WO2018117355A1 - 쌍축선의 프로펠러 회전각 조절을 통한 선체 변동압력 저감 방법 - Google Patents

쌍축선의 프로펠러 회전각 조절을 통한 선체 변동압력 저감 방법 Download PDF

Info

Publication number
WO2018117355A1
WO2018117355A1 PCT/KR2017/006282 KR2017006282W WO2018117355A1 WO 2018117355 A1 WO2018117355 A1 WO 2018117355A1 KR 2017006282 W KR2017006282 W KR 2017006282W WO 2018117355 A1 WO2018117355 A1 WO 2018117355A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotation angle
relative rotation
propeller
propellers
optimum
Prior art date
Application number
PCT/KR2017/006282
Other languages
English (en)
French (fr)
Inventor
박철수
김건도
박영하
Original Assignee
한국해양과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국해양과학기술원 filed Critical 한국해양과학기술원
Publication of WO2018117355A1 publication Critical patent/WO2018117355A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B79/00Monitoring properties or operating parameters of vessels in operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H3/00Propeller-blade pitch changing
    • B63H3/008Propeller-blade pitch changing characterised by self-adjusting pitch, e.g. by means of springs, centrifugal forces, hydrodynamic forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H1/00Propulsive elements directly acting on water
    • B63H1/02Propulsive elements directly acting on water of rotary type
    • B63H1/12Propulsive elements directly acting on water of rotary type with rotation axis substantially in propulsive direction
    • B63H1/14Propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H1/00Propulsive elements directly acting on water
    • B63H1/02Propulsive elements directly acting on water of rotary type
    • B63H1/12Propulsive elements directly acting on water of rotary type with rotation axis substantially in propulsive direction
    • B63H1/14Propellers
    • B63H1/28Other means for improving propeller efficiency
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H3/00Propeller-blade pitch changing
    • B63H3/06Propeller-blade pitch changing characterised by use of non-mechanical actuating means, e.g. electrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/125Arrangements on vessels of propulsion elements directly acting on water of propellers movably mounted with respect to hull, e.g. adjustable in direction, e.g. podded azimuthing thrusters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J99/00Subject matter not provided for in other groups of this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H1/00Propulsive elements directly acting on water
    • B63H1/02Propulsive elements directly acting on water of rotary type
    • B63H1/12Propulsive elements directly acting on water of rotary type with rotation axis substantially in propulsive direction
    • B63H1/14Propellers
    • B63H1/18Propellers with means for diminishing cavitation, e.g. supercavitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/08Arrangements on vessels of propulsion elements directly acting on water of propellers of more than one propeller
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to a method of reducing the hull fluctuation pressure by adjusting the propeller rotation angle of the twin axis.
  • the fluctuating pressure refers to the pressure change induced on the hull surface by cavitation generated by the propeller rotating.
  • Cavitation generated in the blades of the propeller is generated according to the rotation angle as shown in Figure 1 due to the influence of the non-uniform hull wake.
  • Figure 1 shows a general cavitation pattern occurring in the wing of the propeller
  • the left side of Figure 1 shows the shape and reference angle of the propeller viewed from the back of the ship
  • FIG. 2 shows an example of calculating the variation pressure time history according to the cavitation occurrence of FIG. 1.
  • the result of FIG. 2 is a result when the propeller is rotated one time, and four periodic pressure fluctuations corresponding to the number of wings of the propeller can be confirmed.
  • the magnitude and phase of the fluctuating pressure time history depend on the relative distance between the propeller and the hull position.
  • the fluctuating pressure is the main cause of ship vibration and noise. If the fluctuating pressure is large, the vibration and noise of the ship are generated in proportion.
  • twin-axial propellers ie twin-axial ships.
  • the two left and right propellers cause fluctuation pressures, respectively, so that the combined fluctuation pressure is larger and more complicated than a normal ship.
  • the present invention has been proposed to solve the above problems, and an object thereof is to provide a method capable of reducing the fluctuation pressure induced on the hull surface by propeller cavitation by adjusting the relative rotation angle of the propeller of the twin axis. .
  • the present invention by adjusting the phase difference of the fluctuation pressure time history induced in the two propellers of the biaxial line to reduce the overall fluctuation pressure, the phase difference of the fluctuation pressure time history is the relative rotation angle of the two propellers It is achieved by the control of the, provides a method for reducing the hull fluctuation pressure by adjusting the propeller rotation angle of the twin axis.
  • the hull fluctuation pressure reduction method by adjusting the propeller rotation angle of the twin axis, the optimum phase calculator calculates the optimum relative rotation angle according to the operating conditions of the ship, and the calculated optimum relative rotation angle information to the controller S1 step of delivering;
  • An encoder mounted on each shaft to collect rotational speed and rotational angle information of the propeller, and transfer the collected information to the controller;
  • the controller calculates a relative rotation angle of the two propellers, compares the relative rotation angle with the optimum relative rotation angle, and transmits a control command for matching the relative rotation angle to the optimum relative rotation angle to the propeller phase control system.
  • step S3 step And a step S4 of performing, by the propeller phase control system, control to match the relative rotation angles of the two propellers to the optimal relative rotation angle according to the control command of the controller. It provides a method of reducing hull fluctuation pressure through.
  • the optimum phase calculator calculates the optimum relative rotation angle through cavitation flow analysis and fluctuation pressure analysis.
  • the optimum phase calculator calculates the optimum relative rotation angle in real time or performs the calculation of the optimum relative rotation angle in advance according to the expected operating conditions of the vessel, and stores the result and stores the result. Please note.
  • the propeller phase control system gradually increases or decreases the rotational speed of either propeller of the two propellers so that the relative rotation angle matches the optimum relative rotation angle.
  • the present invention it is possible to maintain the optimum state of rotation of the propeller through the adjustment of the propeller rotation angle of the twin axis, thereby reducing the fluctuation pressure in real time and efficiently according to the operating conditions of the ship.
  • FIG. 1 shows a general cavitation pattern occurring in the wing of a propeller.
  • FIG. 2 shows an example of calculating the variation pressure time history according to the cavitation occurrence of FIG. 1.
  • FIG 3 shows the shape and reference angle of the propeller as viewed from behind the biaxial line.
  • FIG. 4 shows an example of calculating a change in magnitude of the fluctuation pressure according to the change in the relative rotation angle of FIG. 3.
  • Figure 5 shows a system configuration for implementing a method of reducing the hull fluctuation pressure by adjusting the propeller rotation angle of the twin shaft in accordance with the present invention.
  • Figure 6 shows a step-by-step implementation process of the hull variable pressure reduction method by adjusting the propeller rotation angle of the twin axis according to the present invention.
  • FIG 3 shows the shape and reference angle of the propeller as viewed from behind the biaxial line.
  • the time history of the fluctuation pressure induced by each propeller at a particular hull position varies in magnitude and phase depending on the relative distance between the propeller and the hull position.
  • the phase difference adjustment of the fluctuation pressure time history can be achieved by adjusting the relative rotation angles ( ⁇ in FIG. 3) of the two propellers.
  • the relative rotation angle refers to the difference in the rotation angle between the two propellers.
  • FIG. 4 shows an example of calculating a change in magnitude of the fluctuation pressure according to the change in the relative rotation angle of FIG. 3.
  • FIG. 4 corresponds to one example, and the relative rotation angle at which the fluctuation pressure is minimum for each biaxial line may be different.
  • the relative rotation angle at which the fluctuation pressure is minimum is referred to as 'optimal relative rotation angle'.
  • step of reducing the fluctuation pressure of the twin axis in accordance with the present invention will be described in detail step by step.
  • FIG. 5 shows a system configuration for implementing a method for reducing the hull fluctuation pressure by adjusting the propeller rotation angle of the twin shaft according to the present invention
  • Figure 6 is a hull fluctuation pressure by adjusting the propeller rotation angle of the twin shaft in accordance with the present invention
  • a step-by-step implementation of the abatement method is shown.
  • the system according to the invention comprises an optimum phase calculator 10, a controller 20, encoders 31, 32 and a propeller phase control system 40, wherein the encoders 31, 32 are each shaft 61. , 62).
  • the optimum phase calculator 10 calculates the optimum relative rotation angle according to the operating conditions of the ship.
  • the optimum phase calculator 10 calculates the optimum relative rotation angle through cavitation flow analysis and fluctuation pressure analysis.
  • the optimum phase calculator 10 may calculate the optimum relative rotation angle in real time, but may calculate the optimum relative rotation angle in advance according to the expected operating conditions of the vessel, and then store the result and refer to the stored result when necessary. have.
  • the optimum phase calculator 10 transmits the calculated optimum relative rotation angle information to the controller 20.
  • the encoders 31 and 32 mounted on the shafts 61 and 62 collect the rotation speed and the rotation angle information of the propellers 71 and 72, and then transfer the collected information to the controller 20.
  • the controller 20 calculates the relative rotation angles of the two propellers 71, 72.
  • the controller 20 compares the relative rotation angle with the optimum relative rotation angle, and if there is a difference between the relative rotation angle and the optimum relative rotation angle, the controller 20 issues a control command for matching the relative rotation angle to the optimum relative rotation angle. To pass).
  • the controller 20 does not transmit the control command as described above.
  • the propeller phase control system 40 performs control to match the relative rotation angles of the two propellers 71 and 72 to the optimum relative rotation angle according to the control command of the controller 20.
  • control for matching the relative rotation angle to the optimum relative rotation angle can be made in various ways.
  • the propeller phase control system 40 may vary the rotation angle between the two propellers 71 and 72 by gradually increasing or decreasing the rotation speed of either of the propellers 71 and 72. That is, the relative rotation angle can be made to match the optimum relative rotation angle.
  • the propeller phase control system 40 receives the rotational speed information of the propellers 71 and 72 from the controller 20, and adjusts the rotational speeds of the propellers 71 and 72 and the corresponding propellers 71 and 72.
  • the connected engine system 50 is controlled.
  • the present invention it is possible to efficiently reduce the fluctuation pressure according to the operating conditions of the ship by adjusting the propeller rotation angle of the twin axis, the present invention can be widely used in the shipbuilding and marine industry field to realize its practical and economic value It is a technology that can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Hydraulic Turbines (AREA)
  • Vibration Prevention Devices (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

본 발명은 쌍축선의 두 프로펠러에서 유기된 변동압력 시간이력의 위상차를 조절함으로써 전체 변동압력을 저감하되, 변동압력 시간이력의 위상차 조절은 두 프로펠러의 상대 회전각의 최적 상대 회전각을 계산한 후 그 결과를 저장하고 참고하여 프로펠러 회전 상태를 최적 상태로 유지하며, 프로펠러 캐비테이션에 의해 선체 표면에 유기되는 변동압력을 선박의 운항조건에 따라 실시간, 효율적으로 저감할 수 있는 방법에 관한 것이다.

Description

쌍축선의 프로펠러 회전각 조절을 통한 선체 변동압력 저감 방법
본 발명은 쌍축선의 프로펠러 회전각 조절을 통한 선체 변동압력 저감 방법에 관한 것이다.
변동압력은 프로펠러가 회전하면서 발생하는 캐비테이션에 의해 선체 표면에 유기되는 압력변화를 말한다.
프로펠러의 날개에서 발생하는 캐비테이션은 불균일한 선체 후류의 영향으로 도 1과 같이 회전각도에 따라 발생량이 변하게 된다.
도 1은 프로펠러의 날개에서 발생하는 일반적인 캐비테이션 양상을 보여주는바, 도 1의 좌변은 선박의 뒤에서 바라본 프로펠러의 형상 및 기준 각도를 보여주며, 도 1의 우변은 프로펠러의 날개각도에 따른 캐비테이션 발생 패턴의 계산 예를 보여준다.
도 2는 도 1의 캐비테이션 발생에 따른 변동압력 시간이력 계산 예를 보여준다.
도 2의 결과는 프로펠러가 1회전 할 때의 결과이며 프로펠러의 날개 수에 해당하는 4회의 주기적인 압력변동을 확인할 수 있다.
이 때 변동압력 시간이력의 크기와 위상은 프로펠러와 선체 위치 간의 상대적인 거리에 따라 달라진다.
따라서 선체 여러 위치에서의 변동압력은 크기와 위상이 서로 상이하다.
변동압력은 선박진동 및 소음의 주된 원인으로, 변동압력이 크면 선박의 진동 및 소음이 그에 비례하여 크게 발생한다.
이는 쌍축 프로펠러로 구동되는 선박, 즉 쌍축선의 경우도 예외가 될 수 없다.
특히 쌍축선은 좌, 우 두 개의 프로펠러가 제각각 변동압력을 유발하므로 이들이 합쳐진 전체 변동압력이 통상의 선박보다 더 크고, 복잡하게 발생할 수 있다.
본 발명은 상기와 같은 문제점을 해결하기 위해 제안된 것으로, 쌍축선의 프로펠러의 상대 회전각을 조절함으로써 프로펠러 캐비테이션에 의해 선체 표면에 유기되는 변동압력을 저감할 수 있는 방법을 제공하는 것을 목적으로 한다.
상기한 목적을 달성하기 위하여 본 발명은, 쌍축선의 두 프로펠러에서 유기된 변동압력 시간이력의 위상차를 조절함으로써 전체 변동압력을 저감하되, 상기 변동압력 시간이력의 위상차 조절은 두 프로펠러의 상대 회전각의 조절에 의해 달성됨을 특징으로 하는, 쌍축선의 프로펠러 회전각 조절을 통한 선체 변동압력 저감 방법을 제공한다.
또한 본 발명은, 쌍축선의 프로펠러 회전각 조절을 통한 선체 변동압력 저감 방법으로서, 최적 위상 계산기가 선박의 운항조건에 따른 최적 상대 회전각을 계산하고, 상기 계산된 최적 상대 회전각 정보를 제어기로 전달하는 S1 단계; 각 샤프트에 장착된 엔코더가 프로펠러의 회전수 및 회전각 정보를 수집하고, 상기 수집된 정보를 상기 제어기로 전달하는 S2 단계; 상기 제어기가 두 프로펠러의 상대 회전각을 계산하고, 상기 상대 회전각과 상기 최적 상대 회전각을 비교하여, 상기 상대 회전각을 상기 최적 상대 회전각에 일치시키기 위한 제어명령을 프로펠러 위상제어시스템으로 전달하는 S3 단계; 및 상기 프로펠러 위상제어시스템이 상기 제어기의 상기 제어명령에 따라 두 프로펠러의 상기 상대 회전각을 상기 최적 상대 회전각에 일치시키기 위한 제어를 수행하는 S4 단계;를 포함하는, 쌍축선의 프로펠러 회전각 조절을 통한 선체 변동압력 저감 방법을 제공한다.
상기 S1 단계에서, 상기 최적 위상 계산기는 캐비테이션 유동해석 및 변동압력 해석을 통해 상기 최적 상대 회전각을 계산한다.
상기 S1 단계에서, 상기 최적 위상 계산기는 실시간으로 상기 최적 상대 회전각을 계산하거나, 예상되는 선박의 운항조건에 따라 미리 상기 최적 상대 회전각의 계산을 수행한 후 그 결과를 저장하고 상기 저장된 결과를 참고한다.
상기 S4 단계에서, 상기 프로펠러 위상제어시스템은 두 프로펠러 중 어느 한 프로펠러의 회전수를 점진적으로 증가 또는 저감시킴으로써 상기 상대 회전각이 상기 최적 상대 회전각에 일치하도록 만든다.
본 발명에 따르면, 쌍축선의 프로펠러 회전각 조절을 통해 프로펠러의 회전 상태를 최적 상태로 유지할 수 있으며, 이를 통해 선박의 운항조건에 따라 변동압력을 실시간으로, 효율적으로 저감할 수 있다.
도 1은 프로펠러의 날개에서 발생하는 일반적인 캐비테이션 양상을 보여준다.
도 2는 도 1의 캐비테이션 발생에 따른 변동압력 시간이력 계산 예를 보여준다.
도 3은 쌍축선의 뒤에서 바라본 프로펠러의 형상 및 기준 각도를 보여준다.
도 4는 도 3의 상대 회전각의 변화에 따른 변동압력의 크기 변화 계산 예를 보여준다.
도 5는 본 발명에 따른 쌍축선의 프로펠러 회전각 조절을 통한 선체 변동압력 저감 방법을 구현하기 위한 시스템 구성을 보여준다.
도 6은 본 발명에 따른 쌍축선의 프로펠러 회전각 조절을 통한 선체 변동압력 저감 방법의 단계별 구현 과정을 보여준다.
< 부호의 설명 >
10 : 최적 위상 계산기
20 : 제어기
31, 32 : 엔코더
40 : 프로펠러 위상제어시스템
50 : 엔진시스템
61, 62 : 샤프트
71, 72 : 프로펠러
이하, 첨부된 도면들을 참조하여 본 발명에 대하여 상세히 설명한다.
도 3은 쌍축선의 뒤에서 바라본 프로펠러의 형상 및 기준 각도를 보여준다.
쌍축선의 경우 좌, 우 두 개의 프로펠러의 날개 형상과 회전수는 동일하며 회전방향이 반대인 것이 일반적이다.
따라서 두 프로펠러의 캐비테이션 발생 패턴은 기본적으로 유사하다.
그러나 특정한 선체 위치에서 각 프로펠러에 의해 유기된 변동압력의 시간이력은 해당 프로펠러와 선체 위치 간의 상대적인 거리에 따라 크기와 위상이 다르게 된다.
이 경우 우연히 두 프로펠러에서 유기된 변동압력 시간이력의 위상이 일치하게 된다면 보강간섭에 의해 전체 변동압력은 최대가 될 것이며 반대로 위상이 반대가 된다면 상쇄간섭에 의해 전체 변동압력은 최소가 될 것이다.
이는 쌍축선의 경우 두 프로펠러에서 유기된 변동압력 시간이력의 위상차를 임의로 조절할 수 있다면 전체 변동압력을 저감할 수 있음을 뜻하는바, 본 발명은 이러한 기술적 원리를 적극 활용한 쌍축선의 변동압력 저감 방법을 제시하고자 한다.
본 발명의 경우, 변동압력 시간이력의 위상차 조절은 두 프로펠러의 상대 회전각(도 3의 Δθ)의 조절에 의해 달성될 수 있다.
여기서, 상대 회전각이라 함은 두 프로펠러 간의 회전각 차이를 의미한다.
도 4는 도 3의 상대 회전각의 변화에 따른 변동압력의 크기 변화 계산 예를 보여준다.
도 4에서 두 프로펠러의 상대 회전각이 40~50도 정도가 되면 상대 회전각이 0도인 경우에 비해 약 25%의 변동압력 저감 효과를 얻을 수 있음을 알 수 있다.
물론 도 4는 하나의 예에 해당하는 것으로, 쌍축선마다 변동압력이 최소가 되는 상대 회전각은 다를 수 있다.
본 발명에서는 변동압력이 최소가 되는 상대 회전각을 ‘최적 상대 회전각’이라 한다.
이하, 본 발명에 따라 쌍축선의 변동압력을 저감하는 과정에 대해 단계별로 상세히 설명한다.
도 5는 본 발명에 따른 쌍축선의 프로펠러 회전각 조절을 통한 선체 변동압력 저감 방법을 구현하기 위한 시스템 구성을 보여주며, 도 6은 본 발명에 따른 쌍축선의 프로펠러 회전각 조절을 통한 선체 변동압력 저감 방법의 단계별 구현 과정을 보여준다.
본 발명에 따른 시스템은 최적 위상 계산기(10), 제어기(20), 엔코더(31, 32) 및 프로펠러 위상제어시스템(40)을 포함하여 구성되며, 상기 엔코더(31, 32)는 각 샤프트(61, 62)에 장착된다.
S1 : 최적 상대 회전각 계산 단계
먼저, 최적 위상 계산기(10)가 선박의 운항조건에 따른 최적 상대 회전각을 계산한다.
이 경우, 최적 위상 계산기(10)는 캐비테이션 유동해석 및 변동압력 해석을 통해 최적 상대 회전각을 계산한다.
최적 위상 계산기(10)는 실시간으로 최적 상대 회전각을 계산할 수도 있지만, 예상되는 선박의 운항조건에 따라 미리 최적 상대 회전각의 계산을 수행한 후 그 결과를 저장하고 상기 저장된 결과를 필요시 참고할 수도 있다.
최적 위상 계산기(10)는 계산된 최적 상대 회전각 정보를 제어기(20)로 전달한다.
S2 : 프로펠러 정보 수집 단계
각 샤프트(61, 62)에 장착된 엔코더(31, 32)가 프로펠러(71, 72)의 회전수 및 회전각 정보를 수집한 후, 상기 수집된 정보를 제어기(20)로 전달한다.
S3 : 상대 회전각 계산 단계
제어기(20)가 두 프로펠러(71, 72)의 상대 회전각을 계산한다.
제어기(20)는 상대 회전각과 최적 상대 회전각을 비교하여, 상대 회전각과 최적 상대 회전각 간에 차이가 있는 경우라면 상대 회전각을 최적 상대 회전각에 일치시키기 위한 제어명령을 프로펠러 위상제어시스템(40)으로 전달한다.
물론 상대 회전각과 최적 상대 회전각 간에 차이가 없는 경우라면 제어기(20)는 상기와 같은 제어명령을 전달하지 않는다.
S4 : 프로펠러 위상제어 단계
프로펠러 위상제어시스템(40)은 제어기(20)의 상기 제어명령에 따라 두 프로펠러(71, 72)의 상대 회전각을 최적 상대 회전각에 일치시키기 위한 제어를 수행한다.
이 경우, 상대 회전각을 최적 상대 회전각에 일치시키기 위한 제어는 다양한 방식으로 이루어질 수 있다.
예를 들면, 프로펠러 위상제어시스템(40)은 두 프로펠러(71, 72) 중 어느 한 프로펠러(71 또는 72)의 회전수를 점진적으로 증가 또는 저감시킴으로써 두 프로펠러(71, 72) 간의 회전각 차이, 즉 상대 회전각이 최적 상대 회전각에 일치하도록 만들 수 있다.
이 때 프로펠러 위상제어시스템(40)은 프로펠러(71, 72)의 회전수 정보를 제어기(20)로부터 전달 받으며, 프로펠러(71, 72)의 회전수를 조절하기 위하여 해당 프로펠러(71, 72)와 연결된 엔진시스템(50)을 제어한다.
상기 S2 내지 S4의 과정을 반복함으로써 프로펠러(71, 72)의 회전 상태를 최적 상태로 유지할 수 있으며, 이를 통해 쌍축선의 변동압력을 선박의 운항조건에 따라 실시간으로, 효율적으로 저감할 수 있다.
본 발명에 따르면, 쌍축선의 프로펠러 회전각 조절을 통해 선박의 운항조건에 따라 변동압력을 효율적으로 저감할 수 있는바, 본 발명은 조선해양 산업분야에서 널리 이용하여 그 실용적이고 경제적인 가치를 실현할 수 있는 기술이다.

Claims (5)

  1. 쌍축선의 두 프로펠러(71, 72)에서 유기된 변동압력 시간이력의 위상차를 조절함으로써 전체 변동압력을 저감하되,
    상기 변동압력 시간이력의 위상차 조절은 두 프로펠러(71, 72)의 상대 회전각의 조절에 의해 달성됨을 특징으로 하는, 쌍축선의 프로펠러 회전각 조절을 통한 선체 변동압력 저감 방법.
  2. 쌍축선의 프로펠러 회전각 조절을 통한 선체 변동압력 저감 방법으로서,
    최적 위상 계산기(10)가 선박의 운항조건에 따른 최적 상대 회전각을 계산하고, 상기 계산된 최적 상대 회전각 정보를 제어기(20)로 전달하는 S1 단계;
    각 샤프트(61, 62)에 장착된 엔코더(31, 32)가 프로펠러(71, 72)의 회전수 및 회전각 정보를 수집하고, 상기 수집된 정보를 상기 제어기(20)로 전달하는 S2 단계;
    상기 제어기(20)가 두 프로펠러(71, 72)의 상대 회전각을 계산하고, 상기 상대 회전각과 상기 최적 상대 회전각을 비교하여, 상기 상대 회전각을 상기 최적 상대 회전각에 일치시키기 위한 제어명령을 프로펠러 위상제어시스템(40)으로 전달하는 S3 단계; 및
    상기 프로펠러 위상제어시스템(40)이 상기 제어기(20)의 상기 제어명령에 따라 두 프로펠러(71, 72)의 상기 상대 회전각을 상기 최적 상대 회전각에 일치시키기 위한 제어를 수행하는 S4 단계;
    를 포함하는, 쌍축선의 프로펠러 회전각 조절을 통한 선체 변동압력 저감 방법.
  3. 청구항 2에 있어서,
    상기 S1 단계에서, 상기 최적 위상 계산기(10)는 캐비테이션 유동해석 및 변동압력 해석을 통해 상기 최적 상대 회전각을 계산하는 것을 특징으로 하는, 쌍축선의 프로펠러 회전각 조절을 통한 선체 변동압력 저감 방법.
  4. 청구항 2에 있어서,
    상기 S1 단계에서, 상기 최적 위상 계산기(10)는 실시간으로 상기 최적 상대 회전각을 계산하거나, 예상되는 선박의 운항조건에 따라 미리 상기 최적 상대 회전각의 계산을 수행한 후 그 결과를 저장하고 상기 저장된 결과를 참고하는 것을 특징으로 하는, 쌍축선의 프로펠러 회전각 조절을 통한 선체 변동압력 저감 방법.
  5. 청구항 2에 있어서,
    상기 S4 단계에서, 상기 프로펠러 위상제어시스템(40)은 두 프로펠러(71, 72) 중 어느 한 프로펠러(71 또는 72)의 회전수를 점진적으로 증가 또는 저감시킴으로써 상기 상대 회전각이 상기 최적 상대 회전각에 일치하도록 만드는 것을 특징으로 하는, 쌍축선의 프로펠러 회전각 조절을 통한 선체 변동압력 저감 방법.
PCT/KR2017/006282 2016-12-19 2017-06-15 쌍축선의 프로펠러 회전각 조절을 통한 선체 변동압력 저감 방법 WO2018117355A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160173687A KR101884534B1 (ko) 2016-12-19 2016-12-19 쌍축선의 프로펠러 회전각 조절을 통한 선체 변동압력 저감 방법
KR10-2016-0173687 2016-12-19

Publications (1)

Publication Number Publication Date
WO2018117355A1 true WO2018117355A1 (ko) 2018-06-28

Family

ID=62556744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/006282 WO2018117355A1 (ko) 2016-12-19 2017-06-15 쌍축선의 프로펠러 회전각 조절을 통한 선체 변동압력 저감 방법

Country Status (5)

Country Link
US (1) US10472037B2 (ko)
JP (1) JP2018100072A (ko)
KR (1) KR101884534B1 (ko)
CN (1) CN108202851A (ko)
WO (1) WO2018117355A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004003645A (ja) * 2002-05-04 2004-01-08 Man B & W Diesel As 補償装置
KR20090106118A (ko) * 2008-04-04 2009-10-08 대우조선해양 주식회사 선박의 유동 박리 제어장치
KR20120056566A (ko) * 2010-11-25 2012-06-04 삼성중공업 주식회사 오픈 샤프트형 선박
KR101202679B1 (ko) * 2012-02-22 2012-11-21 (주)크리에이텍 선박의 기진력 진동보상장치의 구동방법
KR20150092959A (ko) * 2014-02-06 2015-08-17 현대중공업 주식회사 쌍축 선박용 추진 장치

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3463115A (en) * 1968-02-23 1969-08-26 Kendric R French Ship propulsion system
JPS59124488A (ja) * 1982-12-29 1984-07-18 Mitsubishi Heavy Ind Ltd 船体振動消振装置
JPS6372197U (ko) * 1986-10-30 1988-05-14
JPH02204659A (ja) * 1989-02-01 1990-08-14 Mitsubishi Heavy Ind Ltd ディーゼル主機関同期運転装置
JPH02299997A (ja) * 1989-05-12 1990-12-12 Mitsubishi Heavy Ind Ltd 多機多軸推進船の調相装置
GB2237415A (en) * 1989-10-20 1991-05-01 Fokker Bv Propeller blade synchrophasing
JPH05284778A (ja) * 1992-03-30 1993-10-29 Toshiba Corp 電動機の可変速駆動システム
US20010051475A1 (en) * 1996-11-07 2001-12-13 Reinhold Reuter Twin-propeller drive for watercraft
US6899576B2 (en) * 1997-11-07 2005-05-31 Schottel Gmbh & Co. Kg Twin-propeller drive for watercraft
US6066012A (en) * 1999-01-23 2000-05-23 Nagle; Thomas J Propulsion system for a marine vessel
US20050079776A1 (en) * 2003-10-06 2005-04-14 Miller Lester D. Propulsion system for a watercraft
JP4436123B2 (ja) * 2003-12-25 2010-03-24 三菱重工業株式会社 船体
US7070469B2 (en) * 2004-09-15 2006-07-04 James Stallings Dual propeller surface drive propulsion system for boats
US7517264B2 (en) * 2004-10-27 2009-04-14 Geared Up Systems, Inc. Power boat drive system with multiple gearboxes
JP2006137336A (ja) * 2004-11-12 2006-06-01 Mitsubishi Heavy Ind Ltd 船体振動低減方法及び低振動船舶
JP4664691B2 (ja) * 2005-01-21 2011-04-06 本田技研工業株式会社 船外機の操舵装置
JP4838829B2 (ja) * 2008-07-31 2011-12-14 三菱重工業株式会社 プロペラによる船体表面の変動圧力推定装置及び方法並びにプログラム
JP5072761B2 (ja) * 2008-07-31 2012-11-14 三菱重工業株式会社 プロペラの圧力変動推定装置及び方法並びにプログラム
EP2218637B1 (de) * 2009-02-16 2012-04-18 Claus-D. Christophel Antriebssystem für ein Schiff
JP5544586B2 (ja) * 2010-07-30 2014-07-09 国立大学法人東京海洋大学 可変ピッチプロペラ制御船および可変ピッチプロペラ制御方法
JP5675264B2 (ja) * 2010-10-19 2015-02-25 三菱重工業株式会社 船舶及び推進装置
WO2012092503A2 (en) * 2010-12-29 2012-07-05 Pierre Caouette Electronic system and method of automating, controlling, and optimizing the operation of one or more energy storage units and a combined serial and parallel hybrid marine propulsion system
JP2012166603A (ja) * 2011-02-10 2012-09-06 Ihi Corp 二軸船の制御方法及び二軸船
EP2727819B1 (en) * 2011-06-28 2019-09-04 Yanmar Co., Ltd. Ship steering device and ship steering method
JP5809862B2 (ja) * 2011-06-30 2015-11-11 ヤンマー株式会社 船舶操船装置
JP2014526421A (ja) * 2011-10-07 2014-10-06 サムソン ヘビー インダストリーズ カンパニー,リミテッド 起振力低減型船舶
DE102012201539A1 (de) * 2012-02-02 2013-08-08 Siemens Aktiengesellschaft Gewinnen von Daten über einen Zustand einer Flüssigkeit
KR20140065974A (ko) * 2012-11-22 2014-05-30 대우조선해양 주식회사 선박의 프로펠러 기진력 저감장치
KR101624876B1 (ko) * 2014-05-21 2016-05-30 현대중공업 주식회사 변동압력 저감장치를 구비한 선박
KR20160039048A (ko) 2014-09-30 2016-04-08 현대중공업 주식회사 변동압력 전달 저감장치를 구비한 선박

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004003645A (ja) * 2002-05-04 2004-01-08 Man B & W Diesel As 補償装置
KR20090106118A (ko) * 2008-04-04 2009-10-08 대우조선해양 주식회사 선박의 유동 박리 제어장치
KR20120056566A (ko) * 2010-11-25 2012-06-04 삼성중공업 주식회사 오픈 샤프트형 선박
KR101202679B1 (ko) * 2012-02-22 2012-11-21 (주)크리에이텍 선박의 기진력 진동보상장치의 구동방법
KR20150092959A (ko) * 2014-02-06 2015-08-17 현대중공업 주식회사 쌍축 선박용 추진 장치

Also Published As

Publication number Publication date
KR101884534B1 (ko) 2018-08-01
US20180170497A1 (en) 2018-06-21
KR20180071008A (ko) 2018-06-27
US10472037B2 (en) 2019-11-12
JP2018100072A (ja) 2018-06-28
CN108202851A (zh) 2018-06-26

Similar Documents

Publication Publication Date Title
WO2018117356A1 (ko) 쌍축선의 실시간 진동 정보와 프로펠러 회전각 조절을 통한 변동압력 저감 방법
WO2013079972A1 (en) Electric distributed propulsion
CN109625222A (zh) 一种具有吊舱式电力推进系统的科考船
EP2944558A1 (en) Oscillating foil propulsion system and method for controlling a motion of an oscillating movable foil
WO2014123397A1 (ko) 선박의 추진장치
WO2018117355A1 (ko) 쌍축선의 프로펠러 회전각 조절을 통한 선체 변동압력 저감 방법
EP3003856B1 (en) Device for controlling angular position of turbine blades of a propeller device
WO2010068024A2 (ko) 비대칭 단면형상을 구비하는 선박용 러더
CN1924613B (zh) 海洋拖曳线阵三翼平衡展开装置及翼板攻角零度的确定方法
CN103121504A (zh) 一种加速四桨驱动船舶转弯的协控装置及其协控方法
JP5951587B2 (ja) 制御装置及びこれを備えた船舶、並びに統合制御方法
CN109799705A (zh) 一种减少动力定位船舶推进器磨损的推力分配方法
CN113232817B (zh) 一种风力驱动式水质净化装置
Jürgens et al. Influence of thruster response time on dp capability by time-domain simulations
CN1233533C (zh) 全回转拖轮舵桨控制系统
CN110949646B (zh) 一种隧道沉管运输安装工程船的推进电控系统及电控方法
JP6037864B2 (ja) 船舶
CN203581375U (zh) 一种电磁阀控液压舵机分级式控制装置
WO2019245086A1 (ko) 선박용 덕트 구조체
WO2019194350A1 (ko) 선박용 프로펠러
CN106976541A (zh) 一种非平静海况下船舶电力推进系统的抗过旋控制策略
CN109760813B (zh) 一种带襟翼的船用涡轮风帆装置
WO2018182086A1 (ko) 파력 발전 설비 제어 시스템 및 방법
CN109625223A (zh) 一种吊舱式全回转船舶电力推进系统
WO2024043704A1 (ko) 선박의 전기 추진 제어 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17883664

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30/09/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17883664

Country of ref document: EP

Kind code of ref document: A1