WO2018116417A1 - 制御装置、撮像装置、移動体、制御方法、及びプログラム - Google Patents

制御装置、撮像装置、移動体、制御方法、及びプログラム Download PDF

Info

Publication number
WO2018116417A1
WO2018116417A1 PCT/JP2016/088157 JP2016088157W WO2018116417A1 WO 2018116417 A1 WO2018116417 A1 WO 2018116417A1 JP 2016088157 W JP2016088157 W JP 2016088157W WO 2018116417 A1 WO2018116417 A1 WO 2018116417A1
Authority
WO
WIPO (PCT)
Prior art keywords
actuator
optical member
imaging device
condition
holding force
Prior art date
Application number
PCT/JP2016/088157
Other languages
English (en)
French (fr)
Inventor
高志 小山
本庄 謙一
Original Assignee
エスゼット ディージェイアイ テクノロジー カンパニー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エスゼット ディージェイアイ テクノロジー カンパニー リミテッド filed Critical エスゼット ディージェイアイ テクノロジー カンパニー リミテッド
Priority to JP2017559714A priority Critical patent/JP6544542B2/ja
Priority to PCT/JP2016/088157 priority patent/WO2018116417A1/ja
Publication of WO2018116417A1 publication Critical patent/WO2018116417A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules

Definitions

  • the present invention relates to a control device, an imaging device, a moving body, a control method, and a program.
  • Patent Document 1 describes that when vibration is detected, electric power is supplied to the aperture motor to prevent the aperture opening from changing.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2013-156358
  • the control device may include a control unit that controls an actuator that holds an optical member of the imaging device.
  • the actuator may hold the optical member with the first holding force when the first power is supplied.
  • the actuator may hold the optical member with a second holding force larger than the first holding force when the second power larger than the first power is supplied.
  • the control unit When the actuator holds the optical member with the first holding force, the control unit includes a condition relating to an altitude of the imaging apparatus, a condition relating to the acceleration of the imaging apparatus, a condition relating to the posture of the moving body that moves by mounting the imaging apparatus, The actuator is controlled to hold the optical member with the second holding force when a predetermined condition including at least one of a condition related to a moving mode of the moving object and a condition related to a command for controlling movement of the moving object is satisfied. You can do it.
  • the predetermined condition may be a condition that the altitude of the imaging device is lower than a threshold value.
  • the predetermined condition may be a condition that the acceleration of the imaging device is larger than a threshold value.
  • the predetermined condition may be a condition that the acceleration direction of the imaging apparatus and the direction in which the optical member can move are within a predetermined angle range.
  • the moving body may be an unmanned aerial vehicle.
  • the predetermined condition may be a condition that the flight attitude of the unmanned aircraft is a predetermined flight attitude.
  • the unmanned aerial vehicle may be capable of flying in a first flight mode and a second flight mode in which an acceleration greater than an acceleration that occurs in an unmanned aircraft flying in the first flight mode occurs.
  • the predetermined condition may be a condition that the unmanned aircraft flies in the second flight mode.
  • the predetermined condition may be a condition that the instruction is a predetermined instruction that causes the imaging apparatus to generate an acceleration greater than a threshold value.
  • the predetermined instruction may include an instruction to land an unmanned aerial vehicle.
  • the optical member may include at least one of a diaphragm, a shutter, a filter, and a lens of the imaging device.
  • the actuator may be an electromagnetic actuator.
  • the actuator may be a stepping motor.
  • the optical member may be a diaphragm of the imaging device.
  • the actuator may be a voice coil motor.
  • the optical member may be a lens of an imaging device.
  • An imaging device may include the control device.
  • the imaging device may include an optical member.
  • the imaging device may include an actuator.
  • the moving body according to one embodiment of the present invention may move by mounting the imaging device.
  • the control method according to one aspect of the present invention may be a control method for controlling an actuator that holds an optical member of an imaging apparatus.
  • the actuator may hold the optical member with the first holding force when the first power is supplied.
  • the actuator may hold the optical member with a second holding force larger than the first holding force when the second power larger than the first power is supplied.
  • the control method includes a condition relating to the altitude of the imaging device, a condition relating to the acceleration of the imaging device, a condition relating to the posture of the moving body that moves by mounting the imaging device,
  • the actuator is controlled to hold the optical member with the second holding force when a predetermined condition including at least one of a condition related to a moving mode of the moving object and a condition related to a command for controlling movement of the moving object is satisfied.
  • a predetermined condition including at least one of a condition related to a moving mode of the moving object and a condition related to a command for controlling movement of the moving object is satisfied.
  • the program according to an aspect of the present invention may be a program for causing a computer to function as a control unit that controls an actuator that holds an optical member of an imaging apparatus.
  • the actuator may hold the optical member with the first holding force when the first power is supplied.
  • the actuator may hold the optical member with a second holding force larger than the first holding force when the second power larger than the first power is supplied.
  • the control unit When the actuator holds the optical member with the first holding force, the control unit includes a condition relating to an altitude of the imaging apparatus, a condition relating to the acceleration of the imaging apparatus, a condition relating to the posture of the moving body that moves by mounting the imaging apparatus, The actuator is controlled to hold the optical member with the second holding force when a predetermined condition including at least one of a condition related to a moving mode of the moving object and a condition related to a command for controlling movement of the moving object is satisfied. You can do it.
  • the optical member held by the actuator can be prevented from being displaced due to the vibration of the imaging device.
  • FIG. 1 Various embodiments of the present invention may be described with reference to flowcharts and block diagrams.
  • the blocks in the flowcharts and block diagrams may represent (1) the stage of the process in which the operation is performed or (2) the “part” of the device responsible for performing the operation.
  • Certain stages and “parts” are provided with dedicated circuitry, programmable circuitry supplied with computer readable instructions stored on a computer readable storage medium, and / or computer readable instructions stored on a computer readable storage medium. It may be implemented by a processor.
  • Dedicated circuitry may include digital and / or analog hardware circuitry. Integrated circuits (ICs) and / or discrete circuits may be included.
  • Programmable circuits may be logical products, logical sums, exclusive logical sums, negative logical products, negative logical sums, and other logical operations, such as field programmable gate arrays (FPGAs) and programmable logic arrays (PLA), for example. , Flip-flops, registers, and memory elements, including reconfigurable hardware circuitry.
  • FPGAs field programmable gate arrays
  • PLA programmable logic arrays
  • a computer-readable storage medium may include any tangible device capable of storing instructions to be executed by a suitable device.
  • a computer readable storage medium having instructions stored thereon comprises a product that includes instructions that can be executed to create a means for performing the operations specified in the flowcharts or block diagrams.
  • Examples of computer readable storage media may include electronic storage media, magnetic storage media, optical storage media, electromagnetic storage media, semiconductor storage media, and the like. More specific examples of computer-readable storage media include floppy disks, diskettes, hard disks, random access memory (RAM), read only memory (ROM), erasable programmable read only memory (EPROM or flash memory).
  • EEPROM Electrically erasable programmable read only memory
  • SRAM static random access memory
  • CD-ROM compact disc read only memory
  • DVD digital versatile disc
  • Blu-ray registered trademark
  • the computer readable instructions may include either source code or object code written in any combination of one or more programming languages.
  • the source code or object code includes a conventional procedural programming language.
  • Conventional procedural programming languages include assembler instructions, instruction set architecture (ISA) instructions, machine instructions, machine dependent instructions, microcode, firmware instructions, state setting data, or Smalltalk, JAVA, C ++, etc. It may be an object-oriented programming language and a “C” programming language or a similar programming language.
  • Computer readable instructions may be directed to a general purpose computer, special purpose computer, or other programmable data processing device processor or programmable circuit locally or in a wide area network (WAN) such as a local area network (LAN), the Internet, etc. ).
  • the processor or programmable circuit may execute computer readable instructions to create a means for performing the operations specified in the flowcharts or block diagrams. Examples of processors include computer processors, processing units, microprocessors, digital signal processors, controllers, microcontrollers, and the like.
  • FIG. 1 shows an example of the appearance of an unmanned aerial vehicle (UAV) 100.
  • the UAV 100 includes a UAV main body 102, a gimbal 200, an imaging device 300, and a plurality of imaging devices 230.
  • the UAV 100 is an example of a moving object.
  • the moving body is a concept including, in addition to UAV, other aircraft that moves in the air, vehicles that move on the ground, ships that move on the water, and the like.
  • the UAV main body 102 includes a plurality of rotor blades.
  • the UAV main body 102 flies the UAV 100 by controlling the rotation of a plurality of rotor blades.
  • the UAV main body 102 causes the UAV 100 to fly using four rotary wings.
  • the number of rotor blades is not limited to four.
  • the UAV 100 may be a fixed wing aircraft that does not have a rotating wing.
  • the imaging device 300 is a camera for capturing a moving image or a still image.
  • the plurality of imaging devices 230 are sensing cameras that image the surroundings of the UAV 100 in order to control the flight of the UAV 100.
  • Two imaging devices 230 may be provided on the front surface that is the nose of the UAV 100.
  • Two other imaging devices 230 may be provided on the bottom surface of the UAV 100.
  • the two imaging devices 230 on the front side may be paired and function as a so-called stereo camera.
  • the two imaging devices 230 on the bottom side may also be paired and function as a stereo camera.
  • the distance from the UAV 100 to the object may be measured based on images captured by the plurality of imaging devices 230.
  • Three-dimensional spatial data around the UAV 100 may be generated based on images captured by the plurality of imaging devices 230.
  • the number of imaging devices 230 included in the UAV 100 is not limited to four.
  • the UAV 100 only needs to include at least one imaging device 230.
  • the UAV 100 may include at least one imaging device 230 on each of the nose, the tail, the side surface, the bottom surface, and the ceiling surface of the UAV 100.
  • the angle of view that can be set by the imaging device 230 may be wider than the angle of view that can be set by the imaging device 300.
  • the imaging device 230 may have a single focus lens or a fisheye lens.
  • FIG. 2 shows an example of functional blocks of the UAV100.
  • the UAV 100 includes a UAV control unit 110, a communication interface 150, a memory 160, a gimbal 200, a rotating blade mechanism 210, an imaging device 300, an imaging device 230, a GPS receiver 240, an inertial measurement device (IMU) 250, a magnetic compass 260, and an atmospheric pressure.
  • An altimeter 270 is provided.
  • the communication interface 150 communicates with an external transmitter.
  • the communication interface 150 receives various commands for the UAV control unit 110 from a remote transmitter.
  • the memory 160 stores programs necessary for the UAV control unit 110 to control the gimbal 200, the rotary blade mechanism 210, the imaging device 300, the imaging device 230, the GPS receiver 240, the IMU 250, the magnetic compass 260, and the barometric altimeter 270.
  • the memory 160 may be a computer-readable recording medium and may include at least one of flash memory such as SRAM, DRAM, EPROM, EEPROM, and USB memory.
  • the memory 160 may be provided inside the UAV main body 102.
  • the memory 160 may be provided so as to be removable from the UAV main body 102.
  • the gimbal 200 supports the imaging direction of the imaging device 300 so that it can be adjusted.
  • the gimbal 200 supports the imaging device 300 rotatably around at least one axis.
  • the gimbal 200 is an example of a support mechanism.
  • the gimbal 200 may support the imaging device 300 rotatably about the yaw axis, the pitch axis, and the roll axis.
  • the gimbal 200 may change the imaging direction of the imaging device 300 by rotating the imaging device 300 about at least one of the yaw axis, the pitch axis, and the roll axis.
  • the rotary blade mechanism 210 includes a plurality of rotary blades and a plurality of drive motors that rotate the plurality of rotary blades.
  • the imaging device 230 captures the surroundings of the UAV 100 and generates image data. Image data of the imaging device 230 is stored in the memory 160.
  • the GPS receiver 240 receives a plurality of signals indicating times transmitted from a plurality of GPS satellites. The GPS receiver 240 calculates the position of the GPS receiver 240, that is, the position of the UAV 100, based on the received signals.
  • the inertial measurement device (IMU) 250 detects the posture of the UAV 100. As the posture of the UAV 100, the IMU 250 detects the acceleration in the three axial directions of the UAV 100 in the front, rear, left, and right directions, and the angular velocity in the three axial directions of pitch, roll, and yaw.
  • the magnetic compass 260 detects the heading of the UAV 100.
  • the barometric altimeter 270 detects the altitude at which the UAV 100 flies.
  • the UAV control unit 110 controls the flight of the UAV 100 in accordance with a program stored in the memory 160.
  • the UAV control unit 110 may be configured by a microprocessor such as a CPU or MPU, a microcontroller such as an MCU, or the like.
  • the UAV control unit 110 controls the flight of the UAV 100 according to a command received from a remote transmitter via the communication interface 150.
  • the UAV control unit 110 may control the flight of the UAV 100 according to a flight mode selected from among a plurality of flight modes.
  • the plurality of flight modes may include a normal mode and a sports mode.
  • the normal mode is an example of a first flight mode.
  • the sport mode is an example of a second flight mode in which acceleration greater than the acceleration generated in the UAV 100 flying in the first flight mode occurs.
  • the speed limit of the UAV 100 flying in the sport mode may be larger than the speed limit of the UAV 100 flying in the normal mode.
  • the UAV control unit 110 may specify the environment around the UAV 100 by analyzing a plurality of images captured by the plurality of imaging devices 230.
  • the UAV control unit 110 controls the flight while avoiding obstacles based on the environment around the UAV 100, for example.
  • the UAV control unit 110 may generate three-dimensional spatial data around the UAV 100 based on a plurality of images captured by the plurality of imaging devices 230, and control the flight based on the three-dimensional spatial data.
  • the imaging apparatus 300 includes an imaging unit 301 and a lens unit 401.
  • the lens unit 401 may be a lens unit that can be detached from the imaging unit 301.
  • the imaging unit 301 includes an imaging control unit 310, an imaging element 330, a shutter driving unit 320, a shutter 322, a memory 340, and an acceleration sensor 324.
  • the imaging control unit 310 may be configured by a microprocessor such as a CPU or MPU, a microcontroller such as an MCU, or the like.
  • the imaging control unit 310 may control the imaging device 300 in accordance with an operation command for the imaging device 300 from the UAV control unit 110.
  • the memory 340 may be a computer-readable recording medium and may include at least one of flash memory such as SRAM, DRAM, EPROM, EEPROM, and USB memory.
  • the memory 340 may be provided inside the housing of the imaging unit 301.
  • the memory 340 may be provided so as to be removable from the housing of the imaging unit 301.
  • the shutter 322 is controlled by the shutter driving unit 320 to control the light receiving time of the image sensor 330.
  • the shutter 322 and the shutter driving unit 320 may be provided in the lens unit 401.
  • the shutter 322 may be constituted by at least one movable wing member so as to shield light incident on the image sensor 330.
  • the at least one wing member may move along a plane perpendicular to the optical axis and shield light incident on the image sensor 330.
  • the shutter 322 may be a focal plane shutter or a lens shutter.
  • the shutter drive unit 320 includes an actuator.
  • the actuator may be an electromagnetic actuator.
  • the electromagnetic actuator may be an electromagnet or a solenoid.
  • the shutter driving unit 320 drives the actuator to move the shutter 322 between the shielding position and the non-shielding position.
  • the imaging device 330 may be configured by a CCD or a CMOS.
  • the image pickup device 330 is held inside the housing of the image pickup apparatus 300 and outputs image data of an optical image formed through the plurality of lenses 432 and the lenses 442 to the image pickup control unit 310.
  • the imaging control unit 310 performs a series of image processing such as noise reduction, demosaicing, gamma correction, and edge cooperation on the image data.
  • the imaging control unit 310 stores image data after a series of image processing in the memory 340.
  • the imaging control unit 310 may output and store the image data in the memory 160 via the UAV control unit 110.
  • the acceleration sensor 324 detects the acceleration of the imaging device 300.
  • the acceleration sensor 324 may be provided in the lens unit 401.
  • the acceleration sensor 324 may be provided in the UAV main body 102.
  • the lens unit 401 includes a lens control unit 410, a memory 420, a lens driving unit 430, a lens 432, a position sensor 434, a lens driving unit 440, a lens 442, a position sensor 444, an aperture driving unit 450, an aperture 452, a filter driving unit 460, And a filter 462.
  • the lens 432 includes at least one lens.
  • the lens 432 may be a zoom lens.
  • the lens 442 includes at least one lens.
  • the lens 442 may be a focus lens.
  • the lens control unit 410 controls the movement of the lens 432 in the optical axis direction via the lens driving unit 430 in accordance with a lens operation command from the imaging unit 301.
  • the lens control unit 410 controls the movement of the lens 442 in the optical axis direction via the lens driving unit 440 in accordance with a lens operation command from the imaging unit 301.
  • Some or all of the lens 432 and the lens 442 move along the optical axis.
  • the lens control unit 410 performs at least one of a zoom operation and a focus operation by moving at least one of the lens 432 and the lens 442 along the optical axis.
  • the position sensor 434 detects the position of the lens 432.
  • the position sensor 434 may detect the current zoom position.
  • the position sensor 444 detects the position of the lens 442.
  • the position sensor 444 may detect the current focus position.
  • the lens driving unit 430 and the lens driving unit 440 may include an actuator.
  • the actuator may be an electromagnetic actuator.
  • the electromagnetic actuator may be a stepping motor, a solenoid, or a voice coil motor.
  • the lens 432 and the lens 442 may move along the optical axis direction via a lens driving mechanism in response to power from each actuator.
  • the diaphragm 452 adjusts the amount of light incident on the image sensor 330.
  • the diaphragm 452 may include at least one wing member.
  • the aperture driving unit 450 may include an actuator.
  • the actuator may be an electromagnetic actuator.
  • the electromagnetic actuator may be an electromagnet, a solenoid, or a stepping motor.
  • the aperture driving unit 450 may receive an instruction from the lens control unit 410 and drive the actuator to adjust the overlapping degree of the plurality of wing members, thereby adjusting the size of the aperture opening.
  • the plurality of wing members may move along a plane perpendicular to the optical axis in response to a force from the actuator.
  • the filter 462 reduces the amount of light incident through the lens 432, or cuts light of a specific wavelength.
  • the filter 462 may include at least one of an ND filter and an infrared cut filter.
  • the filter driver 460 may include an actuator.
  • the actuator may be an electromagnetic actuator.
  • the electromagnetic actuator may be an electromagnet or a solenoid.
  • the filter driving unit 460 receives a command from the lens control unit 410 and drives the actuator to remove or input the first position through which the incident light passes and the specific wavelength component of the input light.
  • the filter 462 is moved between the second position where the light to be attenuated attenuates.
  • the filter 462 may move along a plane perpendicular to the optical axis.
  • the memory 420 stores control values of a plurality of lenses 432 and lenses 442 that move via the lens driving unit 430.
  • the memory 420 may include at least one of flash memory such as SRAM, DRAM, EPROM, EEPROM, and USB memory.
  • the position of an optical member such as a diaphragm 452, a filter 462, a shutter 322, a lens 432, or a lens 442 driven by an actuator may be displaced. Therefore, the optical member may be held with the actuator energized so that the position of the optical member does not shift. However, if power is continuously supplied to the actuator while the optical member is not moving, power consumption increases. Less power is preferably supplied to the actuator.
  • the vibration of the imaging device 300 is small, the optical member can be held with a sufficient holding force from the actuator even if the actuator is driven with relatively little electric power. However, when the vibration of the imaging device 300 is large, even if the actuator is driven with relatively little power, a sufficient holding force cannot be obtained from the actuator, and the position of the optical member may shift.
  • the vibration generated in the imaging device 300 tends to be relatively large.
  • the acceleration generated in the UAV 100 during the flight of the UAV 100 is about 2G.
  • the acceleration generated when the UAV 100 lands is about 30G.
  • the vibration generated in the UAV 100 varies depending on the flight state of the UAV 100.
  • the imaging device 300 may continue to capture images while the UAV 100 is landing. After the UAV 100 has landed once, the image pickup apparatus 300 may be started by taking off again while maintaining the position of the optical member. Therefore, it is preferable that the position of the optical member does not shift due to an impact generated when the UAV 100 is landed.
  • the power supplied to the actuator is increased. Therefore, the holding force obtained from the actuator is increased, and the positional deviation of the optical member is suppressed.
  • the actuator may hold the optical member with the first holding force when the first power is supplied.
  • the actuator may hold the optical member with a second holding force larger than the first holding force when the second power larger than the first power is supplied.
  • the first power may be supplied to the actuator.
  • the second power may be supplied to the actuator.
  • a control unit such as the imaging control unit 310 or the lens control unit 410 that controls the actuator may control the power supplied to the actuator.
  • a control unit that controls power supplied to the actuator may be provided in a transmitter that remotely controls the UAV 100, the UAV control unit 110, or the like.
  • the control unit When the actuator holds the optical member with the first holding force, the control unit includes a condition relating to the altitude of the imaging apparatus 300, a condition relating to the acceleration of the imaging apparatus 300, a condition relating to the posture of the UAV 100, a condition relating to the movement mode of the UAV 100, The actuator may be controlled to hold the optical member with the second holding force when a predetermined condition including at least one of the conditions related to the command for controlling the movement of the UAV 100 is satisfied.
  • the control unit may determine that a predetermined condition is satisfied when the altitude of the imaging apparatus 300 is lower than the threshold value.
  • the control unit may control the actuator so as to hold the optical member with the second holding force.
  • the control unit may determine that a predetermined condition is satisfied when the acceleration of the imaging apparatus 300 is greater than the threshold value. When the acceleration detected by the acceleration sensor 324 is larger than the threshold, the control unit may determine that a predetermined condition is satisfied.
  • the control unit may determine that the predetermined condition is satisfied when the acceleration direction of the imaging apparatus 300 and the direction in which the optical member can move are within a predetermined angle range.
  • the predetermined angle may be set on the basis of whether or not the optical member has actually caused an acceleration in various directions and the optical member has been displaced beyond the allowable range.
  • the predetermined angle may be, for example, 90 degrees, 60 degrees, 30 degrees, 15 degrees, or 10 degrees.
  • the diaphragm 452, the shutter 322, or the filter 462 moves along a plane perpendicular to the optical axis. Therefore, when the direction of acceleration generated in the imaging apparatus 300 has a component in a direction perpendicular to the optical axis, the diaphragm 452, the shutter 322, or the filter 462 is easy to move.
  • the imaging apparatus 300 is maintained in a posture in which the optical axis is horizontal by the gimbal 200, when the UAV 100 flies up or down, the diaphragm 452, the shutter 322, or the filter 462 easily moves.
  • the diaphragm 452, the shutter 322, or the filter 462 is likely to move when the UAV 100 flies horizontally.
  • the lens 432 or the lens 442 moves along the optical axis. Therefore, when the direction of acceleration generated in the imaging apparatus 300 has a component in a direction parallel to the optical axis, the lens 432 or the lens 442 is likely to move.
  • the imaging apparatus 300 is maintained in a posture in which the optical axis is horizontal by the gimbal 200, the lens 432 or the lens 442 easily moves when the UAV 100 flies horizontally.
  • the imaging apparatus 300 is maintained in a downward posture by the gimbal 200, when the UAV 100 flies up or down, the lens 432 or the lens 442 easily moves.
  • the direction of acceleration of the imaging apparatus 300 in which the optical member easily moves varies depending on the attitude of the imaging apparatus 300.
  • the direction in which the optical member is easily moved may vary depending on the position where it is held.
  • the filter 462 rotates around a fixed point to remove a specific wavelength component of the input light from the first position through which the incident light passes or to attenuate the input light. Move to 2 position.
  • the direction in which the filter 462 is easy to move differs depending on whether the filter 462 is held at the first position or the second position.
  • control unit refers to a table indicating the direction of acceleration of the imaging device 300 that should hold the optical member with the second holding force for each position where the optical member is held and the posture of the imaging device 300. It may be determined whether or not a predetermined condition is satisfied.
  • the table may be stored in the memory 420 or the memory 340.
  • the memory 420 or the memory 340 may store a table indicating the direction of acceleration of the imaging device 300 in which the filter 462 easily moves for each position where the filter 462 is held and the orientation of the imaging device 300.
  • the lens control unit 410 or the imaging control unit 310 refers to the table, and the current acceleration direction of the imaging device 300 is determined with respect to the current position where the filter 462 is held and the current posture of the imaging device 300. If the conditions shown in the table are met, it may be determined that a predetermined condition is satisfied.
  • the table may indicate the range of the acceleration direction of the imaging apparatus 300 in which the optical member easily moves for each position where the optical member is held and the range of the attitude of the imaging apparatus 300.
  • the control unit may determine that the predetermined condition is satisfied when the flight attitude of the UAV 100 is a predetermined flight attitude.
  • the UAV 100 When the UAV 100 is in a horizontal posture, the UAV 100 may land, so the control unit may determine that a predetermined condition is satisfied.
  • the control unit When the UAV 100 is in the horizontal posture and the direction of acceleration generated in the imaging apparatus 300 is the vertical direction, the control unit may determine that a predetermined condition for the aperture 452, the shutter 322, or the filter 462 is satisfied. In this case, the control unit may supply the second electric power to the diaphragm 452, the shutter 322, or the actuator of the filter 462.
  • the control unit may determine that a predetermined condition is satisfied when the UAV 100 flies in a sport mode in which a larger acceleration is likely to occur than in the normal mode.
  • the control unit may determine that the predetermined condition is satisfied when the instruction related to the flight of the UAV 100 is a predetermined instruction that causes the imaging apparatus 300 to generate an acceleration greater than the threshold value.
  • the predetermined instruction may include an instruction for landing the UAV 100.
  • the predetermined command may include an acceleration command in which an acceleration generated in the UAV 100 is greater than a threshold value.
  • FIG. 3 is a flowchart showing an example of the power control procedure of the actuator.
  • the control unit acquires information serving as a determination criterion (S100). For example, when the lens control unit 410 controls an actuator that drives the diaphragm 452, the lens control unit 410 may acquire the acceleration of the imaging device 300 detected by the acceleration sensor 324 via the imaging control unit 310. The lens control unit 410 may acquire the posture information of the gimbal 200. The lens control unit 410 may acquire the UAV 100 altitude information, the UAV 100 flight mode, or a command related to the UAV 100 flight from the UAV control unit 110 via the imaging control unit 310.
  • S100 determination criterion
  • the control unit determines whether the acquired information satisfies a predetermined condition (S102). For example, the lens control unit 410 may determine whether or not the acceleration of the imaging device 300 is greater than or equal to a threshold value. The lens control unit 410 may determine whether the flight mode of the UAV 100 is the sports mode. The lens control unit 410 may determine whether the posture of the UAV 100 is a horizontal posture. The lens control unit 410 may determine whether the altitude of the UAV 100 is lower than a threshold value.
  • a predetermined condition S102. For example, the lens control unit 410 may determine whether or not the acceleration of the imaging device 300 is greater than or equal to a threshold value. The lens control unit 410 may determine whether the flight mode of the UAV 100 is the sports mode. The lens control unit 410 may determine whether the posture of the UAV 100 is a horizontal posture. The lens control unit 410 may determine whether the altitude of the UAV 100 is lower than a threshold value.
  • control unit may control the actuator so that the second electric power is supplied to the actuator in order to hold the optical member with the second holding force (S104).
  • control unit may control the actuator so that the first electric power is supplied to the actuator in order to cause the actuator to hold the optical member with the first holding force (S106). ).
  • the control unit may control the power supplied to the actuator by controlling the voltage applied to the actuator or the magnitude of the supplied current.
  • the control unit may control the actuator so that a voltage of 1 V is applied to the actuator so that the actuator holds the optical member with the first holding force.
  • the control unit may control the actuator so that a voltage of 5 V is applied to the actuator in order to cause the actuator to hold the optical member with the second holding force.
  • the voltage applied to the actuator may vary depending on the contents of the conditions included in the predetermined conditions. For example, when the altitude is lower than 5 m, the control unit may control the actuator so as to apply a voltage of 5 V to the actuator.
  • the control unit may control the actuator so that a voltage of 2 V is applied to the actuator.
  • the control unit may control the actuator so that a voltage of 1.5 V is applied to the actuator while the UAV 100 is flying in a horizontal posture.
  • the control unit may control the actuator so that a voltage of 1 V is applied to the actuator.
  • the control unit may control the actuator so that a voltage of 1 V is applied to the actuator while the UAV 100 is flying in a posture other than the horizontal posture.
  • FIG. 4 is a diagram showing an example of a temporal change in the power of the stepping motor that drives the diaphragm 452 and the motor rotation angle.
  • the lens control unit 410 applies an AC voltage to the A phase and the B phase of the stepping motor, and sets the aperture of the aperture 452 to a desired aperture value.
  • the lens control unit 410 controls the actuator so that the second power is supplied to the stepping motor in the period T2.
  • the lens control unit 410 controls the actuator so that the first power smaller than the second power is supplied to the stepping motor when a predetermined period has elapsed. Control.
  • the lens control unit 410 operates the actuator in the power saving mode in the period T3. After that, when the lens control unit 410 determines that a relatively high acceleration occurs in the imaging apparatus 300 or a predetermined condition that may possibly occur, the second power is supplied again to the stepping motor in the period T4. To control the actuator.
  • the diaphragm 452 When the stepping motor is driven in the power saving mode, the diaphragm 452 can be held at a desired position by the holding force of the stepping motor even if a relatively small vibration occurs in the imaging apparatus 300.
  • the holding power of the stepping motor that operates in the power saving mode is weak, and the diaphragm 452 may not be held at a desired position. Therefore, if the predetermined condition is satisfied while the stepping motor is operating in the power saving mode, the lens control unit 410 operates the actuator in a mode in which the power is higher than that in the power saving mode, and holds the actuator. Increase power. As a result, the diaphragm 452 can be held at a desired position even when a relatively large vibration occurs in the imaging apparatus 300.
  • FIG. 5 is a diagram showing an example of a circuit configuration including a focus lens and a voice coil motor.
  • the focus lens 500 is an example of the lens 442.
  • the position sensor 520 is an example of the position sensor 444.
  • the voice coil motor 510, the control gain setting unit 522, and the drive circuit 524 are examples of the lens drive unit 440.
  • Voice coil motor 510 includes a coil 512 and a magnet 514.
  • the difference between the target position commanded from the lens control unit 410 and the actual position of the focus lens 500 detected by the position sensor 520 is input to the control gain setting unit 522.
  • the lens control unit 410 When the voice coil motor 510 is driven with the first power, for example, the lens control unit 410 outputs a command for setting the gain to 1 time to the control gain setting unit 522.
  • the control gain setting unit 522 sets the gain to 1 and outputs a command corresponding to the difference to the drive circuit 524.
  • the drive circuit 524 receives a command and outputs a drive current corresponding to the difference to the coil 512. Thereby, the focus lens 500 is controlled to the target position.
  • the lens control unit 410 When the voice coil motor 510 is driven with the second power, for example, the lens control unit 410 outputs a command for setting the gain to double to the control gain setting unit 522.
  • the control gain setting unit 522 sets the gain to double and outputs a command corresponding to the difference to the drive circuit 524.
  • the magnitude of the gain By changing the magnitude of the gain, the magnitude of the drive current input to the coil 512 is changed.
  • the force generated by the voice coil motor 510 that is, the holding force of the focus lens 500 is changed.
  • FIG. 6 is a diagram illustrating an example of the relationship among the acceleration generated in the imaging apparatus 300, the lens position of the focus lens 500, and the gain setting.
  • the lens control unit 410 outputs a command to the control gain setting unit 522 to set the gain to 2 times in response to detection of acceleration higher than the threshold value.
  • the holding force of the focus lens 500 generated by the voice coil motor 510 is increased. Therefore, the amount by which the focus lens 500 deviates from the target position can be made smaller than when the gain is 1.
  • the force for holding the optical member generated by the actuator may be controlled by controlling the gain of the drive current supplied to the actuator.
  • FIG. 7 illustrates an example of a computer 1200 in which aspects of the present invention may be embodied in whole or in part.
  • a program installed in the computer 1200 can cause the computer 1200 to function as an operation associated with the apparatus according to the embodiment of the present invention or as one or more “units” of the apparatus.
  • the program can cause the computer 1200 to execute the operation or the one or more “units”.
  • the program can cause the computer 1200 to execute a process according to an embodiment of the present invention or a stage of the process.
  • Such a program may be executed by CPU 1212 to cause computer 1200 to perform certain operations associated with some or all of the blocks in the flowcharts and block diagrams described herein.
  • the computer 1200 includes a CPU 1212 and a RAM 1214, which are connected to each other by a host controller 1210.
  • the computer 1200 also includes a communication interface 1222 and an input / output unit, which are connected to the host controller 1210 via the input / output controller 1220.
  • Computer 1200 also includes ROM 1230.
  • the CPU 1212 operates according to programs stored in the ROM 1230 and the RAM 1214, thereby controlling each unit.
  • the communication interface 1222 communicates with other electronic devices via a network.
  • a hard disk drive may store programs and data used by the CPU 1212 in the computer 1200.
  • the ROM 1230 stores therein a boot program executed by the computer 1200 at the time of activation and / or a program depending on the hardware of the computer 1200.
  • the program is provided via a computer-readable recording medium such as a CR-ROM, a USB memory, or an IC card or a network.
  • the program is installed in the RAM 1214 or the ROM 1230 that is also an example of a computer-readable recording medium, and is executed by the CPU 1212.
  • Information processing described in these programs is read by the computer 1200 to bring about cooperation between the programs and the various types of hardware resources.
  • An apparatus or method may be configured by implementing information operations or processing in accordance with the use of computer 1200.
  • the CPU 1212 executes a communication program loaded in the RAM 1214 and performs communication processing on the communication interface 1222 based on the processing described in the communication program. You may order.
  • the communication interface 1222 reads transmission data stored in a RAM 1214 or a transmission buffer area provided in a recording medium such as a USB memory under the control of the CPU 1212 and transmits the read transmission data to a network, or The reception data received from the network is written into a reception buffer area provided on the recording medium.
  • the CPU 1212 allows the RAM 1214 to read all or necessary portions of a file or database stored in an external recording medium such as a USB memory, and executes various types of processing on the data on the RAM 1214. Good. The CPU 1212 may then write back the processed data to an external recording medium.
  • the CPU 1212 describes various types of operations, information processing, conditional judgment, conditional branching, unconditional branching, and information retrieval that are described throughout the present disclosure for data read from the RAM 1214 and specified by the instruction sequence of the program. Various types of processing may be performed, including / replacement, etc., and the result is written back to RAM 1214.
  • the CPU 1212 may search for information in files, databases, etc. in the recording medium. For example, when a plurality of entries each having an attribute value of the first attribute associated with the attribute value of the second attribute are stored in the recording medium, the CPU 1212 specifies the attribute value of the first attribute. The entry that matches the condition is searched from the plurality of entries, the attribute value of the second attribute stored in the entry is read, and thereby the first attribute that satisfies the predetermined condition is associated. The attribute value of the obtained second attribute may be acquired.
  • the program or software module described above may be stored in a computer-readable storage medium on the computer 1200 or in the vicinity of the computer 1200.
  • a recording medium such as a hard disk or a RAM provided in a server system connected to a dedicated communication network or the Internet can be used as a computer-readable storage medium, whereby the program is transferred to the computer 1200 via the network.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Studio Devices (AREA)
  • Lens Barrels (AREA)

Abstract

撮像装置が備える絞りなどの光学部材を駆動するアクチュエータを通電状態にして、光学部材の位置を維持しようとしても、撮像装置がより大きく振動することで光学部材の位置を維持できない場合がある。制御部は、アクチュエータが第1保持力で光学部材を保持している場合に、撮像装置の高度に関する条件、撮像装置の加速度に関する条件、撮像装置を搭載して移動する移動体の姿勢に関する条件、移動体の移動モードに関する条件、及び移動体の移動を制御する命令に関する条件の少なくとも1つを含む予め定められた条件が満たされると、第2保持力で光学部材を保持するようにアクチュエータを制御してよい。

Description

制御装置、撮像装置、移動体、制御方法、及びプログラム
 本発明は、制御装置、撮像装置、移動体、制御方法、及びプログラムに関する。
 特許文献1には、振動が検出された場合に、絞りモータに電力を供給して、絞り開口の変化を防止することが記載されている。
 特許文献1 特開2013-156358号公報
解決しようとする課題
 撮像装置が備える絞りなどの光学部材を駆動するアクチュエータを通電状態にして、光学部材の位置を維持しようとしても、撮像装置がより大きく振動することで光学部材の位置を維持できない場合がある。
一般的開示
 本発明の一態様に係る制御装置は、撮像装置の光学部材を保持するアクチュエータを制御する制御部を備えてよい。アクチュエータは、第1電力が供給されている場合に第1保持力で光学部材を保持してよい。アクチュエータは、第1電力より大きい第2電力が供給されている場合に第1保持力より大きい第2保持力で光学部材を保持してよい。制御部は、アクチュエータが第1保持力で光学部材を保持している場合に、撮像装置の高度に関する条件、撮像装置の加速度に関する条件、撮像装置を搭載して移動する移動体の姿勢に関する条件、移動体の移動モードに関する条件、及び移動体の移動を制御する命令に関する条件の少なくとも1つを含む予め定められた条件が満たされると、第2保持力で光学部材を保持するようにアクチュエータを制御してよい。
 予め定められた条件は、撮像装置の高度が閾値より低いという条件でよい。予め定められた条件は、撮像装置の加速度が閾値より大きいという条件でよい。予め定められた条件は、撮像装置の加速度の方向と光学部材が移動可能な方向とが予め定められた角度の範囲内にあるという条件でよい。
 移動体は、無人航空機でよい。予め定められた条件は、無人航空機の飛行姿勢が予め定められた飛行姿勢であるという条件でよい。無人航空機は、第1飛行モード、及び第1飛行モードで飛行する無人航空機に生じる加速度より大きい加速度が生じる第2飛行モードで飛行可能でよい。予め定められた条件は、無人航空機が第2飛行モードで飛行するという条件でよい。予め定められた条件は、命令が、撮像装置に閾値より大きい加速度を生じさせる予め定められた命令であるという条件でよい。予め定められた命令は、無人航空機を着陸させる命令を含んでよい。
 光学部材は、撮像装置の絞り、シャッタ、フィルタ、及びレンズの少なくとも1つを含んでよい。アクチュエータは、電磁アクチュエータでよい。
 アクチュエータは、ステッピングモータでよい。光学部材は、撮像装置の絞りでよい。
 アクチュエータは、ボイスコイルモータでよい。光学部材は、撮像装置のレンズでよい。
 本発明の一態様に係る撮像装置は、上記制御装置を備えてよい。撮像装置は、光学部材を備えてよい。撮像装置は、アクチュエータを備えてよい。
 本発明の一態様に係る移動体は、上記撮像装置を搭載して移動してよい。
 本発明の一態様に係る制御方法は、撮像装置の光学部材を保持するアクチュエータを制御する制御方法でよい。アクチュエータは、第1電力が供給されている場合に第1保持力で光学部材を保持してよい。アクチュエータは、第1電力より大きい第2電力が供給されている場合に第1保持力より大きい第2保持力で光学部材を保持してよい。制御方法は、アクチュエータが第1保持力で光学部材を保持している場合に、撮像装置の高度に関する条件、撮像装置の加速度に関する条件、撮像装置を搭載して移動する移動体の姿勢に関する条件、移動体の移動モードに関する条件、及び移動体の移動を制御する命令に関する条件の少なくとも1つを含む予め定められた条件が満たされると、第2保持力で光学部材を保持するようにアクチュエータを制御する段階を備えてよい。
 本発明の一態様に係るプログラムは、撮像装置の光学部材を保持するアクチュエータを制御する制御部としてコンピュータを機能させるためのプログラムでよい。アクチュエータは、第1電力が供給されている場合に第1保持力で光学部材を保持してよい。アクチュエータは、第1電力より大きい第2電力が供給されている場合に第1保持力より大きい第2保持力で光学部材を保持してよい。制御部は、アクチュエータが第1保持力で光学部材を保持している場合に、撮像装置の高度に関する条件、撮像装置の加速度に関する条件、撮像装置を搭載して移動する移動体の姿勢に関する条件、移動体の移動モードに関する条件、及び移動体の移動を制御する命令に関する条件の少なくとも1つを含む予め定められた条件が満たされると、第2保持力で光学部材を保持するようにアクチュエータを制御してよい。
 アクチュエータにより保持される光学部材が撮像装置の振動で位置ずれすることを抑制できる。
 上記の発明の概要は、本発明の特徴の全てを列挙したものではない。これらの特徴群のサブコンビネーションも発明となりうる。
無人航空機の外観の一例を示す図である。 無人航空機の機能ブロックの一例を示す図である。 アクチュエータの電力制御手順の一例を示すフローチャートである。 絞りを駆動するステッピングモータの電力及びモータ回転角度の時間的な変化の様子の一例を示す図である。 フォーカスレンズ及びボイスコイルモータを含む回路構成の一例を示す図である。 加速度と、レンズ位置と、ゲイン設定との関係の一例を示す図である。 ハードウェア構成の一例を示す図である。
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
 請求の範囲、明細書、図面、及び要約書には、著作権による保護の対象となる事項が含まれる。著作権者は、これらの書類の何人による複製に対しても、特許庁のファイルまたはレコードに表示される通りであれば異議を唱えない。ただし、それ以外の場合、一切の著作権を保留する。
 本発明の様々な実施形態は、フローチャート及びブロック図を参照して記載されてよい。フローチャート及びブロック図におけるブロックは、(1)オペレーションが実行されるプロセスの段階または(2)オペレーションを実行する役割を持つ装置の「部」を表わしてよい。特定の段階及び「部」が、専用回路、コンピュータ可読記憶媒体上に格納されるコンピュータ可読命令と共に供給されるプログラマブル回路、及び/またはコンピュータ可読記憶媒体上に格納されるコンピュータ可読命令と共に供給されるプロセッサによって実装されてよい。専用回路は、デジタル及び/またはアナログハードウェア回路を含んでよい。集積回路(IC)及び/またはディスクリート回路を含んでよい。プログラマブル回路は、例えば、フィールドプログラマブルゲートアレイ(FPGA)、及びプログラマブルロジックアレイ(PLA)等のような、論理積、論理和、排他的論理和、否定論理積、否定論理和、及び他の論理演算、フリップフロップ、レジスタ、並びにメモリエレメントを含む、再構成可能なハードウェア回路を含んでよい。
 コンピュータ可読記憶媒体は、適切なデバイスによって実行される命令を格納可能な任意の有形なデバイスを含んでよい。その結果、そこに格納される命令を有するコンピュータ可読記憶媒体は、フローチャートまたはブロック図で指定されたオペレーションを実行するための手段を作成すべく実行され得る命令を含む、製品を備えることになる。コンピュータ可読記憶媒体の例としては、電子記憶媒体、磁気記憶媒体、光記憶媒体、電磁記憶媒体、半導体記憶媒体等が含まれてよい。コンピュータ可読記憶媒体のより具体的な例としては、フロッピー(登録商標)ディスク、ディスケット、ハードディスク、ランダムアクセスメモリ(RAM)、リードオンリメモリ(ROM)、消去可能プログラマブルリードオンリメモリ(EPROMまたはフラッシュメモリ)、電気的消去可能プログラマブルリードオンリメモリ(EEPROM)、静的ランダムアクセスメモリ(SRAM)、コンパクトディスクリードオンリメモリ(CD-ROM)、デジタル多用途ディスク(DVD)、ブルーレイ(登録商標)ディスク、メモリスティック、集積回路カード等が含まれてよい。
 コンピュータ可読命令は、1または複数のプログラミング言語の任意の組み合わせで記述されたソースコードまたはオブジェクトコードの何れかを含んでよい。ソースコードまたはオブジェクトコードは、従来の手続型プログラミング言語を含む。従来の手続型プログラミング言語は、アセンブラ命令、命令セットアーキテクチャ(ISA)命令、マシン命令、マシン依存命令、マイクロコード、ファームウェア命令、状態設定データ、またはSmalltalk、JAVA(登録商標)、C++等のようなオブジェクト指向プログラミング言語、及び「C」プログラミング言語または同様のプログラミング言語でよい。
 コンピュータ可読命令は、汎用コンピュータ、特殊目的のコンピュータ、若しくは他のプログラム可能なデータ処理装置のプロセッサまたはプログラマブル回路に対し、ローカルにまたはローカルエリアネットワーク(LAN)、インターネット等のようなワイドエリアネットワーク(WAN)を介して提供されてよい。プロセッサまたはプログラマブル回路は、フローチャートまたはブロック図で指定されたオペレーションを実行するための手段を作成すべく、コンピュータ可読命令を実行してよい。プロセッサの例としては、コンピュータプロセッサ、処理ユニット、マイクロプロセッサ、デジタル信号プロセッサ、コントローラ、マイクロコントローラ等を含む。
 図1は、無人航空機(UAV)100の外観の一例を示す。UAV100は、UAV本体102、ジンバル200、撮像装置300、及び複数の撮像装置230を備える。UAV100は、移動体の一例である。移動体とは、UAVの他、空中を移動する他の航空機、地上を移動する車両、水上を移動する船舶等を含む概念である。
 UAV本体102は、複数の回転翼を備える。UAV本体102は、複数の回転翼の回転を制御することでUAV100を飛行させる。UAV本体102は、例えば、4つの回転翼を用いてUAV100を飛行させる。回転翼の数は、4つには限定されない。また、UAV100は、回転翼を有さない固定翼機でもよい。
 撮像装置300は、動画または静止画を撮像するためのカメラである。複数の撮像装置230は、UAV100の飛行を制御するためにUAV100の周囲を撮像するセンシング用のカメラである。2つの撮像装置230が、UAV100の機首である正面に設けられてよい。さらに他の2つの撮像装置230が、UAV100の底面に設けられてよい。正面側の2つの撮像装置230はペアとなり、いわゆるステレオカメラとして機能してよい。底面側の2つの撮像装置230もペアとなり、ステレオカメラとして機能してよい。複数の撮像装置230により撮像された画像に基づいて、UAV100から対象物までの距離が計測されてよい。複数の撮像装置230により撮像された画像に基づいて、UAV100の周囲の3次元空間データが生成されてよい。UAV100が備える撮像装置230の数は4つには限定されない。UAV100は、少なくとも1つの撮像装置230を備えていればよい。UAV100は、UAV100の機首、機尾、側面、底面、及び天井面のそれぞれに少なくとも1つの撮像装置230を備えてもよい。撮像装置230で設定できる画角は、撮像装置300で設定できる画角より広くてよい。撮像装置230は、単焦点レンズまたは魚眼レンズを有してもよい。
 図2は、UAV100の機能ブロックの一例を示す。UAV100は、UAV制御部110、通信インタフェース150、メモリ160、ジンバル200、回転翼機構210、撮像装置300、撮像装置230、GPS受信機240、慣性計測装置(IMU)250、磁気コンパス260、及び気圧高度計270を備える。
 通信インタフェース150は、外部の送信機と通信する。通信インタフェース150は、遠隔の送信機からUAV制御部110に対する各種の命令を受信する。メモリ160は、UAV制御部110がジンバル200、回転翼機構210、撮像装置300、撮像装置230、GPS受信機240、IMU250、磁気コンパス260、及び気圧高度計270を制御するのに必要なプログラム等を格納する。メモリ160は、コンピュータ読み取り可能な記録媒体でよく、SRAM、DRAM、EPROM、EEPROM、及びUSBメモリ等のフラッシュメモリの少なくとも1つを含んでよい。メモリ160は、UAV本体102の内部に設けられてよい。メモリ160は、UAV本体102から取り外し可能に設けられてよい。
 ジンバル200は、撮像装置300の撮像方向を調整可能に支持する。ジンバル200は、少なくとも1つの軸を中心に撮像装置300を回転可能に支持する。ジンバル200は、支持機構の一例である。ジンバル200は、ヨー軸、ピッチ軸、及びロール軸を中心に撮像装置300を回転可能に支持してよい。ジンバル200は、ヨー軸、ピッチ軸、及びロール軸の少なくとも1つを中心に撮像装置300を回転させることで、撮像装置300の撮像方向を変更してよい。回転翼機構210は、複数の回転翼と、複数の回転翼を回転させる複数の駆動モータとを有する。
 撮像装置230は、UAV100の周囲を撮像して画像データを生成する。撮像装置230の画像データは、メモリ160に格納される。GPS受信機240は、複数のGPS衛星から発信された時刻を示す複数の信号を受信する。GPS受信機240は、受信された複数の信号に基づいてGPS受信機240の位置、つまりUAV100の位置を算出する。慣性計測装置(IMU)250は、UAV100の姿勢を検出する。IMU250は、UAV100の姿勢として、UAV100の前後、左右、及び上下の3軸方向の加速度と、ピッチ、ロール、及びヨーの3軸方向の角速度とを検出する。磁気コンパス260は、UAV100の機首の方位を検出する。気圧高度計270は、UAV100が飛行する高度を検出する。
 UAV制御部110は、メモリ160に格納されたプログラムに従ってUAV100の飛行を制御する。UAV制御部110は、CPUまたはMPU等のマイクロプロセッサ、MCU等のマイクロコントローラ等により構成されてよい。UAV制御部110は、通信インタフェース150を介して遠隔の送信機から受信した命令に従って、UAV100の飛行を制御する。UAV制御部110は、複数の飛行モードの中から選択された飛行モードに従ってUAV100の飛行を制御してよい。複数の飛行モードは、通常モード及びスポーツモードを含んでよい。通常モードは、第1飛行モードの一例である。スポーツモードは、第1飛行モードで飛行するUAV100に生じる加速度より大きい加速度が生じる第2飛行モードの一例である。スポーツモードで飛行するUAV100の制限速度は、通常モードで飛行するUAV100の制限速度より大きくてよい。
 UAV制御部110は、複数の撮像装置230により撮像された複数の画像を解析することで、UAV100の周囲の環境を特定してよい。UAV制御部110は、UAV100の周囲の環境に基づいて、例えば、障害物を回避して飛行を制御する。UAV制御部110は、複数の撮像装置230により撮像された複数の画像に基づいてUAV100の周囲の3次元空間データを生成し、3次元空間データに基づいて飛行を制御してよい。
 撮像装置300は、撮像部301、及びレンズ部401を備える。レンズ部401は、撮像部301から取り外しが可能なレンズユニットでもよい。撮像部301は、撮像制御部310、撮像素子330、シャッタ駆動部320、シャッタ322、メモリ340、及び加速度センサ324を有する。撮像制御部310は、CPUまたはMPUなどのマイクロプロセッサ、MCUなどのマイクロコントローラなどにより構成されてよい。撮像制御部310は、UAV制御部110からの撮像装置300の動作命令に応じて、撮像装置300を制御してよい。
 メモリ340は、コンピュータ可読可能な記録媒体でよく、SRAM、DRAM、EPROM、EEPROM、及びUSBメモリなどのフラッシュメモリの少なくとも1つを含んでよい。メモリ340は、撮像部301の筐体の内部に設けられてよい。メモリ340は、撮像部301の筐体から取り外し可能に設けられてよい。
 シャッタ322は、シャッタ駆動部320により制御されて、撮像素子330の受光時間を制御する。シャッタ322及びシャッタ駆動部320は、レンズ部401に設けられてもよい。シャッタ322は、撮像素子330に入射する光を遮蔽すべく、移動可能な少なくとも一枚の羽部材により構成されてよい。少なくとも一枚の羽部材は、光軸に垂直な平面に沿って移動し、撮像素子330に入射される光を遮蔽してよい。シャッタ322は、フォーカルプレーンシャッタまたはレンズシャッタでよい。シャッタ駆動部320は、アクチュエータを含む。アクチュエータは、電磁アクチュエータでよい。電磁アクチュエータは、電磁石、またはソレノイドでよい。シャッタ駆動部320は、撮像制御部310からの指令を受けて、アクチュエータを駆動して、シャッタ322を遮蔽位置と非遮蔽位置との間で移動させる。
 撮像素子330は、CCDまたはCMOSにより構成されてよい。撮像素子330は、撮像装置300の筐体の内部に保持され、複数のレンズ432及びレンズ442を介して結像された光学像の画像データを撮像制御部310に出力する。撮像制御部310は、画像データに対してノイズ低減、デモザイキング、ガンマ補正、及びエッジ協調などの一連の画像処理を施す。撮像制御部310は、一連の画像処理後の画像データをメモリ340に格納する。撮像制御部310は、画像データをUAV制御部110を介してメモリ160に出力して格納してもよい。
 加速度センサ324は、撮像装置300の加速度を検出する。加速度センサ324は、レンズ部401に設けられてもよい。加速度センサ324は、UAV本体102に設けられてもよい。
 レンズ部401は、レンズ制御部410、メモリ420、レンズ駆動部430、レンズ432、位置センサ434、レンズ駆動部440、レンズ442、位置センサ444、絞り駆動部450、絞り452、フィルタ駆動部460、及びフィルタ462を備える。レンズ432は、少なくとも一枚のレンズを含む。レンズ432は、ズームレンズでよい。レンズ442は、少なくとも一枚のレンズを含む。レンズ442は、フォーカスレンズでよい。
 レンズ制御部410は、撮像部301からのレンズ動作命令に応じてレンズ駆動部430を介して、レンズ432の光軸方向への移動を制御する。レンズ制御部410は、撮像部301からのレンズ動作命令に応じてレンズ駆動部440を介して、レンズ442の光軸方向への移動を制御する。レンズ432及びレンズ442の一部または全部は、光軸に沿って移動する。レンズ制御部410は、レンズ432及びレンズ442の少なくとも1つを光軸に沿って移動させることで、ズーム動作及びフォーカス動作の少なくとも一方を実行する。位置センサ434は、レンズ432の位置を検出する。位置センサ434は、現在のズーム位置を検出してよい。位置センサ444は、レンズ442の位置を検出する。位置センサ444は、現在のフォーカス位置を検出してよい。
 レンズ駆動部430及びレンズ駆動部440は、アクチュエータを含んでよい。アクチュエータは、電磁アクチュエータでよい。電磁アクチュエータは、ステッピングモータ、ソレノイド、またはボイスコイルモータでよい。レンズ432及びレンズ442は、それぞれのアクチュエータからの動力を受けてレンズ駆動機構を介して光軸方向に沿って移動してよい。
 絞り452は、撮像素子330に入射される光の量を調整する。絞り452は、少なくとも一枚の羽部材を含んでよい。絞り駆動部450は、アクチュエータを含んでよい。アクチュエータは、電磁アクチュエータでよい。電磁アクチュエータは、電磁石、ソレノイド、またはステッピングモータでよい。絞り駆動部450は、レンズ制御部410からの指令を受けて、アクチュエータを駆動して、複数の羽部材の重なり度合いを調整して、絞り開口の大きさを調整してよい。複数の羽部材は、アクチュエータからの力を受けて光軸に垂直な平面に沿って移動してよい。
 フィルタ462は、レンズ432を介して入射される光の光量を減光したり、特定の波長の光をカットしたりする。フィルタ462は、NDフィルタ、及び赤外線カットフィルタの少なくとも1つを含んでよい。フィルタ駆動部460は、アクチュエータを含んでよい。アクチュエータは、電磁アクチュエータでよい。電磁アクチュエータは、電磁石、またはソレノイドでよい。フィルタ駆動部460は、レンズ制御部410からの指令を受けて、アクチュエータを駆動して、入射される光が通過する第1位置と、入力される光の特定の波長成分が取り除かれる、もしくは入力される光が減衰する第2位置との間でフィルタ462を移動させる。フィルタ462は、光軸に垂直な平面に沿って移動してよい。
 メモリ420は、レンズ駆動部430を介して移動する複数のレンズ432及びレンズ442の制御値を記憶する。メモリ420は、SRAM、DRAM、EPROM、EEPROM、及びUSBメモリなどのフラッシュメモリの少なくとも1つを含んでよい。
 撮像装置300が振動することで、アクチュエータにより駆動される絞り452、フィルタ462、シャッタ322、レンズ432、またはレンズ442などの光学部材の位置がずれることがある。そこで、このような光学部材の位置がずれないように、アクチュエータを通電状態にして光学部材を保持してよい。しかし、光学部材が移動していない間もアクチュエータに電力を供給しつづけると電力の消費が増大する。アクチュエータに供給される電力は少ないほうが好ましい。撮像装置300の振動が小さい場合には、比較的少ない電力でアクチュエータを駆動しても、アクチュエータからの十分な保持力で光学部材を保持できる。しかし、撮像装置300の振動が大きい場合には、比較的少ない電力でアクチュエータを駆動しても、アクチュエータから十分な保持力が得られず、光学部材の位置がずれる場合がある。
 撮像装置300がUAV100などの移動体に搭載されている場合、撮像装置300に生じる振動は比較的大きくなる傾向にある。例えば、UAV100が飛行中にUAV100で生じる加速度は2G程度である。一方、UAV100の着陸時などに生じる加速度は、30G程度である。このように、UAV100に生じる振動は、UAV100の飛行状態によって変わる。
 UAV100が着陸中に撮像装置300が撮像し続ける場合もある。UAV100が一度着陸した後、光学部材の位置を維持したまま再度離陸して、撮像装置300を開始する場合もある。したがって、UAV100が着陸した際に生じる衝撃により、光学部材の位置がずれないほうが好ましい。
 そこで、本実施形態では、撮像装置300に生じる振動が比較的大きい場合、もしくは撮像装置300に生じる振動が比較的大きくなることが予想される場合、アクチュエータに供給する電力を大きくする。これにより、アクチュエータから得られる保持力を大きくして、光学部材の位置ずれを抑制する。
 アクチュエータは、第1電力が供給されている場合に第1保持力で光学部材を保持してよい。アクチュエータは、第1電力より大きい第2電力が供給されている場合に第1保持力より大きい第2保持力で光学部材を保持してよい。
 撮像装置300に生じる振動が比較的小さい場合、もしくは撮像装置300に生じる振動が比較的小さいことが予想される場合、アクチュエータに第1電力が供給されてよい。撮像装置300に生じる振動が比較的大きい場合、もしくは撮像装置300に生じる振動が比較的に大きいことが予想される場合、アクチュエータに第2電力が供給されてよい。
 アクチュエータを制御する撮像制御部310またはレンズ制御部410などの制御部は、アクチュエータに供給される電力を制御してよい。アクチュエータに供給される電力を制御する制御部は、撮像制御部310またはレンズ制御部410の他に、UAV100を遠隔制御する送信機、またはUAV制御部110などに設けられてもよい。制御部は、アクチュエータが第1保持力で光学部材を保持している場合に、撮像装置300の高度に関する条件、撮像装置300の加速度に関する条件、UAV100の姿勢に関する条件、UAV100の移動モードに関する条件、及びUAV100の移動を制御する命令に関する条件の少なくとも1つを含む予め定められた条件が満たされると、第2保持力で光学部材を保持するようにアクチュエータを制御してよい。
 制御部は、撮像装置300の高度が閾値より低い場合、予め定められた条件を満たすと判断してよい。撮像装置300の高度、つまりUAV100の高度が例えば5mより低い場合、UAV100は着陸して、比較的大きな衝撃がUAV100に生じる可能性がある。そこで、撮像装置300の高度が閾値より低い場合、制御部は、第2保持力で光学部材を保持するようにアクチュエータを制御してよい。
 制御部は、撮像装置300の加速度が閾値より大きい場合、予め定められた条件を満たすと判断してよい。制御部は加速度センサ324で検出される加速度が閾値より大きい場合、予め定められた条件を満たすと判断してよい。
 制御部は、撮像装置300の加速度の方向と光学部材が移動可能な方向とが予め定められた角度の範囲内にある場合、予め定められた条件を満たすと判断してよい。予め定められた角度は、実際に撮像装置300に様々な方向に加速度を生じさせて、光学部材が許容範囲を超える位置ずれを起こしたか否かを基準に、設定されてよい。予め定められた角度は、例えば、90度、60度、30度、15度、または10度などでよい。
 例えば、絞り452、シャッタ322、またはフィルタ462は、光軸に垂直な平面に沿って移動する。したがって、撮像装置300に生じる加速度の方向が、光軸に垂直な方向の成分を有する場合、絞り452、シャッタ322、またはフィルタ462は移動しやすい。例えば、撮像装置300がジンバル200により光軸が水平となる姿勢で維持されている場合、UAV100が上昇または下降に飛行すると、絞り452、シャッタ322またはフィルタ462は移動しやすい。一方、撮像装置300がジンバル200により下向きとなる姿勢で維持されている場合、UAV100が水平飛行すると、絞り452、シャッタ322またはフィルタ462は移動しやすい。
 レンズ432またはレンズ442は、光軸に沿って移動する。したがって、撮像装置300に生じる加速度の方向が、光軸に平行な方向の成分を有する場合、レンズ432またはレンズ442は移動しやすい。撮像装置300がジンバル200により光軸が水平となる姿勢で維持されている場合、UAV100が水平飛行すると、レンズ432またはレンズ442は移動しやすい。一方、撮像装置300がジンバル200により下向きとなる姿勢で維持されている場合、UAV100が上昇または下降に飛行すると、レンズ432またはレンズ442は移動しやすい。
 このように、撮像装置300の姿勢によって、光学部材が移動しやすい撮像装置300の加速度の方向は異なる。
 また、光学部材は、保持されている位置によって移動しやすい方向が異なる場合がある。例えば、フィルタ462は、固定点を中心に回転することで、入射された光が通過する第1位置から、入力される光の特定の波長成分が取り除かれる、もしくは入力される光が減衰する第2位置まで移動する。このようなフィルタ462は、第1位置で保持されている場合と、第2位置で保持される場合とで、フィルタ462が移動しやすい方向は異なる。
 そこで、制御部は、光学部材が保持されている位置及び撮像装置300の姿勢ごとに、第2保持力で光学部材を保持すべき、撮像装置300の加速度の方向を示すテーブルを参照して、予め定められた条件を満たすかどうかを判断してよい。テーブルは、メモリ420またはメモリ340に格納されてよい。
 例えば、メモリ420またはメモリ340は、フィルタ462が保持されている位置及び撮像装置300の姿勢ごとに、フィルタ462が移動しやすい撮像装置300の加速度の方向を示すテーブルを格納してよい。レンズ制御部410または撮像制御部310は、そのテーブルを参照して、フィルタ462が保持されている現在の位置、撮像装置300の現在の姿勢に対して、撮像装置300の現在の加速度の方向がテーブルに示される条件に合致する場合には、予め定められた条件を満たすと判断してよい。テーブルは、光学部材が保持されている位置、及び撮像装置300の姿勢の範囲ごとに、光学部材が移動しやすい撮像装置300の加速度の方向の範囲を示してよい。
 制御部は、UAV100の飛行姿勢が予め定められた飛行姿勢である場合、予め定められた条件を満たすと判断してよい。UAV100が水平姿勢である場合、UAV100が着陸する可能性があるので、制御部は、予め定められた条件を満たすと判断してよい。UAV100が水平姿勢であり、撮像装置300に生じる加速度の方向が鉛直方向である場合、制御部は、絞り452、シャッタ322またはフィルタ462に対する予め定められた条件を満たすと判断してよい。この場合、制御部は、絞り452、シャッタ322、またはフィルタ462のアクチュエータに第2電力を供給してよい。
 制御部は、UAV100が通常モードより大きな加速度が生じやすいスポーツモードで飛行する場合、予め定められた条件を満たすと判断してよい。
 制御部は、UAV100の飛行に関する命令が、閾値より大きい加速度を撮像装置300に生じさせる予め定められた命令である場合、予め定められた条件を満たすと判断してよい。例えば、予め定められた命令は、UAV100を着陸させる命令を含んでよい。予め定められた命令は、UAV100に生じる加速度が閾値より大きい加速命令を含んでよい。
 図3は、アクチュエータの電力制御手順の一例を示すフローチャートである。制御部は、判断基準となる情報を取得する(S100)。例えば、レンズ制御部410が、絞り452を駆動するアクチュエータを制御する場合、レンズ制御部410は、撮像制御部310を介して加速度センサ324で検出された撮像装置300の加速度を取得してよい。レンズ制御部410は、ジンバル200の姿勢情報を取得してよい。レンズ制御部410は、撮像制御部310を介してUAV制御部110からUAV100の高度情報、UAV100の飛行モード、またはUAV100の飛行に関する命令を取得してよい。
 制御部は、取得した情報が予め定められた条件を満たすか否かを判断する(S102)。例えば、レンズ制御部410は、撮像装置300の加速度が閾値以上か否かを判断してよい。レンズ制御部410は、UAV100の飛行モードがスポーツモードか否かを判断してよい。レンズ制御部410は、UAV100の姿勢が水平姿勢か否かを判断してよい。レンズ制御部410は、UAV100の高度が閾値より低いか否かを判断してよい。
 予め定められた条件を満たす場合には、制御部は、アクチュエータに光学部材を第2保持力で保持させるべく、アクチュエータに第2電力が供給されるように、アクチュエータを制御してよい(S104)。予め定められた条件を満たさない場合には、制御部は、アクチュエータに光学部材を第1保持力で保持させるべく、アクチュエータに第1電力が供給されるように、アクチュエータを制御してよい(S106)。
 制御部は、アクチュエータに印加される電圧または供給される電流の大きさを制御することで、アクチュエータに供給される電力を制御してよい。
 制御部は、アクチュエータに光学部材を第1保持力で保持させるべく、アクチュエータに1Vの電圧を印可するようにアクチュエータを制御してよい。制御部は、アクチュエータに光学部材を第2保持力で保持させるべく、アクチュエータに5Vの電圧を印可するようにアクチュエータを制御してよい。アクチュエータに印可される電圧は、予め定められた条件に含まれる条件の内容によって異なってよい。例えば、高度が5mより低い場合、制御部は、アクチュエータに5Vの電圧を印加するようにアクチュエータを制御してよい。UAV100がスポーツモードで動作する場合、制御部は、アクチュエータに2Vの電圧を印加するようにアクチュエータを制御してよい。制御部は、UAV100が水平姿勢で飛行中は、アクチュエータに1.5Vの電圧を印加するようにアクチュエータを制御してよい。UAV100が通常モードで動作する場合、制御部は、アクチュエータに1Vの電圧を印加するようにアクチュエータを制御してよい。制御部は、UAV100が水平姿勢以外の姿勢で飛行中は、アクチュエータに1Vの電圧を印加するようにアクチュエータを制御してよい。
 図4は、絞り452を駆動するステッピングモータの電力及びモータ回転角度の時間的な変化の様子の一例を示す図である。
 期間T1において、レンズ制御部410は、ステッピングモータのA相及びB相に交流の電圧を印加し、絞り452の開口を所望の絞り値に設定する。絞り452の開口が所望の絞り値に設定されると、レンズ制御部410は、期間T2において、第2電力がステッピングモータに供給されるように、アクチュエータを制御する。レンズ制御部410は、絞り452の開口が所望の絞り値に設定された後、予め定められた期間が経過すると、第2電力より小さい第1電力がステッピングモータに供給されるように、アクチュエータを制御する。レンズ制御部410は、期間T3において、アクチュエータを省電力モードで動作させている。その後、レンズ制御部410は、撮像装置300に比較的高い加速度が生じる、または生じる可能性がある予め定められた条件を満たすと判断した場合、期間T4において、再び第2電力がステッピングモータに供給されるように、アクチュエータを制御する。
 省電力モードでステッピングモータが駆動している場合に、撮像装置300に比較的小さな振動が生じても、ステッピングモータの保持力で、絞り452を所望の位置に保持できる。しかし、撮像装置300に比較的大きな振動が生じた場合、省電力モードで動作するステッピングモータの保持力が弱く、絞り452を所望の位置に保持できない可能性がある。そこで、ステッピングモータが省電力モードで動作中に、予め定められた条件を満たした場合には、レンズ制御部410は、省電力モードよりも電力が大きいモードでアクチュエータを動作させて、アクチュエータの保持力を増加させる。これにより、撮像装置300に比較的大きな振動が生じた場合でも、絞り452を所望の位置に保持できる。
 図5は、フォーカスレンズ及びボイスコイルモータを含む回路構成の一例を示す図である。フォーカスレンズ500は、レンズ442の一例である。位置センサ520は、位置センサ444の一例である。ボイスコイルモータ510、制御ゲイン設定部522、及び駆動回路524は、レンズ駆動部440の一例である。ボイスコイルモータ510は、コイル512及び磁石514を含む。
 レンズ制御部410から指令される目標位置と、位置センサ520で検出されるフォーカスレンズ500の実際の位置との差分が制御ゲイン設定部522に入力される。ボイスコイルモータ510が第1電力で駆動される場合には、例えば、レンズ制御部410は、ゲインを1倍に設定する指令を制御ゲイン設定部522に出力する。制御ゲイン設定部522は、ゲインを1倍に設定して、駆動回路524に差分に応じた指令を出力する。駆動回路524は、指令を受けて差分に応じた駆動電流をコイル512に出力する。これにより、フォーカスレンズ500は、目標位置に制御される。ボイスコイルモータ510が第2電力で駆動される場合には、例えば、レンズ制御部410は、ゲインを2倍に設定する指令を制御ゲイン設定部522に出力する。制御ゲイン設定部522は、ゲインを2倍に設定して、駆動回路524に差分に応じた指令を出力する。ゲインの大きさが変更されることで、コイル512に入力される駆動電流の大きさが変更される。駆動電流の大きさが変更されると、ボイスコイルモータ510で生じる力、すなわちフォーカスレンズ500の保持力が変更される。
 図6は、撮像装置300に生じる加速度と、フォーカスレンズ500のレンズ位置と、ゲイン設定との関係の一例を示す図である。例えば、制御ゲイン設定部522で設定されるゲインが常に1倍である場合、撮像装置300に閾値より高い加速度が生じると、フォーカスレンズ500の位置は目標位置から大きくずれる。一方、レンズ制御部410が、閾値より高い加速度の検知に対応して、制御ゲイン設定部522にゲインを2倍に設定するように指令を出力する。ゲインが2倍に設定されることで、ボイスコイルモータ510で生じる、フォーカスレンズ500の保持力が大きくなる。よって、フォーカスレンズ500が目標位置からずれる量をゲインが1倍の場合よりも小さくできる。このように、アクチュエータに供給する駆動電流のゲインを制御することで、アクチュエータで生じる光学部材を保持する力を制御してよい。
 図7は、本発明の複数の態様が全体的または部分的に具現化されてよいコンピュータ1200の一例を示す。コンピュータ1200にインストールされたプログラムは、コンピュータ1200に、本発明の実施形態に係る装置に関連付けられるオペレーションまたは当該装置の1または複数の「部」として機能させることができる。または、当該プログラムは、コンピュータ1200に当該オペレーションまたは当該1または複数の「部」を実行させることができる。当該プログラムは、コンピュータ1200に、本発明の実施形態に係るプロセスまたは当該プロセスの段階を実行させることができる。そのようなプログラムは、コンピュータ1200に、本明細書に記載のフローチャート及びブロック図のブロックのうちのいくつかまたはすべてに関連付けられた特定のオペレーションを実行させるべく、CPU1212によって実行されてよい。
 本実施形態によるコンピュータ1200は、CPU1212、及びRAM1214を含み、それらはホストコントローラ1210によって相互に接続されている。コンピュータ1200はまた、通信インタフェース1222、入力/出力ユニットを含み、それらは入力/出力コントローラ1220を介してホストコントローラ1210に接続されている。コンピュータ1200はまた、ROM1230を含む。CPU1212は、ROM1230及びRAM1214内に格納されたプログラムに従い動作し、それにより各ユニットを制御する。
 通信インタフェース1222は、ネットワークを介して他の電子デバイスと通信する。ハードディスクドライブが、コンピュータ1200内のCPU1212によって使用されるプログラム及びデータを格納してよい。ROM1230はその中に、アクティブ化時にコンピュータ1200によって実行されるブートプログラム等、及び/またはコンピュータ1200のハードウェアに依存するプログラムを格納する。プログラムが、CR-ROM、USBメモリまたはICカードのようなコンピュータ可読記録媒体またはネットワークを介して提供される。プログラムは、コンピュータ可読記録媒体の例でもあるRAM1214、またはROM1230にインストールされ、CPU1212によって実行される。これらのプログラム内に記述される情報処理は、コンピュータ1200に読み取られ、プログラムと、上記様々なタイプのハードウェアリソースとの間の連携をもたらす。装置または方法が、コンピュータ1200の使用に従い情報のオペレーションまたは処理を実現することによって構成されてよい。
 例えば、通信がコンピュータ1200及び外部デバイス間で実行される場合、CPU1212は、RAM1214にロードされた通信プログラムを実行し、通信プログラムに記述された処理に基づいて、通信インタフェース1222に対し、通信処理を命令してよい。通信インタフェース1222は、CPU1212の制御の下、RAM1214、またはUSBメモリのような記録媒体内に提供される送信バッファ領域に格納された送信データを読み取り、読み取られた送信データをネットワークに送信し、またはネットワークから受信した受信データを記録媒体上に提供される受信バッファ領域等に書き込む。
 また、CPU1212は、USBメモリ等のような外部記録媒体に格納されたファイルまたはデータベースの全部または必要な部分がRAM1214に読み取られるようにし、RAM1214上のデータに対し様々なタイプの処理を実行してよい。CPU1212は次に、処理されたデータを外部記録媒体にライトバックしてよい。
 様々なタイプのプログラム、データ、テーブル、及びデータベースのような様々なタイプの情報が記録媒体に格納され、情報処理を受けてよい。CPU1212は、RAM1214から読み取られたデータに対し、本開示の随所に記載され、プログラムの命令シーケンスによって指定される様々なタイプのオペレーション、情報処理、条件判断、条件分岐、無条件分岐、情報の検索/置換等を含む、様々なタイプの処理を実行してよく、結果をRAM1214に対しライトバックする。また、CPU1212は、記録媒体内のファイル、データベース等における情報を検索してよい。例えば、各々が第2の属性の属性値に関連付けられた第1の属性の属性値を有する複数のエントリが記録媒体内に格納される場合、CPU1212は、第1の属性の属性値が指定される、条件に一致するエントリを当該複数のエントリの中から検索し、当該エントリ内に格納された第2の属性の属性値を読み取り、それにより予め定められた条件を満たす第1の属性に関連付けられた第2の属性の属性値を取得してよい。
 上で説明したプログラムまたはソフトウェアモジュールは、コンピュータ1200上またはコンピュータ1200近傍のコンピュータ可読記憶媒体に格納されてよい。また、専用通信ネットワークまたはインターネットに接続されたサーバーシステム内に提供されるハードディスクまたはRAMのような記録媒体が、コンピュータ可読記憶媒体として使用可能であり、それによりプログラムを、ネットワークを介してコンピュータ1200に提供する。
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。
 請求の範囲、明細書、及び図面中において示した装置、システム、プログラム、及び方法における動作、手順、ステップ、及び段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、及び図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
102 UAV本体
110 UAV制御部
150 通信インタフェース
160 メモリ
200 ジンバル
210 回転翼機構
230 撮像装置
240 GPS受信機
260 磁気コンパス
270 気圧高度計
300 撮像装置
301 撮像部
310 撮像制御部
320 シャッタ駆動部
322 シャッタ
324 加速度センサ
330 撮像素子
340 メモリ
401 レンズ部
410 レンズ制御部
420 メモリ
430 レンズ駆動部
432 レンズ
434 位置センサ
440 レンズ駆動部
442 レンズ
444 位置センサ
450 絞り駆動部
452 絞り
460 フィルタ駆動部
462 フィルタ
500 フォーカスレンズ
510 ボイスコイルモータ
512 コイル
514 磁石
520 位置センサ
522 制御ゲイン設定部
524 駆動回路
1200 コンピュータ
1210 ホストコントローラ
1212 CPU
1214 RAM
1220 入力/出力コントローラ
1222 通信インタフェース
1230 ROM

Claims (16)

  1.  撮像装置の光学部材を保持するアクチュエータを制御する制御部
    を備え、
     前記アクチュエータは、第1電力が供給されている場合に第1保持力で前記光学部材を保持し、前記第1電力より大きい第2電力が供給されている場合に前記第1保持力より大きい第2保持力で前記光学部材を保持し、
     前記制御部は、前記アクチュエータが前記第1保持力で前記光学部材を保持している場合に、前記撮像装置の高度に関する条件、前記撮像装置の加速度に関する条件、前記撮像装置を搭載して移動する移動体の姿勢に関する条件、前記移動体の移動モードに関する条件、及び前記移動体の移動を制御する命令に関する条件の少なくとも1つを含む予め定められた条件が満たされると、前記第2保持力で前記光学部材を保持するように前記アクチュエータを制御する、制御装置。
  2.  前記予め定められた条件は、前記撮像装置の高度が閾値より低いという条件である、請求項1に記載の制御装置。
  3.  前記予め定められた条件は、前記撮像装置の加速度が閾値より大きいという条件である、請求項1に記載の制御装置。
  4.  前記予め定められた条件は、前記撮像装置の加速度の方向と前記光学部材が移動可能な方向とが予め定められた角度の範囲内にあるという条件である、請求項1に記載の制御装置。
  5.  前記移動体は、無人航空機であり、
     前記予め定められた条件は、前記無人航空機の飛行姿勢が予め定められた飛行姿勢であるという条件である、請求項1に記載の制御装置。
  6.  前記移動体は、無人航空機であり、
     前記無人航空機は、第1飛行モード、及び前記第1飛行モードで飛行する前記無人航空機に生じる加速度より大きい加速度が生じる第2飛行モードで飛行可能であり、
     前記予め定められた条件は、前記無人航空機が前記第2飛行モードで飛行するという条件である、請求項1に記載の制御装置。
  7.  前記移動体は、無人航空機であり、
     前記予め定められた条件は、前記命令が、前記撮像装置に閾値より大きい加速度を生じさせる予め定められた命令であるという条件である、請求項1に記載の制御装置。
  8.  前記予め定められた命令は、前記無人航空機を着陸させる命令を含む、請求項7に記載の制御装置。
  9.  前記光学部材は、前記撮像装置の絞り、シャッタ、フィルタ、及びレンズの少なくとも1つを含む、請求項1に記載の制御装置。
  10.  前記アクチュエータは、電磁アクチュエータである、請求項1に記載の制御装置。
  11.  前記アクチュエータは、ステッピングモータであり、
     前記光学部材は、前記撮像装置の絞りである、請求項1に記載の制御装置。
  12.  前記アクチュエータは、ボイスコイルモータであり、
     前記光学部材は、前記撮像装置のレンズである、請求項1に記載の制御装置。
  13.  請求項1から12の何れか1つに記載の制御装置と、
     前記光学部材と、
     前記アクチュエータと
    を備える、撮像装置。
  14.  請求項13に記載の撮像装置を搭載して移動する移動体。
  15.  撮像装置の光学部材を保持するアクチュエータを制御する制御方法であって、
     前記アクチュエータは、第1電力が供給されている場合に第1保持力で前記光学部材を保持し、前記第1電力より大きい第2電力が供給されている場合に前記第1保持力より大きい第2保持力で前記光学部材を保持し、
     前記制御方法は、
     前記アクチュエータが前記第1保持力で前記光学部材を保持している場合に、前記撮像装置の高度に関する条件、前記撮像装置の加速度に関する条件、前記撮像装置を搭載して移動する移動体の姿勢に関する条件、前記移動体の移動モードに関する条件、及び前記移動体の移動を制御する命令に関する条件の少なくとも1つを含む予め定められた条件が満たされると、前記第2保持力で前記光学部材を保持するように前記アクチュエータを制御する段階を備える、制御方法。
  16.  撮像装置の光学部材を保持するアクチュエータを制御する制御部としてコンピュータを機能させるためのプログラムであって、
     前記アクチュエータは、第1電力が供給されている場合に第1保持力で前記光学部材を保持し、前記第1電力より大きい第2電力が供給されている場合に前記第1保持力より大きい第2保持力で前記光学部材を保持し、
     前記制御部は、前記アクチュエータが前記第1保持力で前記光学部材を保持している場合に、前記撮像装置の高度に関する条件、前記撮像装置の加速度に関する条件、前記撮像装置を搭載して移動する移動体の姿勢に関する条件、前記移動体の移動モードに関する条件、及び前記移動体の移動を制御する命令に関する条件の少なくとも1つを含む予め定められた条件が満たされると、前記第2保持力で前記光学部材を保持するように前記アクチュエータを制御する、プログラム。
PCT/JP2016/088157 2016-12-21 2016-12-21 制御装置、撮像装置、移動体、制御方法、及びプログラム WO2018116417A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017559714A JP6544542B2 (ja) 2016-12-21 2016-12-21 制御装置、撮像装置、無人航空機、制御方法、及びプログラム
PCT/JP2016/088157 WO2018116417A1 (ja) 2016-12-21 2016-12-21 制御装置、撮像装置、移動体、制御方法、及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/088157 WO2018116417A1 (ja) 2016-12-21 2016-12-21 制御装置、撮像装置、移動体、制御方法、及びプログラム

Publications (1)

Publication Number Publication Date
WO2018116417A1 true WO2018116417A1 (ja) 2018-06-28

Family

ID=62626190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/088157 WO2018116417A1 (ja) 2016-12-21 2016-12-21 制御装置、撮像装置、移動体、制御方法、及びプログラム

Country Status (2)

Country Link
JP (1) JP6544542B2 (ja)
WO (1) WO2018116417A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020042183A (ja) * 2018-09-11 2020-03-19 株式会社五鈴精工硝子 無人移動装置及びターレット切替え装置
JP2020118944A (ja) * 2019-01-28 2020-08-06 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 制御装置、撮像装置、移動体、制御方法、及びプログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001197481A (ja) * 2000-01-13 2001-07-19 Mitsubishi Electric Corp 撮影システム
JP2013011732A (ja) * 2011-06-29 2013-01-17 Canon Inc 光学機器およびその制御方法
JP2015163943A (ja) * 2014-01-29 2015-09-10 パナソニックIpマネジメント株式会社 撮像装置
JP2015195569A (ja) * 2014-03-25 2015-11-05 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America 移動体用撮影装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001083398A (ja) * 1999-09-13 2001-03-30 Hitachi Ltd 撮像装置
JP2010044315A (ja) * 2008-08-18 2010-02-25 Hoya Corp 駆動装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001197481A (ja) * 2000-01-13 2001-07-19 Mitsubishi Electric Corp 撮影システム
JP2013011732A (ja) * 2011-06-29 2013-01-17 Canon Inc 光学機器およびその制御方法
JP2015163943A (ja) * 2014-01-29 2015-09-10 パナソニックIpマネジメント株式会社 撮像装置
JP2015195569A (ja) * 2014-03-25 2015-11-05 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America 移動体用撮影装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020042183A (ja) * 2018-09-11 2020-03-19 株式会社五鈴精工硝子 無人移動装置及びターレット切替え装置
JP7163114B2 (ja) 2018-09-11 2022-10-31 株式会社五鈴精工硝子 無人移動装置及びターレット切替え装置
JP2020118944A (ja) * 2019-01-28 2020-08-06 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 制御装置、撮像装置、移動体、制御方法、及びプログラム

Also Published As

Publication number Publication date
JP6544542B2 (ja) 2019-07-17
JPWO2018116417A1 (ja) 2018-12-20

Similar Documents

Publication Publication Date Title
JP6399498B1 (ja) 制御装置、撮像システム、移動体、制御方法、及びプログラム
JP6496955B1 (ja) 制御装置、システム、制御方法、及びプログラム
JP6493702B2 (ja) 制御方法、撮像装置、撮像システム、移動体、制御方法、及びプログラム
JP2019066563A (ja) 制御装置、レンズ装置、撮像装置、制御方法、及びプログラム
WO2018092283A1 (ja) 制御装置、撮像システム、移動体、制御方法、およびプログラム
JP6630939B2 (ja) 制御装置、撮像装置、移動体、制御方法、及びプログラム
WO2018116417A1 (ja) 制御装置、撮像装置、移動体、制御方法、及びプログラム
JP6496953B2 (ja) 制御装置、撮像装置、移動体、制御方法、及びプログラム
JP6565072B2 (ja) 制御装置、レンズ装置、飛行体、制御方法、及びプログラム
JP6501091B1 (ja) 制御装置、撮像装置、移動体、制御方法、及びプログラム
JP6331180B1 (ja) 制御装置、撮像装置、撮像システム、飛行体、制御方法、及びプログラム
WO2019174343A1 (zh) 活动体检测装置、控制装置、移动体、活动体检测方法及程序
JP7048019B2 (ja) 制御装置、飛行体、制御方法、及びプログラム
WO2018185940A1 (ja) 撮像制御装置、撮像装置、撮像システム、移動体、撮像制御方法、及びプログラム
JP6543859B1 (ja) 画像処理装置、撮像装置、移動体、画像処理方法、及びプログラム
JP6565071B2 (ja) 制御装置、撮像装置、飛行体、制御方法、及びプログラム
WO2018163300A1 (ja) 制御装置、撮像装置、撮像システム、移動体、制御方法、及びプログラム
US11363195B2 (en) Control device, imaging device, imaging system, movable object, control method, and program
JP6459012B1 (ja) 制御装置、撮像装置、飛行体、制御方法、及びプログラム
JP2019205047A (ja) 制御装置、撮像装置、移動体、制御方法、及びプログラム
JP6818987B1 (ja) 画像処理装置、撮像装置、移動体、画像処理方法、及びプログラム
JP6409239B1 (ja) 撮像装置、撮像システム、飛行体、記録方法、及びプログラム
JP2020067558A (ja) 制御装置、撮像装置、移動体、制御方法、及びプログラム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017559714

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16924340

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/10/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16924340

Country of ref document: EP

Kind code of ref document: A1