元材料制成,厚度为100纳米至200纳米,该量子阱层514可为多量子阱有源区层。
量子阱层514的表面形成上限制层515,上限制层515用于沿第二方向502限制载流子和光子,由In、Ga、Al、As等四元材料制成,厚度为150纳米。
上限制层515的表面形成光栅层517,该光栅层517为InP、In、Ga、Al以及As依次交叠的结构,其中,InP为III族元素铟(In)和V族元素磷(P)组成的一种材料,沿第一方向501,光栅层517的长度可为220微米。为实现光芯片的单模工作,光栅层517采用部分增益耦合光栅或者λ/4相移光栅。其中,光栅层517为InP和InGaAsP的交替结构,光栅层517的长度可为150微米,光栅层517可为均匀光栅的光栅结构。
光栅层517的表面形成波导层518,波导层518用于形成光传输的波导,由InP材料制成,厚度为1.5微米至2微米,掺杂浓度大于或等于1E18cm -3
波导层518的表面形成接触电极层519,为了便于和金属形成欧姆接触,通常接触电极层519为重掺杂铟镓砷,掺杂浓度大于或等于1E19cm -3,厚度为50至300纳米。
接触电极层519的表面形成P+电极层520,P+电极层520为钛铂金合金等,P+电极层520的厚度可为500纳米至2微米之间。
上述所示的第一隔离区541通常在激光器401和调制器402之间,刻蚀透P+电极层520和接触电极层519,并刻蚀波导层518的一定深度,以实现对激光器401和调制器402之间的电隔离。
所述第二隔离区542通常在调制器402和光放大器403之间,刻蚀透P+电极层520和接触电极层519,并刻蚀波导层518的一定深度以实现对调制器402和光放大器403之间的电隔离。
第一隔离区541和第二隔离区542的隔离电阻大于1000欧姆。可选地,可分别在第一隔离区541和第二隔离区542注入质子或惰性离子,以增加第一隔离区541和第二隔离区542的隔离电阻阻值。
本实施例所示的调制器402包括N+电极层、衬底、下限制层、量子阱层、上限制层、波导层、接触电极层以及P+电极层,具体说明,请详见上述所示,不做赘述。本实施例所示的光放大器403包括N+电极层、衬底、下限制层、量子阱层、上限制层、波导层、接触电极层以及P+电极层,具体说明,请详见上述所示,不做赘述。
以下对本实施例所示的光芯片的各器件的类型进行说明:
本实施例所示的激光器401可为分布反馈激光器(distributed feedback laser,DFB)、分布式布拉格反射(distributed bragg reflector,DBR)激光器、或法布里-珀罗(fabry-perot,FP)激光器等。本实施例所示的所述调制器402可为电吸收调制器。本实施例所示的光放大器403可为半导体光放大器(semiconductor optical amplifier,SOA)。
可选地,上述以激光器、调制器以及光放大器为单片集成结构为例,在其他示例中,激光器、调制器以及光放大器还可为分立结构,此时,激光器可为外腔激光器,调制器可为微环调制器,或马赫曾德光调制器等。
基于上述对光模块的结构的说明,以下结合图7对本实施例所示的光模块执行光信号的获取方法的过程进行说明:其中,图7为本申请所提供的光信号的获取方法的第一种实施例步骤流程图。
步骤701、电驱动模块向激光器发送初始电信号。
步骤702、电驱动模块向调制器发送第一调制电信号。
步骤703、电驱动模块向光放大器发送第二调制电信号。
本实施例对步骤701至步骤703之间的执行时序不做限定。
以下对电驱动模块几种可选地结构进行示例性说明:
结构1
如图8a所示,其中,图8a为本申请所提供的光模块的第二种实施例结构示例图。本实施例所示的电驱动模块具体包括第一电驱动器811、第二电驱动器812以及第三电驱动器813,各电驱动器形态的说明,可参见图3所示的对电驱动模块的形态的说明,具体在本实施例中不做赘述。
本实施例所示的第一电驱动器811与激光器401连接,所述第一电驱动器811用于向激光器401发送初始电信号。第二电驱动器812与调制器402连接,所述第二电驱动器812用于向调制器402发送第一调制电信号。第三电驱动器813与光放大器403连接,所述第三电驱动器813用于向光放大器403发送第二调制电信号。
需明确的是,本实施例所示的“第一”、“第二”、“第三”,用作描述不同的器件,仅用于将一个器件与另一个器件区别开,例如第一电驱动器和第二电驱动器仅用于表示两个不同的电驱动器。
结构2
本结构2所示的电驱动模块还可通过两个电驱动器实现发送初始电信号、第一调制电 信号以及第二调制电信号的目的,本实施例以电驱动模块包括如图8b所示,其中,图8b为本申请所提供的光模块的第三种实施例结构示例图。图8b以电驱动模块包括第四电驱动器821和第五电驱动器822为例进行示例性说明,对各电驱动器形态的说明,可参见图3所示的对电驱动模块的形态的说明,具体在本实施例中不做赘述。
本实施例所示的第四电驱动器821与激光器401连接,所述第四电驱动器821用于向激光器401发送初始电信号。第五电驱动器822与电分路器823连接,该电分路器823分别与调制器402和光放大器403连接,所述第五电驱动器822用于向电分路器823发送调制电信号,所述电分路器823用于划分该调制电信号以形成第一调制电信号和第二调制电信号。本实施例所示的第一调制电信号和所述第二调制电信号的调制数据相同,且所述第一调制电信号的功率为所述调制电信号的部分功率,所述第二调制电信号的功率为所述调制电信号的部分功率。所述电分路器823还用于向调制器402发送第一调制电信号,所述电分路器823还用于向光放大器403发送第二调制电信号。
可知,本示例下的第一调制电信号和第二调制电信号为同源的电信号。
步骤704、激光器在初始电信号的作用下,进行电光转换以获取初始光信号。
本实施例中,电驱动模块向激光器所发送的初始电信号为直流电信号,激光器即可在该直流电信号的作用下,进行电光转换以获取初始光信号。
激光器在直流电信号的作用下进行电光转换,不会引入频率啁啾,本实施例所示的激光器作为光源,适合高速、长距离传输,是高速光通信的理想光源。
步骤705、调制器根据第一调制电信号对初始光信号进行调制以生成第一调制光信号。
步骤706、调制器向光放大器发送第一调制光信号。
步骤707、光放大器在第二调制电信号的作用下,对第一调制光信号进行调制以及进行光功率的放大,以获取第二调制光信号。
可见,本实施例所示的光放大器在接收到第二调制电信号的情况下,光放大器能够在该第二调制电信号的作用下,对第一调制光信号进行调制,并对第一调制光信号的光功率进行放大,从而保证光放大器所输出的第二调制光信号的光功率大于第一调制光信号的光功率,而且保证光放大器所输出的第二调制光信号的消光比(extinction ratio,ER)大于第一调制光信号的消光比。
本实施例所示的电驱动模块通过向调制器发送第一调制电信号,以及通过向光放大器发送第二调制电信号的方式,以实现对来自激光器的初始光信号的调制。
具体地,激光器向调制器所发送的初始光信号为具有初始波形的光波,调制器所接收到的第一调制电信号为具有第一波形的电比特流,光放大器所接收到的第二调制电信号为具有第二波形的电比特流。
调制器接收到初始光信号以及第一调制电信号的情况下,调制器在第一调制电信号的作用下,将该第一调制电信号加载至初始光信号的初始波形上,以输出第一调制光信号。
光放大器接收到第二调制电信号和来自调制器的第一调制光信号的情况下,光放大器在第二调制电信号的作用下,将该第二调制电信号加载至第一调制光信号的波形上,以输出第二调制光信号。
本实施例所示调制器和光放大器通过对来自激光器的初始光信号进行调制,能够改变光信号的参数,参数包括振幅、相位、频率、偏振、或波长中的一项或多项等,具体在本实施例中不做限定。
通过调制器和光放大器对来自激光器的初始光信号进行调制,具体通过调制器和光放大器对来自激光器的初始光信号进行幅度调制,能够有效地提高光芯片的消光比。其中,消光比是指光芯片所输出的第二调制光信号的高电平的光功率和低电的光功率的比值。
本实施例所示的第二调制光信号的消光比越大,那么第二调制光信号所包括的比特“1”的光功率和比特“0”的光功率区分度就越大。在光接收设备接收到该第二调制光信号的情况下,光接收设备就能够更容易区分比特“1”和比特“0”,那么,误码率(bit error rate,BER)就会越小。
为更好的理解,以下首先对光信号的眼图进行概述性解释:
如图9所示,图9为本申请所提供的眼图的第一种实施例示例图。眼图检测器对光信号进行扫描即可获取到光信号对应的眼图900。具体地,眼图900实际上就是光信号的一系列不同二进制比特按一定的规律在眼图检测器屏幕上累积后的显示。简单地说,由于眼图检测器具有余辉功能,只要将捕获的所有波形按每三个比特分别地叠加累积,从而就形成了眼图900。可见,眼图900反映了光信号的整体特征。其中,眼图检测器可为带光口的眼图仪,也称之为数字通信分析仪(digital communications analyzer,DCA)。
如图9所示的眼图900,光信号的消光比越大,那么,眼图900的眼高901的张开度越高。其中,眼高901为光功率902和光功率903的差值,其中,光功率902为光信号所包括的比特“1”的平均光功率,而光功率903为光信号所包括的比特“0”的平均光功率。可知,光信号对应的眼图900的眼高的张开度越高,则说明该光信号的消光比越大,进而说明该光信号的信号质量越好。
以下结合图10所示对本实施例所示的调制器以及光放大器均能够调制的优势进行说明,其中,图10为本申请所提供的眼图的第二种实施例示例图。
图10所示的各眼图的相关说明可参见图9所示,具体不做赘述。图10所示的眼图1011,为仅通过调制器进行调制所输出的光信号对应的眼图,该眼图1011具有眼高1012。图10所示的眼图1021,为仅通过光放大器进行调制所输出的光信号对应的眼图,该眼图1021具有眼高1022。
本实施例所示可通过调制器和光放大器均进行调制,图10所示的眼图1031为本实施例所示的光放大器所输出的第二调制光信号对应的眼图,该眼图1031具有眼高1032。
对比于眼图1011、眼图1021和眼图1031所示可知,本实施例所示的通过调制器进行调制,还能够通过光放大器进行调制以输出第二调制光信号,可知,本实施例所示的第二调制光信号,即经过了调制器的调制,还经过了光放大器的调制,从而使得本实施例所示的眼图1031的眼高1032具有较高的张开度。在眼图1031的眼高1032具有较高的张开度的情况下,说明本实施例所述的第二调制光信号具有较大的光功率和消光比。
本实施例所示的第一调制电信号和第二调制电信号需要满足第一预设条件,才能实现第二调制光信号具有比较大的光功率和消光比的目的,为此,对本实施例所示的第一预设 条件进行说明:
本实施例所示的第一预设条件为所述第一调制电信号和所述第二调制电信号之间的时延差小于或等于预设阈值,且所述第一调制电信号和所述第二调制电信号之间的调制速率相等。
具体地,本实施例所示的第一调制电信号和第二调制电信号的时延差小于或等于预设阈值是指,第一调制电信号和第二调制电信号,在同一周期内,所述第一调制电信号和第二调制电信号各自信号幅度随时间的变化趋势相同或近似相同,可知,在第一调制电信号和第二调制电信号的时延差小于或等于预设阈值的情况下,所述第一调制电信号的第一波形的变化趋势和第二调制电信号的第二波形的变化趋势相同或近似相同。
本实施例所示的预设阈值可为所述初始光信号的信号周期的一半。其中,本实施例所示的信号周期是指初始光信号两个相同信号之间的时间间隔,例如,若初始光信号为不归零码(not return to zero,NRZ)信号,则信号周期T等于1和比特率(bit rate)的比值。
本实施例所示的第一调制电信号和所述第二调制电信号之间的调制速率相等是指,所述第一调制电信号的信号周期和所述第二调制电信号的信号周期相同。
继续参见图10所示的眼图1031所示,本实施例所示的在第一调制电信号和第二调制电信号在满足第一预设条件的情况下,能够保证眼图1031所示的区域1033比较小,进而表示光放大器所输出的第二调制光信号的抖动比较小,误码率比较小,以保证信号质量比较好。
以下对本实施例所示的光信号的获取方法的有益效果进行说明:
因本实施例所示能够通过调制器和光放大器,均对来自激光器的初始光信号进行调制,以提高了光放大器所输出的第二调制光信号的消光比以及光功率,降低了第二调制光信号的误码率和抖动,提高了第二调制光信号的信号质量。
本实施例中,电驱动模块向激光器发送直流电信号,激光器在直流电信号的作用下进行电光转换,不会引入频率啁啾,以使激光器作为光源,适合高速、长距离传输,是高速光通信的理想光源。
而且本实施例所示的调制器对初始光信号进行调制的消光比可比较小,且光放大器对第一调制光信号进行调制的消光比也可以比较小,光放大器所输出的第二调制光信号的消光比为调制器调制的消光比和光放大器调制的消光比叠加而成,使得即便调制器对初始光信号进行调制的消光比比较小,且光放大器对第一调制光信号进行调制的消光比也比较小的情况下,还能够实现光放大器所输出的第二调制光信号的消光比比较大的目的,从而使得调制器和光放大器均可在较小的电流下进行调制,有效地降低了调制器所接收到的第一调制电信号和光放大器所接收到的第二调制电信号的电流的大小,有效地降低了调制器和光放大器的插入损耗和调制损耗。
因本实施例所示的光放大器可以在接收到电流值比较小的第一调制电信号和第二调制电信号的情况下,实现第二调制光信号的比较大的消光比,有效地降低了注入至光放大器的电流密度,避免了光信号出现光学灾变损伤的情况,提高了光芯片的可靠性。
因通过外置于激光器的调制器和光放大器进行调制,可保证光信号的调制过程不会对激光器的工作造成干扰,保证了激光器所输出的初始光信号的波长的稳定和速率。而且因激光器无需对光信号进行调制,则激光器的腔长较EML可缩短,有效地降低了光信号的封装难度和成本。
实施例二
本实施例相对于实施例一的区别在于,本实施例所示的激光器的功能不同于实施例一所示的激光器的功能。本实施例所示的光信号的获取方法的执行过程的说明,可参见图11所示,其中,图11为本申请所提供的光信号的获取方法的第二种实施例步骤流程图。
步骤1101、电驱动模块向激光器发送满足第二预设条件的初始电信号。
步骤1102、电驱动模块向调制器发送第一调制电信号。
步骤1103、电驱动模块向光放大器发送第二调制电信号。
本实施例对步骤1101至步骤1103之间的执行时序不做限定。
以下对本实施例所示的第二预设条件进行说明:
本实施例所述的第二预设条件为:所述初始电信号、所述第一调制电信号和第二调制电信号之间的时延差小于或等于预设阈值,且所述初始电信号、所述第一调制电信号和所述第二调制电信号的调制速率相等。
本实施例所示的初始电信号、所述第一调制电信号和所述第二调制电信号之间的时延差小于或等于预设阈值的说明,请参见实施例一所示的第一调制电信号和第二调制电信号之间的时延差小于或等于预设阈值的说明,具体在本实施例中不做赘述。
本实施例所示的所述初始电信号、所述第一调制电信号和所述第二调制电信号的调制速率相等的具体说明,请参见实施例一所示的所述第一调制电信号和所述第二调制电信号的调制速率相等的说明,具体在本实施例中不做赘述。
以下对电驱动模块的可选地结构进行示例性说明:
本实施例所示的电驱动模块的结构可参见实施例一所示的结构1或结构2所示,本实施例所述的电驱动模块的结构还可参见图12所示,其中,图12为本申请所提供的光模块的第四种实施例结构示例图。
如图12所示,本实施例所示的电驱动模块包括第六电驱动器1202,该第六电驱动器1202与电分路器1201连接,该电分路器1201分别与激光器401、调制器402和光放大器403连接。所述第六电驱动器1202用于向电分路器1201发送调制电信号,所述电分路器1201用于划分该调制电信号以形成初始电信号、第一调制电信号和第二调制电信号。对电分路器1201划分的具体过程的说明,可参见实施例一所示的电分路器的相关说明,具体不做赘述。
所述电分路器1201还用于向激光器401发送初始电信号,所述电分路器1201还用于向调制器402发送第一调制电信号,所述电分路器1201还用于向光放大器403发送第二调制电信号。
可知,本示例下的初始电信号、第一调制电信号和第二调制电信号为同源的电信号。
步骤1104、激光器在初始电信号的作用下,进行调制以生成调制后的所述初始光信号。
因本实施例所示的初始电信号满足上述所示的第二预设条件,从而使得激光器在接收到该初始电信号的情况下,激光器能够在该初始电信号的作用下,进行调制以生成调制后的初始光信号。
对比于实施例一和实施例二所示可知,在实施例一中,激光器仅具有电光转换的功能,而本实施例所示的激光器在接收到满足该第二预设条件的初始电信号下,能够生成已调制完成的初始光信号。
步骤1105、调制器根据第一调制电信号对初始光信号进行调制以生成第一调制光信号。
由步骤1104所示可知,调制器所接收到的,来自激光器的初始光信号,为已经过激光器调制的光信号。
步骤1106、调制器向光放大器发送第一调制光信号。
步骤1107、光放大器在第二调制电信号的作用下,对第一调制光信号进行调制以及进行光功率的放大,以获取第二调制光信号。
本实施例所示的步骤1105和步骤1107的说明,请参见图7所示的步骤705至步骤707所示,具体执行过程在本实施例中不做赘述。
以下结合图13对本实施例所示的激光器、调制器以及光放大器均能够实现调制的优势进行说明,其中,图13为本申请所提供的眼图的第三种实施例示例图。
图13所示的各眼图的相关说明可参见图9所示,具体不做赘述。图13所示的眼图1311,为仅通过激光器进行调制所输出的光信号对应的眼图。图13所示的眼图1321,为仅通过调制器进行调制所输出的光信号对应的眼图。图13所示的眼图1331为仅通过光放大器进行调制所输出的光信号对应的眼图。
本实施例所示的可通过激光器、调制器和光放大器均进行调制,图13所示的眼图1341为本实施例所示的光放大器所输出的,经过了激光器、调制器和光放大器调制后的第二调制光信号对应的眼图。
对比于眼图1311、眼图1321、眼图1331和眼图1341所示可知,本实施例所示的即通过激光器进行调制,还能够通过调制器进行调制,还能够通过光放大器进行调制以输出第二调制光信号,可知,本实施例所示的第二调制光信号,即经过了激光器的调制,还经过调制器的调制,还经过了光放大器的调制,从而使得本实施例所示的眼图1341的眼高具有较高的张开度,对眼图的张开度的相关解释,请详见实施例一所示,具体不做赘述。
在眼图1341的眼高具有较高的张开度的情况下,说明本实施例所述的第二调制光信号具有较高的消光比。
继续参见图13所示的眼图1341所示,本实施例所示的在初始电信号、第一调制电信号和第二调制电信号满足第二预设条件的情况下,能够保证眼图1341所示的区域1342比较小,进而表示光放大器所输出的第二调制光信号的抖动比较小,误码率比较小,以保证信号质量比较好。
以下对本实施例所示的光信号的获取方法的有益效果进行说明:
因本实施例所示能够通过激光器、调制器和光放大器,均进行调制,以提高了光放大 器所输出的第二调制光信号的消光比以及光功率,降低了第二调制光信号的误码率和抖动,提高了第二调制光信号的信号质量。
而且本实施例所示的激光器进行调制的消光比可比较小,调制器进行调制的消光比可比较小,且光放大器进行调制的消光比也可以比较小,光放大器所输出的第二调制光信号的消光比为激光器调制的消光比、调制器调制的消光比和光放大器调制的消光比叠加而成,可见,即便在激光器、调制器和光放大器的消光比比较小的情况下,也能够有效地保证光放大器所输出的第二调制光信号的消光比。有效地降低了激光器所接收到的初始电信号、调制器所接收到的第一调制电信号和光放大器所接收到的第二调制电信号的电流的大小,有效地降低了激光器、调制器和光放大器的插入损耗和调制损耗。
因本实施例所示的光放大器能够在接收到电流值比较小的第一调制电信号和第二调制电信号,有效地降低了注入至光放大器的电流密度,避免了光信号出现光学灾变损伤的情况,提高了光芯片的可靠性。
相对于实施例一,在实现同样消光比和光功率的前提下,因本实施例所示的激光器也具有调制功能,使得本实施例所示的光芯片的腔长可进一步降低,降低了光芯片的成本。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (18)

  1. 一种光信号的获取方法,其特征在于,所述方法包括:
    激光器根据初始电信号向调制器发送初始光信号;
    所述调制器在第一调制电信号的作用下,对所述初始光信号进行调制以生成第一调制光信号;
    所述调制器向光放大器发送所述第一调制光信号;
    所述光放大器在第二调制电信号的作用下,对所述第一调制光信号进行调制以及进行光功率的放大,以获取第二调制光信号,所述第一调制电信号和所述第二调制电信号之间的时延差小于或等于预设阈值,所述第一调制电信号和所述第二调制电信号之间的调制速率相等。
  2. 根据权利要求1所述的方法,其特征在于,所述预设阈值为所述初始光信号的信号周期的一半。
  3. 根据权利要求1或2所述的方法,其特征在于,所述激光器根据初始电信号向调制器发送初始光信号之前,所述方法还包括:
    所述激光器接收所述初始电信号,所述初始电信号为直流电信号;
    所述激光器在所述直流电信号的作用下,进行电光转换以获取所述初始光信号。
  4. 根据权利要求1或2所述的方法,其特征在于,所述激光器根据初始电信号向调制器发送初始光信号之前,所述方法还包括:
    所述激光器接收所述初始电信号,所述初始电信号、所述第一调制电信号和所述第二调制电信号之间的时延差小于或等于所述预设阈值,所述初始电信号、所述第一调制电信号和所述第二调制电信号的调制速率相等;
    所述激光器在所述初始电信号的作用下,进行调制以生成调制后的所述初始光信号。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述第一调制电信号具有第一波形,所述第二调制电信号具有第二波形,所述第一波形的变化趋势和所述第二波形的变化趋势相同或近似相同。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,所述方法还包括:
    电驱动模块向所述激光器发送所述初始电信号;
    所述电驱动模块向所述调制器发送所述第一调制电信号;
    所述电驱动模块向所述光放大器发送所述第二调制电信号。
  7. 根据权利要求6所述的方法,其特征在于,所述电驱动模块包括至少一个电驱动器,所述方法还包括:
    所述至少一个电驱动器发送所述初始电信号、所述第一调制电信号以及所述第二调制电信号。
  8. 根据权利要求6或7所述的方法,其特征在于,所述方法还包括:
    电分路器接收来自所述电驱动模块的调制电信号;
    所述电分路器划分所述调制电信号以形成所述第一调制电信号和所述第二调制电信号;
    所述电分路器向所述调制器发送所述第一调制电信号;
    所述电分路器向所述光放大器发送所述第二调制电信号。
  9. 根据权利要求6或7所述的方法,其特征在于,所述方法还包括:
    电分路器接收来自所述电驱动模块的调制电信号;
    所述电分路器划分所述调制电信号以形成所述初始电信号、所述第一调制电信号和所述第二调制电信号;
    所述电分路器向所述激光器发送所述初始电信号;
    所述电分路器向所述调制器发送所述第一调制电信号;
    所述电分路器向所述光放大器发送所述第二调制电信号。
  10. 一种光芯片,其特征在于,所述光芯片包括依次连接的激光器、调制器以及光放大器;
    所述激光器用于根据初始电信号向所述调制器发送初始光信号;
    所述调制器用于在第一调制电信号的作用下,对所述初始光信号进行调制以生成第一调制光信号;
    所述调制器用于向所述光放大器发送所述第一调制光信号;
    所述光放大器用于在第二调制电信号的作用下,对所述第一调制光信号进行调制以及进行光功率的放大,以获取第二调制光信号,所述第一调制电信号和所述第二调制电信号之间的时延差小于或等于预设阈值,所述第一调制电信号和所述第二调制电信号之间的调制速率相等。
  11. 根据权利要求10所述的光芯片,其特征在于,所述激光器还用于:
    接收所述初始电信号,所述初始电信号为直流电信号;
    在所述直流电信号的作用下,进行电光转换以获取所述初始光信号。
  12. 根据权利要求10所述的光芯片,其特征在于,所述激光器还用于:
    接收所述初始电信号,所述初始电信号、所述第一调制电信号和所述第二调制电信号之间的时延差小于或等于所述预设阈值,所述初始电信号、所述第一调制电信号和所述第二调制电信号的调制速率相等;
    在所述初始电信号的作用下,进行调制以生成调制后的所述初始光信号。
  13. 根据权利要求10至12任一项所述的光芯片,其特征在于,所述激光器、所述调制器以及所述光放大器为单片集成结构。
  14. 一种光模块,其特征在于,所述光模块包括依次连接的激光器、调制器以及光放大器,还包括分别与所述激光器、所述调制器以及所述光放大器连接的电驱动模块;
    所述电驱动模块用于向所述激光器发送初始电信号,并用于向所述调制器发送第一调制电信号,并用于向所述光放大器发送第二调制电信号;
    所述激光器用于根据所述初始电信号向所述调制器发送初始光信号;
    所述调制器用于在所述第一调制电信号的作用下,对所述初始光信号进行调制以生成第一调制光信号;
    所述调制器用于向所述光放大器发送所述第一调制光信号;
    所述光放大器用于在所述第二调制电信号的作用下,对所述第一调制光信号进行调制 以及进行光功率的放大,以获取第二调制光信号,所述第一调制电信号和所述第二调制电信号之间的时延差小于或等于预设阈值,所述第一调制电信号和所述第二调制电信号之间的调制速率相等。
  15. 根据权利要求14所述的光模块,其特征在于,所述电驱动模块包括至少一个电驱动器,所述至少一个电驱动器用于发送所述初始电信号、所述第一调制电信号以及所述第二调制电信号。
  16. 根据权利要求14或15所述的光模块,其特征在于,所述光模块还包括电分路器,所述电分路器与所述电驱动模块连接,所述电分路器还分别与所述调制器和所述光放大器连接,所述电分路器用于:
    接收来自所述电驱动模块的调制电信号;
    划分所述调制电信号以形成所述第一调制电信号和所述第二调制电信号;
    向所述调制器发送所述第一调制电信号;
    向所述光放大器发送所述第二调制电信号。
  17. 根据权利要求14或15所述的光模块,其特征在于,所述光模块还包括电分路器,所述电分路器与所述电驱动模块连接,所述电分路器还分别与所述激光器、所述调制器和所述光放大器连接,所述电分路器用于:
    接收来自所述电驱动模块的调制电信号;
    划分所述调制电信号以形成所述初始电信号、所述第一调制电信号和所述第二调制电信号;
    向所述激光器发送所述初始电信号;
    向所述调制器发送所述第一调制电信号;
    向所述光放大器发送所述第二调制电信号。
  18. 一种光网络设备,其特征在于,所述光网络设备包括如权利要求14至17任一项所述的光模块。
PCT/CN2021/135997 2021-04-30 2021-12-07 一种光信号的获取方法以及相关设备 WO2022227577A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110484344.4A CN115276809A (zh) 2021-04-30 2021-04-30 一种光信号的获取方法以及相关设备
CN202110484344.4 2021-04-30

Publications (1)

Publication Number Publication Date
WO2022227577A1 true WO2022227577A1 (zh) 2022-11-03

Family

ID=83745720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/135997 WO2022227577A1 (zh) 2021-04-30 2021-12-07 一种光信号的获取方法以及相关设备

Country Status (2)

Country Link
CN (1) CN115276809A (zh)
WO (1) WO2022227577A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115941055B (zh) * 2023-03-13 2023-06-02 杭州瑞利测控技术有限公司 油井信息传输的执行方法及相关设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1604514A (zh) * 2003-09-29 2005-04-06 朗迅科技公司 用于光传输的系统和方法
CN101964683A (zh) * 2010-09-21 2011-02-02 上海大学 串并联调制光学倍频毫米波RoF系统及其QPSK/16QAM调制方法
CN110190904A (zh) * 2019-05-17 2019-08-30 烽火通信科技股份有限公司 Wdm pon系统中实现光调顶信号的方法及装置
US20190288481A1 (en) * 2016-11-30 2019-09-19 Elbit Systems Electro-Optics Elop Ltd. Narrowband depolarized fiber lasers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1604514A (zh) * 2003-09-29 2005-04-06 朗迅科技公司 用于光传输的系统和方法
CN101964683A (zh) * 2010-09-21 2011-02-02 上海大学 串并联调制光学倍频毫米波RoF系统及其QPSK/16QAM调制方法
US20190288481A1 (en) * 2016-11-30 2019-09-19 Elbit Systems Electro-Optics Elop Ltd. Narrowband depolarized fiber lasers
CN110190904A (zh) * 2019-05-17 2019-08-30 烽火通信科技股份有限公司 Wdm pon系统中实现光调顶信号的方法及装置

Also Published As

Publication number Publication date
CN115276809A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
Yamaoka et al. 239.3-Gbit/s net rate PAM-4 transmission using directly modulated membrane lasers on high-thermal-conductivity SiC
Takeuchi et al. Very high-speed light-source module up to 40 Gb/s containing an MQW electroabsorption modulator integrated with a DFB laser
CN112740492B (zh) 半导体激光器、光发射组件、光线路终端及光网络单元
Tadokoro et al. 43 Gb/s 1.3 μm DFB laser for 40 km transmission
Simoyama et al. 50-Gbps direct modulation using 1.3-μm AlGaInAs MQW distribute-reflector lasers
Rosales et al. First Demonstration of an E2 Class Downstream Link for 50Gb/s PON at 1342nm
Dai et al. Versatile externally modulated lasers technology for multiple telecommunication applications
WO2022227577A1 (zh) 一种光信号的获取方法以及相关设备
Matsumoto et al. Dynamic characteristics of 20‐layer stacked QD‐SOA with strain compensation technique by ultrafast signals using optical frequency comb
Chow et al. 40-Gb/s Upstream Transmitters Using Directly Modulated 1.55-$\mu $ m VCSEL Array for High-Split-Ratio PONs
Kobayashi et al. High-speed operation at 50 Gb/s and 60-km SMF transmission with 1.3-μm InGaAlAs-based DML
Bernasconi et al. Monolithically integrated 40-Gb/s switchable wavelength converter
Wang et al. A 224 Gb/s per channel PAM4 DR4-Tx optical sub-system based on Si micro-ring modulator with hybrid integrated laser and SOA
Lu et al. Ultra-narrow linewidth quantum dot coherent comb lasers
Hasebe et al. Directly frequency modulated DFB laser integrated with EA modulator for extended transmission reach
Shahin et al. 80-Gbps NRZ-OOK electro-absorption modulation of InP-on-Si DFB laser diodes
Carey et al. Characterization of a low-cost, monolithically integrated, tunable 10G transmitter for wavelength agile PONs
CN116491037A (zh) 双输出直接调制激光设备、光网络单元和无源光网络
Nakajima et al. Wide temperature range operation (20–80° C) of 53.2 Gbit/s NRZ directly modulated 1.3-μm DFB lasers transmitted over 2 km
Tauke-Pedretti et al. 40-Gb/s series-push-pull Mach–Zehnder transmitter on a dual-quantum-well integration platform
Zuo et al. Horn-waveguide rsoa-eam as a colorless emitting source with reduced crosstalk
Suga et al. Analysis of TDECQ dependence on skew and extinction ratio with 106-gb/s PAM-4 modulation of directly modulated submicron ridge localized buried heterostructure lasers
Yasui et al. Lossless 10-Gbit/s InP npin Mach-Zehnder modulator monolithically integrated with semiconductor optical amplifier
Shahin et al. Demonstration of 80 Gbps NRZ-OOK Electro-Absorption Modulation of InP-on-Si DFB Laser Diodes
Dummer et al. A bit-rate-transparent monolithically integrated wavelength converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21939036

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21939036

Country of ref document: EP

Kind code of ref document: A1