JP2009168833A - 外部変調器のバイアス回路 - Google Patents

外部変調器のバイアス回路 Download PDF

Info

Publication number
JP2009168833A
JP2009168833A JP2008003354A JP2008003354A JP2009168833A JP 2009168833 A JP2009168833 A JP 2009168833A JP 2008003354 A JP2008003354 A JP 2008003354A JP 2008003354 A JP2008003354 A JP 2008003354A JP 2009168833 A JP2009168833 A JP 2009168833A
Authority
JP
Japan
Prior art keywords
bias
modulator
voltage
external modulator
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008003354A
Other languages
English (en)
Inventor
Tomokazu Takahashi
智和 高橋
Takeo Horio
丈夫 堀尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2008003354A priority Critical patent/JP2009168833A/ja
Publication of JP2009168833A publication Critical patent/JP2009168833A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

【課題】直流バイアスの変動の抑制を図り、かつ外部変調器とバイアス回路との接続部の小型化を図った外部変調器のバイアス回路を提供する。
【解決手段】直流バイアス手段は、前記外部変調器に最適な直流バイアス電圧を供給する調整電圧を設定する調整電圧設定手段と、直流バイアス電流を前記外部変調器に並列接続された終端抵抗に供給する定電流源を構成する制御用トランジスタと、前記調整電圧に基づく一定のバイアス電圧を、前記制御トランジスタに供給するバッファアンプとを有する。
【選択図】図1

Description

本発明は、光通信システムに使用される外部変調器のバイアス回路に係り、特に電界吸収型の外部変調器のバイアス回路に関する。
光通信システムに適用される変調方式としては、光源からの出射光を直接変調うる直接変調方式と、光源からの出射光を外部変調器により変調する外部変調方式とが知られている。
直接変調方式の光変調部の構成例を図2に示す。
図2において、直接変調方式の変調部は、レーザダイオード(LD)30の出力を検出するフォトダイオード(PD)31と、フォトダイオード31の検出出力を取り込み、該検出出力に基づいてレーザダイオード30の順方向電流を所望の値に制御する自動出力制御(APC)回路32と、入力信号に基づいてレーザダイオード30の注入電流を変化させるレーザダイオード(LD)駆動回路33と、信号重畳部34とから構成されている。
上記構成からなる直接変調方式の光変調部では、自動出力制御回路32による直流バイアス電圧と、レーザダイオード駆動回路33からの出力信号を重畳させた信号を印加してレーザダイオード30を駆動する。
自動出力制御回路32は、フォトダイオード31により検出されたレーザダイオード30の出力を取り込み、レーザダイオード30に印加する直流バイアス電圧を、レーザダイオード30の順方向電流が所望の値になるように制御するとともに、レーザダイオード駆動回路33により入力信号に基づいて前記順方向電流を変調する。この結果、レーザダイオード30からは、レーザダイオード駆動回路33により変調された信号光が集光レンズ35を介し光ファイバ36に出射される。
直接変調方式では、レーザダイオードの注入電流を変調のために変化させると、出力光の周波数も変化してしまうので、大容量長距離光ファイバ通信システムでは、外部変調方式が採用されている。
次に、外部変調方式の光変調部の構成例を図3に示す(特許文献1参照)。本例では、外部変調方式の光変調部に、電界吸収型(EA)変調器(以下、EA変調器と記す。)を用い、レーザダイオード(LD)40AとEA変調器40Bとを集積化したEA−LDモジュール40を用いている。
図3において、外部変調方式の光変調部は、レーザダイオード40Aの出力を検出するフォトダイオード(PD)41と、フォトダイオード41の検出出力を取り込み、該検出出力に基づいてレーザダイオード40Aの順方向電流を所望の値に制御する自動出力制御(APC)回路42と、EA変調器40B直流バイアス電圧を印加するEAバイアス回路43と、入力信号に応じて電界吸収型(EA)変調器40Bへの入射光を変調するEA駆動回路44とを有している。
上記構成からなる、外部変調方式の光変調器では、自動出力制御回路42は、フォトダイオード41により検出されたレーザダイオード40Aの出力を取り込み、レーザダイオード40Aに印加する直流バイアス電圧を、レーザダイオード40Aの順方向電流が所望の値になるように制御する。
また、EAバイアス回路43は、波長チャープの小さい領域でEA変調器40Bを動作させるための直流バイアス電圧(固定値)をEA変調器40Bに印加し、EA駆動回路44は、入力信号に応じた電圧信号を信号重畳部50に出力し、信号重畳部50により前記入力信号に応じた電圧信号にEAバイアス回路43から出力される直流バイアス電圧に重畳させて、EA変調器40Bに印加する。
この結果、レーザダイオード40Aの出射光がEA変調器40Bにより変調され、その変調光が集光レンズ45を介して光ファイバ46に出射される。
図4に示すように、従来のEA変調器401を駆動するEA駆動回路として使用されるEA駆動用IC44は、負電源を電源とするものしか存在していなかった。そこで、EA変調器に供給する直流バイアス電圧(EAバイアス電圧)は負電圧であることからEA駆動用IC44とEA変調器401とを直結して使用することができた。なお、図4において、400はレーザダイオード、402は終端抵抗である。
図4の構成に対して、IC電源を正電源のみで構成したいという要求が多く、最近では正電源を電源とするEA駆動用ICが製品化されている。この場合にEA駆動用ICは正電源を使用し、直流バイアス電圧(EAバイアス電圧)は負電圧であることから図5に示すように、EA駆動用IC45と、EA変調器401とを交流結合する必要がある。すなわち、EA駆動用IC45をカップリングコンデンサC0を介してEA変調器401に接続し、EA変調器401に直流バイアス電圧を供給する直流バイアス回路を、インダクタL0を介してEA変調器401に接続する必要がある。
次に、図3におけるEA−LDモジュール40の具体的構成を図6に示す。図6において、EA−LDモジュール40は、レーザダイオード400と、EA変調器401と、EA変調器401に並列接続された終端抵抗402とを有している。
EA変調器401のカソードは接地され、EA変調器401のアノードはカップリングコンデンサ403を介して入力端子411に接続されるとともに、インダクタ404を介して入力端子410に接続されている。ここで、インダクタ404は便宜上、一つのみ示してあるが、実際には、高域用と、低域用の二つのインダクタが必要である。
上記構成において、入力端子410には、直流バイアス電圧が印加され、入力端子411には、伝送する入力信号(データ信号)である変調信号(交流的信号)が入力される。EA変調器401は、入力端子410から供給される直流バイアス電圧(負電圧)により、チャーピングが少ない領域で駆動され、カップリングコンデンサ403を介して入力端子411より入力される変調信号により駆動される。この時、終端抵抗402にはEA変調器401に印加された直流バイアス電圧によりバイアス電流IBが、EA変調器401には入力端子411より入力される変調信号が印加されることにより吸収電流IAが流れ、バイアス電流IBは端子410側に、吸収電流IAは、端子411側に流れ込む。この結果、レーザダイオード400からの出射光の光吸収量が変化し、上記入力信号により変調された変調光がEA変調器401より出射される。
特開2002−314187号公報
EA変調器に印加する直流バイアス電圧及び変調電圧は、直流バイアス回路及びEA駆動回路の温度特性、回路素子の特性の経時変化により変動する。
EA変調器の特性例につき、図7乃至図13を参照して説明する。図7に示すように、EA変調器に供給する直流バイアス電圧を負方向に電圧を下げると、EA変調器は光の吸収量、すなわち損失が増大し、EA変調器の光出力は低下する特性を有している。
図8は、EA変調器に印加される直流バイアス電圧とEA変調器に流れる電流値との関係を示しており、EA変調器に吸収された光は、電流(吸収電流)に変換される。図9に光ファイバ通信システムの伝送特性測定系の構成を示す。同図において、光ファイバ通信システムの伝送特性測定系は、擬似ランダムパターンを発生する信号発生器200と、EA駆動回路201と、直流バイアス回路202と、EA−LDモジュール203と、光ファイバ(シングルモード光ファイバ)伝送路204と、光減衰器(Optical ATT)205と、受信機206と、誤り検出器207と、図示してないオシロスコープとを有している。
上記伝送特性測定系において、EA−LDモジュール203の出力端で測定した光ファイバ伝送路204に伝送前の変調信号波形を図10(A)に、光減衰器(Optical ATT)205の入力端、すなわち光ファイバ伝送路204を介した伝送後の変調信号波形を図10(B)に、夫々示す。図10(B)に示すように、EA変調器の直流バイアス電圧を0V、−0.5V、−0.7Vに設定した各信号波形を比較すると、EA変調器の直流バイアス電圧の設定値により光ファイバ伝送路204伝送後の信号波形の劣化状況が変化することが判る。因みに、図10(B)に示した測定例では、直流バイアス電圧を0Vに設定した時が、劣化状態が最も悪く、−0.7Vに設定した場合が劣化状態の程度が最も軽いことが判る。
また、図11にEA変調器の直流バイアス電圧とαパラメータとの関係を、総分散量に対する伝送ペナルティとの関係を図12に、それぞれ示す。ここに、αパラメータとは、EA変調器における屈折率及び光の吸収量が変化したとき、それぞれの変化量の比で表される量をいう。また、伝送ペナルティとは、信号を光ファイバ伝送路に伝送前の受信感度と、光ファイバ伝送路に伝送後の受信感度の差をいう。図11、図12から明らかなように、EA変調器に印加する直流バイアス電圧が変動すると、光出力の変動が大きくなり、また光ファイバ伝送路における伝送後の信号の波形品質が変化することが判る。
図13は、図9に示した伝送特性測定系において、誤り率検出器207で平均受光電力に対する符号誤り率(BER)を測定した結果を示している。同図において、曲線Aは、信号が光ファイバ伝送路204を伝送される前の特性を示している。曲線B、C、Dは信号が光ファイバ伝送路204を伝送された後の特性をそれぞれ示し、曲線BはEA変調器の直流バイアス電圧が−0.9Vのとき、曲線CはEA変調器の直流バイアス電圧が−0.7Vのとき、曲線DはEA変調器の直流バイアス電圧が−0.3Vのときの特性をそれぞれ示している。
図13の各曲線から光ファイバ伝送路204伝送前の受信感度は−26.6dBm、直流バイアス電圧が−0.9Vのときの光ファイバ伝送路204伝送後における受信感度は−26.3dBm、直流バイアス電圧が−0.7Vのときのファイバ伝送路204伝送後における受信感度は−25.8dBm、直流バイアス電圧が−0.3Vのときのファイバ伝送路204伝送後における受信感度は−24.9dBmである。これらの受信感度から、伝送ペナルティは、直流バイアス電圧が−0.9Vのときに0.3dB、直流バイアス電圧が−0.7Vのときに0.8dB、直流バイアス電圧が−0.3Vのときに1.7dBとなり、これらEA変調器の直流バイアス条件のうち、直流バイアス電圧が−0.9Vのときが最も伝送特性が優れていることが判る。
上述したように、EA変調器の直流バイアス条件が変動すると、EA変調器の光出力の変動が大きくなり、光ファイバ伝送路に伝送後の波形品質が大幅に変化するので、EA変調器の直流バイアスの条件の変動を抑制する必要がある。
また、EA変調器に直流バイアス電圧を印加するのにインダクタを介して供給する必要があり、特に低域信号阻止用のインダクタは部品サイズが大きくバイアス回路の接続部が物理的に大きくなるという問題が有った。
本発明は、このような事情に鑑みてなされたものであり、直流バイアスの変動の抑制を図り、かつ外部変調器とバイアス回路との接続部の小型化を図った外部変調器のバイアス回路を提供することを目的とする。
上記目的を達成するために、本発明の外部変調器のバイアス回路は、光源からの出射光を入力信号に基づいて変調する外部変調器に直流バイアス電圧を供給する外部変調器のバイアス回路において、前記バイアス回路は、定電流源を含んで構成される直流バイアス手段であることを特徴とする。
また、本発明の外部変調器のバイアス回路は、前記直流バイアス手段は、前記外部変調器に最適な直流バイアス電圧を供給する調整電圧を設定する調整電圧設定手段と、直流バイアス電流を前記外部変調器に並列接続された終端抵抗に供給する定電流源を構成する制御用トランジスタと、前記調整電圧に基づく一定のバイアス電圧を、前記制御トランジスタに供給するバッファアンプとを有することを特徴とする。
上記構成の本発明の外部変調器のバイアス回路は、定電流源を含んで構成される直流バイアス手段で構成される。
また、この直流バイアス手段では、調整電圧設定手段により前記外部変調器に最適な直流バイアス電圧を供給する調整電圧が設定され、直流バイアス電流を前記外部変調器に並列接続された終端抵抗に供給する定電流源を構成する制御用トランジスタに、バッファアンプにより前記調整電圧に基づく一定のバイアス電圧が供給される。
これにより、外部変調器の前記終端抵抗には、一定の直流バイアス電流が流れ、このバイアス電流により生ずる直流バイアス電圧が外部変調器に供給される。
この結果、外部変調器としてのEA変調器での直流バイアスにより生ずる吸収電流を一定に保ち、EA変調器での損失変動を軽減することができ、光出力変動の低減が図れる。
また、EA変調器から光ファイバ伝送路を介して伝送された後の信号(変調信号)の波形品質(伝送特性)の安定化が図れる。
さらに、バイアス回路を定電圧源で構成すると、EA変調器と、EA駆動回路及び直流バイアス回路を接続する接続部(バイアスT)の構成において、直流バイアス回路の最終段に低域信号阻止用の、部品サイズの大型なインダクタが必ず、必要になるが、本発明ではバイアス回路を定電流源で構成しているので、内部インピーダンスが高く、低域信号が流れ込むことはないので、低域信号阻止用のインダクタが不要となり、バイアスTに要する回路面積の小型化が図れる。
以上説明したように本発明の外部変調器のバイアス回路によれば、外部変調器としてのEA変調器での直流バイアスにより生ずる吸収電流を一定に保ち、EA変調器での損失変動を軽減することができ、光出力変動の低減が図れると共に、伝送特性の安定化が図れる。
さらに、低域信号阻止用のインダクタが不要となり、バイアスTに要する回路面積の小型化が図れる。
以下、本発明の実施形態を、図面を参照して説明する。図1に本発明の実施形態に係る外部変調器のバイアス回路の構成を示す。同図において、本発明の実施形態に係る外部変調器のバイアス回路は、入力部2、MPU(マイクロプロセッサ)3及びD/A変換器4からなる調整電圧設定手段と、差動増幅回路5と、バッファアンプ6と、制御トランジスタとしてのPNPトランジスタQ1とを有している。
EA−LDモジュール1は、レーザダイオード10と、EA変調器11と、EA変調器11の両端に並列接続された終端抵抗R1とを有している。
EA変調器11のカソードは接地され、EA変調器11のアノードはカップリングコンデンサC1を介して入力端子100に接続されるとともに、高域信号阻止用のインダクタL1を介してPNPトランジスタQ1のコレクタに接続されている。入力端子100には入力信号に応じた駆動電圧(AC:交流信号)が入力されるようになっている。
また、PNPトランジスタQ1のエミッタは、エミッタ抵抗R8を介して電源(−5V)に接続されている。
入力部2、MPU3及びD/A変換器4からなる調整電圧設定手段は、EA−LDモジュール1における外部変調器としてのEA変調器11に最適な直流バイアス電圧を供給するための調整電圧を設定する、直流バイアス電圧を供給する調整電圧を設定する機能を有している。調整電圧は入力端子101を介して差動増幅回路5に入力されるようになっている。
また、差動増幅回路5は、入力抵抗R2、R3、帰還抵抗R4、オペアンプOP1と、ノイズ除去用コンデンサC2、C3とを有している。入力抵抗R2は、一端が入力端子101に接続され、他端はオペアンプOP1の非反転入力端子に接続されている。入力抵抗R3は、一端が電源(+2.5V)に接続され、他端はOP1の反転入力端子に接続されている。オペアンプOP1の反転入力端子は、帰還抵抗R4を介してOP1の出力端に接続されている。
また、バッファアンプ6は抵抗R5、R6と、オペアンプOP2と、ノイズ除去用コンデンサC4、C5とを有している。オペアンプOP2の出力端は、抵抗R7を介してトランジスタQ1のベースに接続されており、オペアンプOP2の反転入力端子は、トランジスタQ1のエミッタに接続されている。
差動増幅回路5、バッファアンプ6を構成するオペアンプOP1、OP2の電源は+3.3Vと−5Vの2つの電源により駆動される。
上記構成において、調整電圧を設定するためのデータを入力部2より入力し、外部変調器であるEA変調器11の光出力を測定器によりモニタしながら、最終的に最適なバイアス電圧がEA変調器11の両端に印加されるように調整電圧を入力端子101に設定する。
入力部2により最終的に決定された調整電圧を設定するためのデータが入力され、MPU3が入力データを読み込み、演算処理して入力データに対応する調整電圧データをD/A変換器4に出力する。D/A変換器4で調整電圧データはアナログの調整電圧に変換され、入力端子101に印加される。
差動増幅回路5には、入力端子101から入力抵抗R2を介して入力された、最終的に決定された調整電圧(固定電圧)がオペアンプOP1の非反転入力端子に入力され、一定の電源電圧(+2.5V)がオペアンプOP1の反転入力端子に入力される。この結果、差動増幅回路5では、最終的に決定された調整電圧と一定の電源電圧(+2.5V)の差電圧が抵抗R3、R4の抵抗値により決まるゲインで増幅され、バッファアンプ6に出力される。
バッファアンプ6では、抵抗R5を介して調整電圧と電源電圧(+2、5V)の差に比例した増幅出力電圧がオペアンプOP2の非反転入力端子に入力され、かつ電源電圧(−5V)が抵抗R6を介してオペアンプOP2の非反転入力端子に入力される。この結果、差動増幅回路5の出力電圧と電源電圧(−5V)とが加算された一定電圧がトランジスタQ1のエミッタに印加され、トランジスタQ1は定電流駆動される。
この結果、EA−LDモジュール1のEA変調器11に並列接続された終端抵抗R1には、高域信号阻止用のインダクタL1、トランジスタQ1、エミッタ抵抗R8を介して一定の直流バイアス電流が流れる。これにより、終端抵抗R1の両端間には一定の直流バイアス電圧が発生し、この直流バイアス電圧がEA変調器11の両端に印加される。
この結果、外部変調器としてのEA変調器での直流バイアスにより生ずる吸収電流を一定に保ち、EA変調器での損失変動を軽減することができ、光出力変動の低減が図れる。
また、EA変調器から光ファイバ伝送路を介して伝送された後の信号(変調信号)の波形品質(伝送特性)の安定化が図れる。
さらに、バイアス回路を定電圧源で構成すると、EA変調器と、EA駆動回路及び直流バイアス回路を接続する接続部(バイアスT)の構成において、直流バイアス回路の最終段に低域信号阻止用の、部品サイズの大型なインダクタが必ず、必要になるが、本発明ではバイアス回路を定電流源で構成しているので、内部インピーダンスが高く、低域信号が流れ込むことはないので、低域信号阻止用のインダクタが不要となり、バイアスTに要する回路面積の小型化が図れる。
本発明の実施形態に係るEA変調器のバイアス回路の構成を示す回路図。 レーザ出力の直接変調方式における駆動回路の構成を示すブロック図。 レーザ出力の外部変調方式における駆動回路の構成を示すブロック図。 EA変調器とEA駆動用ICとの接続関係の一例を示す説明図。 EA変調器とEA駆動用ICとの接続関係の他の例を示す説明図。 図3におけるEA−LDモジュールの具体的構成を示す回路図。 直流バイアス電圧に対するEA変調器の光出力特性を示す特性図。 直流バイアス電圧に対するEA変調器の電流特性を示す特性図。 光ファイバ通信システムの伝送特性測定系を示すブロック図。 図9における変調信号の光ファイバ伝送路伝送前の波形と、EA変調器の直流バイアス電圧を変化させたときの変調信号の光ファイバ伝送路伝送後の波形とを示す波形図。 EA変調器の直流バイアス電圧に対するαパラメータとの関係を示す特性図。 EA変調器の直流バイアス電圧を変化させたときの総分散量に対する伝送ペナルティとの関係を示す特性図。 図9に示した光ファイバ通信システムの伝送特性測定系において測定した平均受光電力に対する符号誤り率の特性を示す特性図。
符号の説明
1…EA−LDモジュール、2…入力部、3…MPU、4…D/A変換器、5…差動増幅回路、6…バッファアンプ、10…レーザダイオード、11…EA変調器、R1〜R8抵抗、L1…インダクタ、C1…カップリングコンデンサ、C2〜C5…ノイズ除去用コンデンサ、OP1、OP2…オペアンプ、100、101…入力端子、Q1…制御用トランジスタ

Claims (2)

  1. 光源からの出射光を入力信号に基づいて変調する外部変調器に直流バイアス電圧を供給する外部変調器のバイアス回路において、
    前記バイアス回路は、定電流源を含んで構成される直流バイアス手段であることを特徴とする外部変調器のバイアス回路。
  2. 前記直流バイアス手段は、
    前記外部変調器に最適な直流バイアス電圧を供給する調整電圧を設定する調整電圧設定手段と、
    直流バイアス電流を前記外部変調器に並列接続された終端抵抗に供給する定電流源を構成する制御用トランジスタと、
    前記調整電圧に基づく一定のバイアス電圧を、前記制御トランジスタに供給するバッファアンプと、
    を有することを特徴とする請求項1に記載の外部変調器のバイアス回路。
JP2008003354A 2008-01-10 2008-01-10 外部変調器のバイアス回路 Pending JP2009168833A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008003354A JP2009168833A (ja) 2008-01-10 2008-01-10 外部変調器のバイアス回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008003354A JP2009168833A (ja) 2008-01-10 2008-01-10 外部変調器のバイアス回路

Publications (1)

Publication Number Publication Date
JP2009168833A true JP2009168833A (ja) 2009-07-30

Family

ID=40970117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008003354A Pending JP2009168833A (ja) 2008-01-10 2008-01-10 外部変調器のバイアス回路

Country Status (1)

Country Link
JP (1) JP2009168833A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9014570B2 (en) 2011-03-31 2015-04-21 Fujitsu Optical Components Limited Optical transmitter and method for optical signal waveform compensation
WO2018119591A1 (zh) * 2016-12-26 2018-07-05 华为技术有限公司 一种光信号调制电路和装置
CN109495185A (zh) * 2018-11-14 2019-03-19 青岛海信宽带多媒体技术有限公司 光模块

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9014570B2 (en) 2011-03-31 2015-04-21 Fujitsu Optical Components Limited Optical transmitter and method for optical signal waveform compensation
WO2018119591A1 (zh) * 2016-12-26 2018-07-05 华为技术有限公司 一种光信号调制电路和装置
CN109690889A (zh) * 2016-12-26 2019-04-26 华为技术有限公司 一种光信号调制电路和装置
EP3550681A4 (en) * 2016-12-26 2019-10-30 Huawei Technologies Co., Ltd. CIRCUIT AND DEVICE FOR OPTICAL SIGNAL MODULATION
CN109690889B (zh) * 2016-12-26 2020-12-15 华为技术有限公司 一种光信号调制电路和装置
US10897311B2 (en) 2016-12-26 2021-01-19 Huawei Technologies Co., Ltd. Optical signal modulation circuit and apparatus
CN109495185A (zh) * 2018-11-14 2019-03-19 青岛海信宽带多媒体技术有限公司 光模块
CN109495185B (zh) * 2018-11-14 2020-12-22 青岛海信宽带多媒体技术有限公司 光模块

Similar Documents

Publication Publication Date Title
US8718107B2 (en) Bias circuit of electro-absorption modulated laser and calibration method thereof
US5900621A (en) Light transmitter having an automatic bias control circuit
JP5118157B2 (ja) 変調方法、変調プログラム、記録媒体、変調装置及び光送信器
KR100909044B1 (ko) 광 세기 및 소광비 조절 장치 및 방법
JP4963339B2 (ja) レーザシステムの較正
GB2316562A (en) Optical transmitter with feedback control to maintain a constant level of backward brillouin scattered light
JP3736953B2 (ja) 電界吸収型光変調器の駆動回路及び、これを用いた光送信器
JP2008236551A (ja) 光伝送用トランシーバ及びその送信方法
CN105227243A (zh) 一种控制消光比的电路、芯片和光模块
US7081609B2 (en) Light-receiving circuit capable of compensating a temperature dependence of an optical sensitivity of a photodiode
EP0661838B1 (en) Method, circuit and apparatus for mitigating effects of wavelength-dependent atmospheric transmission characteristics on atmospheric optical telecommunication
JP2009168833A (ja) 外部変調器のバイアス回路
CN102593712B (zh) 非冷却光半导体装置
CN108011671B (zh) 控制包括半导体光放大器的半导体光学装置的方法
JP3828706B2 (ja) 光送信器及び光伝送システム
JP2002111120A (ja) 光送信モジュール
JPH0461390A (ja) 光送信装置
US20080031635A1 (en) Optical Transmitter
JP4090708B2 (ja) 光送信器
JP2004320245A (ja) 光送信モジュール
KR20110067777A (ko) 광송수신 제어장치
JP2002049014A (ja) 光送信器及び光伝送システム
JP2011243827A (ja) 変調器、光送信機及び変調方法
WO2020065822A1 (ja) 光送信モジュール
JP2820442B2 (ja) 電界吸収型光変調器の出力波形安定化方法