WO2018116882A1 - 波長変換フィルムおよび波長変換フィルムの製造方法 - Google Patents

波長変換フィルムおよび波長変換フィルムの製造方法 Download PDF

Info

Publication number
WO2018116882A1
WO2018116882A1 PCT/JP2017/044338 JP2017044338W WO2018116882A1 WO 2018116882 A1 WO2018116882 A1 WO 2018116882A1 JP 2017044338 W JP2017044338 W JP 2017044338W WO 2018116882 A1 WO2018116882 A1 WO 2018116882A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength conversion
meth
conversion film
acrylate
particles
Prior art date
Application number
PCT/JP2017/044338
Other languages
English (en)
French (fr)
Inventor
諭司 國安
達也 大場
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201780078217.6A priority Critical patent/CN110114700B/zh
Publication of WO2018116882A1 publication Critical patent/WO2018116882A1/ja
Priority to US16/444,470 priority patent/US20190302497A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body

Definitions

  • the present invention relates to a wavelength conversion film and a method for producing the wavelength conversion film.
  • Liquid crystal display devices consume less power and are increasingly used year by year as space-saving image display devices. In recent liquid crystal display devices, further power saving, color reproducibility improvement, and the like have been demanded as performance improvements of the liquid crystal display devices.
  • the wavelength conversion film using a quantum dot is known as a wavelength conversion film.
  • a quantum dot is a crystal in an electronic state in which the direction of movement is restricted in all three dimensions.
  • the nanoparticle Becomes a quantum dot.
  • Quantum dots exhibit various quantum effects. For example, a “quantum size effect” in which the density of states of electrons (energy level) is discretized is exhibited. According to this quantum size effect, the absorption wavelength and emission wavelength of light can be controlled by changing the size of the quantum dot.
  • a wavelength conversion film using quantum dots is configured such that a wavelength conversion layer (quantum dot layer) in which quantum dots are dispersed in a binder made of resin or the like is sandwiched by a substrate such as a resin film.
  • a wavelength conversion layer quantum dot layer
  • the quantum dots are easily deteriorated by oxygen and the light emission intensity is reduced by a photooxidation reaction.
  • a method for solving this problem a method using a gas barrier film having a high gas barrier property (oxygen barrier property) on the substrate can be considered.
  • a gas barrier film having high gas barrier properties is expensive.
  • the configuration in which the wavelength conversion layer is sandwiched between resin films or the like cannot prevent deterioration of quantum dots due to oxygen entering from the end face of the wavelength conversion layer.
  • Patent Document 1 discloses a coating containing a low-oxygen-permeable resin containing polyvinyl alcohol or the like on the outer surface of microparticles (coated particles) containing quantum dots (particles having light emission characteristics) dispersed in a base material. The structure provided with is described. Patent Document 1 describes a wavelength conversion film in which a coating composition in which microparticles are dispersed in a coating is prepared, and a wavelength conversion layer is formed using the coating composition.
  • the quantum dot nanoparticles described in Patent Document 1 are coated with quantum dots with a low oxygen permeable resin such as polyvinyl alcohol to form microparticles. Therefore, it is possible to prevent the quantum dots from being deteriorated by the gas.
  • An object of the present invention is to solve such problems of the prior art, can prevent deterioration of wavelength conversion particles such as quantum dots due to oxygen, and further has a wavelength conversion film excellent in optical characteristics, and this It is providing the suitable manufacturing method of a wavelength conversion film.
  • the first aspect of the wavelength conversion film of the present invention has a wavelength conversion layer and a substrate that supports the wavelength conversion layer,
  • a wavelength conversion film characterized in that the wavelength conversion layer has polyvinyl alcohol having a saponification degree in the range of 86 to 97 mol%, and cured particles of a (meth) acrylate compound containing the wavelength conversion particles. .
  • the polyvinyl alcohol is preferably a modified polyvinyl alcohol.
  • the average particle diameter of the cured particles of the (meth) acrylate compound is preferably 0.5 to 5 ⁇ m.
  • the second aspect of the wavelength conversion film of the present invention has a wavelength conversion layer and a substrate that supports the wavelength conversion layer,
  • a wavelength conversion film wherein the wavelength conversion layer has a copolymer of butenediol and vinyl alcohol, and cured particles of a (meth) acrylate compound enclosing the wavelength conversion particles.
  • the average particle diameter of the cured product particles of the (meth) acrylate compound is 0.5 to 5 ⁇ m.
  • the method for producing a wavelength conversion film of the present invention comprises a step of preparing a dispersion obtained by dispersing wavelength conversion particles in a liquid (meth) acrylate compound, Introducing the dispersion into an aqueous solution of a water-soluble polymer to prepare an emulsion; Irradiating the emulsion with light, curing the (meth) acrylate compound, and preparing a coating solution; and
  • a method for producing a wavelength conversion film comprising a step of applying a coating solution to a substrate and drying the coating solution.
  • the water-soluble polymer is preferably polyvinyl alcohol having a saponification degree in the range of 86 to 97 mol%.
  • the water-soluble polymer is preferably a copolymer of butenediol and vinyl alcohol.
  • the present invention as described above, it is possible to provide a wavelength conversion film that can prevent the wavelength conversion particles from being deteriorated by oxygen and that is excellent in optical characteristics, and a suitable method for producing the wavelength conversion film.
  • FIG. 1 is a diagram conceptually illustrating an example of a planar illumination device that uses an example of the wavelength conversion film of the present invention.
  • FIG. 2 is a diagram conceptually illustrating an example of the wavelength conversion film of the present invention.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • (meth) acrylate is used in the meaning of at least one of acrylate and methacrylate, or any one of them. The same applies to “(meth) acryloyl”.
  • the planar illumination device 10 is a direct-type planar illumination device (backlight unit) used for a backlight of a liquid crystal display device, and includes a housing 14, a wavelength conversion film 16, and a light source 18. Configured.
  • the “liquid crystal display device” is also referred to as “LCD”.
  • LCD is an abbreviation for “Liquid Crystal Display”.
  • FIG. 1 is a schematic diagram only, and the planar illumination device 10 includes an LCD backlight such as an LED (Light Emitting Diode) substrate, wiring, and one or more heat dissipation mechanisms in addition to the illustrated members. You may have a well-known various member provided in well-known planar illuminating devices, such as.
  • the case 14 is a rectangular case whose maximum surface is open, and the wavelength conversion film 16 is disposed so as to close the opening surface.
  • the housing 14 is a known housing that is used in a planar lighting device for an LCD.
  • the bottom surface used as the installation surface of the light source 18 is a light reflection surface selected from a mirror surface, a metal reflective surface, a diffuse reflection surface, etc.
  • the entire inner surface of the housing 14 is a light reflecting surface.
  • the wavelength conversion film 16 is a wavelength conversion film that receives the light irradiated by the light source 18 and converts the wavelength to be emitted.
  • the wavelength conversion film 16 is the wavelength conversion film of the present invention.
  • FIG. 2 conceptually shows the configuration of the wavelength conversion film 16.
  • the wavelength conversion film 16 includes a wavelength conversion layer 26 and a base material 28 that sandwiches and supports the wavelength conversion layer 26.
  • the wavelength conversion layer 26 includes a binder 32 and microparticles 34 dispersed in the binder 32.
  • the binder 32 of the wavelength conversion layer 26 is polyvinyl alcohol having a saponification degree in the range of 86 to 97 mol%.
  • the microparticle 34 is a cured product particle of a (meth) acrylate compound enclosing the wavelength conversion particle, and the wavelength conversion particle 38 is dispersed in a matrix 36 formed by curing the (meth) acrylate compound. It is.
  • the wavelength conversion layer 26 has a function of converting the wavelength of incident light and emitting it. For example, when blue light emitted from the light source 18 enters the wavelength conversion layer 26, the wavelength conversion layer 26 converts at least part of the blue light into red light or green light due to the effect of the wavelength conversion particles 38 contained therein. The wavelength is converted into and emitted.
  • the blue light is light having an emission center wavelength in a wavelength band of 400 to 500 nm.
  • Green light is light having an emission center wavelength in a wavelength band exceeding 500 nm and not more than 600 nm.
  • Red light is light having an emission center wavelength in a wavelength band exceeding 600 nm and not more than 680 nm.
  • the wavelength conversion function expressed by the wavelength conversion layer is not limited to the configuration that converts the wavelength of blue light into red light or green light, and may convert at least part of incident light into light of a different wavelength. That's fine.
  • the wavelength conversion particles (phosphor particles) 38 are excited by at least the incident excitation light to emit fluorescence.
  • the type of the wavelength conversion particle 38 is not particularly limited, and various known wavelength conversion particles may be appropriately selected according to the required wavelength conversion performance or the like.
  • Examples of such wavelength converting particles 38 include, for example, organic fluorescent dyes and organic fluorescent pigments, wavelength converting particles doped with rare earth ions in phosphates and aluminates, metal oxides, metal sulfides and metal nitridings. Examples thereof include wavelength conversion particles doped with ions that promote activation of semiconductor materials such as substances, and wavelength conversion particles using a quantum confinement effect known as quantum dots.
  • the wavelength conversion layer 26 is preferably a wavelength conversion layer obtained by dispersing microparticles 34 including quantum dots as the wavelength conversion particles 38 in the binder 32, that is, a quantum dot layer.
  • JP 2012-169271 A for example, paragraphs [0060] to [0066] of JP 2012-169271 A can be referred to, but are not limited to those described here.
  • the quantum dots commercially available products can be used without any limitation.
  • the emission wavelength of the quantum dots can usually be adjusted by the composition and size of the particles.
  • the quantum dots are preferably uniformly dispersed in the microparticles 34, but may be dispersed in the microparticles 34 with a bias. Moreover, only 1 type may be used for a quantum dot and it may use 2 or more types together. When using 2 or more types of quantum dots together, you may use 2 or more types of quantum dots from which the wavelength of emitted light differs. The same applies to the case where wavelength conversion particles other than quantum dots are used as the wavelength conversion particles 38.
  • the known quantum dots have a quantum dot (A) having an emission center wavelength in a wavelength band in the range of more than 600 nm and not more than 680 nm, and an emission center wavelength in a wavelength band of more than 500 nm and not more than 600 nm.
  • quantum dots (B) and quantum dots (C) having an emission center wavelength in a wavelength band of 400 to 500 nm.
  • the quantum dots (A) are excited by excitation light to emit red light, the quantum dots (B) emit green light, and the quantum dots (C) emit blue light.
  • red light emitted from the quantum dots (A) and light emitted from the quantum dots (B) are emitted.
  • White light can be realized by green light and blue light transmitted through the quantum dot layer.
  • ultraviolet light enter the quantum dot layer including the quantum dots (A), (B), and (C) as excitation light
  • White light can be realized by the emitted green light and the blue light emitted by the quantum dots (C).
  • quantum rods and tetrapod type quantum dots that are rod-shaped and have directivity and emit polarized light may be used.
  • the wavelength conversion layer 26 is formed by dispersing and fixing the microparticles 34 in which the wavelength conversion particles 38 are dispersed in the matrix 36 in the binder 32.
  • the matrix 36 in which the microparticles 34 are dispersed is a cured product of a (meth) acrylate compound.
  • the binder 32 for fixing the microparticles 34 in a dispersed state is PVA (including modified PVA) having a saponification degree in the range of 86 to 97 mol%.
  • the wavelength conversion film 16 of the present invention has such a configuration, it is possible to prevent deterioration of the wavelength conversion particles 38 such as quantum dots due to oxygen without using an expensive gas barrier film as the base material 28, and A wavelength conversion film having excellent optical characteristics capable of emitting light free from color unevenness and luminance unevenness by appropriately dispersing the microparticles 34 in the binder 32 is realized.
  • Patent Document 1 there is known a wavelength conversion film obtained by dispersing microparticles including wavelength conversion particles such as quantum dots in a binder.
  • the microparticles in which the wavelength conversion particles are appropriately dispersed are formed, and It is necessary to properly disperse the particles in the binder.
  • a material having a high gas barrier property as the binder it is possible to prevent the wavelength conversion particles from being deteriorated by oxygen and to realize a highly durable wavelength conversion film.
  • wavelength conversion particles such as quantum dots are generally hydrophobic. Accordingly, it is preferable to use a hydrophobic material as the matrix in order to properly disperse and hold a sufficient amount of wavelength conversion particles in the microparticles without aggregating them in the matrix.
  • the hydrophobic materials the (meth) acrylate compound can appropriately disperse a sufficient amount of wavelength conversion particles without agglomeration.
  • the wavelength conversion film 16 of the present invention by using a cured product of a (meth) acrylate compound as the matrix 36 of the microparticles 34, a sufficient amount of the wavelength conversion particles 38 can be appropriately contained in the microparticles 34 without agglomeration. It is possible to disperse.
  • a resin is generally used as the binder.
  • PVA polyvinyl alcohol
  • a resin having a high gas barrier property PVA has a high gas barrier property because the saponified hydroxyl group (—OH) is agglomerated by hydrogen bonding and the free volume is reduced, and the acetate group (CH 3 COO—) is the main oxygen passage. become. Therefore, in terms of gas barrier properties, it is preferable that the saponification degree of PVA as a binder is high.
  • the portion of the acetate group of PVA is preferable in terms of dispersion stability of the methacrylate compound. Act on. That is, if the amount of the acetate group is insufficient, the microparticles are aggregated. Therefore, it is not preferable that the saponification degree of PVA as a binder is too high in terms of stable dispersion of microparticles.
  • the present invention has been made by obtaining such knowledge, and as described above, as the matrix 36 that is a material for forming the microparticles 34 in which the wavelength conversion particles 38 are dispersed and encapsulated, (meth) acrylate is used. A cured product of the compound is used, and PVA having a saponification degree of 86 to 97% is used as the binder 32 of the wavelength conversion layer 26. This prevents deterioration of the wavelength conversion particles 38 due to oxygen and has good durability, and appropriately disperses the microparticles 34 in which a sufficient amount of the wavelength conversion particles 38 are properly dispersed and encapsulated in the binder 32. Thus, a wavelength conversion film that can emit light free from color unevenness and brightness unevenness and has excellent optical characteristics is realized.
  • the material for forming the matrix 36 of the microparticles 34 is a cured product of a (meth) acrylate compound.
  • a matrix 36 obtained by curing (polymerizing and crosslinking) various known monofunctional (meth) acrylate monomers and / or polyfunctional (meth) acrylate monomers.
  • Monofunctional (meth) acrylate monomers include acrylic acid and methacrylic acid, derivatives thereof, more specifically, (meth) acrylic acid polymerizable unsaturated bond (meth) acryloyl group in the molecule, alkyl Mention may be made of aliphatic or aromatic monomers whose group has 1 to 30 carbon atoms. Specific examples thereof include the following compounds, but the present invention is not limited thereto.
  • Aliphatic monofunctional (meth) acrylate monomers include methyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isononyl (meth) acrylate, n-octyl ( Alkyl (meth) acrylates having 1 to 30 carbon atoms in the alkyl group, such as (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate; An alkoxyalkyl (meth) acrylate having 2 to 30 carbon atoms in the alkoxyalkyl group such as butoxyethyl (meth) acrylate; Aminoalkyl (meth) acrylates in which the total number of carbon atoms of the (monoalkyl or dialkyl) aminoalkyl group is 1-20, such as N, N-dimethylaminoe
  • an aliphatic or aromatic alkyl (meth) acrylate having an alkyl group having 4 to 30 carbon atoms is preferable, and n-octyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl is more preferable.
  • (Meth) acrylate, dicyclopentanyl (meth) acrylate, isobornyl (meth) acrylate, and methylene oxide-added cyclodecatriene (meth) acrylate are preferred.
  • the dispersibility of the wavelength conversion particles 38 such as quantum dots in the microparticles 34 is improved.
  • the amount of light that goes directly from the wavelength conversion layer 26 to the emission surface increases, which is effective in improving front luminance and front contrast.
  • the bifunctional (meth) acrylate monomers include neopentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1, 9-nonanediol di (meth) acrylate, 1,10-decanediol diacrylate, tripropylene glycol di (meth) acrylate, ethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, neopentyl hydroxypivalate Preferred examples include glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, tricyclodecane dimethanol diacrylate, ethoxylated bisphenol A diacrylate, and the like.
  • the (meth) acrylate monomers having three or more functions include epichlorohydrin (ECH) modified glycerol tri (meth) acrylate, ethylene oxide (EO) modified glycerol.
  • ECH epichlorohydrin
  • EO ethylene oxide
  • a (meth) acrylate monomer having a urethane bond in the molecule specifically, an adduct of tolylene diisocyanate (TDI) and hydroxyethyl acrylate, isophorone diisocyanate (IPDI) and hydroxyethyl acrylate
  • TDI tolylene diisocyanate
  • IPDI isophorone diisocyanate
  • HDI hexamethylene diisocyanate
  • PETA pentaerythritol triacrylate
  • a plurality of these (meth) acrylate monomers may be used in combination. Furthermore, a commercially available product may be used as the (meth) acrylate monomer.
  • the microparticle 34 may include a polymerization initiator, a viscosity modifier, a thixotropic agent, a hinted amine compound, an organic particle, an inorganic particle, a surfactant, and the like as necessary. You may contain.
  • the microparticle 34 prepares the dispersion liquid which added and disperse
  • An aqueous solution in which PVA is dissolved is prepared to prepare an emulsion, and the (meth) acrylate monomer in the dispersion is cured. That is, the fact that the microparticles 34 may contain a polymerization initiator or the like means that the dispersion liquid that becomes the microparticles 34 may contain a polymerization initiator or the like as necessary. It is.
  • the average particle diameter of the microparticles 34 is not particularly limited, and may be appropriately set according to the thickness of the wavelength conversion layer 26, the amount of the microparticles 34 in the wavelength conversion layer 26, and the like.
  • the average particle diameter of the microparticles 34 is preferably 0.5 to 5 ⁇ m. Setting the average particle diameter of the microparticles 34 to 0.5 ⁇ m or more is preferable in that the microparticles 34 can be dispersed in the binder 32 without aggregation. Setting the average particle diameter of the microparticles 34 to 5 ⁇ m or less is preferable in that the wavelength conversion layer 26 can be thinned.
  • the wavelength conversion layer 26 is cut by a microtome or the like to form a cross section, and an image obtained by observing the cross section using an optical microscope is analyzed by image analysis software, thereby calculating the average particle diameter of the microparticles 34. do it. What is necessary is just to control the average particle diameter of a microparticle by a well-known method.
  • the content of the wavelength conversion particles 38 in the microparticles 34 is not particularly limited, and may be set as appropriate according to the type of the wavelength conversion particles 38 used, the average particle diameter of the microparticles 34, and the like.
  • the content of the wavelength converting particles 38 in the microparticles 34 is preferably 0.1 to 10% by mass, and more preferably 0.3 to 3% by mass. Setting the content of the wavelength conversion particles 38 in the microparticles 34 to 0.1% by mass or more is preferable in that a sufficient amount of the wavelength conversion particles 38 can be held and light emission with high luminance becomes possible.
  • the wavelength conversion particles 38 are suitably dispersed in the microparticles 34, and light emission with a high quantum yield and high luminance becomes possible. This is preferable.
  • the binder 32 of the wavelength conversion layer 26 holds the microparticles 34 including the wavelength conversion particles 38 formed of such a matrix 36 in a dispersed state.
  • the binder 32 of the wavelength conversion layer 26 is PVA (polyvinyl alcohol) whose saponification degree falls within the range of 86 to 97 mol%. If the saponification degree of PVA used as the binder 32 is less than 86 mol%, the gas barrier property of the binder 32 is insufficient, and problems such as the deterioration of the wavelength conversion particles 38 such as quantum dots due to oxygen cannot be sufficiently prevented.
  • the saponification degree of the PVA used as the binder 32 is preferably in the range of 88 to 95 mol%.
  • the PVA (modified PVA) used as the binder 32 is not particularly limited in the degree of polymerization and the average molecular weight (weight average molecular weight and number average molecular weight) as long as the saponification degree falls within the range of 86 to 97 mol%. No. In addition, the PVA has better handleability in the method for producing the wavelength conversion film of the present invention, which will be described later, when the molecular weight is low.
  • modified PVA can also be suitably used.
  • Preferred examples of the modified PVA include carboxyl-modified PVA and carbonyl-modified PVA.
  • the modifying group of the modified PVA includes a hydrophilic group (carboxylic acid group, sulfonic acid group, phosphonic acid group, amino group, ammonium group, amide group, thiol group, etc.), a hydrocarbon group having 10 to 100 carbon atoms.
  • Fluorine atom-substituted hydrocarbon group, thioether group, polymerizable group (unsaturated polymerizable group, epoxy group, azirinidyl group, etc.), alkoxysilyl group (trialkoxy, dialkoxy, monoalkoxy) and the like are also exemplified.
  • modified polyvinyl alcohol compounds include [0074] of JP 2000-56310 A, [0022] to [0145] of JP 2000-155216 A, and [0018] to [0018] of JP 2002-62426 A. [0022] and the like are exemplified.
  • the modifying group of the modified PVA can be introduced by copolymerization modification, chain transfer modification or block polymerization modification.
  • the content of the microparticles 34 in the wavelength conversion layer 26 depends on the particle diameter of the microparticles 34, the content of the wavelength conversion particles 38 in the microparticles 34, the degree of saponification of the PVA used as the binder 32, and the like. Depending on the situation, it may be set appropriately, but it is preferably 6 to 60% by volume, more preferably 20 to 40% by volume. By setting the content of the microparticles 34 in the wavelength conversion layer 26 to 6% by volume or more, light emission with sufficient luminance can be performed, and the wavelength conversion layer 26, that is, the wavelength conversion film 16 can be thinned.
  • the effect of preventing the deterioration of the wavelength conversion particles 38 by the binder 32 can be suitably obtained. This is preferable in that it can be dispersed.
  • the measurement may be performed by a known method using an optical microscope, an electron microscope, or the like.
  • the wavelength conversion layer 26 may be cut by a microtome or the like to form a cross section, and an image obtained by observing the cross section using an optical microscope may be analyzed by using image analysis software or the like.
  • the wavelength conversion layer 26 may contain an emulsifier, a silane coupling agent, and the like, if necessary.
  • the wavelength conversion layer 26 is prepared as a dispersion liquid to be the microparticles 34 described above, and this dispersion liquid is put into an aqueous solution in which PVA serving as a binder is dissolved to form a matrix 36 as an emulsified state.
  • the (meth) acrylate compound is cured to prepare a coating liquid in which the microparticles 34 are dispersed and emulsified in an aqueous solution, and this coating liquid is applied to a substrate 28 described later and dried.
  • the wavelength conversion layer 26 may contain an emulsifier or the like as necessary.
  • the coating liquid for forming the wavelength conversion layer 26 may contain an emulsifier or the like as necessary. That's good.
  • the wavelength conversion layer 26 may have a single layer configuration or a multilayer configuration of two or more layers.
  • the emission wavelengths of the wavelength conversion particles included in each wavelength conversion layer may be different from each other.
  • one layer is a layer containing the above-described quantum dots (A) that are excited by excitation light (blue light) to emit red light
  • the other one layer is excitation light
  • Examples include a configuration that is a layer containing the aforementioned quantum dots (B) that are excited by blue light and emit green light.
  • the film thickness of the wavelength conversion layer 26 is not particularly limited, and may be set as appropriate according to the thickness of the wavelength conversion film 16, the wavelength conversion particles 38 to be used, the degree of saponification of PVA serving as the binder 32, and the like.
  • the film thickness of the wavelength conversion layer 26 is preferably 10 to 100 ⁇ m. Setting the film thickness of the wavelength conversion layer 26 to 10 ⁇ m or more is preferable in that the wavelength conversion layer 26 that emits light with sufficient luminance can be obtained. Setting the film thickness of the wavelength conversion layer 26 to 100 ⁇ m or less is preferable in that the wavelength conversion film 16 can be prevented from becoming unnecessarily thick.
  • the base material 28 various film-like materials (sheet-like materials) used for known wavelength conversion films can be used. Therefore, as the base material 28, various film-like materials that can support the wavelength conversion layer 26 and the coating liquid that becomes the wavelength conversion layer 26 can be used.
  • the substrate 28 is preferably transparent, and for example, glass, a transparent inorganic crystalline material, a transparent resin material, or the like can be used.
  • the base material 28 may be a rigid sheet shape or a flexible film shape.
  • the base material 28 may be a long shape that can be wound, or may be a single-wafer shape that has been cut into predetermined dimensions in advance.
  • films made of various resin materials are preferably used in terms of being easy to reduce the thickness and weight and being suitable for flexibility.
  • polyethylene PE
  • polyethylene naphthalate PEN
  • polyamide PA
  • polyethylene terephthalate PET
  • polyvinyl chloride PVC
  • polyvinyl alcohol PVA
  • polyacrylonitrile PAN
  • polyimide PI
  • PC polycarbonate
  • PC polyacrylate, polymethacrylate, polypropylene (PP), polystyrene (PS), ABS, cycloolefin copolymer (COC), cycloolefin polymer ( COP) and a resin film made of triacetyl cellulose (TAC)
  • a gas barrier film in which a gas barrier layer that exhibits gas barrier properties is formed on these resin films can also be used as the substrate 28.
  • the oxygen permeability of the substrate 28 is not particularly limited.
  • PVA having a saponification degree in the range of 86 to 97 mol% is used as the binder 32 of the wavelength conversion layer 26. Therefore, depending on the gas barrier property of the binder 32, quantum dots and the like are used. It is possible to prevent the wavelength conversion particles 38 from being deteriorated by oxygen. Therefore, even if a gas barrier film having a high gas barrier property such as an oxygen permeability of 1 ⁇ 10 ⁇ 3 cc / (m 2 ⁇ day ⁇ atm) or less is not used as the base material 28, the wavelength due to oxygen is sufficient. The deterioration of the conversion particles 38 can be prevented, and the wavelength conversion film 16 having high durability can be obtained.
  • a film having a low oxygen permeability that is, a film having a high gas barrier property
  • a film having a high gas barrier property is a dense and high-density film or a film having a dense and high-density layer, and thus may deteriorate the optical characteristics of the wavelength conversion film 16.
  • a film having a high gas barrier property is expensive.
  • the wavelength conversion film 16 of the present invention does not require the use of a film having a high gas barrier property as the substrate 28, it is possible to prevent the optical properties of the wavelength conversion film 16 from being deteriorated due to the substrate 28, The cost of the wavelength conversion film 16 can be reduced.
  • the wavelength conversion film 16 shown in FIG. 2 has a configuration in which the wavelength conversion layer 26 is sandwiched between the base materials 28 corresponding to both main surfaces of the wavelength conversion layer 26, but the present invention is not limited to this. That is, the wavelength conversion film 16 of the present invention may have a configuration in which the base material 28 is provided only on one main surface of the wavelength conversion layer 26. The main surface is the maximum surface such as a layer and a film-like object. However, the wavelength conversion film 16 of the present invention sandwiches the wavelength conversion layer 26 with the base material 28 in that the wavelength conversion layer 26 can be suitably protected, and the amount of gas that enters the wavelength conversion layer 26 can be reduced. A configuration is preferred.
  • the two base materials may be the same or different.
  • the thickness of the substrate 28 is preferably 5 to 100 ⁇ m, more preferably 10 to 70 ⁇ m, and particularly preferably 15 to 55 ⁇ m. Setting the thickness of the base material 28 to 5 ⁇ m or more is preferable in that the wavelength conversion layer 26 can be suitably held and protected, and deterioration of the wavelength conversion particles 38 due to oxygen can be prevented. Setting the thickness of the base material 28 to 100 ⁇ m or less is preferable in that the thickness of the entire wavelength conversion film 16 including the wavelength conversion layer 26 can be reduced.
  • the method for producing such a wavelength conversion film 16 is not particularly limited, and there is a known method for producing a laminated film in which a layer that expresses an optical function is sandwiched between resin films or supported on one surface. Various types are available. The following method is illustrated as a preferable method for producing the wavelength conversion film 16.
  • the matrix 36 is obtained by adding wavelength conversion particles 38 such as quantum dots to a liquid (uncured) (meth) acrylate compound, and further adding a polymerization initiator or the like as necessary and stirring.
  • a dispersion obtained by dispersing the wavelength conversion particles 38 in a liquid (meth) acrylate compound is prepared.
  • the content of the wavelength conversion particles 38 in this dispersion is the content of the wavelength conversion particles 38 in the microparticles 34 to be formed.
  • an aqueous solution in which a water-soluble polymer to be the binder 32 is dissolved in water is prepared.
  • PVA aqueous solution an aqueous solution of PVA (PVA aqueous solution) in which PVA (modified PVA) to be the binder 32 is dissolved in water is prepared.
  • PVA aqueous solution pure water or ion exchange water as water.
  • concentration of the aqueous solution is not particularly limited, and may be set as appropriate according to the amount of the dispersion to be described later.
  • the concentration of this aqueous solution is preferably 5 to 60% by mass.
  • the dispersion is added to an aqueous solution in which PVA is dissolved in water. Further, an emulsifier is added as necessary, and the mixture is stirred to prepare an emulsion in which the dispersion is dispersed and emulsified.
  • the (meth) acrylate compound that forms the matrix 36 is hydrophobic, and the wavelength converting particles 38 are also hydrophobic.
  • PVA used as the binder 32 is hydrophilic. Therefore, the dispersion is dispersed in the aqueous solution in the form of droplets in which the wavelength conversion particles 38 are included in the droplets of the (meth) acrylate compound that becomes the matrix 36.
  • the emulsion is in a state where the (meth) acrylate droplets enclosing the wavelength conversion particles 38 are dispersed in the aqueous solution and emulsified.
  • various known dispersion methods or emulsification methods such as a method using a homogenizer and membrane emulsification can be used in addition to stirring. This also applies to the preparation of the dispersion described above.
  • the (meth) acrylate compound that becomes the matrix 36 is cured (crosslinked or polymerized) by a method such as ultraviolet irradiation or heating while maintaining the state of the emulsion.
  • a method such as ultraviolet irradiation or heating
  • microparticles 34 in which the wavelength conversion particles 38 are dispersed in the cured product of the (meth) acrylate compound, that is, the matrix 36, are formed, and the microparticles 34 are dispersed and emulsified in the aqueous solution of PVA serving as the binder 32.
  • a coating solution is prepared.
  • two base materials 28 such as a PET film are prepared.
  • the wavelength conversion layer 26 is formed by applying the coating liquid to one surface of one base material 28 and heating and drying the coating liquid.
  • various known coating methods such as spin coating, die coating, bar coating, and spray coating can be used.
  • various known drying methods for aqueous solutions such as heating and drying with a heater, heating and drying with warm air, and heating and drying using a heater and hot air are used. Is possible.
  • the method for producing a wavelength conversion film of the present invention is such that a dispersion obtained by dispersing wavelength conversion particles 38 such as quantum dots in a (meth) acrylate compound that becomes a matrix 36 is directly made of PVA that becomes a binder 32. Since the wavelength conversion layer 26 is formed by dispersing in an aqueous solution to prepare a coating solution, and applying and drying the coating solution on the substrate 28, the wavelength conversion film 16 can be manufactured relatively easily.
  • the wavelength conversion layer 26 When the wavelength conversion layer 26 is formed, another substrate 28 is laminated on the surface of the wavelength conversion layer 26 on which the substrate 28 is not laminated, and adhered, as shown in FIG.
  • the wavelength conversion film 16 is produced.
  • the substrate 28 may be attached using the adhesiveness or adhesiveness of the wavelength conversion layer 26, or, as necessary, a transparent adhesive, a transparent adhesive sheet, or an optical transparent adhesive. You may perform using sticking agents, such as (OCA (Optical Clear Adhesive)), a sticking layer, or a sticking sheet.
  • OCA Optical Clear Adhesive
  • a copolymer of butenediol and vinyl alcohol that is, a butenediol vinyl alcohol copolymer
  • PVA polyvinyl alcohol
  • a copolymer of butenediol and vinyl alcohol is also referred to as “BVOH”.
  • the 2nd aspect of the wavelength conversion film of this invention is the same as that of the above-mentioned wavelength conversion film 16 except using BVOH instead of PVA as a binder of a wavelength conversion layer. Therefore, the matrix 36 of the microparticles 34, the wavelength conversion particles 38, the base material 28, and the like may be the same as the wavelength conversion film 16 of the first embodiment. Further, the thickness of the wavelength conversion layer, the content of the microparticles in the wavelength conversion layer, and the like may be in accordance with the wavelength conversion film 16 of the first aspect.
  • BVOH various known materials can be used as BVOH, and there is no limitation on the average molecular weight (weight average molecular weight and number average molecular weight), the degree of saponification, and the ratio of butenediol to vinyl alcohol. .
  • BVOH can also use a commercial item suitably. Examples of commercially available BVOH include G-Polymer TM series manufactured by Nippon Synthetic Chemical Co., Ltd.
  • the wavelength conversion film which uses BVOH as a binder is producible by using BVOH instead of PVA in the manufacturing method of the wavelength conversion film 16 of the above-mentioned 1st aspect. That is, as the water-soluble polymer serving as a binder, an aqueous solution of BVOH in which BVOH is dissolved in water is prepared instead of PVA, and other than that, the manufacturing method of the wavelength conversion film 16 of the first aspect described above is the same. Thus, a wavelength conversion film may be prepared.
  • a light source 18 is disposed at the center position of the bottom surface inside the housing 14.
  • the light source 18 is a light source of light emitted by the planar illumination device 10.
  • various known light sources can be used as long as the light source 18 emits light having a wavelength converted by the wavelength conversion particles 38 of the wavelength conversion film 16 (wavelength conversion layer 26) such as quantum dots. is there.
  • an LED Light Emitting Diode
  • a blue LED that emits blue light is particularly preferably used, and in particular, a blue LED having a peak wavelength of 450 nm ⁇ 50 nm is preferably used.
  • the output of the light source 18 is not particularly limited, and may be appropriately set according to the illuminance (luminance) of light required for the planar lighting device 10.
  • the number of light sources 18 may be one as shown in the figure, or a plurality of light sources 18 may be provided.
  • the planar illumination device 10 shown in FIG. 1 is a so-called direct-type planar illumination device, but the present invention is not limited to this, and is a so-called edge light type planar illumination device (back) using a light guide plate.
  • the light unit can also be suitably used.
  • one of the main surfaces of the wavelength conversion film 16 of the present invention faces the light incident surface of the light guide plate, and the light source is disposed on the opposite side of the light guide plate with the wavelength conversion film 16 interposed therebetween. 18 may be arranged to constitute an edge light type planar illumination device.
  • a plurality of light sources 18 are usually arranged in the longitudinal direction of the light incident surface of the light guide plate, or a long light source is disposed on the light guide plate in the longitudinal direction. Arranged so as to coincide with the longitudinal direction of the surface.
  • the wavelength conversion film and the method for producing the wavelength conversion film of the present invention have been described in detail.
  • the present invention is not limited to the above-described embodiment, and various improvements and modifications can be made without departing from the scope of the present invention. Of course, you may do.
  • Example 1 ⁇ Preparation of dispersion> A dispersion having the following composition was prepared. ⁇ Toluene dispersion of quantum dot 1 (light emission maximum: 530 nm) 20% by mass -Quantum dot 2 toluene dispersion (maximum emission: 630 nm) 2% by mass Dicyclopentanyl acrylate (DCP) (manufactured by Hitachi Chemical Co., Ltd., FA-513AS) 97% by mass Photopolymerization initiator (BASF, Irgacure TPO) 2% by mass
  • DCP Dicyclopentanyl acrylate
  • BASF Irgacure TPO
  • Quantum dot 1 INP530-10 (manufactured by NN-labs)
  • Quantum dot 2 INP620-10 (manufactured by NN-labs)
  • the obtained solution was heated using an evaporator at 40 ° C. while reducing the pressure to remove toluene, thereby preparing a dispersion liquid in which quantum dots were dispersed in DCP.
  • PVA203 (made by Kuraray) was prepared as PVA used as the binder of a wavelength conversion layer.
  • the degree of saponification of this PVA is 87 to 89 mol%.
  • This PVA was put into pure water, stirred while heating at 80 ° C., and dissolved to prepare an aqueous solution of PVA (PVA aqueous solution) obtained by dissolving PVA as a binder in pure water.
  • the concentration of PVA in the PVA aqueous solution was 30% by mass.
  • a mixed solution having the following composition was prepared.
  • -Dispersion 5.8 parts by mass-PVA aqueous solution 93.7 parts by mass-1% by weight aqueous solution of sodium dodecyl sulfate (manufactured by Tokyo Chemical Industry Co., Ltd., SDS) 0.5 part by mass 50 cc of the above composition and (magnetic)
  • SDS sodium dodecyl sulfate
  • the stirrer was put into a ⁇ 35 mm vial.
  • the preparation of the mixed solution was all performed in a glove box having an oxygen concentration of 300 ppm or less, and the vial was covered and kept in a state where the inside was replaced with nitrogen.
  • the vial containing the mixed solution and the stirrer was taken out of the glove box and stirred at 1500 rpm for 30 minutes with the stirrer to prepare an emulsion.
  • the entire emulsified liquid is irradiated with ultraviolet rays using a 160 W / cm air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.) to form a dispersion matrix (DCP).
  • DCP dispersion matrix
  • the ultraviolet irradiation time was 120 seconds.
  • a PET film manufactured by Toyobo Co., Ltd., Cosmo Shine A4300, thickness 50 ⁇ m
  • the prepared coating solution was applied to one side of the PET film with a die coater.
  • the wavelength conversion layer was formed in PET film by drying a coating liquid for 30 minutes at 90 degreeC with a heater.
  • the thickness of the formed wavelength conversion layer was 70 ⁇ m.
  • the obtained wavelength conversion layer was cut using a microtome to form a cross-section, and confirmed by an optical microscope (reflected light).
  • the wavelength conversion layer was obtained by dispersing phosphors (quantum dots) in a matrix. The particles were dispersed.
  • imageJ image analysis software
  • a PET film (base material) was laminated on the formed wavelength conversion layer, and the wavelength conversion layer was sandwiched between two base materials by sticking with a pressure-sensitive adhesive (manufactured by 3M, 8172CL). A wavelength conversion film as shown in FIG. 2 was produced.
  • Example 2 A wavelength conversion film was produced in the same manner as in Example 1 except that PVA-CST (manufactured by Kuraray Co., Ltd.) was used instead of PVA203 as the PVA serving as a binder.
  • the degree of saponification of this PVA is 95.5 to 96.5 mol%.
  • the average particle size of the microparticles was 5.9 ⁇ m.
  • Example 3 A wavelength conversion film was produced in the same manner as in Example 1 except that modified PVA (manufactured by Nippon Vinegar Poval, AP-17) was used instead of PVA203 as a PVA serving as a binder.
  • the degree of saponification of this modified PVA is 88 to 90 mol%.
  • the average particle size of the microparticles was 6.0 ⁇ m.
  • Example 4 A wavelength conversion film was produced in the same manner as in Example 1 except that the concentration of PVA in the PVA aqueous solution was changed to 32% by mass. When measured in the same manner as in Example 1, the average particle size of the microparticles was 4.6 ⁇ m.
  • Example 5 The wavelength conversion film was the same as in Example 1 except that PVA-CST (manufactured by Kuraray Co., Ltd.) was used instead of PVA203 as the binder PVA, and that the PVA concentration in the PVA aqueous solution was changed to 35% by mass. Was made.
  • PVA-CST manufactured by Kuraray Co., Ltd.
  • the average particle size of the microparticles was 0.6 ⁇ m.
  • Example 6 A wavelength conversion film was produced in the same manner as in Example 1 except that BVOH (manufactured by Nippon Synthetic Chemical Co., Ltd., G polymer OKS-6026) was used instead of PVA (PVA203) as a binder. When measured in the same manner as in Example 1, the average particle size of the microparticles was 6.1 ⁇ m.
  • Example 1 A wavelength conversion film was produced in the same manner as in Example 1 except that PVA103 (manufactured by Kuraray Co., Ltd.) was used instead of PVA203 as a PVA serving as a binder.
  • the degree of saponification of this PVA is 98 to 99 mol%.
  • the average particle size of the microparticles was 5.2 ⁇ m.
  • the microparticles formed secondary aggregates in which several to several hundred particles were collected.
  • Example 2 A wavelength conversion film was produced in the same manner as in Example 1 except that PVA405 (manufactured by Kuraray Co., Ltd.) was used instead of PVA203 as a PVA serving as a binder.
  • the degree of saponification of this PVA is 80 to 83 mol%.
  • the average particle size of the microparticles was 6.2 ⁇ m.
  • a luminance value Y0 (cd / m 2 ) was measured.
  • the wavelength conversion film was taken out from the planar lighting device, put into a thermostat kept at 60 ° C. and 90% relative humidity, and stored for 1000 hours. After 1000 hours, the wavelength conversion film was taken out from the thermostatic chamber, a planar illumination device was similarly produced, and the luminance value Y1 (cd / m 2 ) after the high temperature and high humidity test was measured in the same procedure as described above.
  • a surface illumination device is created in the same manner as the measurement of the luminance value Y0 in the measurement of durability, the CIEx and y chromaticity are measured by the same measurement method, and the chromaticity variation from the average value of 9 points in the plane The value ⁇ xy was calculated. From the chromaticity variation value ⁇ xy, color unevenness was evaluated according to the following criteria. A: ⁇ xy ⁇ 0.005 B: 0.005 ⁇ xy ⁇ 0.010 C: 0.010 ⁇ xy ⁇ 0.015 D: 0.015 ⁇ xy The results are shown in the table below.
  • the wavelength conversion film of the present invention has excellent durability, and can irradiate good surface-shaped light without color unevenness.
  • Example 3 using modified PVA as a binder, Examples 4 and 5 in which the average particle diameter of microparticles falls within a suitable range, and Example 6 using BVOH as a binder have very excellent durability. In addition, there is very little color unevenness.
  • Comparative Example 1 in which the degree of saponification of PVA used as the binder is high the microparticles are not properly dispersed and color unevenness occurs.
  • Comparative Example 1 having a low degree of saponification of PVA used as a binder does not have good durability. From the above results, the effects of the present invention are clear.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)
  • Optical Filters (AREA)

Abstract

酸素による波長変換粒子の劣化を防止でき、かつ、光学特性にも優れる波長変換フィルム、および、この波長変換フィルムの製造方法の提供を課題とする。波長変換層と、波長変換層を支持する基材と、を有し、波長変換層が、けん化度が86~97mol%の範囲に入るポリビニルアルコール、および、波長変換粒子を内包する(メタ)アクリレート化合物の硬化物粒子、を有することにより、課題を解決する。

Description

波長変換フィルムおよび波長変換フィルムの製造方法
 本発明は、波長変換フィルム、および、この波長変換フィルムの製造方法に関する。
 液晶表示装置は、消費電力が小さく、省スペースの画像表示装置として年々その用途が広がっている。また、近年の液晶表示装置において、液晶表示装置の性能改善としてさらなる省電力化、色再現性向上等が求められている。
 液晶表示装置のバックライトの省電力化に伴って、光の利用効率を高め、また、色再現性を向上するために、入射光の波長を変換する波長変換フィルムを用いることが知られている。また、波長変換フィルムとしては、量子ドットを利用する波長変換フィルムが知られている。
 量子ドットとは、三次元全方向において移動方向が制限された電子の状態の結晶のことであり、半導体のナノ粒子が、高いポテンシャル障壁で三次元的に囲まれている場合に、このナノ粒子は量子ドットとなる。量子ドットは種々の量子効果を発現する。例えば、電子の状態密度(エネルギー準位)が離散化される「量子サイズ効果」を発現する。この量子サイズ効果によれば、量子ドットの大きさを変化させることで、光の吸収波長および発光波長を制御できる。
 量子ドットを用いる波長変換フィルムは、一例として、樹脂等からなるバインダーの中に、量子ドットを分散してなる波長変換層(量子ドット層)を、樹脂フィルム等の基材で挟持してなる構成を有する。
 ここで、量子ドットは、酸素によって劣化しやすく、光酸化反応により発光強度が低下するという課題がある。この課題を解決する方法として、基材に高いガスバリア性(酸素バリア性)を有するガスバリアフィルムを用いる方法が考えられる。しかしながら、高いガスバリア性を有するガスバリアフィルムは高価である。加えて、波長変換層を樹脂フィルム等で挟持した構成では、波長変換層の端面から進入する酸素による量子ドットの劣化を防止できない。
 一方、量子ドットを含むマイクロ粒子を用い、このマイクロ粒子をバインダーに分散した波長変換層を有する構成の波長変換フィルムも知られている。
 例えば、特許文献1には、母材内に分散された量子ドット(発光特性を有する粒子)を含むマイクロ粒子(被覆粒子)の外表面に、ポリビニルアルコール等を含む低酸素透過性樹脂を含むコーティングを設けた構成が記載されている。この特許文献1には、マイクロ粒子をコーティングに分散したコーティング組成物を調製し、このコーティング組成物を用いて波長変換層を形成した波長変換フィルムが記載されている。
特許第5744033号公報
 特許文献1に記載される量子ドットナノ粒子は、ポリビニルアルコール等の低酸素透過性樹脂で量子ドットをコーティングして、マイクロ粒子を形成する。
 そのため、ガスによる量子ドットの劣化を防止できる。
 しかしながら、特許文献1に記載される量子ドットナノ粒子を用いて波長変換フィルムを作製すると、酸素による量子ドットナノ粒子の劣化は防止できるが、マイクロ粒子同士が凝集しやすい。マイクロ粒子が凝集すると、点欠陥および塗膜の平坦性不足等が生じ、フィルム特有の面状故障を引き起こすことがわかった。
 つまり、波長変換フィルムにおいて、高輝度な発光、色ムラの無い均一性の高い光照射など、優れた光学特性を発現するためには、マイクロ粒子の良好な分散性が要求される。
 本発明の目的は、このような従来技術の問題点を解決することにあり、量子ドット等の波長変換粒子の酸素による劣化を防止でき、さらに、光学特性にも優れる波長変換フィルム、および、この波長変換フィルムの好適な製造方法を提供することにある。
 このような目的を達成するために、本発明の波長変換フィルムの第1の態様は、波長変換層と、波長変換層を支持する基材と、を有し、
 波長変換層が、けん化度が86~97mol%の範囲に入るポリビニルアルコール、および、波長変換粒子を内包する(メタ)アクリレート化合物の硬化物粒子、を有することを特徴とする波長変換フィルムを提供する。
 このような本発明の波長変換フィルムの第1の態様において、ポリビニルアルコールが、変性ポリビニルアルコールであるのが好ましい。
 また、(メタ)アクリレート化合物の硬化物粒子の平均粒子径が0.5~5μmであるのが好ましい。
 また、本発明の波長変換フィルムの第2の態様は、波長変換層と、波長変換層を支持する基材と、を有し、
 波長変換層が、ブテンジオールとビニルアルコールとの共重合体、および、波長変換粒子を内包する(メタ)アクリレート化合物の硬化物粒子、を有することを特徴とする波長変換フィルムを提供する。
 このような本発明の波長変換フィルムの第2の態様において、(メタ)アクリレート化合物の硬化物粒子の平均粒子径が0.5~5μmであるのが好ましい。
 さらに、本発明の波長変換フィルムの製造方法は、液体状の(メタ)アクリレート化合物に波長変換粒子を分散してなる分散液を調製する工程、
 分散液を水溶性ポリマーの水溶液に投入して、乳化液を調製する工程、
 乳化液に光を照射して、(メタ)アクリレート化合物を硬化して、塗布液を調製する工程、および、
 基材に塗布液を塗布して、塗布液を乾燥する工程、を有することを特徴とする波長変換フィルムの製造方法を提供する。
 このような本発明の波長変換フィルムの製造方法において、水溶性ポリマーが、けん化度が86~97mol%の範囲に入るポリビニルアルコールであるのが好ましい。
 また、水溶性ポリマーが、ブテンジオールとビニルアルコールとの共重合体であるのが好ましい。
 このような本発明によれば、酸素による波長変換粒子の劣化を防止でき、さらに、光学特性にも優れる波長変換フィルム、および、この波長変換フィルムの好適な製造方法を提供できる。
図1は、本発明の波長変換フィルムの一例を利用する面状照明装置の一例を概念的に示す図である。 図2は、本発明の波長変換フィルムの一例を概念的に示す図である。
 以下、本発明の波長変換フィルムおよび波長変換フィルムの製造方法について、添付の図面に示される好適実施例を基に、詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において、『~』を用いて表される数値範囲は、『~』の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 また、本明細書において、『(メタ)アクリレート』とは、アクリレートとメタクリレートとの少なくとも一方、または、いずれかの意味で用いるものとする。『(メタ)アクリロイル』等も同様である。
 図1に、本発明の波長変換フィルムの第1の態様を用いる面状照明装置の一例を概念的に示す。
 面状照明装置10は、液晶ディスプレイ装置のバックライト等に用いられる、直下型の面状照明装置(バックライトユニット)であって、筐体14と、波長変換フィルム16と、光源18とを有して構成される。
 以下の説明では、『液晶ディスプレイ装置』を『LCD』とも言う。なお、『LCD』とは『Liquid Crystal Display』の略である。
 また、図1は、あくまで模式図であって、面状照明装置10は、図示した部材以外にも、例えば、LED(Light Emitting Diode)基板、配線および放熱機構の1以上など、LCDのバックライトなどの公知の面状照明装置に設けられる、公知の各種の部材を有してもよい。
 筐体14は、一例として、最大面が開放する矩形の筐体であって、開口面を閉塞するように、波長変換フィルム16が配置される。筐体14は、LCDの面状照明装置等に利用される、公知の筐体である。
 また、筐体14は、好ましい態様として、少なくとも光源18の設置面となる底面は鏡面、金属反射面および拡散反射面等から選択される光反射面となっている。好ましくは、筐体14の内面全面が、光反射面となっている。
 波長変換フィルム16は、光源18が照射した光を入射され、波長変換して出射する、波長変換フィルムである。波長変換フィルム16は、本発明の波長変換フィルムである。
 図2に、波長変換フィルム16の構成を概念的に示す。波長変換フィルム16は、波長変換層26と、波長変換層26を挟持して支持する基材28とを有する。
 また、波長変換層26は、バインダー32と、バインダー32に分散されたマイクロ粒子34とを有する。後に詳述するが、本発明の波長変換フィルム16において、波長変換層26のバインダー32は、けん化度が86~97mol%の範囲に入るポリビニルアルコールである。また、マイクロ粒子34は、波長変換粒子を内包する(メタ)アクリレート化合物の硬化物粒子であって、(メタ)アクリレート化合物を硬化してなるマトリクス36に、波長変換粒子38を分散してなるものである。以下の説明では、『ポリビニルアルコール』を『PVA』とも言う。
 波長変換層26は、入射した光の波長を変換して出射する機能を有するものである。例えば、光源18から照射された青色光が波長変換層26に入射すると、波長変換層26は、内部に含有する波長変換粒子38の効果により、この青色光の少なくとも一部を赤色光あるいは緑色光に波長変換して出射する。
 ここで、青色光とは、400~500nmの波長帯域に発光中心波長を有する光のことである。緑色光とは、500nmを超え600nm以下の波長帯域に発光中心波長を有する光のことである。赤色光とは、600nmを超え680nm以下の波長帯域に発光中心波長を有する光のことである。
 なお、波長変換層が発現する波長変換の機能は、青色光を赤色光あるいは緑色光に波長変換する構成に限定はされず、入射光の少なくとも一部を異なる波長の光に変換するものであればよい。
 波長変換粒子(蛍光体粒子)38は、少なくとも、入射する励起光により励起されて、蛍光を発光する。
 本発明の波長変換フィルムにおいて、波長変換粒子38の種類には特に限定はなく、求められる波長変換の性能等に応じて、種々の公知の波長変換粒子を適宜選択すればよい。
 このような波長変換粒子38の例として、例えば有機蛍光染料および有機蛍光顔料の他、リン酸塩およびアルミン酸塩、金属酸化物等に希土類イオンをドープした波長変換粒子、金属硫化物および金属窒化物等の半導体性の物質に賦活化を促すイオンをドープした波長変換粒子、ならびに、量子ドットとして知られる量子閉じ込め効果を利用した波長変換粒子等が例示される。中でも、発光スペクトル幅が狭く、ディスプレイに用いた場合の色再現性に優れた光源が実現でき、かつ、発光量子効率に優れる量子ドットは、波長変換粒子38として好適に用いられる。
 すなわち、本発明において、波長変換層26は、波長変換粒子38として量子ドットを含むマイクロ粒子34を、バインダー32に分散してなる波長変換層すなわち量子ドット層が、好適に用いられる。
 量子ドットについては、例えば特開2012-169271号公報の段落[0060]~[0066]を参照することができるが、ここに記載のものに限定されるものではない。また、量子ドットは、市販品を何ら制限なく用いることができる。量子ドットの発光波長は、通常、粒子の組成、サイズにより調節することができる。
 量子ドットは、マイクロ粒子34中に均一に分散されるのが好ましいが、マイクロ粒子34中に偏りをもって分散されてもよい。また、量子ドットは、1種のみを用いてもよいし、2種以上を併用してもよい。2種以上の量子ドットを併用する場合には、発光光の波長が異なる2種以上の量子ドットを使用してもよい。
 この点に関しては、波長変換粒子38として量子ドット以外の波長変換粒子を用いた場合も、同様である。
 具体的には、公知の量子ドットには、600nmを超え680nm以下の範囲の波長帯域に発光中心波長を有する量子ドット(A)、500nmを超え600nm以下の範囲の波長帯域に発光中心波長を有する量子ドット(B)、および、400~500nmの波長帯域に発光中心波長を有する量子ドット(C)がある。量子ドット(A)は、励起光により励起され赤色光を発光し、量子ドット(B)は緑色光を、量子ドット(C)は青色光を発光する。
 例えば、量子ドット(A)と量子ドット(B)とを含む量子ドット層に励起光として青色光を入射させると、量子ドット(A)により発光される赤色光、量子ドット(B)により発光される緑色光、および、量子ドット層を透過した青色光により、白色光を具現化することができる。または、量子ドット(A)、(B)、および(C)を含む量子ドット層に励起光として紫外線を入射させることにより、量子ドット(A)により発光される赤色光、量子ドット(B)により発光される緑色光、および量子ドット(C)により発光される青色光により、白色光を具現化することができる。
 また、量子ドットとして、形状がロッド状で指向性を持ち偏光を発する、いわゆる量子ロッドおよびテトラポッド型量子ドット等を用いてもよい。
 前述のように、波長変換フィルム16において、波長変換層26は、マトリクス36に波長変換粒子38を分散してなるマイクロ粒子34を、バインダー32に分散して固定してなるものである。
 ここで、本発明の波長変換フィルム16においては、マイクロ粒子34が分散されるマトリクス36は、(メタ)アクリレート化合物の硬化物である。また、このようなマイクロ粒子34を分散状態で固定するバインダー32は、けん化度が86~97mol%の範囲に入るPVA(変性PVAを含む)である。
 本発明の波長変換フィルム16は、このような構成を有することにより、基材28として高価なガスバリアフィルムを用いなくても、酸素による量子ドット等の波長変換粒子38の劣化を防止でき、かつ、バインダー32内にマイクロ粒子34を適正に分散して、色ムラおよび輝度ムラの無い光を出射できる優れた光学特性を有する波長変換フィルムを実現している。
 特許文献1にも記載されるように、量子ドット等の波長変換粒子を含むマイクロ粒子を、バインダーに分散してなる波長変換フィルムが知られている。
 このようなマイクロ粒子を用いる波長変換フィルムにおいて、色ムラおよび輝度ムラを抑制した良好な光学特性を実現するためには、波長変換粒子が適正に分散されたマイクロ粒子を形成し、かつ、このマイクロ粒子をバインダーに適正に分散させる必要がある。
 また、バインダーとして、ガスバリア性の高い材料を用いることにより、酸素による波長変換粒子の劣化を防止して、耐久性の高い波長変換フィルムを実現できる。
 ここで、量子ドットを初めとする波長変換粒子は、一般的に疎水性である。従って、マイクロ粒子において、十分な量の波長変換粒子を、凝集させることなく、適正にマトリクス内に分散させて保持するためには、マトリクスとしては、疎水性の材料を用いるのが好ましい。
 疎水性の材料の中でも、(メタ)アクリレート化合物は、十分な量の波長変換粒子を、凝集することなく適正に分散できる。本発明の波長変換フィルム16は、マイクロ粒子34のマトリクス36として(メタ)アクリレート化合物の硬化物を用いることにより、十分な量の波長変換粒子38を、凝集させることなくマイクロ粒子34内に適正に分散させることを可能にしている。
 一方、波長変換粒子を含むマイクロ粒子を、バインダーに分散してなる波長変換フィルムにおいては、一般的に、バインダーとして、樹脂が用いられる。
 ガスバリア性の高い樹脂として、PVA(ポリビニルアルコール)が知られている。ここで、PVAは、けん化された水酸基(-OH)の部分は水素結合によって凝集して自由体積が縮まるためにガスバリア性が高く、酢酸基(CH3COO-)の部分が、主たる酸素の通り道になる。
 従って、ガスバリア性という点では、バインダーであるPVAのけん化度は、高い方が好ましい。
 ところが、マイクロ粒子のマトリクス、すなわち、マイクロ粒子の形成材料として(メタ)アクリレート化合物の硬化物を用いた場合には、メタアクリレート化合物の分散の安定性の点では、PVAの酢酸基の部分が好適に作用する。すなわち、酢酸基の量が不十分であると、マイクロ粒子の凝集を招いてしまう。従って、マイクロ粒子の安定した分散の点では、バインダーであるPVAのけん化度が高すぎるのは好ましくない。
 本発明は、このような知見を得ることで成されたものであり、前述のように、波長変換粒子38を分散して内包するマイクロ粒子34の形成材料であるマトリクス36として、(メタ)アクリレート化合物の硬化物を用い、かつ、波長変換層26のバインダー32として、けん化度が86~97%のPVAを用いる。
 これにより、酸素による波長変換粒子38の劣化を防止して良好な耐久性を有すると共に、十分な量の波長変換粒子38を適正に分散して内包するマイクロ粒子34を、バインダー32に適正に分散して、色ムラおよび輝度ムラの無い光を出射できる、光学特性にも優れる波長変換フィルムを実現している。
 本発明において、マイクロ粒子34のマトリクス36の形成材料は、(メタ)アクリレート化合物の硬化物である。具体的には、公知の各種の単官能の(メタ)アクリレートモノマーおよび/または多官能の(メタ)アクリレートモノマーを硬化(重合、架橋)してなるマトリクス36が例示される。
 単官能(メタ)アクリレートモノマーとしては、アクリル酸およびメタクリル酸、それらの誘導体、より詳しくは、(メタ)アクリル酸の重合性不飽和結合(メタ)アクリロイル基を分子内に1個有し、アルキル基の炭素数が1~30である脂肪族または芳香族モノマーを挙げることができる。それらの具体例として以下に化合物を挙げるが、本発明はこれに限定されるものではない。
 脂肪族単官能(メタ)アクリレートモノマーとしては、メチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソノニル(メタ)アクリレート、n-オクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート等のアルキル基の炭素数が1~30であるアルキル(メタ)アクリレート;
 ブトキシエチル(メタ)アクリレート等のアルコキシアルキル基の炭素数が2~30であるアルコキシアルキル(メタ)アクリレート;
 N,N-ジメチルアミノエチル(メタ)アクリレート等の(モノアルキルまたはジアルキル)アミノアルキル基の総炭素数が1~20であるアミノアルキル(メタ)アクリレート;
 ジエチレングリコールエチルエーテルの(メタ)アクリレート、トリエチレングリコールブチルエーテルの(メタ)アクリレート、テトラエチレングリコールモノメチルエーテルの(メタ)アクリレート、ヘキサエチレングリコールモノメチルエーテルの(メタ)アクリレート、オクタエチレングリコールのモノメチルエーテル(メタ)アクリレート、ノナエチレングリコールのモノメチルエーテル(メタ)アクリレート、ジプロピレングリコールのモノメチルエーテル(メタ)アクリレート、ヘプタプロピレングリコールのモノメチルエーテル(メタ)アクリレート、テトラエチレングリコールのモノエチルエーテル(メタ)アクリレート等のアルキレン鎖の炭素数が1~10で末端アルキルエーテルの炭素数が1~10のポリアルキレングリコールアルキルエーテルの(メタ)アクリレート;
 ヘキサエチレングリコールフェニルエーテルの(メタ)アクリレート等のアルキレン鎖の炭素数が1~30で末端アリールエーテルの炭素数が6~20のポリアルキレングリコールアリールエーテルの(メタ)アクリレート;
 シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、メチレンオキシド付加シクロデカトリエン(メタ)アクリレート等の脂環構造を有する総炭素数4~30の(メタ)アクリレート;ヘプタデカフロロデシル(メタ)アクリレート等の総炭素数4~30のフッ素化アルキル(メタ)アクリレート;
 2-ヒドロキシエチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、トリエチレングリコールのモノ(メタ)アクリレート、テトラエチレングリコールモノ(メタ)アクリレート、ヘキサエチレングリコールモノ(メタ)アクリレート、オクタプロピレングリコールモノ(メタ)アクリレート、グリセロールのモノ(メタ)アクリレート等の水酸基を有する(メタ)アクリレート;
 グリシジル(メタ)アクリレート等のグリシジル基を有する(メタ)アクリレート;
 テトラエチレングリコールモノ(メタ)アクリレート、ヘキサエチレングリコールモノ(メタ)アクリレート、オクタプロピレングリコールモノ(メタ)アクリレート等のアルキレン鎖の炭素数が1~30のポリエチレングリコールモノ(メタ)アクリレート;
 (メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、2-ヒドロキシエチル(メタ)アクリルアミド、アクリロイルモルホリン等の(メタ)アクリルアミド; などが挙げられる。
 芳香族単官能アクリレートモノマーとしては、ベンジル(メタ)アクリレート等のアラルキル基の炭素数が7~20であるアラルキル(メタ)アクリレートが挙げられる。
 中でも、アルキル基の炭素数が4~30である脂肪族または芳香族アルキル(メタ)アクリレートが好ましく、更には、n-オクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、メチレンオキシド付加シクロデカトリエン(メタ)アクリレートが好ましい。
 これにより、マイクロ粒子34内における量子ドット等の波長変換粒子38の分散性が向上する。波長変換粒子38の分散性が向上するほど、波長変換層26から出射面に直行する光量が増えるため、正面輝度および正面コントラストの向上に有効である。
 また、2官能以上の多官能(メタ)アクリレートモノマーのうち、2官能の(メタ)アクリレートモノマーとしては、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジアクリレート、トリプロピレングリコールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリシクロデカンジメタノールジアクリレート、エトキシ化ビスフェノールAジアクリレート等が好ましい例として挙げられる。
 また、2官能以上の多官能(メタ)アクリレートモノマーのうち、3官能以上の(メタ)アクリレートモノマーとしては、エピクロロヒドリン(ECH)変性グリセロールトリ(メタ)アクリレート、エチレンオキサイド(EO)変性グリセロールトリ(メタ)アクリレート、プロピレンオキサイド(PO)変性グリセロールトリ(メタ)アクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、EO変性リン酸トリアクリレート、トリメチロールプロパントリ(メタ)アクリレート、カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート、EO変性トリメチロールプロパントリ(メタ)アクリレート、PO変性トリメチロールプロパントリ(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールヒドロキシペンタ(メタ)アクリレート、アルキル変性ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールポリ(メタ)アクリレート、アルキル変性ジペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールエトキシテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等が好ましい例として挙げられる。
 また、多官能モノマーとして、分子内にウレタン結合を有する(メタ)アクリレートモノマー、具体的には、トリレンジイソシアネート(TDI)とヒドロキシエチルアクリレートとの付加物、イソホロンジイソシアネート(IPDI)とヒドロキシエチルアクリレートとの付加物、ヘキサメチレンジイソシアネート(HDI)とペンタエリスリトールトリアクリレート(PETA)との付加物、TDIとPETAとの付加物を作り残ったイソシアナートとドデシルオキシヒドロキシプロピルアクリレートを反応させた化合物、6,6ナイロンとTDIの付加物、ペンタエリスリトールとTDIとヒドロキシエチルアクリレートの付加物等を用いることもできる。
 これらの(メタ)アクリレートモノマーは、複数を併用してもよい。
 さらに、(メタ)アクリレートモノマーは、市販品を使用してもよい。
 また、マイクロ粒子34は、マトリクス36および波長変換粒子38以外にも、必要に応じて、重合開始剤、粘度調節剤、チクソトロピー剤、ヒンタードアミン化合物、有機粒子、無機粒子、および、界面活性剤等を含有してもよい。
 なお、後述するが、マイクロ粒子34は、マトリクス36となる液体状の(メタ)アクリレート化合物に波長変換粒子38を添加して分散した分散液を調製し、この分散液を、後述するバインダー32となるPVAを溶解した水溶液に投入して、乳化液を調製して、分散液の(メタ)アクリレートモノマーを硬化することで形成する。
 すなわち、マイクロ粒子34が重合開始剤等を含有しても良いということは、言い換えれば、マイクロ粒子34となる分散液は、必要に応じて、重合開始剤等を含有してもよい、ということである。
 マイクロ粒子34の平均粒子径には、特に限定は無く、波長変換層26の厚さ、波長変換層26におけるマイクロ粒子34の量等に応じて、適宜、設定すればよい。マイクロ粒子34の平均粒子径は、0.5~5μmが好ましい。
 マイクロ粒子34の平均粒子径を0.5μm以上とすることにより、凝集することなくバインダー32にマイクロ粒子34を分散できる等の点で好ましい。
 マイクロ粒子34の平均粒子径を5μm以下とすることにより、波長変換層26の薄膜化を図れる等の点で好ましい。
 なお、マイクロ粒子34の平均粒子径は、光学顕微鏡、電子顕微鏡、粒度分布計等を用いて、公知の方法で測定すればよい。一例として、波長変換層26をミクロトーム等によって切断して断面を形成し、この断面を光学顕微鏡を用いて観察した画像を、画像解析ソフトによって解析することで、マイクロ粒子34の平均粒子径を算出すればよい。
 マイクロ粒子の平均粒子径は、公知の方法で制御すればよい。一例として、後述する乳化液を調製する工程における攪拌速度の調節、後述する乳化液を調製する工程における乳化条件の調節、乳化液の調製に用いるPVA水溶液のPVA濃度の調節等が例示される。
 マイクロ粒子34における波長変換粒子38の含有量には、特に限定は無く、使用する波長変換粒子38の種類、マイクロ粒子34の平均粒子径等に応じて、適宜、設定すればよい。マイクロ粒子34における波長変換粒子38の含有量は、0.1~10質量%が好ましく、0.3~3質量%がより好ましい。
 マイクロ粒子34における波長変換粒子38の含有量を0.1質量%以上とすることにより、十分な量の波長変換粒子38を保持して高輝度な発光が可能になる等の点で好ましい。
 マイクロ粒子34における波長変換粒子38の含有量を10質量%以下とすることにより、マイクロ粒子34内で波長変換粒子38を好適に分散して高い量子収率で高輝度な発光が可能になる等の点で好ましい。
 波長変換層26のバインダー32は、このようなマトリクス36で形成される波長変換粒子38を含むマイクロ粒子34を分散状態で保持するものである。本発明においては、前述のように、波長変換層26のバインダー32は、けん化度が86~97mol%の範囲に入るPVA(ポリビニルアルコール(Polyvinyl alcohol))である。
 バインダー32となるPVAのけん化度が86mol%未満では、バインダー32のガスバリア性が不十分で、酸素による量子ドット等の波長変換粒子38の劣化を十分に防止できない等の不都合を生じる。
 バインダー32となるPVAのけん化度が97mol%を超えると、バインダー32に適正にマイクロ粒子34を分散できず光学特性が劣化する等の不都合を生じる。
 バインダー32となるPVAのけん化度は、88~95mol%の範囲に入るのが好ましい。
 バインダー32となるPVA(変性PVA)は、けん化度が86~97mol%の範囲に入るものであれば、重合度、および、平均分子量(重量平均分子量および数平均分子量)等には、特に限定は無い。
 なお、PVAは、低分子量の方が、後述する本発明の波長変換フィルムの製造方法における取り扱い性が良好である。
 PVAは、変性PVAも好適に利用可能である。
 変性PVAとしては、カルボキシル変性PVAおよびカルボニル変性PVA等が好適に例示される。
 さらに、変性PVAの変性基としては、親水性基(カルボン酸基、スルホン酸基、ホスホン酸基、アミノ基、アンモニウム基、アミド基、チオール基等)、炭素数10~100個の炭化水素基、フッ素原子置換の炭化水素基、チオエーテル基、重合性基(不飽和重合性基、エポキシ基、アジリニジル基等)、アルコキシシリル基(トリアルコキシ、ジアルコキシ、モノアルコキシ)等も例示される。これらの変性ポリビニルアルコール化合物の具体例としては、特開2000-56310号公報の[0074]、同2000-155216号公報の[0022]~[0145]、同2002-62426号公報の[0018]~[0022]などに記載されるもの等が例示される。変性PVAの変性基は、一例として、共重合変性、連鎖移動変性またはブロック重合変性により導入できる。
 本発明の波長変換フィルムにおいて、波長変換層26におけるマイクロ粒子34の含有量は、マイクロ粒子34の粒子径、マイクロ粒子34における波長変換粒子38の含有量、バインダー32となるPVAのけん化度等に応じて適宜設定すればよいが、6~60体積%が好ましく、20~40体積%がより好ましい。
 波長変換層26におけるマイクロ粒子34の含有量を6体積%以上とすることにより、十分な輝度の発光を行うことができる、波長変換層26すなわち波長変換フィルム16を薄くできる等の点で好ましい。
 波長変換層26におけるマイクロ粒子34の含有量を60体積%以下とすることにより、バインダー32による波長変換粒子38の劣化防止効果を好適に得られる、波長変換層26内にマイクロ粒子34を好適に分散できる等の点で好ましい。
 なお、波長変換層26におけるマイクロ粒子34の含有量は、公知の方法で想定すればよい。例えば、光学顕微鏡、電子顕微鏡等を用いる公知の方法で測定すればよい。一例として、波長変換層26をミクロトーム等によって切断して断面を形成し、この断面を光学顕微鏡を用いて観察した画像を、画像解析ソフト等を用いて解析することによって測定すればよい。
 また、波長変換層26は、必要に応じて、乳化剤およびシランカップリング剤等を含有してもよい。
 なお、後述するが、波長変換層26は、前述のマイクロ粒子34となる分散液を調製し、この分散液を、バインダーとなるPVAを溶解した水溶液に投入して、乳化状態としてマトリクス36となる(メタ)アクリレート化合物を硬化することで、水溶液にマイクロ粒子34を分散して乳化した塗布液を調製し、この塗布液を後述する基材28に塗布して、乾燥することによって形成する。
 すなわち、波長変換層26が必要応じて乳化剤等を含有してもよいということは、言い換えれば、波長変換層26を形成するための塗布液は、必要に応じて、乳化剤等を含有してもよい、ということである。
 波長変換層26は、1層構成でもよく、2層以上の多層構成でもよい。
 波長変換層26を多層構成とする場合には、各波長変換層に含まれる波長変換粒子の発光波長が、互いに異なってもよい。一例として、2層構成であれば、1層は、励起光(青色光)によって励起されて赤色を発光する前述の量子ドット(A)を含有する層で、他の1層は、励起光(青色光)により励起されて緑色光を発光する前述の量子ドット(B)を含有する層である構成等が例示される。
 波長変換層26の膜厚には特に限定はなく、波長変換フィルム16の厚さ、使用する波長変換粒子38、バインダー32となるPVAのけん化度等に応じて、適宜、設定すればよい。
 波長変換層26の膜厚は、10~100μmであるのが好ましい。
 波長変換層26の膜厚を10μm以上とすることにより、十分な輝度の光を出射する波長変換層26が得られる等の点で好ましい。
 波長変換層26の膜厚を100μm以下とすることにより、波長変換フィルム16が不要に厚くなることを防止できる等の点で好ましい。
 基材28は、公知の波長変換フィルムに利用されている各種のフィルム状物(シート状物)が利用可能である。従って、基材28は、波長変換層26および波長変換層26となる塗布液を支持可能であるフィルム状物が、各種、利用可能である。
 ここで、基材28は、透明であるのが好ましく、例えば、ガラス、透明な無機結晶性材料、透明な樹脂材料等を用いる事ができる。また、基材28は、剛直なシート状であってもよいし、フレキシブルなフィルム状であってもよい。さらに、基材28また、巻回が可能な長尺状であってもよいし、予め所定の寸法に切り分けられた枚葉状であってもよい。
 基材28としては、薄膜化および軽量化が容易である、フレキシブル化に好適である等の点で、各種の樹脂材料(高分子材料)からなるフィルムが好適に利用される。
 具体的には、ポリエチレン(PE)、ポリエチレンナフタレート(PEN)、ポリアミド(PA)、ポリエチレンテレフタレート(PET)、ポリ塩化ビニル(PVC)、ポリビニルアルコール(PVA)、ポリアクリトニトリル(PAN)、ポリイミド(PI)、透明ポリイミド、ポリメタクリル酸メチル樹脂(PMMA)、ポリカーボネート(PC)、ポリアクリレート、ポリメタクリレート、ポリプロピレン(PP)、ポリスチレン(PS)、ABS、シクロオレフィン・コポリマー(COC)、シクロオレフィンポリマー(COP)、および、トリアセチルセルロース(TAC)からなる樹脂フィルムが、好適に例示される。
 また、これらの樹脂フィルムに、ガスバリア性を発現するガスバリア層を形成した、ガスバリアフィルムも、基材28として利用可能である。
 ここで、基材28の酸素透過度には、特に限定はない。
 なお、本発明の波長変換フィルム16は、波長変換層26のバインダー32として、けん化度が86~97mol%の範囲に入るPVAを用いているため、バインダー32が有するガスバリア性によって、量子ドット等の波長変換粒子38の酸素による劣化を防止できる。
 そのため、基材28として、例えば酸素透過度が1×10-3cc/(m2・day・atm)以下のような、高いガスバリア性を有するガスバリアフィルムを用いなくても、十分に酸素による波長変換粒子38の劣化を防止でき、耐久性の高い波長変換フィルム16が得られる。
 酸素透過度が低いフィルムすなわちガスバリア性が高いフィルムは、緻密で高密度なフィルム、あるいは、緻密で高密度な層を有するフィルムであるため、波長変換フィルム16の光学特性を低下させる可能性がある。また、ガスバリア性が高いフィルムは高価である。
 これに対し、本発明の波長変換フィルム16は、ガスバリア性の高いフィルムを基材28として用いる必要がないので、基材28に起因する波長変換フィルム16の光学特性の低下を防止でき、また、波長変換フィルム16のコストを低減できる。
 図2に示す波長変換フィルム16は、波長変換層26の両主面に対応して、波長変換層26を基材28で挟持した構成を有するが、本発明は、これに限定はされない。すなわち、本発明の波長変換フィルム16は、波長変換層26の一方の主面のみに基材28を設けた構成であってもよい。主面とは、層およびフィルム状物等の最大面のことである。
 しかしながら、波長変換層26を好適に保護できる、波長変換層26に侵入するガスの量を低減できる等の点で、本発明の波長変換フィルム16は、波長変換層26を基材28で挟持した構成であるのが好ましい。
 なお、波長変換層26を基材28で挟持する場合には、2枚の基材は、同じものでも、異なるものでもよい。
 また、基材28の厚さは5~100μmが好ましく、10~70μmがより好ましく、15~55μmが特に好ましい。
 基材28の厚さを5μm以上とすることにより、波長変換層26を好適に保持および保護できる、酸素による波長変換粒子38の劣化を防止できる等の点で好ましい。
 基材28の厚さを100μm以下とすることにより、波長変換層26を含む波長変換フィルム16全体の厚さを薄くできる等の点で好ましい。
 このような波長変換フィルム16の作製方法には、特に限定はなく、光学的な機能を発現する層を、樹脂フィルム等で挟持あるいは一面を支持してなる積層フィルムを作製する、公知の方法が、各種、利用可能である。
 好ましい波長変換フィルム16の作製方法として、以下の方法が例示される。
 液体状(未硬化)の(メタ)アクリレート化合物に、量子ドット等の波長変換粒子38を投入し、さらに、必要に応じて重合開始剤等を投入して、攪拌することにより、マトリクス36となる液状の(メタ)アクリレート化合物に、波長変換粒子38を分散してなる分散液を調製する。この分散液における波長変換粒子38の含有量が、形成するマイクロ粒子34における波長変換粒子38の含有量となる。
 他方で、バインダー32となる水溶性ポリマーを水に溶解した水溶液を調製する。本例では、バインダー32としてPVAを用いているので、バインダー32となるPVA(変性PVA)を水に溶解した、PVAの水溶液(PVA水溶液)を調製する。なお、水は、純水あるいはイオン交換水を用いるのが好ましい。
 この水溶液の濃度には、特に限定はなく、後述する分散液の投入量等に応じて、適宜、設定すればよい。この水溶液の濃度は、好ましくは5~60質量%である。
 次いで、PVAを水に溶解した水溶液に、分散液を投入して、さらに、必要に応じて乳化剤等を添加して、攪拌することにより、水溶液に分散液を分散して乳化した乳化液を調製する。
 周知のように、マトリクス36となる(メタ)アクリレート化合物は疎水性で、同じく、波長変換粒子38も疎水性である。さらに、バインダー32となるPVAは親水性である。そのため、分散液は、マトリクス36となる(メタ)アクリレート化合物の液滴の中に波長変換粒子38を内包した液滴の状態で、水溶液に分散される。言い換えれば、乳化液は、波長変換粒子38を内包する(メタ)アクリレートの液滴が、水溶液に分散されて乳化した状態となる。
 なお、乳化液の調製は、攪拌以外にも、ホモジナイザーを用いる方法、膜乳化など、公知の分散法あるいは乳化法が、各種、利用可能である。この点に関しては、前述の分散液の調製でも、同様である。
 乳化液を調製したら、乳化液状態を維持しつつ、紫外線照射あるいは加熱等の方法によって、マトリクス36となる(メタ)アクリレート化合物を硬化(架橋、重合)する。
 これにより、(メタ)アクリレート化合物の硬化物すなわちマトリクス36の中に波長変換粒子38を分散してなるマイクロ粒子34が形成され、バインダー32となるPVAの水溶液にマイクロ粒子34を分散して乳化した、塗布液が調製される。
 他方で、PETフィルムなど、2枚の基材28を準備する。
 塗布液を調製して、基材28を準備したら、1枚の基材28の一面に塗布液を塗布して、塗布液を加熱乾燥することで、波長変換層26を形成する。
 塗布液の塗布方法には、特に限定はなく、スピンコート法、ダイコート法、バーコート法、および、スプレー塗布等の公知の塗布方法が、各種利用可能である。
 また、塗布液の加熱乾燥方法にも、特に限定はなく、ヒータによる加熱乾燥、温風による加熱乾燥、ヒータと温風とを併用する加熱乾燥等、公知の水溶液の乾燥方法が、各種、利用可能である。
 本発明の波長変換フィルムの製造方法は、このように、マトリクス36となる(メタ)アクリレート化合物に量子ドット等の波長変換粒子38を分散してなる分散液を、直接、バインダー32となるPVAの水溶液に分散させて塗布液を調製し、この塗布液を基材28に塗布して乾燥することで、波長変換層26を形成するため、比較的、簡便に波長変換フィルム16を製造できる。
 波長変換層26を形成したら、さらに、波長変換層26の基材28を積層されていない面に、もう一枚の基材28を積層して、貼着することで、図2に示すような波長変換フィルム16を作製する。
 この基材28の貼着は、波長変換層26が有する粘着性または接着性を利用して行ってもよく、あるいは、必要に応じて、透明な粘着剤、透明な粘着シート、光学透明接着剤(OCA(Optical Clear Adhesive))等の貼着剤、貼着層または貼着シート等を用いて行ってもよい。
 なお、波長変換層26の一方の主面のみに基材28を設けた波長変換フィルムを作製する場合には、塗布液を加熱乾燥して波長変換層26を形成した時点で、波長変換フィルムの作製を終えればよい。
 本発明の波長変換フィルムの第2の態様は、波長変換層のバインダーとして、第1の態様において用いるPVAに変えて、ブテンジオールとビニルアルコールとの共重合体、すなわち、ブテンジオールビニルアルコールコポリマーを用いるものである。以下の説明では、『ブテンジオールとビニルアルコールとの共重合体』を、『BVOH』とも言う。
 本発明の波長変換フィルムの第2の態様は、波長変換層のバインダーとして、PVAに変えてBVOHを用いる以外は、前述の波長変換フィルム16と同様である。従って、マイクロ粒子34のマトリクス36および波長変換粒子38、基材28等は、第1の態様の波長変換フィルム16と同様でよい。
 また、波長変換層の厚さおよび波長変換層におけるマイクロ粒子の含有量等も、第1の態様の波長変換フィルム16に準じればよい。
 本発明において、BVOHは、公知の各種の物が利用可能であり、平均分子量(重量平均分子量および数平均分子量)、けん化度、および、ブテンジオールとビニルアルコールとの比率等には、限定はない。
 また、BVOHは、市販品も好適に利用可能である。BVOHの市販品としては、日本合成化学社製のGポリマー(G-PolymerTM)シリーズ等が例示される。
 また、バインダーとしてBVOHを用いる波長変換フィルムは、前述の第1の態様の波長変換フィルム16の製造方法において、PVAに変えてBVOHを用いることで、作製できる。
 すなわち、バインダーとなる水溶性ポリマーとして、PVAに変えて、BVOHを水に溶解したBVOHの水溶液を調製して、それ以外は、前述の第1の態様の波長変換フィルム16の製造方法と同様にして、波長変換フィルムを作製すればよい。
 面状照明装置10において、筐体14内部における底面の中心位置には、光源18が配置される。光源18は、面状照明装置10が照射する光の光源である。
 光源18は、量子ドットなどの波長変換フィルム16(波長変換層26)の波長変換粒子38によって波長変換される波長を有する光を照射するものであれば、公知の光源が、各種、利用可能である。
 中でも、LED(発光ダイオード(Light Emitting Diode))は光源18として好適に例示される。また、前述のように、波長変換フィルム16の波長変換層26としては、量子ドットを樹脂等のマトリクスに分散してなる量子ドット層が好適に利用される。そのため、光源18としては、青色の光を照射する青色LEDは特に好適に用いられ、中でも特に、ピーク波長が450nm±50nmの青色LEDは好適に用いられる。
 本発明の面状照明装置10において、光源18の出力には、特に限定はなく、面状照明装置10に要求される光の照度(輝度)等に応じて、適宜、設定すればよい。
 また、本発明の面状照明装置10において、光源18は、図示例のように1個でもよく、あるいは、複数の光源18を設けてもよい。
 図1に示す面状照明装置10は、いわゆる直下型の面状照明装置であるが、本発明は、これに限定はされず、導光板を用いる、いわゆるエッジライト型の面状照明装置(バックライトユニット)にも、好適に利用可能である。
 この場合には、例えば、導光板の光入射面に、本発明の波長変換フィルム16の一方の主面を対面して配置し、波長変換フィルム16を挟んで、導光板とは逆側に光源18を配置して、エッジライト型の面状照明装置を構成すればよい。なお、エッジライト型の面状照明装置において、光源18は、通常、導光板の光入射面の長手方向に複数個を配置し、あるいは、長尺な光源を、長手方向を導光板の光入射面の長手方向に一致して配置する。
 以上、本発明の波長変換フィルムおよび波長変換フィルムの製造方法について詳細に説明したが、本発明は、上記実施形態に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行なってもよいのは、もちろんである。
 以下、本発明の具体的実施例を挙げ、本発明を、より詳細に説明する。なお、本発明は以下に記載する実施例に限定されるものではなく、以下の実施例に示す材料、使用量、割合、処理内容、処理手順などは、本発明の趣旨を逸脱しない限り適宜変更することができる。
 [実施例1]
 <分散液の調製>
 下記の組成の分散液を調製した。
  ・量子ドット1のトルエン分散液(発光極大:530nm)  20質量%
  ・量子ドット2のトルエン分散液(発光極大:630nm)  2質量%
  ・ジシクロペンタニルアクリレート(DCP)(日立化成社製、FA-513AS)  97質量%
  ・光重合開始剤(BASF社製、イルガキュアTPO)  2質量%
 波長変換粒子である量子ドット1、2は、下記のコアーシェル構造(InP/ZnS)を有するナノ結晶を用いた。
  ・量子ドット1:INP530-10(NN-labs社製)
  ・量子ドット2:INP620-10(NN-labs社製)
 得られた溶液をエバポレーターを用いて40℃で加熱しながら減圧してトルエンを除去して、量子ドットをDCPに分散してなる分散液を調製した。
 <PVA水溶液の調製>
 波長変換層のバインダーとなるPVAとして、PVA203(クラレ社製)を用意した。このPVAのけん化度は87~89mol%である。
 このPVAを、純水に投入して、80℃に加熱しながら攪拌して、溶解することにり、バインダーとなるPVAを純水に溶解してなるPVAの水溶液(PVA水溶液)を調製した。PVA水溶液におけるPVAの濃度は30質量%とした。
 <乳化液および塗布液の調製>
 調製した分散液およびPVA水溶液を用いて、下記の組成の混合液を調製した。
  ・分散液  5.8質量部
  ・PVA水溶液  93.7質量部
  ・ドデシル硫酸ナトリウム(東京化成化学社製、SDS)の1質量%水溶液  0.5質量部
 上記組成の混合液50ccおよび(マグネチック)スタラーを、φ35mmのバイアル瓶へ投入した。なお、混合液の調製作業は、全て酸素濃度300ppm以下のグローブボックス内で実施したものであり、さらに、バイアル瓶は蓋をして、内部が窒素置換された状態を保持した。
 混合液およびスタラーが入ったバイアル瓶をグローブボックスから取り出し、スタラーによって1500rpmで30分間撹拌することで、乳化液を調製した。
 次いで、乳化液を攪拌して乳化状態を維持しつつ、乳化液全体に160W/cmの空冷メタルハライドランプ(アイグラフィックス社製)を用いて、紫外線を照射して、分散液のマトリクス(DCP)を硬化させてマイクロ粒子を形成した。これにより、バインダーとなるPVAを溶解したPVA水溶液に、マイクロ粒子を分散して乳化した、塗布液を調製した。紫外線の照射時間は120秒間とした。
 <波長変換フィルムの作製>
 基材として、PETフィルム(東洋紡社製、コスモシャインA4300、厚さ50μm)を用意した。
 PETフィルムの一面に、調製した塗布液をダイコータによって塗布した。次いで、ヒータによって90℃で30分、塗布液を乾燥することによって、PETフィルムに波長変換層を形成した。形成した波長変換層の厚さは、70μmであった。
 得られた波長変換層をミクロトームを用いて切削して断面を形成し、光学顕微鏡(反射光)によって確認したところ、波長変換層には、マトリクスに蛍光体(量子ドット)を分散してなるマイクロ粒子が分散されていた。また、得られた光学顕微鏡像を画像解析ソフト(ImageJ)によって解析したところ、マイクロ粒子の平均粒子径(一次粒子の直径)は5.8μmであった。
 次いで、形成した波長変換層の上に、PETフィルム(基材)を積層して、粘着剤(3M社製、8172CL)によって貼着することにより、波長変換層を2枚の基材で挟持した、図2に示すような波長変換フィルムを作製した。
 [実施例2]
 バインダーとなるPVAとして、PVA203に変えて、PVA-CST(クラレ社製)を用いた以外は、実施例1と同様にして波長変換フィルムを作製した。このPVAのけん化度は95.5~96.5mol%である。
 実施例1と同様に測定したところ、マイクロ粒子の平均粒子径は5.9μmであった。
 [実施例3]
 バインダーとなるPVAとして、PVA203に変えて、変性PVA(日本酢ビ・ポバール社製、AP-17)を用いた以外は、実施例1と同様にして波長変換フィルムを作製した。この変性PVAのけん化度は88~90mol%である。
 実施例1と同様に測定したところ、マイクロ粒子の平均粒子径は6.0μmであった。
 [実施例4]
 PVA水溶液におけるPVAの濃度を32質量%に変更した以外は、実施例1と同様にして波長変換フィルムを作製した。
 実施例1と同様に測定したところ、マイクロ粒子の平均粒子径は4.6μmであった。
 [実施例5]
 バインダーとなるPVAとして、PVA203に変えて、PVA-CST(クラレ社製)を用い、かつ、PVA水溶液におけるPVAの濃度を35質量%に変更した以外は、実施例1と同様にして波長変換フィルムを作製した。
 実施例1と同様に測定したところ、マイクロ粒子の平均粒子径は0.6μmであった。
 [実施例6]
 バインダーとして、PVA(PVA203)に変えて、BVOH(日本合成化学社製、GポリマーOKS-6026)を用いた以外は、実施例1と同様にして波長変換フィルムを作製した。
 実施例1と同様に測定したところ、マイクロ粒子の平均粒子径は6.1μmであった。
 [比較例1]
 バインダーとなるPVAとして、PVA203に変えて、PVA103(クラレ社製)を用いた以外は、実施例1と同様にして波長変換フィルムを作製した。このPVAのけん化度は98~99mol%である。
 実施例1と同様に測定したところ、マイクロ粒子の平均粒子径は5.2μmであった。なお、このマイクロ粒子は、粒子が数個~数百個集まった二次凝集体を形成していた。
 [比較例2]
 バインダーとなるPVAとして、PVA203に変えて、PVA405(クラレ社製)を用いた以外は、実施例1と同様にして波長変換フィルムを作製した。このPVAのけん化度は80~83mol%である。
 実施例1と同様に測定したところ、マイクロ粒子の平均粒子径は6.2μmであった。
 [耐久性の測定]
 <面状照明装置の作製>
 バックライトユニットに青色光源を備える市販のタブレット端末(商品名「Kindle(登録商標)Fire HDX 7」、Amazon社製)を分解して、バックライトユニットを取り出した。バックライトユニットに組み込まれていた波長変換フィルムQDEF(Quantum Dot Enhancement Film)に代えて、矩形(50×50mm)に切り出した実施例または比較例の波長変換フィルムを組み込んだ。このようにして面状照明装置を作製した。
 作製した面状照明装置を点灯して、全面が白表示になるようにし、導光板の面に対して垂直方向520mmの位置に設置した輝度計(TOPCON社製、SR3)を用いて、初期の輝度値Y0(cd/m2)を測定した。
 次に、面状照明装置から波長変換フィルムを取り出し、60℃相対湿度90%に保たれた恒温槽に投入して、1000時間保管した。1000時間後、恒温槽から波長変換フィルムを取り出して、同様に面状照明装置を作製し、上記と同様の手順で、高温高湿試験後の輝度値Y1(cd/m2)を測定した。
 測定した初期の輝度値Y0および高温高湿試験後の輝度値Y1から、下記式によって、初期の輝度値Y0に対する、高温高湿試験後の輝度値Y1の変化率ΔYを算出した。変化率ΔYから、以下の基準で波長変換フィルムの耐久性を評価した。
  ΔY[%]=(Y0-Y1)/Y0×100
  A:ΔY≦5%
  B:5%<ΔY<15%
  C:15%≦ΔY
 [色ムラの測定]
 耐久性の測定における輝度値Y0の測定と同様に面状照明装置を作成し、同様の測定方法で、CIEx,および、y色度を測定し、面内9点の平均値からの色度変動値Δxyを算出した。色度変動値Δxyから、以下の基準で色ムラを評価した。
  A:Δxy≦0.005
  B:0.005<Δxy≦0.010
  C:0.010<Δxy≦0.015
  D:0.015<Δxy
 結果を下記の表に示す。
Figure JPOXMLDOC01-appb-T000001
 上記表に示されるように、本発明の波長変換フィルムは、優れた耐久性を有し、さらに、色ムラの無い面状の良好な光を照射できる。特に、バインダーとして変性PVAを用いる実施例3、マイクロ粒子の平均粒子径が好適な範囲に入る実施例4および5、バインダーとしてBVOHを用いる実施例6は、非常に優れた耐久性を有し、かつ、色ムラも非常に少ない。
 これに対し、バインダーとして用いるPVAのけん化度が高い比較例1は、マイクロ粒子が適正に分散されておらず、色ムラが生じている。他方、バインダーとして用いるPVAのけん化度が低い比較例1は、耐久性が良くない。
 以上の結果より、本発明の効果は明らかである。
 LCDのバックライトなどに好適に利用可能である。
 10 面状照明装置
 14 筐体
 16 波長変換フィルム
 18 光源
 26 波長変換層
 28 基材
 32 バインダー
 34 マイクロ粒子
 36 マトリクス
 38 波長変換粒子

Claims (8)

  1.  波長変換層と、前記波長変換層を支持する基材と、を有し、
     前記波長変換層が、けん化度が86~97mol%の範囲に入るポリビニルアルコール、および、波長変換粒子を内包する(メタ)アクリレート化合物の硬化物粒子、を有することを特徴とする波長変換フィルム。
  2.  前記ポリビニルアルコールが、変性ポリビニルアルコールである請求項1に記載の波長変換フィルム。
  3.  前記(メタ)アクリレート化合物の硬化物粒子の平均粒子径が0.5~5μmである請求項1または2に記載の波長変換フィルム。
  4.  波長変換層と、前記波長変換層を支持する基材と、を有し、
     前記波長変換層が、ブテンジオールとビニルアルコールとの共重合体、および、波長変換粒子を内包する(メタ)アクリレート化合物の硬化物粒子、を有することを特徴とする波長変換フィルム。
  5.  前記(メタ)アクリレート化合物の硬化物粒子の平均粒子径が0.5~5μmである請求項4に記載の波長変換フィルム。
  6.  液体状の(メタ)アクリレート化合物に波長変換粒子を分散してなる分散液を調製する工程、
     前記分散液を水溶性ポリマーの水溶液に投入して、乳化液を調製する工程、
     前記乳化液に光を照射して、前記(メタ)アクリレート化合物を硬化して、塗布液を調製する工程、および、
     基材に前記塗布液を塗布して、前記塗布液を乾燥する工程、を有することを特徴とする波長変換フィルムの製造方法。
  7.  前記水溶性ポリマーが、けん化度が86~97mol%の範囲に入るポリビニルアルコールである請求項6に記載の波長変換フィルムの製造方法。
  8.  前記水溶性ポリマーが、ブテンジオールとビニルアルコールとの共重合体である請求項6に記載の波長変換フィルムの製造方法。
PCT/JP2017/044338 2016-12-19 2017-12-11 波長変換フィルムおよび波長変換フィルムの製造方法 WO2018116882A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780078217.6A CN110114700B (zh) 2016-12-19 2017-12-11 波长转换膜及波长转换膜的制造方法
US16/444,470 US20190302497A1 (en) 2016-12-19 2019-06-18 Wavelength conversion film and method of manufacturing wavelength conversion film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-245433 2016-12-19
JP2016245433A JP6806555B2 (ja) 2016-12-19 2016-12-19 波長変換フィルムおよび波長変換フィルムの製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/444,470 Continuation US20190302497A1 (en) 2016-12-19 2019-06-18 Wavelength conversion film and method of manufacturing wavelength conversion film

Publications (1)

Publication Number Publication Date
WO2018116882A1 true WO2018116882A1 (ja) 2018-06-28

Family

ID=62626472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044338 WO2018116882A1 (ja) 2016-12-19 2017-12-11 波長変換フィルムおよび波長変換フィルムの製造方法

Country Status (4)

Country Link
US (1) US20190302497A1 (ja)
JP (1) JP6806555B2 (ja)
CN (1) CN110114700B (ja)
WO (1) WO2018116882A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6714522B2 (ja) * 2017-01-24 2020-06-24 富士フイルム株式会社 波長変換フィルム
CN109423275B (zh) * 2017-08-29 2020-03-31 纳晶科技股份有限公司 量子点组合物、量子点发光材料、其制备方法及含有其的发光器件
CN111077696A (zh) * 2018-10-22 2020-04-28 优美特创新材料股份有限公司 光转换层、背光模块及包括其的显示装置
DE112019006269T5 (de) * 2018-12-18 2021-10-14 Panasonic Intellectual Property Management Co., Ltd. Wellenlängenumwandlungselement, optische Vorrichtung, Projektor und Herstellungsverfahren für ein Wellenlängenumwandlungselement

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62145626A (ja) * 1985-12-20 1987-06-29 Dainippon Printing Co Ltd デイスプレイ用基板の製造方法
JPH05205634A (ja) * 1991-10-17 1993-08-13 Samsung Display Devices Co Ltd カラー陰極線管用蛍光膜の製造方法
JPH08171855A (ja) * 1994-12-19 1996-07-02 Toshiba Corp フィルター付き蛍光体層の製造方法
WO2012063707A1 (ja) * 2010-11-11 2012-05-18 住友化学株式会社 蛍光体材料の製造方法
JP2013504660A (ja) * 2009-09-09 2013-02-07 キユーデイー・ビジヨン・インコーポレーテツド ナノ粒子を含む粒子、それの使用および方法
WO2014208356A1 (ja) * 2013-06-25 2014-12-31 コニカミノルタ株式会社 光学フィルム及び発光デバイス
WO2016189869A1 (ja) * 2015-05-28 2016-12-01 富士フイルム株式会社 量子ドット含有組成物、波長変換部材、バックライトユニット、および液晶表示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101253041A (zh) * 2005-08-31 2008-08-27 三菱树脂株式会社 阻气性叠层膜
KR102039919B1 (ko) * 2012-02-28 2019-11-05 도판 인사츠 가부시키가이샤 가스 배리어성 필름
TW201544573A (zh) * 2014-05-19 2015-12-01 Fujifilm Corp 波長轉換構件、背光單元、及液晶顯示裝置、以及波長轉換構件之製造方法及含有量子點之聚合性組成物
KR101686713B1 (ko) * 2014-12-08 2016-12-14 엘지전자 주식회사 양자점-고분자 복합체의 제조 방법, 양자점-고분자 복합체, 이를 포함하는 광 변환 필름, 백라이트 유닛 및 표시장치
KR101604339B1 (ko) * 2014-12-09 2016-03-18 엘지전자 주식회사 광 변환 필름, 이를 포함하는 백라이트 유닛 및 표시장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62145626A (ja) * 1985-12-20 1987-06-29 Dainippon Printing Co Ltd デイスプレイ用基板の製造方法
JPH05205634A (ja) * 1991-10-17 1993-08-13 Samsung Display Devices Co Ltd カラー陰極線管用蛍光膜の製造方法
JPH08171855A (ja) * 1994-12-19 1996-07-02 Toshiba Corp フィルター付き蛍光体層の製造方法
JP2013504660A (ja) * 2009-09-09 2013-02-07 キユーデイー・ビジヨン・インコーポレーテツド ナノ粒子を含む粒子、それの使用および方法
WO2012063707A1 (ja) * 2010-11-11 2012-05-18 住友化学株式会社 蛍光体材料の製造方法
WO2014208356A1 (ja) * 2013-06-25 2014-12-31 コニカミノルタ株式会社 光学フィルム及び発光デバイス
WO2016189869A1 (ja) * 2015-05-28 2016-12-01 富士フイルム株式会社 量子ドット含有組成物、波長変換部材、バックライトユニット、および液晶表示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DENKA POVAL, April 2016 (2016-04-01), pages 2 - 3 *

Also Published As

Publication number Publication date
JP6806555B2 (ja) 2021-01-06
JP2018101000A (ja) 2018-06-28
CN110114700B (zh) 2022-03-18
CN110114700A (zh) 2019-08-09
US20190302497A1 (en) 2019-10-03

Similar Documents

Publication Publication Date Title
JP6732045B2 (ja) 波長変換フィルムおよびバックライトユニット
WO2018116882A1 (ja) 波長変換フィルムおよび波長変換フィルムの製造方法
KR101686713B1 (ko) 양자점-고분자 복합체의 제조 방법, 양자점-고분자 복합체, 이를 포함하는 광 변환 필름, 백라이트 유닛 및 표시장치
US10852584B2 (en) Method for quantum dot-polymer composite, quantum dot-polymer composite, light conversion film comprising same, backlight unit, and display device
JP5940079B2 (ja) ディスプレイバックライトユニット及びディスプレイバックライトユニットの形成方法
CN109476989B (zh) 含有量子点的组合物、波长转换部件、背光单元及液晶显示装置
US9658489B1 (en) Backlight units for display devices
JP6706982B2 (ja) 面状照明装置
US10126485B2 (en) Optical film and lighting and display products including same
WO2018012286A1 (ja) バックライト用フィルム
JP6586805B2 (ja) エッジライト型バックライト及び液晶表示装置
JP2018101013A (ja) 波長変換フィルムおよびバックライトユニット
JP6627298B2 (ja) 量子ドットシート、バックライト及び液晶表示装置
KR20180077935A (ko) 양자점 조성물 및 광 변환 필름
KR20160094885A (ko) 색변환 필름 및 이를 포함하는 백라이트 유닛
KR101924567B1 (ko) 방열 차폐시트 및 이의 제조방법
WO2017110737A1 (ja) 照明装置
WO2022107340A1 (ja) 波長変換部材、バックライトユニット、及び画像表示装置
JP2017129743A (ja) 量子ドットシート、バックライト及び液晶表示装置
WO2022049624A1 (ja) 波長変換部材、バックライトユニット、及び画像表示装置
JP6627297B2 (ja) 量子ドットシート、バックライト及び液晶表示装置
JP2023028515A (ja) 波長変換部材及びその製造方法、バックライトユニット、画像表示装置、光散乱部材、並びに、光散乱層形成用組成物
JP6672624B2 (ja) 量子ドットシート、バックライト及び液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17883427

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17883427

Country of ref document: EP

Kind code of ref document: A1