WO2018119550A1 - 一种薄带连铸带钢冷却机构及其冷却方法 - Google Patents

一种薄带连铸带钢冷却机构及其冷却方法 Download PDF

Info

Publication number
WO2018119550A1
WO2018119550A1 PCT/CN2016/112006 CN2016112006W WO2018119550A1 WO 2018119550 A1 WO2018119550 A1 WO 2018119550A1 CN 2016112006 W CN2016112006 W CN 2016112006W WO 2018119550 A1 WO2018119550 A1 WO 2018119550A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
strip
unit
header
cooling mechanism
Prior art date
Application number
PCT/CN2016/112006
Other languages
English (en)
French (fr)
Inventor
张宇军
徐乐江
叶长宏
方园
王星
冈安晋平
堀井健治
Original Assignee
宝山钢铁股份有限公司
普锐特冶金技术日本有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司, 普锐特冶金技术日本有限公司 filed Critical 宝山钢铁股份有限公司
Priority to PCT/CN2016/112006 priority Critical patent/WO2018119550A1/zh
Priority to CN201680091699.4A priority patent/CN110087802B/zh
Publication of WO2018119550A1 publication Critical patent/WO2018119550A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling

Definitions

  • the invention relates to the field of thin strip continuous casting technology, in particular to a thin strip continuous casting strip cooling mechanism and a cooling method of the cooling mechanism.
  • thin strip continuous casting is required according to different steel casting requirements.
  • the thin strip continuous casting process requires equipment to meet different cooling speeds and crimp temperature control to meet the production requirements of different steel grades.
  • the controlled cooling methods of strip steel mainly include laminar cooling, pressure jet cooling, spray cooling, water curtain cooling, direct quenching and aerosol cooling.
  • laminar cooling is to cool the surface of the steel plate by columnar water flow, and the water flow maintains laminar flow state, and a strong cooling capacity can be obtained; the shortage is long in the cooling zone, the distance between the headers is certain, and the lateral cooling is uneven, The water quality requirements are high, the nozzle is easy to block, the equipment is complicated, and the maintenance cost is large in the later stage, which is suitable for strong cold conditions.
  • the pressure jet cooling method is to spray water from a pressure nozzle at a certain pressure, and the jet is in a turbulent state and continuously impacts the steel plate for cooling, which is characterized by good penetrability, high cooling efficiency, and recyclable water, and is suitable for The thick water vapor film environment; the lack of uniformity is not high, the water consumption is large, the water splash is serious, the water quality is high, the water spray hole is easy to block, and it is suitable for quenching conditions.
  • Spray cooling is to pressurize water, eject it from the orifice, and use the droplet group to impact the surface of the cooled steel sheet to cool it.
  • the cooling is uniform with respect to the pressure injection method, and the cooling capacity is strong; the lack of high pressure is required.
  • the cooling rate adjustment range is small, and the requirements for water quality are high; currently there are few applications.
  • the water curtain cooling is that the cooling water forms a smooth curtain-like water flow through the slit nozzle, and is sprayed onto the surface of the steel sheet, the water flow maintains the laminar flow state, the adjustable cooling speed range is small, the cooling zone distance is short, the water quality requirement is not high, and the maintenance is easy; Insufficient is the upper and lower surfaces of the strip and the entire cooling The area is unevenly cooled, and it is difficult to control the water spray intensity distribution along the width of the steel sheet; it is suitable for cooling on the strip output roller or cooling between the stands of the continuous rolling mill.
  • the steel plate is directly immersed in water for quenching or rapid cooling, the cooling speed is fast; the shortage is uneven cooling, the cooling speed adjustment range is small, the applicable steel type is limited, the water volume is large; suitable for high tensile strength (above 600MPa) A steel sheet containing a bainite and martensite microstructure.
  • Aerosol cooling using air and water orthogonal nozzles, is a gas-liquid two-phase flow cooling technology.
  • the utility model utilizes the principle of water atomization to spray water onto the surface of the steel plate in a mist form, and the cooling is uniform, and the cooling speed adjustment range is large, the shortage is complicated equipment, the air and water requirements are strict, the plant mist is large, and the equipment is easy to be corroded;
  • the range of cooling capacity from air-cooled to strong water-cooling is especially suitable for secondary cooling of continuous casting.
  • the aerosol cooling relies on compressed air to break the water stream into droplets, and the droplets collide with the tropical steel to quickly absorb heat and gas, thereby taking away a large amount of heat to achieve strip cooling. Purpose; however, when the flow rate of the aerosol cooling water is large, there is still a residual water film layer on the strip, and a gas film layer between the water film layer and the tropical steel, which hinders the gasification of the cooling water. It is counterproductive to heat transport.
  • the aerosol cooling method is evenly distributed along the width direction of the strip, which is favorable for controlling the strip shape, the aerosol cooling process itself is complicated, and the temperature drop value of the strip after the aerosol cooling and the strip strip thickness, belt speed, gas water Flow rate, material specific heat, initial temperature and heat transfer coefficient are closely related.
  • the technical problem to be solved by the present invention is to provide a cooling mechanism and a cooling method capable of ensuring the cooling rate and cooling effect and uniformity of the strip casting strip.
  • the present invention adopts the following technical solutions:
  • a thin strip continuous casting strip cooling mechanism the cooling mechanism is disposed on a horizontal roller table at an exit of a casting mill, and is located between a rolling mill mechanism and a crimping mechanism, wherein the cooling mechanism is provided with a plurality of cooling groups, and each The cooling group includes at least one cooling unit, and the cooling unit in each of the cooling groups is cooled by at least one of aerosol cooling, laminar cooling, and jet cooling; wherein the cooling units are respectively located at the Said the upper side and the lower side of the roller table, And including a header main road connected to the water pipeline or the air pipeline, and at least two header branches connected to the header main road, wherein the manifold branch is provided with a plurality of nozzles, each of the sets An on-off switch for turning on or off the cooling unit is provided on the pipe main road, and the water pipe and the air pipe are further provided with an opening control valve for controlling a flow rate of gas and liquid in the cooling unit.
  • the cooling mechanism comprises a coarse cooling section cooling mechanism located in the rough section for coarse cooling; and a total header route of at least three cooling units in the cooling unit of each cooling group in the coarse cooling section cooling mechanism One of the opening control valves is controlled.
  • the cooling mechanism further comprises a cooling section cooling mechanism for fine cooling in the refining section; and a total of at least two cooling units in the cooling unit of each cooling group in the cooling section cooling mechanism Routing one of the opening control valve controls.
  • the gas pipeline or the water pipeline is further provided with a homogenizer to uniformly control the cooling speed of each of the coarse and cold sections.
  • the nozzles on the two manifold branches adjacent to each other in the cooling unit are respectively arranged in a staggered manner.
  • the interface structure between the header main road and each manifold branch is the same, and the interface structure between the main manifolds and the water pipeline or the air pipeline is the same.
  • the shape of the nozzle is rectangular or oblate, and one of the opposite sides of the rectangle has a circular arc shape.
  • each of the on/off switches is an on/off control solenoid valve.
  • the height of the nozzle on the header branch on the upper side of the roller table ranges from 80 mm to 750 mm
  • the height of the nozzle on the header branch on the lower side of the roller table ranges from 50 mm to 550 mm
  • the upper side of the roller table is set.
  • the spacing between two adjacent nozzles on the tube branch ranges from 50 mm to 700 mm
  • the spacing between two adjacent nozzles on the header branch on the lower side of the roller table ranges from 50 mm to 500 mm.
  • the cooling medium in the water pipeline includes water
  • the cooling medium in the air pipeline includes at least one of an aerosol, air, nitrogen or other gases.
  • the opening control valve and the on/off switch of each of the cooling groups are electrically connected to a control unit to perform opening of the opening control valve and turning on and off of the on/off switch. Adjustment.
  • the roller table is further provided with temperature detecting means for detecting the temperature of the strip on the steel strip in real time, and speed detecting means for detecting the moving speed of the strip, the temperature detecting means and the speed detecting means are also connected to the control Unit communication connection.
  • the invention also provides a cooling method based on the above-mentioned thin strip continuous casting strip cooling mechanism, comprising the following steps:
  • step S2 connecting the cooling unit to the corresponding water pipe or the gas pipe according to the cooling mode configured in step S1;
  • control unit controls the opening degree of the opening degree control valve and the on and off of the on/off switch of each cooling group electrically connected thereto, and performs a cooling operation;
  • the step S3 further comprises: the temperature detecting device disposed on the roller table transmits the temperature information of the strip detected by the temperature detecting device to the control unit, and the speed detecting device disposed on the roller table transmits the speed information of the strip detected by the speed detecting device Sended to the control unit, the control unit performs feedforward control of the pressure or flow of the opening control valve and the on/off switch in each cooling group according to the temperature information and the speed information received by the control unit.
  • the step S3 further comprises: a curling mechanism located at one side of the cooling mechanism detects the curl temperature of the strip in real time, and transmits the detected temperature information to a control unit communicably connected thereto, The control unit compares the temperature information received by the control unit with the predetermined curl temperature therein, and performs feedback control according to the comparison result to adjust the opening degree of the opening degree control valve and the on and off of the on/off switch.
  • a curling mechanism located at one side of the cooling mechanism detects the curl temperature of the strip in real time, and transmits the detected temperature information to a control unit communicably connected thereto, The control unit compares the temperature information received by the control unit with the predetermined curl temperature therein, and performs feedback control according to the comparison result to adjust the opening degree of the opening degree control valve and the on and off of the on/off switch.
  • step S1 further comprising dividing the cooling section of the cooling mechanism into a cold section and a cooling section, and further comprising, in step S2, connecting each cooling unit to the corresponding one according to the division of the cooling section in step S1 a waterway pipe or a gas pipe, wherein at least three of the cooling units located in the cooling group of the rough section are controlled by one of the opening degrees
  • the valve is jointly controlled; in the cooling unit of the refining section, at most two cooling units are jointly controlled by one of the opening control valves.
  • Each cooling group in the cooling mechanism of the present invention may use different cooling methods to cool the steel strip, and the headers of the cooling unit of the present invention are respectively connected to at least two header branches, and each of the headers On-off switches are respectively provided on the total roads.
  • the headers of the cooling unit of the present invention are respectively connected to at least two header branches, and each of the headers On-off switches are respectively provided on the total roads.
  • connection port between the header main road and the header branch of the present invention has the same structure (modular design), and the connection port between the header main road and the water pipeline or the air pipeline is the same, According to the process requirements of the strip steel, the cooling mode of each cooling group and the position of the cooling group can be adjusted to achieve the cooling rate and cooling effect of the cooling curve;
  • each cooling unit is adjustable from the surface of the strip, and the spacing of the nozzles on the manifold branch can also be changed, thereby ensuring the uniformity of cooling of the strip along the width direction;
  • the invention can divide the cooling section where the cooling mechanism is located into a cold section and a cooling section to better distribute the cooling mode of each cooling group;
  • the homogenizer of the invention and the setting of the opening degree control valve can ensure the uniformity of the flow rate and the pressure on the manifold main road and the header branch road, and further ensure the uniform cooling effect;
  • the temperature detecting device and the fast reading detecting device provided on the roller table in the invention, and the curling mechanism can detect the temperature and moving speed of the strip in real time, and control the communication connection with the opening control valve and the on/off switch.
  • the unit can perform feedforward and feedback adjustment on the opening degree of the opening degree control valve and the on and off of the on/off control valve according to the temperature information and the speed information from the temperature detecting device and the speed reading detecting device and the curling mechanism to ensure the feedforward and feedback adjustment.
  • the cooling mechanism requires cooling temperature and cooling rate of the strip casting strip.
  • FIG. 1 is a schematic view showing the position of a cooling mechanism of a strip casting strip in accordance with an embodiment of the present invention
  • FIG. 2 is a structural view of a cooling mechanism of a strip casting strip in accordance with an embodiment of the present invention
  • FIG. 3 is a schematic structural view of a cooling group of a single group of pipes (waterway or gas path) according to an embodiment of the present invention
  • FIG. 4 is a schematic structural view of a cooling group of two sets of pipes (waterway and gas path) in an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a cooling unit according to another embodiment of the present invention.
  • Fig. 6 is a flow chart showing a cooling method of a strip casting strip cooling mechanism according to an embodiment of the present invention.
  • FIG. 1 is a schematic view showing the position of a strip casting strip cooling mechanism according to an embodiment of the present invention, wherein the cooling mechanism 100 is disposed on a horizontal roller table at the exit of the rolling mill and located between the rolling mill mechanism 200 and the curling mechanism 300.
  • a plurality of sets of pinch rolls 400 may be disposed between the cooling mechanism 100 and the curling mechanism 300 and the front side of the rolling mill mechanism 200 to clamp and convey the strip and form a certain tension;
  • the rolling mill mechanism 200 is used to control the shape and thickness of the strip, and the crimping mechanism 300 is used to roll the strip to facilitate storage and transport.
  • FIG. 1 is a schematic view showing the position of a strip casting strip cooling mechanism according to an embodiment of the present invention, wherein the cooling mechanism 100 is disposed on a horizontal roller table at the exit of the rolling mill and located between the rolling mill mechanism 200 and the curling mechanism 300.
  • a plurality of sets of pinch rolls 400 may be disposed between the cooling mechanism 100 and the curling mechanism 300 and the front side of the
  • each of the cooling groups includes at least one cooling unit 1, each of the cooling units 1
  • the cooling method may be aerosol cooling, laminar cooling or air jet cooling, and the cooling modes of the cooling unit 1 in the same cooling group may be the same or different, and the cooling of each cooling unit 1 may be adjusted in order to meet the required process requirements.
  • the cooling unit 1 is provided with a water path and/or a gas path header for respectively conveying gas and liquid, and the cooling medium in the water pipe header may be water, gas path
  • the cooling medium in the header may be at least one of air, nitrogen or other gas; correspondingly, the cooling medium in the water pipeline may be water, and the cooling medium in the air pipeline may be at least air, nitrogen or other gases.
  • the cooling unit 1 in this embodiment includes the header main roads respectively located on the upper side and the lower side of the roller path and connected to the water pipe or the gas pipe 2 and at least two header branches 3 communicating with the header main road 2, as shown in FIG.
  • the pipe main circuit 2 is further provided with an on/off switch 5 for turning on or off the water path and the gas path of the cooling unit 1, and an on-off control solenoid valve is used as in the present embodiment.
  • the water pipe and the gas pipe are also provided with an opening control valve 6 for controlling the flow rate of the gas and the liquid in each of the cooling units 1, and at the same time, in order to ensure the uniformity of the cooling effect, the same side in the cooling unit 1 in the present embodiment
  • the nozzles 4 on the adjacent two header branches 3 are respectively arranged in a staggered manner so that the liquid or gas ejected from the nozzles 4 can be uniformly sprayed on the strip to ensure a uniform cooling effect.
  • header switch 2 of each of the cooling units 1 in the present embodiment is provided with an on/off switch 5 for controlling the on and off of the road header, it is not necessary to provide a switch on each of the header branches 3, thereby saving The cost also ensures the same opening and closing of the corresponding header branch 3 to ensure the uniformity of the cooling effect.
  • the cooling mechanism 100 includes a coarse cooling section cooling mechanism located in the coarse cooling section and a cooling section cooling mechanism located in the refining section, and the cooling unit 1 of the cooling group in the coarse cooling section cooling mechanism At least three cooling units 1 are controlled by one opening control valve 6; in the cooling unit 1 in the cooling group of the cooling section cooling mechanism, at most two cooling units 1 are controlled by one opening control valve 6, and are coarse
  • the cooling section cooling mechanism and the cooling section of the refining section can be interchanged and adjusted to meet different cooling process requirements; during the cooling process, the cooling mode adopted by each cooling unit 1 can also be changed to meet different The cooling process curve requirements.
  • the gas pipeline or the water conduit is further provided with a homogenizer 7,
  • the flow and pressure in the header group of each cooling unit are uniformly controlled; the design of the homogenizer 7 can also ensure the uniformity of the cooling rate of the coarse cooling section, and further effectively control the cooling speed and cooling effect of the cooling mechanism 100.
  • each of the header branches 3 can have a unified docking structure with the header circuit 2, and each of the headers 3 can be replaced with each other; similarly, the headers 2 can also be replaced with each other. Installation location. Therefore, depending on the process requirements to be satisfied, the cooling mode or the cooling effect can be changed by changing the position of each cooling unit 1.
  • the height of the nozzle 4 and the spacing between the nozzles 4 may be different for different cooling units 1, in particular, the nozzle height on the header branch 3 on the upper side of the roller table.
  • the range is from 80 mm to 750 mm
  • the height of the nozzle on the header branch 3 on the lower side of the roller table is in the range of 50 mm to 550 mm
  • between the two adjacent nozzles 4 on the header branch 3 on the upper side of the roller table The spacing between the two adjacent nozzles 4 on the header branch 3 on the lower side of the roller table ranges from 50 mm to 500 mm.
  • FIG. 3 it is a schematic structural view of a cooling group of a single group of pipes (waterway or gas path) in the embodiment of the present invention.
  • the cooling method since it is a single group of pipes, it is only suitable for transportation of a single waterway or gas path, that is, the cooling method may be air-jet cooling or laminar cooling, and the cooling operation is performed by a single cooling water and a compressed gas.
  • the shape of the outlet of the nozzle 4 in the embodiment of the present invention may be substantially rectangular or oblate, and any one of the opposite sides of the rectangle has a circular arc shape.
  • a and B respectively represent the nozzles 4 on the two header branches 3, and the nozzles 4 are realized due to the alternate arrangement of the nozzles 4.
  • the sprayed cooling liquid or gas is evenly sprayed onto the strip. It can be seen from the spraying effect of each nozzle 4 on the two header branches 3 that the spraying effect (cooling effect) of each part of the strip is substantially the same, thereby ensuring the uniformity of the cooling effect.
  • FIG. 4 it is a schematic diagram of a mechanism of a cooling group of two sets of pipes (waterway and gas path) in the embodiment of the present invention.
  • the solid line represents the gas pipeline 8 and the dotted line represents the water pipeline 9, That is, the cooling method may be aerosol cooling, and the air cooling uses an air and water orthogonal nozzle, which is a cooling technology of gas-liquid two-phase flow, which uses the principle of water atomization to spray water onto the surface of the steel sheet. The effect of cooling.
  • the header branch 3 in the waterway communicates with the header branch 3 in the gas pipeline to keep the gas from being ejected from the nozzle 4 of the header branch 3 in the waterway together with the liquid, and an atomization reaction is generated.
  • the cooling medium is an aerosol
  • five cooling groups may be used, wherein three cooling groups are located in the coarse cooling section, two cooling groups are located in the cooling section, and the cooling groups in the cooling sections of each coarse cooling section respectively Including 10, 8, and 6 cooling units 1, the cooling group in the cooling section cooling mechanism has a total of 12 cooling units 1, each cooling unit 1 includes 2 header branches 3, and the height of the nozzle 4 on the upper side of the strip is 350mm, the spacing between the two nozzles 4 on the same header branch 3 is 400mm, the height of the nozzle 4 on the lower side of the strip is 180mm, and the spacing between the two nozzles 4 on the same header branch 3 is 180mm Finally, the average cooling rate is 38 ° C / s, and when the coiling temperature is 590 ° C, better cooling uniformity can be achieved in the strip width direction.
  • the cooling medium is water and aerosol, including two sets of cooling groups, respectively using laminar cooling and aerosol cooling, and a cooling group using laminar cooling.
  • the cooling group using aerosol cooling comprises 10 cooling units 1
  • each cooling unit 1 comprises 2 header branches 3, and the nozzle 4 on the upper side of the strip has a height of 390 mm, the same header
  • the distance between the two nozzles 4 on the branch 3 is 440 mm
  • the height of the nozzle 4 on the lower side of the strip is 150 mm
  • the distance between the two nozzles 4 on the same header branch is 150 mm, which can finally be achieved.
  • the average cooling rate is 33 ° C / s, and when the coiling temperature is 620 ° C, better cooling uniformity can be achieved in the strip width direction.
  • the cooling medium in the cooling section may be an aerosol or a nitrogen gas; when three cooling groups are used, the cooling cooling may be performed by two cooling groups.
  • FIG. 5 is a schematic structural view of a cooling unit in another embodiment of the present invention, wherein the configuration has two types of water pipes and gas paths, which can be used for atomization cooling, and the header in the cooling unit 1
  • the branch 3 is constructed as a branch 8 extending from the manifold main road 2, which is arranged at the outlet end of the branch 8 to effect the ejection of gas or liquid.
  • the opening control valve 6 and the on/off switch 5 in each cooling group are electrically connected to a control unit (not shown) to open and control the opening degree control valve 6
  • the on/off switch 5 is turned on and off for adjustment.
  • a temperature detecting means for detecting the temperature of the strip on the steel strip and a speed detecting means for detecting the moving speed of the strip may be provided on the roller table, and the temperature detecting means and the speed detecting means are also communicably connected to the control unit.
  • the control unit can perform feedforward setting of the on/off switch 5 and the opening degree control valve 6 of each cooling group according to the temperature information received from the temperature detecting device and the speed information from the speed detecting device in real time.
  • the curling mechanism 300 located on one side of the cooling mechanism of the present invention detects the curl temperature of the strip in real time and transmits the detected temperature information to a control unit communicatively coupled thereto, the control unit receiving the same by receiving it
  • the temperature information is compared with a predetermined curl temperature therein, and feedback is performed according to the comparison result, and the opening degree of the opening degree control valve 6 and the on and off of the on/off switch 5 are controlled under the combination of the aforementioned feedforward and curl temperature feedback. Turn off and finally achieve real-time temperature control of the strip.
  • the present invention can also provide a production line provided with the above-described cooling mechanism, the structure of which is generally as shown in FIG.
  • the cooling mechanism 100 is disposed on the horizontal roller path of the mill exit, and is located between the rolling mill mechanism 200 and the crimping mechanism 300.
  • a plurality of sets of pinch rolls may be disposed between the cooling mechanism 100 and the crimping mechanism 200 and the front side of the rolling mill mechanism 200. 400 to clamp and transport the strip and maintain a certain tension on the strip.
  • the rolling mill mechanism 200 is used to control the form and thickness of the strip
  • the crimping mechanism 300 is used to roll the strip for storage and transport.
  • a flow chart of a cooling method for a strip casting strip cooling mechanism includes the following steps:
  • step S2 connecting the cooling units of the cooling groups to the corresponding water pipelines or gas pipelines according to the cooling mode configured in step S1;
  • step S3 may further include: the temperature detecting device disposed on the roller table transmits the temperature information of the detected strip to the control unit, and the speed detecting device disposed on the roller table detects the strip.
  • the speed information of the strip is sent to the control unit, and the control unit performs feedforward control of the opening control valve 6 and the on/off switch 5 in each cooling group based on the temperature information and the speed information received by the control unit.
  • step S3 further includes: a curling mechanism located at one side of the cooling mechanism detects the curl temperature of the strip in real time, and transmits the detected temperature information to a control unit communicatively coupled thereto, The control unit compares the temperature information received by it with the predetermined curl temperature therein, and according to the comparison result, controls the opening degree of the opening degree control valve 6 and the on and off of the on/off switch 5.
  • the feed control is used to further adjust the flow rate and pressure of the liquid or gas in each header 2 and header branch 3 in each cooling unit 1, thereby real-time adjustment of the cooling effect.
  • step S1 further comprising dividing the cooling section of the cooling mechanism into a cold section and a cooling section, and further comprising, in step S2, connecting each cooling unit to the corresponding one according to the division of the cooling section in step S1 a water pipe or a gas pipe, wherein at least three cooling units are jointly controlled by one of the opening control valves in the cooling unit in the cooling group of the coarse cooling section; the cooling unit of the cooling section At most, two cooling units are jointly controlled by one of the opening control valves.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

一种薄带连铸带钢冷却机构,其内设有多个冷却组(C1、C2、...、Cn),每个冷却组内包括至少一个冷却单元(1),每个冷却组内的冷却单元的冷却方式为气雾冷却、层流冷却、喷气冷却中至少一种;冷却单元分别位于辊道上侧、下侧,并包括连接至水路管道或气路管道的集管总路(2)以及与集管总路相连通的至少两个集管支路(3),集管支路上设有多个喷嘴(4),集管总路上设有控制冷却单元通断的通断开关(5),水路管道和气路管道上还设有控制冷却单元内气体和液体的流量的开度控制阀(6)。该冷却机构实现了对带钢的冷却速度的控制,并具有均匀冷却带钢的效果。还包括一种薄带连铸带钢冷却机构的冷却方法。

Description

一种薄带连铸带钢冷却机构及其冷却方法 技术领域
本发明涉及薄带连铸技术领域,特别是涉及一种薄带连铸带钢冷却机构以及该冷却机构的冷却方法。
背景技术
目前,薄带连铸根据不同的钢种浇注要求,薄带连铸工艺要求装备应满足不同的冷却速度和卷曲温度控制,以满足不同钢种生产需求。
目前,带钢的控制冷却方式主要有层流冷却、压力喷射冷却、喷淋冷却、水幕冷却、直接淬火和气雾冷却等。
其中,层流冷却是通过柱状水流冲击钢板表面进行冷却,水流保持层流状态,可获得很强的冷却能力;不足是冷却区距离长,集管之间有一定距离,横向冷却不均匀,对水质要求较高,喷嘴容易堵塞,设备复杂,后期维护费用较大,适用于强冷条件下。
压力喷射冷却方法,是从压力喷嘴中将水以一定压力喷出,且射流为紊流状态并连续冲击钢板而进行冷却,其特点是穿透性好,冷却效率高,可循环用水,适用于水汽膜较厚的环境;不足是均匀性不高,用水量大,水飞溅严重,对水质的要求较高,喷水孔容易堵塞,适用于急冷条件下。
喷淋冷却是将水加压,由喷孔喷出,利用液滴群冲击被冷却的钢板表面来进行冷却,相对于压力喷射方法冷却均匀,冷却能力较强;不足是需要较高的压力,冷却速度调节范围小,对水质的要求较高;目前应用较少。
水幕冷却是冷却水通过缝隙式喷嘴形成平滑幕状水流,喷射到钢板表面,水流保持层流状态,可调节的冷却速度范围小,冷却区距离短,对水质的要求不高,易于维护;不足是带钢上下表面和整个冷却 区冷却不均匀,不易控制沿钢板宽度方向的喷水强度分布;适用于带钢输出辊道上的冷却或连轧机机架间的冷却。
直接淬火,钢板直接浸入水中进行淬火或快速冷却,冷却速度快;不足是冷却不均匀,冷却速度的调节范围小,适用钢种有限,水量较大;适用于高抗拉强度(高于600MPa)、含有贝氏体加马氏体显微组织的钢板。
气雾冷却,采用空气和水直交型喷嘴,是一种气液两相流的冷却技术。其利用水雾化原理,使水呈雾状喷射到钢板表面,冷却均匀,冷却速度调节范围大,不足是设备复杂,对空气和水要求严格,厂房雾气大,设备易于被腐蚀;适用于从空冷到强水冷极宽的冷却能力范围,尤其适用于连铸二次冷却。
由于不同的带钢冷却方法具有不同冷却机理,气雾冷却靠压缩空气将水流破碎成液滴,液滴碰撞到热带钢上迅速吸热气化,从而带走大量的热量,达到带钢冷却的目的;但是当气雾冷却水气流量较大时,带钢上仍然有残余水膜层,水膜层与热带钢之间是气膜层,这一层气膜阻碍了冷却水的气化,对热量输运起着反作用。由于气雾冷却方法沿带钢宽度方向上分布均匀,利于控制带钢板形,气雾冷却过程本身比较复杂,带钢经过气雾冷却以后的温降值与带钢带厚、带速、气水流量、材料比热、初始温度和换热系数等密切相关。
发明内容
本发明所要解决的技术问题是提供一种能够保证薄带连铸带钢的冷却速度和冷却效果及均匀性的冷却机构及其冷却方法。
为了解决上述技术问题,本发明采用了如下技术方案:
一种薄带连铸带钢冷却机构,所述冷却机构设置在铸轧机出口的水平辊道上,且位于轧机机构和卷曲机构之间,所述冷却机构内设置有多个冷却组,且每个所述冷却组内包括至少一个冷却单元,且每个所述冷却组内的冷却单元的冷却方式为气雾冷却、层流冷却、喷气冷却中至少一种;其中,所述冷却单元分别位于所述辊道上侧、下侧, 并包括连接至水路管道或气路管道的集管总路以及与所述集管总路相连通的至少两个集管支路,所述集管支路上设有多个喷嘴,各所述集管总路上设有用于接通或关断所述冷却单元的通断开关,所述水路管道和所述气路管道上还设有控制冷却单元内气体和液体的流量的开度控制阀。
其中,所述冷却机构包括位于粗冷段内以用于粗冷的粗冷段冷却机构;所述粗冷段冷却机构内各冷却组的冷却单元中,至少有三个冷却单元的集管总路由一个所述开度控制阀控制。
其中,所述冷却机构还包括位于精冷段内用于精冷的精冷段冷却机构;所述精冷段冷却机构内各冷却组的冷却单元中,至多有两个冷却单元的集管总路由一个所述开度控制阀控制。
其中,所述气路管道或所述水路管道上还设有匀化器,以均匀控制各所述粗冷段和精冷段的冷却速度。
其中,所述冷却单元内的同侧相邻的两个集管支路上的喷嘴分别错缝排列。
其中,所述集管总路与各集管支路之间的接口结构相同,且所述各集管总路与水路管道或气路管道之间的接口结构相同。
其中,所述喷嘴的形状为矩形或扁圆形,且所述矩形的其中一组对侧的边呈圆弧形。
其中,每个所述通断开关为通断控制电磁阀。
其中,所述辊道上侧的集管支路上的喷嘴高度的范围为80mm-750mm,所述辊道下侧的集管支路上的喷嘴高度的范围为50mm-550mm,所述辊道上侧的集管支路上两个相邻的喷嘴之间的间距范围为50mm-700mm、所述辊道下侧的集管支路上两个相邻的喷嘴之间的间距范围为50mm-500mm。
其中,所述水路管道内的冷却介质包括水,所述气路管道内的冷却介质包括气雾、空气、氮气或其他气体中的至少一种。
其中,各所述冷却组的开度控制阀和通断开关与一控制单元相电连接,以对所述开度控制阀的开度和所述通断开关的接通和关断进行 调节。
其中,所述辊道上还设置有实时检测其上的带钢的温度的温度检测装置以及检测所述带钢的移动速度的速度检测装置,所述温度检测装置和速度检测装置还与所述控制单元通信连接。
本发明还提供了一种基于上述的薄带连铸带钢冷却机构的冷却方法,包括以下步骤:
S1:根据薄带连铸带钢的工艺要求,配置冷却组以及其内冷却单元的个数和冷却方式,所述冷却方式包括气雾冷却、层流冷却和喷气冷却;
S2:根据步骤S1中所配置出的冷却方式,将冷却单元连接至相应的水路管道或气路管道上;
S3:根据步骤S1-S2的配置,控制单元对与其电连接的各冷却组的开度控制阀的开度和通断开关的接通和关断进行控制,并进行冷却操作;
S4:当完成冷却操作时,关闭各通断开关和开度控制阀。
其中,步骤S3还进一步包括:设置在辊道上的温度检测装置将其检测到的带钢的温度信息发送至控制单元,且设置在辊道上的速度检测装置将其检测到的带钢的速度信息发送至控制单元,所述控制单元根据其接收到的温度信息和速度信息,对各冷却组中的开度控制阀和通断开关进行压力或流量的前馈控制。
其中,步骤S3还进一步包括:位于所述冷却机构的一侧的卷曲机构对所述带钢的卷曲温度进行实时检测,并将其检测到的温度信息发送至与其通信连接的控制单元,所述控制单元通过将其接收到的温度信息与其内预定的卷曲温度进行比较,并根据该比较结果进行反馈控制,以调节开度控制阀的开度和通断开关的接通和关断。
其中,在步骤S1中,还包括将冷却机构的冷却段分为粗冷段和精冷段,且在步骤S2中还包括:根据步骤S1中的冷却段的划分将各冷却单元连接至相应的水路管道或气路管道上,其中,位于所述粗冷段的冷却组中的冷却单元中,至少有三个的冷却单元由一个所述开度控 制阀共同控制;所述精冷段的冷却单元中,至多有两个冷却单元由一个所述开度控制阀共同控制。
与现有技术相比,本发明的有益效果在于:
1、本发明的冷却机构中的各冷却组可以采用不同的冷却方式对带钢进行冷却,且本发明的冷却单元的集管总路上分别连通至少两个集管支路,且每个集管总路上都分别设有通断开关,在节省了成本的基础上,还可以使得统一控制各集管支路,实现冷却的均匀性;
2、本发明的集管总路与集管支路之间的连接端口的结构相同(模块化设计),且集管总路与水路管道或气路管道之间的连接端口的规格相同,因此可以根据带钢的工艺要求,对各冷却组的冷却方式和冷却组的位置进行调整,以达到满足冷却曲线的冷却速度和冷却效果;
3、为了获得不同的压力流量调整需要,每一个冷却单元距离带钢表面的高度可调,集管支路上喷嘴的间距亦可以改变,从而可以保证带钢沿宽度方向上的冷却均匀性;
4、本发明可以将冷却机构所在的冷却段分为粗冷段和精冷段,以更好的对各冷却组的冷却方式进行分配;
5、本发明的匀化器以及开度控制阀的设置,可以保证各集管总路和集管支路上的流量、压力的均匀性,进一步的保证了均匀的冷却效果;
6、本发明中设置在辊道上的温度检测装置和速读检测装置,以及卷曲机构可以实时的对带钢的温度和移动速度进行检测,且与开度控制阀和通断开关通信连接的控制单元可以根据来自温度检测装置和速读检测装置以及卷曲机构的温度信息和速度信息,对开度控制阀的开度以及通断控制阀的接通和关断进行前馈和反馈调节,以保证冷却机构对薄带连铸带钢的冷却温度和冷却速度的要求。
附图说明
图1为本发明实施例的薄带连铸带钢冷却机构的位置示意图;
图2为本发明实施例的薄带连铸带钢冷却机构的结构图;
图3为本发明实施例中的单组管道(水路或气路)的冷却组的结构示意图;
图4为本发明实施例中的两组管道(水路和气路)的冷却组的结构示意图;
图5为本发明实施的另一实施例中的冷却单元的结构示意图;
图6为本发明实施例的薄带连铸带钢冷却机构的冷却方法的流程图。
附图标记说明
1-冷却单元    2-集管总路
3-集管支路    4-喷嘴
5-通断开关    6-开度控制阀
7-匀化器      8-支路
100-冷却机构  200-轧机机构
300-卷曲机构  400-夹送辊
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细描述,但不作为对本发明的限定。
如图1所示,为本发明实施例的薄带连铸带钢冷却机构的位置示意图,其中,冷却机构100设置在轧机出口的水平辊道上,且位于轧机机构200和卷曲机构300之间,且如图1所示的,在冷却机构100和卷曲机构300之间以及轧机机构200的前侧还可以设置有多组夹送辊400,以夹持和输送带钢并形成一定的张力;其中,轧机机构200用于控制带钢的板形和厚度,卷曲机构300则用于使带钢成卷以利于存放和输送。另外,如图1所示,冷却机构100内设置有多个冷却组(C1、C2、...、Cn),且其中每个冷却组内都包括至少一个冷却单元1,各冷却单元1的冷却方式可以是气雾冷却、层流冷却或气喷冷却,且同一冷却组内的冷却单元1的冷却方式可以相同也可以不同,为了满足所需要的工艺需求,可以调整各冷却单元1的冷却方式或调节个冷却组 的位置;且相应的,根据所选择出的冷却方式,冷却单元1配置有水路和/或气路集管,以分别传输气体和液体,所述水路集管内的冷却介质可以是水,气路集管内的冷却介质可以是空气、氮气或其他气体中的至少一种;相应的,水路管道内的冷却介质可以是水,气路管道内的冷却介质可以是空气、氮气或其他气体中的至少一种。
如图2所示,为本发明实施例的冷却机构的结构图,其中,沿着箭头方向为带钢的运输方向,冷却机构100的冷却组(C1、C2、...、Cn)分别设置于带钢(即辊道)的上侧和下侧,也就是说,本实施例中的冷却单元1包括分别位于辊道上侧、下侧并连接至水路管道或气路管道的集管总路2以及与集管总路2相连通的至少两个集管支路3,如图2所示为两个集管支路3,集管支路3上分布设有多个喷嘴4,各集管总路2上还设有用于接通或关断冷却单元1的水路和气路的通断开关5,如本实施例中使用的是通断控制电磁阀。水路管道和气路管道上还设有控制各冷却单元1内气体和液体的流量的开度控制阀6,同时,为了保证冷却效果的均匀性,本实施例中的冷却单元1内的同侧的相邻两个集管支路3上的喷嘴4分别错缝排列,以使得从喷嘴4喷出的液体或气体能够均匀的喷洒在带钢上,以保证均匀的冷却效果。
由于本实施例中的每个冷却单元1的集管总路2上设置有控制该路集管的通断的通断开关5,而无需在各集管支路3上设置开关,既节省了成本,也保证了相对应的集管支路3的同开同关,以保证冷却效果的均匀性。另外,在一优选实施例中,冷却机构100包括位于粗冷段的粗冷段冷却机构和位于精冷段的精冷段冷却机构,且粗冷段冷却机构内的冷却组的冷却单元1中,至少有三个的冷却单元1由一个开度控制阀6控制;精冷段冷却机构的冷却组内的冷却单元1中,至多有两个冷却单元1由一个开度控制阀6控制,同时粗冷段冷却机构和精冷段精冷段冷却机构的位置可以互换和调整,以满足不同冷却工艺要求;在冷却过程中,每个冷却单元1所采用的冷却方式也可以改变,以满足不同的冷却工艺曲线要求。
在一优选实施例中,气路管道或所述水路管道上还设有匀化器7, 以均匀控制各冷却单元的集管组内流量和压力;匀化器7的设计还可以保证粗冷段冷却速度均匀性,进一步有效的控制冷却机构100的冷却速度和冷却效果。
另外,为了方便本实施例中的各冷却单元1的部件或替换各冷却单元1的位置,集管总路2与各集管支路3之间的接口结构相同,且各集管总路2与水路管道或气路管道之间的接口结构相同。接口结构相同,也就是说各集管支路3可以与集管总路2具有统一的对接结构,各集管支路3可以互相更换安装位置;同理各集管总路2也可以互相更换安装位置。因此,根据所要满足的工艺要求,可以通过调换各冷却单元1的位置来变换冷却方式或冷却效果。
另外,在一优选的实施例,对于不同的冷却单元1,喷嘴4的高度以及各喷嘴4之间的间距可以不同,具体的,所述辊道上侧的集管支路3上的喷嘴高度的范围为80mm-750mm,所述辊道下侧的集管支路3上的喷嘴高度的范围为50mm-550mm,所述辊道上侧的集管支路3上两个相邻的喷嘴4之间的间距范围为50mm-700mm、所述辊道下侧的集管支路3上两个相邻的喷嘴4之间的间距范围为50mm-500mm。
另外,如图3所示,为本发明实施例中的单组管道(水路或气路)的冷却组的结构示意图。其中,由于为单组的管道,则只适用于单一的水路或气路的运输,即冷却方式可以是气喷冷却或层流冷却,以单一的通过冷却水和压缩气体进行冷却操作。同时,为了加强本实施例的冷却效果的均匀性,本发明实施例中的喷嘴4出口的形状可以大致为矩形或扁圆形,且该矩形的其中任意一组相对的边呈圆弧形,以避免相邻的两个喷嘴4之间的相互影响,如图3所示,A和B分别表示两个集管支路3上的喷嘴4,由于喷嘴4的交替设置,实现了从喷嘴4喷出的冷却液体或气体均匀的喷洒在带钢上。从两个集管支路3上的各喷嘴4的喷洒效果中可以看出,带钢的各部分的喷洒效果(冷却效果)基本相同,从而保证了冷却效果的均匀性。
如图4所示,为本发明实施例中的双组管道(水路和气路)的冷却组的机构示意图。其中,实线代表气路管道8,虚线代表水路管道9, 即冷却方式可以是气雾冷却,气雾冷却采用空气和水直交型喷嘴,是一种气液两相流的冷却技术,其利用水雾化原理,使水呈雾状喷射到钢板表面已达到冷却的效果。其中,水路中的集管支路3与气路管道中的集管支路3连通,以保持气体从水路中的集管支路3的喷嘴4与液体一起喷出,并产生雾化反应,起到冷却的效果。如在一实施例中,冷却介质为气雾,可以采用5个冷却组,其中3个冷却组位于粗冷段,2个冷却组位于精冷段,各粗冷段冷却机构内的冷却组分别包括10、8、6个冷却单元1,精冷段冷却机构内的冷却组共有12个冷却单元1,每个冷却单元1包括2个集管支路3,带钢上侧的喷嘴4高度为350mm,同一集管支路3上的两个喷嘴4之间的间距为400mm,带钢下侧的喷嘴4高度为180mm,同一集管支路3上的两个喷嘴4之间的间距为180mm,最终可以达到平均冷却速度为38℃/s,当卷取温度590℃,在带钢宽度方向上可以达到较好的冷却均匀性。
在另一实施例中,当采用层流冷却与气雾冷却组合方法时,冷却介质为水和气雾,其中包括2组冷却组,分别采用层流冷却和气雾冷却,采用层流冷却的冷却组包括10个冷却单元1,采用气雾冷却的冷却组包括10个冷却单元1,每个冷却单元1包括2个集管支路3,位于带钢上侧的喷嘴4高度为390mm,同一集管支路3上的两个喷嘴4之间的间距为440mm,位于带钢下侧的喷嘴4高度为150mm,同一集管支路3上的两个喷嘴4之间的间距为150mm,最终可以达到平均冷却速度33℃/s,当卷取温度为620℃时,在带钢宽度方向上可以达到较好的冷却均匀性。
在另一实施例中,当采用气雾冷却和气喷冷却的方法时,冷却段内的冷却介质可以为气雾、氮气;当采用3组冷却组时,可以2个冷却组采用气雾冷却,1个冷却组采用气喷冷却,采用气雾冷却的冷却组内包括6个冷却单元,每个冷却单元1包括2个集管支路3,位于带钢上侧的喷嘴4高度为280mm,同一集管支路3上的两个喷嘴4之间的间距为380mm,位于带钢下侧的喷嘴4高度为80mm,同一集管支路3上的两个喷嘴4之间的间距100mm,最终可以达到平均冷却速度25℃/s, 当卷取温度690℃时,在带钢宽度方向上可以达到较好的冷却均匀性。
如图5所示,本发明实施的另一实施例中的冷却单元的结构示意图,其中,该配置具有水路和气路两种集管,可以用于雾化冷却,该冷却单元1中的集管支路3构造为从集管总路2上所延伸出的支路8,所述喷嘴4设置在该支路8的出口端,以实现气体或液体的喷出。
在一优选实施例中,各冷却组中的开度控制阀6和通断开关5与一控制单元(图中未示出)相电连接,以对各开度控制阀6的开度和所述通断开关5的接通和关断进行调节。另外,辊道上还可以设置用于实时检测其上的带钢的温度的温度检测装置以及检测带钢的移动速度的速度检测装置,温度检测装置和速度检测装置还与控制单元通信连接。通过这样的配置,控制单元可以实时的根据其接收的来自温度检测装置的温度信息和来自速度检测装置的速度信息,对各冷却组的通断开关5和开度控制阀6进行前馈设置,以保证冷却效果的均匀性。另外,位于本发明冷却机构的一侧的卷曲机构300对带钢的卷曲温度进行实时检测,并将其检测到的温度信息发送至与其通信连接的控制单元,所述控制单元通过将其接收到的温度信息与其内预定的卷曲温度进行比较,并根据该比较结果进行反馈,在前述前馈和卷曲温度反馈共同作用下,控制开度控制阀6的开度和通断开关5的接通和关断,最终实现对带钢的实时温度控制。另外,本发明还可以提供一种设有上述冷却机构的生产线,该生产线的结构大体如图1所示。冷却机构100设置在轧机出口的水平辊道上,且位于轧机机构200和卷曲机构300之间,在冷却机构100和卷曲机构200之间以及轧机机构200的前侧还可以设置有多组夹送辊400,以夹持和输送带钢并使带钢保持一定的张力。;其中,轧机机构200用于控制带钢的板型和厚度,卷曲机构300则用于使带钢成卷以便于存放和输送。
如图6所示,为本发明实施例的薄带连铸带钢冷却机构的冷却方法的流程图,包括以下步骤:
S1:根据带钢的工艺要求,配置冷却组以及其内冷却单元的个数和冷却方式,所述冷却方式包括气雾冷却、层流冷却和气喷冷却;
S2:根据步骤S1中所配置出的冷却方式,将各冷却组的冷却单元连接至相应的水路管道或气路管道上;
S3:根据步骤S1-S2的配置,控制单元对与其电连接的各冷却组的开度控制阀6的开度和通断开关的接通和关断进行控制,并进行冷却操作;S4;当完成冷却操作时,关闭各通断开关和开度控制阀6。
在一优选实施例中,步骤S3还可以进一步包括:设置在辊道上的温度检测装置将其检测到的带钢的温度信息发送至控制单元,且设置在辊道上的速度检测装置将其检测到的带钢的速度信息发送至控制单元,所述控制单元根据其接收到的温度信息和速度信息,对各冷却组中的开度控制阀6和通断开关5进行前馈控制。
另外,步骤S3还进一步包括:位于所述冷却机构的一侧的卷曲机构对所述带钢的卷曲温度进行实时检测,并将其检测到的温度信息发送至与其通信连接的控制单元,所述控制单元通过将其接收到的温度信息与其内预定的卷曲温度进行比较,并根据该比较结果反馈控制开度控制阀6的开度和通断开关5的接通和关断。通过上述的配置,可以实现对带钢的温度和移动速度的实时监控和检测,且控制单元可以根据接收到的温度和移动速度信息对冷却机构的开度控制阀6和通断开关5进行前馈控制,以进一步调节各冷却单元1内各集管总路2和集管支路3内液体或气体的流量和压力,从而对冷却效果进行实时调节。
其中,在步骤S1中,还包括将冷却机构的冷却段分为粗冷段和精冷段,且在步骤S2中还包括:根据步骤S1中的冷却段的划分将各冷却单元连接至相应的水路管道或气路管道上,其中,位于所述粗冷段的冷却组中的冷却单元中,至少有三个的冷却单元由一个所述开度控制阀共同控制;所述精冷段的冷却单元中,至多有两个冷却单元由一个所述开度控制阀共同控制。
以上实施例仅为本发明的示例性实施例,不用于限制本发明,本发明的保护范围由权利要求书限定。本领域技术人员可以在本发明的实质和保护范围内,对本发明做出各种修改或等同替换,这种修改或 等同替换也应视为落在本发明的保护范围内。

Claims (16)

  1. 一种薄带连铸带钢冷却机构,所述冷却机构设置在铸轧机出口的水平辊道上,且位于轧机机构和卷曲机构之间,其特征在于,所述冷却机构内设置有多个冷却组,且每个所述冷却组内包括至少一个冷却单元,且每个所述冷却组内的冷却单元的冷却方式为气雾冷却、层流冷却、气喷冷却中至少一种;其中,
    所述冷却单元分别位于所述辊道上侧、下侧,并包括连接至水路管道或气路管道的集管总路以及与所述集管总路相连通的至少两个集管支路,所述集管支路上设有多个喷嘴,各所述集管总路上设有用于接通或者关断所述冷却单元的通断开关,所述水路管道和所述气路管道上还设有控制冷却单元内气体和液体的流量的开度控制阀。
  2. 根据权利要求1所述的薄带连铸带钢冷却机构,其特征在于:包括位于粗冷段内以用于粗冷的粗冷段冷却机构;
    所述粗冷段冷却机构内各冷却组的冷却单元中,至少有三个冷却单元的集管总路由一个所述开度控制阀控制。
  3. 根据权利要求2所述的薄带连铸带钢冷却机构,其特征在于:包括位于精冷段内用于精冷的精冷段冷却机构;
    所述精冷段冷却机构内各冷却组的冷却单元中,至多有两个冷却单元的集管总路由一个所述开度控制阀控制。
  4. 根据权利要求3所述的薄带连铸带钢冷却机构,其特征在于:所述气路管道或所述水路管道上还设有匀化器,以均匀控制各所述粗冷段和精冷段的冷却速度。
  5. 根据权利要求1所述的薄带连铸带钢冷却机构,其特征在于:所述冷却单元内的同侧的相邻两个集管支路上的喷嘴分别错缝排列。
  6. 根据权利要求1所述的薄带连铸带钢冷却机构,其特征在于:所述集管总路与各集管支路之间的接口结构相同,且所述各集管总路与水路管道或气路管道之间的接口结构相同。
  7. 根据权利要求1所述的薄带连铸带钢冷却机构,其特征在于:所述喷嘴出口的形状大致为矩形或扁圆形,且所述矩形的其中一组对 侧的边呈圆弧形。
  8. 根据权利要求1所述的薄带连铸带钢冷却机构,其特征在于:每个所述通断开关为通断控制电磁阀。
  9. 根据权利要求1所述的薄带连铸带钢冷却机构,其特征在于:所述辊道上侧的集管支路上的喷嘴高度的范围为80mm-750mm,所述辊道下侧的集管支路上的喷嘴高度的范围为50mm-550mm,所述辊道上侧的集管支路上两个相邻的喷嘴之间的间距范围为50mm-700mm、所述辊道下侧的集管支路上两个相邻的喷嘴之间的间距范围为50mm-500mm。
  10. 根据权利要求1所述的薄带连铸带钢冷却机构,其特征在于:所述水路管道内的冷却介质包括水,所述气路管道内的冷却介质包括气雾、空气、氮气中的至少一种。
  11. 根据权利要求1所述的薄带连铸带钢冷却机构,其特征在于:各所述冷却组的开度控制阀和通断开关与一控制单元相电连接,以对所述开度控制阀的开度和所述通断开关的接通和关断进行调节。
  12. 根据权利要求11所述的薄带连铸带钢冷却机构,其特征在于:所述辊道上还设置有实时检测其上的带钢的温度的温度检测装置以及检测所述带钢的移动速度的速度检测装置,所述温度检测装置和速度检测装置还与所述控制单元通信连接;
    所述控制单元配置为根据其接收到的速度信息、温度信息对所述开度控制阀的开度和所述通断开关的接通和关断进行前馈调节控制。
  13. 一种基于权利要求1至12中任意一项所述的薄带连铸带钢冷却机构的冷却方法,其特征在于:包括以下步骤:
    S1:根据带钢的工艺要求,配置冷却组以及其内冷却单元的个数和冷却方式,所述冷却方式包括气雾冷却、层流冷却和喷气冷却;
    S2:根据步骤S1中所配置出的冷却方式,将冷却单元连接至相应的水路管道或气路管道上;
    S3:根据步骤S1-S2的配置,控制单元对与其电连接的各冷却组的开度控制阀的开度和通断开关的接通和关断进行控制,并进行冷却 操作;
    S4:当完成冷却操作时,关闭各通断开关和开度控制阀。
  14. 根据权利要求13所述的冷却方法,其特征在于:步骤S3还进一步包括:设置在辊道上的温度检测装置将其检测到的带钢的温度信息发送至控制单元,且设置在辊道上的速度检测装置将其检测到的带钢的速度信息发送至控制单元,所述控制单元根据其接收到的温度信息和速度信息,对各冷却组中的开度控制阀和通断开关进行前馈控制。
  15. 根据权利要求13所述的冷却方法,其特征在于:步骤S3还进一步包括:位于所述冷却机构的一侧的卷曲机构对所述带钢的卷曲温度进行实时检测,并将其检测到的温度信息发送至与其通信连接的控制单元,所述控制单元通过将其接收到的温度信息与其内预定的卷曲温度进行比较,并根据该比较结果进行反馈控制,以调节开度控制阀的开度和通断开关的接通和关断。
  16. 根据权利要求13所述的冷却方法,其特征在于:在步骤S1中,还包括将冷却机构的冷却段分为粗冷段和精冷段,且在步骤S2中还包括:根据步骤S1中的冷却段的划分将各冷却单元连接至相应的水路管道或气路管道上,其中,位于所述粗冷段的冷却组中的冷却单元中,至少有三个的冷却单元由一个所述开度控制阀共同控制;所述精冷段的冷却单元中,至多有两个冷却单元由一个所述开度控制阀共同控制。
PCT/CN2016/112006 2016-12-26 2016-12-26 一种薄带连铸带钢冷却机构及其冷却方法 WO2018119550A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/112006 WO2018119550A1 (zh) 2016-12-26 2016-12-26 一种薄带连铸带钢冷却机构及其冷却方法
CN201680091699.4A CN110087802B (zh) 2016-12-26 2016-12-26 一种薄带连铸带钢冷却机构及其冷却方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/112006 WO2018119550A1 (zh) 2016-12-26 2016-12-26 一种薄带连铸带钢冷却机构及其冷却方法

Publications (1)

Publication Number Publication Date
WO2018119550A1 true WO2018119550A1 (zh) 2018-07-05

Family

ID=62706686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/112006 WO2018119550A1 (zh) 2016-12-26 2016-12-26 一种薄带连铸带钢冷却机构及其冷却方法

Country Status (2)

Country Link
CN (1) CN110087802B (zh)
WO (1) WO2018119550A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109457205A (zh) * 2019-01-04 2019-03-12 重庆赛迪热工环保工程技术有限公司 一种带钢镀后空气加湿冷却方法及冷却系统
CN110202104A (zh) * 2019-05-27 2019-09-06 北京首钢国际工程技术有限公司 一种2+8辊组合式厚板坯大压下铸轧机气雾冷却装置
CN114011181A (zh) * 2022-01-04 2022-02-08 唐山瑞丰钢铁(集团)有限公司 热卷箱抑尘装置及方法
CN114669613A (zh) * 2022-04-19 2022-06-28 安徽工业大学 一种柔性辊接触式的薄带组合冷却方法
CN115647077A (zh) * 2022-12-09 2023-01-31 首钢智新迁安电磁材料有限公司 一种提高温度控制精度的冷连轧机组及其控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03151148A (ja) * 1989-11-06 1991-06-27 Kawasaki Steel Corp 連鋳における2次冷却水流量計の異常検知方法
SU1710184A1 (ru) * 1989-11-02 1992-02-07 Всесоюзный научно-исследовательский и проектно-конструкторский институт металлургического машиностроения Устройство автоматического контрол работы системы форсуночного водовоздушного охлаждени машины непрерывного лить заготовок
DE10015832A1 (de) * 1999-04-30 2001-03-15 Voest Alpine Ind Anlagen Verfahren zum Verteilen einer feinzerstäubten Flüssigkeit sowie Einrichtung hierzu
KR20030053641A (ko) * 2001-12-22 2003-07-02 주식회사 포스코 연속주조 공정에서의 정속화 주조방법
CN2712501Y (zh) * 2004-06-30 2005-07-27 宝山钢铁股份有限公司 方/圆坯兼用连铸二次冷却装置
CN101224491A (zh) * 2008-01-25 2008-07-23 陈华 可实现不停机在线自动清洗的喷雾冷却系统
CN204975251U (zh) * 2015-09-17 2016-01-20 中冶南方工程技术有限公司 连铸二冷水喷淋结构及连铸二冷水喷淋系统

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6020090B2 (ja) * 1979-10-05 1985-05-20 新日本製鐵株式会社 板材の冷却注水装置
JPS5890314A (ja) * 1981-11-24 1983-05-30 Hitachi Ltd 熱間圧延スプレ−冷却装置
CN2282465Y (zh) * 1996-05-23 1998-05-27 首钢总公司 水幕层流带钢冷却装置
JP2000167615A (ja) * 1998-12-03 2000-06-20 Toshiba Corp 巻取温度制御方法及び制御装置
JP4335860B2 (ja) * 2005-10-26 2009-09-30 株式会社日立製作所 巻取温度制御装置および制御方法
CN100431726C (zh) * 2006-12-22 2008-11-12 江苏沙钢集团有限公司 一种带钢卷取温度控制方法及其装置
CN101381806B (zh) * 2007-09-06 2012-04-11 中冶赛迪工程技术股份有限公司 一种带钢的冷却装置及其冷却控制方法
DE102007046279A1 (de) * 2007-09-27 2009-04-09 Siemens Ag Betriebsverfahren für eine Kühlstrecke mit zentralisierter Erfassung von Ventilcharakteristiken und hiermit korrespondierende Gegenstände
CN102002628B (zh) * 2009-08-31 2012-07-25 宝山钢铁股份有限公司 一种低碳钢薄板的制造方法
CN201618732U (zh) * 2010-04-06 2010-11-03 武汉钢铁(集团)公司 中厚板气雾喷嘴式控制冷却装置
CN101879531A (zh) * 2010-05-31 2010-11-10 北京科技大学 一种冷却板形可控制的热轧带钢层流冷却装置
CN101890486B (zh) * 2010-07-22 2012-07-18 东北大学 一种薄带连铸过程多种冷却方式集成的冷却系统
CN102834193B (zh) * 2010-07-22 2014-12-17 新日铁住金株式会社 钢板的冷却装置和钢板的冷却方法
CN101985721B (zh) * 2010-11-30 2012-07-04 东北大学 一种以氮化铝为抑制剂的取向硅钢薄带坯的制备方法
CN102553950B (zh) * 2012-02-24 2014-07-23 宝山钢铁股份有限公司 一种薄带连铸生产线轧后冷却系统及其控制方法
CN103624093A (zh) * 2012-08-29 2014-03-12 江苏博际喷雾系统有限公司 钢坯中间坯冷却系统
CN104841701B (zh) * 2014-02-14 2017-01-04 宝山钢铁股份有限公司 热轧带钢大降速轧制时的薄板卷取温度控制方法
CN105013841B (zh) * 2015-07-22 2017-05-17 中冶南方工程技术有限公司 带钢冷却系统
CN106180214B (zh) * 2016-09-08 2019-03-19 中冶赛迪工程技术股份有限公司 一种板带冷却宽向均匀性可控的冷却装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1710184A1 (ru) * 1989-11-02 1992-02-07 Всесоюзный научно-исследовательский и проектно-конструкторский институт металлургического машиностроения Устройство автоматического контрол работы системы форсуночного водовоздушного охлаждени машины непрерывного лить заготовок
JPH03151148A (ja) * 1989-11-06 1991-06-27 Kawasaki Steel Corp 連鋳における2次冷却水流量計の異常検知方法
DE10015832A1 (de) * 1999-04-30 2001-03-15 Voest Alpine Ind Anlagen Verfahren zum Verteilen einer feinzerstäubten Flüssigkeit sowie Einrichtung hierzu
KR20030053641A (ko) * 2001-12-22 2003-07-02 주식회사 포스코 연속주조 공정에서의 정속화 주조방법
CN2712501Y (zh) * 2004-06-30 2005-07-27 宝山钢铁股份有限公司 方/圆坯兼用连铸二次冷却装置
CN101224491A (zh) * 2008-01-25 2008-07-23 陈华 可实现不停机在线自动清洗的喷雾冷却系统
CN204975251U (zh) * 2015-09-17 2016-01-20 中冶南方工程技术有限公司 连铸二冷水喷淋结构及连铸二冷水喷淋系统

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109457205A (zh) * 2019-01-04 2019-03-12 重庆赛迪热工环保工程技术有限公司 一种带钢镀后空气加湿冷却方法及冷却系统
CN109457205B (zh) * 2019-01-04 2023-12-19 重庆赛迪热工环保工程技术有限公司 一种带钢镀后空气加湿冷却方法及冷却系统
CN110202104A (zh) * 2019-05-27 2019-09-06 北京首钢国际工程技术有限公司 一种2+8辊组合式厚板坯大压下铸轧机气雾冷却装置
CN110202104B (zh) * 2019-05-27 2024-02-09 北京首钢国际工程技术有限公司 一种2+8辊组合式厚板坯大压下铸轧机气雾冷却装置
CN114011181A (zh) * 2022-01-04 2022-02-08 唐山瑞丰钢铁(集团)有限公司 热卷箱抑尘装置及方法
CN114011181B (zh) * 2022-01-04 2022-04-01 唐山瑞丰钢铁(集团)有限公司 热卷箱抑尘装置及方法
CN114669613A (zh) * 2022-04-19 2022-06-28 安徽工业大学 一种柔性辊接触式的薄带组合冷却方法
CN114669613B (zh) * 2022-04-19 2023-06-20 安徽工业大学 一种柔性辊接触式的薄带组合冷却方法
CN115647077A (zh) * 2022-12-09 2023-01-31 首钢智新迁安电磁材料有限公司 一种提高温度控制精度的冷连轧机组及其控制方法

Also Published As

Publication number Publication date
CN110087802A (zh) 2019-08-02
CN110087802B (zh) 2021-11-23

Similar Documents

Publication Publication Date Title
WO2018119550A1 (zh) 一种薄带连铸带钢冷却机构及其冷却方法
US8715565B2 (en) Cooling system and cooling method of rolling steel
US8931321B2 (en) Hot rolled steel sheet cooling apparatus
CN101247902B (zh) 厚钢板的冷却装置
KR101045363B1 (ko) 강판의 제어 냉각 장치 및 냉각 방법
US8506879B2 (en) Method for cooling hot strip
CN101890486B (zh) 一种薄带连铸过程多种冷却方式集成的冷却系统
CN102834193B (zh) 钢板的冷却装置和钢板的冷却方法
CN101879531A (zh) 一种冷却板形可控制的热轧带钢层流冷却装置
KR20090061073A (ko) 열연강대의 냉각 방법
CN207086577U (zh) 一种热轧h型钢气雾冷却系统
US5697169A (en) Apparatus for cooling strip and associated method
CN110431242B (zh) 具有喷嘴系统的带悬浮设备
CN108431240B (zh) 用于冷却金属基材的方法和装置
CN201394585Y (zh) 一种用于热轧带钢生产线的冷却设备
CN201744506U (zh) 一种冷却板形可控制的热轧带钢层流冷却装置
CN105073293A (zh) 厚钢板的制造方法及制造设备
CN101456040A (zh) 中厚钢板控制冷却侧喷系统
CN111394567A (zh) 一种用于带材连续退火的空气水雾冷却系统及控制方法
CN104254622A (zh) 用于使材料回火的方法、装置和用途
JPH1034226A (ja) 高温金属板の冷却方法及び装置
CN105102142A (zh) 厚钢板的制造设备及制造方法
JPH07214136A (ja) 高温金属板の下面冷却装置
CN211538984U (zh) 轧机液氮冷却系统
TWI731415B (zh) 熱軋鋼板之冷卻裝置及熱軋鋼板之冷卻方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16925824

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16925824

Country of ref document: EP

Kind code of ref document: A1