WO2018113069A1 - 一种图案化碳纳米管阴极的透射式x射线源结构 - Google Patents

一种图案化碳纳米管阴极的透射式x射线源结构 Download PDF

Info

Publication number
WO2018113069A1
WO2018113069A1 PCT/CN2017/071980 CN2017071980W WO2018113069A1 WO 2018113069 A1 WO2018113069 A1 WO 2018113069A1 CN 2017071980 W CN2017071980 W CN 2017071980W WO 2018113069 A1 WO2018113069 A1 WO 2018113069A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotube
electrode
ray source
source structure
conductive
Prior art date
Application number
PCT/CN2017/071980
Other languages
English (en)
French (fr)
Inventor
冯鸿涛
张志诚
陈艳
谢耀钦
Original Assignee
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院 filed Critical 中国科学院深圳先进技术研究院
Publication of WO2018113069A1 publication Critical patent/WO2018113069A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/06Cathodes
    • H01J35/065Field emission, photo emission or secondary emission cathodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes

Definitions

  • the present invention relates to an X-ray source structure, and more particularly to a transmissive X-ray source structure for a patterned carbon nanotube cathode.
  • the electron emission of the conventional X-ray source has certain drawbacks.
  • a specific voltage to the tungsten wire By applying a specific voltage to the tungsten wire, the electron is excited and overflowed, and the working temperature is high and the energy loss is large, which is disadvantageous for miniaturization of the X-ray source.
  • a large metal anode is used as a bombardment target, and at the same time, it is used as a cooling, so the weight is greatly increased, and the hot application of the current miniaturized X-ray in vivo treatment cannot be satisfied.
  • the X-ray illumination angle is adjusted by the tilt angle of the metal anode, which cannot meet the application of forward illumination.
  • the high voltage that provides an accelerating electric field for the electrons in the metal anode introduces a great safety hazard to the radiation therapy process in the body, and its application value is greatly reduced.
  • the technical problem to be solved by the present invention is to provide a transmissive X-ray source structure with a low power, small size, and a patterned carbon nanotube cathode capable of meeting forward illumination and in vivo medical use.
  • the present invention provides a transmissive X-ray source structure of a patterned carbon nanotube cathode, which comprises carbon nanotubes, a conductive base, an insulating cover, a sash window, a conductive ring and a bulb, the ball a top end of the tube is open, the bottom end is closed, and the sash is sealed to the ball by the conductive ring seal
  • the open end of the tube forms a vacuum chamber
  • the carbon nanotube, the conductive base and the insulating cover are disposed in the vacuum chamber, and the top end of the conductive base is provided with a groove, and the carbon nanotube passes through the
  • An insulating cover is fixed in the recess, the conductive base is connected with a first electrode, and a side of the sidewall facing the carbon nanotube is provided with a metal film, and the metal film is connected to the conductive ring.
  • the conductive ring is connected to the second electrode.
  • the carbon nanotubes are micro-columns fabricated by micro-nano processing technology, and then a carbon tube is grown on the surface by a CVD process to accurately control the growth height of the carbon tubes, and Catalyst deposition on the surface of the microcolumn leads to the growth of 3D patterned carbon nanotubes.
  • the size of the groove matches the size of the carbon nanotube.
  • the insulating cover is provided with a through hole opposite to the carbon nanotube.
  • the insulating cover is connected to the top end of the conductive base through a threaded structure; when the insulating cover is connected to the conductive base, an edge of the through hole presses the carbon nanotube.
  • the first electrode is an electrode rod, one end of the first electrode is fixedly connected to the bottom end of the conductive base, and the closed end of the bulb is provided with a first electrode hole.
  • the other end of the first electrode passes through the first electrode hole and extends to an external connection power source of the X-ray source structure, the first electrode is sealed and fixed to the first electrode hole, and the power source applies to the conductive base Negative potential.
  • the second electrode is an electrode rod, and one of the second electrodes
  • the end of the tube is fixedly connected to the conductive ring, the closed end of the tube is provided with a second electrode hole, and the other end of the second electrode passes through the second electrode hole and extends to the external power supply of the X-ray source structure.
  • the second electrode is sealed and fixed to the second electrode hole, and the power source applies a zero potential to the conductive ring.
  • the bottom end of the conductive base is a hollow structure.
  • a cooling container is further included, the top end of the cooling container is open, and the bottom end is closed, and the window is sealed by the conductive ring to cover the open end of the cooling container, and The outer circumference of the bulb is combined to form a cooling cavity.
  • the cooling container is provided with an oil inlet hole and an oil outlet hole communicating with the cooling cavity.
  • the carbon nanotubes are integrated as a field emission electron source of X-rays onto the conductive base, and the electrons on the end faces of the carbon nanotubes are excited by applying a voltage to the conductive base, and the metal film is applied on the surface of the window by applying a voltage to the conductive rings. Zero potential, thereby pulling out electrons from the end faces of the carbon nanotubes, and bombarding X-rays on the surface of the metal film of the window.
  • This design is due to the large aspect ratio and extremely small radius of curvature of carbon nanotubes, which can emit large currents at relatively low electric field strength, and has low threshold voltage, high emission current density, and high stability.
  • FIG. 1 is an exploded view of a transmission X-ray source structure of a patterned carbon nanotube cathode of the present invention
  • FIG. 3 is an effect diagram of a 3D patterned carbon nanotube growth process.
  • a transmissive X-ray source structure of a patterned carbon nanotube cathode comprising a carbon nanotube 1, a conductive base 2, an insulating cover 3, a sash 4, and a conductive ring 5 and the tube 6, the top end of the tube 6 is open, the bottom end is closed, and the window 4 is sealed and closed at the open end of the tube 6 through the conductive ring 5, and a vacuum chamber is formed.
  • the carbon nanotubes 1, the conductive base 2 and the insulating cover 3 are disposed in the vacuum chamber, and the top end of the conductive base 2 is provided with a groove 21, and the carbon nanotubes 1 are fixed by the insulating cover 3
  • the conductive base 2 is connected with a first electrode 7, and a side of the window 4 is provided with a metal film (not shown) on one side of the carbon nanotube 1.
  • the conductive ring 5 is connected, and the conductive ring 5 is connected to the second electrode 8.
  • the conductive base 2 is preferably made of a metal conductive material, and has an embedded recess on the surface thereof to match the size of the carbon nanotubes 1 to realize the limiting action of the carbon nanotubes 1 and facilitate the carbon nanotubes 1 Applying a voltage;
  • the insulating cover 3 is preferably made of a ceramic material for fixing the carbon nanotubes 1;
  • the bulb 9 is preferably a glass bulb 9 for vacuum encapsulating the core of the carbon nanotube 1, the conductive base 2, and the insulating cover 3.
  • the structure provides a good migration environment for the electrons;
  • the conductive ring 5 is preferably made of a metal conductive material for fixing the blind window 4 and closing the bulb 6 while facilitating heat dissipation.
  • the transmissive X-ray source structure of the patterned carbon nanotube cathode of the present invention works by integrating the carbon nanotube 1 as a field emission electron source of X-rays onto the conductive base 2, by applying a voltage to the conductive base 2, The electrons on the end face of the carbon nanotube 1 are excited, and a voltage is applied to the conductive ring 5 to apply a zero potential to the metal film on the surface of the window 4, thereby pulling out the electrons on the end face of the carbon nanotube 1 and bombarding the metal film on the window 4. X-rays are generated on the surface.
  • Such a design is due to the fact that the carbon nanotubes 1 have a large aspect ratio and a small radius of curvature, can emit a large current at a relatively low electric field intensity, and have a low threshold voltage, a large emission current density, and stability.
  • the excellent field emission performance of the X-ray source can solve the problem that the conventional X-ray source uses the hot cathode as the electron source, resulting in high operating temperature, high power consumption, and unfavorable miniaturization of the radiation source.
  • the X-ray source based on the carbon nanotube 1 is in operation, when the surface electric field of the carbon nanotube 1 reaches a certain threshold, free electrons can be generated from the carbon nanotube 1, and it can be said that the generation of electrons is instantaneous.
  • the carbon nanotube 1X light source made by using this characteristic can control the generation of electrons by controlling the surface electric field of the carbon nanotube 1, thereby controlling the generation of X-rays.
  • the metal film on the surface of the window 4 as an anode target, the electrons are pulled out from the end face of the carbon nanotube 1 so that the electrons bombard the metal film to generate X-rays and are radiated forward in a transmissive manner, thereby avoiding the conventional adoption.
  • the design of a large piece of metal as an anode target greatly reduces the weight of the product and meets the needs of forward illumination and in vivo medical treatment.
  • the carbon nanotubes 1 are micro-columns of a certain height (for example, 20 um) by using micro-nano processing technology, and then are grown on the surface by chemical vapor deposition (CVD).
  • the high carbon tube grows the 3D patterned carbon nanotubes 1 by precisely controlling the carbon tube growth height and the catalyst deposition on the end faces and sidewalls of the microcolumns.
  • the carbon tube is subjected to CVD growth on the surface of the heavily doped silicon wafer with a certain depth of micro-column, and the 3D patterned carbon tube is produced in one step, as shown in FIG. 2 .
  • Figure 3 shows.
  • the carbon tube and the side wall of the micro-column end surface are completely protruded, and the carbon tube extending to the periphery is formed into a 3D carbon tube structure, and the current generated between the carbon tube bundles is not affected.
  • the size of the groove 21 matches the size of the carbon nanotubes 1, thereby realizing the limitation of the carbon nanotubes 1 and facilitating assembly.
  • the insulating cover 3 is provided with a through hole 31 opposite to the carbon nanotube 1, and the through hole 31 serves as a window for emitting electrons from the carbon nanotube 1.
  • the insulating cover 3 and the top end of the conductive base 2 are connected by a screw structure, and when the insulating cover 3 is connected to the conductive base 2, The edge of the through hole 31 presses the carbon nanotube 1 to achieve a compact packaging effect of the carbon nanotube 1.
  • the first electrode 7 is an electrode rod, one end of the first electrode 7 is fixedly connected to the bottom end of the conductive base 2, and the closed end of the bulb 6 is provided with a first electrode. a hole, the other end of the first electrode 7 passes through the first electrode hole and extends to an external connection power source of the X-ray source structure, the first electrode 7 is sealed and fixed to the first electrode hole, and the power source pair
  • the conductive base 2 applies a negative potential.
  • the conductive base 2 is electrically connected to the carbon nanotubes 1 .
  • the second electrode 8 is an electrode rod, one end of the second electrode 8 is fixedly connected to the conductive ring 5, and the closed end of the bulb 6 is provided with a second electrode hole.
  • the other end of the second electrode 8 passes through the second electrode hole and extends to the external connection power source of the X-ray source structure, the second electrode 8 is sealed and fixed to the second electrode hole, and the power source is opposite to the conductive Ring 5 applies a zero potential.
  • the conductive ring 5 is electrically connected to the metal film. Therefore, the voltage requirement of the metal thin film is provided by the design of the second electrode 8, and the metal thin film is used as the anode to achieve zero potential, which is less harmful to the human body and can ensure the safety in the radiation therapy process in the body.
  • the bottom end of the conductive base 2 is a hollow structure, thereby greatly reducing the overall weight of the product.
  • a cooling container 9 is further included, the top end of the cooling container 9 is open, the bottom end is closed, and the window 4 is sealed and closed at the open end of the cooling container 9 through the conductive ring 5 And forming a cooling cavity around the outer periphery of the bulb 6.
  • the cooling container 9 is provided with an oil inlet hole 91 and an oil outlet hole 92 communicating with the cooling cavity. Thereby, the replacement of the cooling oil can be realized, and the heat of the metal film of the conductive ring 5 and the window 4 can be taken away, thereby ensuring normal operation at high power operation.
  • the transmissive X-ray source structure of the patterned carbon nanotube cathode provided by the invention has the advantages of compact structure, simple assembly, small size, convenient use, low power, low cost, etc., and can be deeply penetrated into the body as a tumor radiotherapy treatment.
  • the X-ray source used for the purpose can also be used as a function to eliminate static electricity such as an X-ray tube.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • X-Ray Techniques (AREA)
  • Cold Cathode And The Manufacture (AREA)

Abstract

一种图案化碳纳米管(1)阴极的透射式X射线源结构,其包括碳纳米管(1)、导电底座(2)、绝缘罩(3)、铍窗(4)、导电环(5)和球管(6),将碳纳米管(1)作为X射线源集成到导电底座(2)的凹槽(21)内并由绝缘罩(3)压紧固定,通过对导电底座(2)施加电压,激发碳纳米管(1)端面的电子,同时通过对导电环(5)施加电压,实现铍窗(4)表面的金属薄膜施加零电位,从而将碳纳米管(1)端面的电子拉出,轰击在金属薄膜表面产生X射线。采用该X射线源结构,既能解决传统X射线源采用热阴极作为电子源而导致工作温度高、功耗大、不利于实现小型化的问题,又能回避传统采用大块的金属作为阳极靶的设计,大大减轻产品重量,满足向前照射及体内医疗的使用,且具有结构紧凑、组装简单、体积小巧、使用方便、功率低、成本低等优点。

Description

一种图案化碳纳米管阴极的透射式X射线源结构 技术领域
本发明涉及一种X射线源结构,尤其涉及一种图案化碳纳米管阴极的透射式X射线源结构。
背景技术
传统X射线源的电子发射存在一定的弊端,通过给钨丝施加特定的电压,使得电子被激发进而溢出,工作温度高,能量损耗大,不利于X射线源的小型化。同时,由于目前的X射线源结构设计中,使用大块的金属阳极作为轰击靶,同时作为冷却使用,因此重量大大增加,无法满足目前小型化X射线体内治疗的热点应用。传统的结构设计中X射线照射角度是通过金属阳极的倾斜角度调整,无法满足向前照射的应用。而且在金属阳极为电子提供加速电场的高电压,给体内放射治疗过程中引入了极大的安全隐患,其应用价值大打折扣。
发明内容
本发明所要解决的技术问题在于,提供一种功率低、体积小巧,能够满足向前照射及体内医疗使用的图案化碳纳米管阴极的透射式X射线源结构。
为了解决上述技术问题,本发明提供了一种图案化碳纳米管阴极的透射式X射线源结构,其包括碳纳米管、导电底座、绝缘罩、铍窗、导电环和球管,所述球管的顶端开口,底端封闭,所述铍窗通过所述导电环密封盖合在所述球 管的开口端,并形成一真空腔体,所述碳纳米管、导电底座和绝缘罩均设置在所述真空腔体内,所述导电底座的顶端设有凹槽,所述碳纳米管通过所述绝缘罩固定在所述凹槽内,所述导电底座连接有第一电极,所述铍窗朝向所述碳纳米管的一面设有金属薄膜,所述金属薄膜与所述导电环连接,所述导电环连接有第二电极。
作为本发明优选的技术方案,所述碳纳米管是利用微纳加工技术制作出一定高度的微柱,然后利用CVD工艺在其表面生长一定高度的碳管,通过精确控制碳管生长高度,以及微柱表面的催化剂沉积,进而长出3D图案化的碳纳米管。
作为本发明优选的技术方案,所述凹槽的尺寸与所述碳纳米管的尺寸匹配。
作为本发明优选的技术方案,所述绝缘罩设有与所述碳纳米管相对的通孔。
作为本发明优选的技术方案,所述绝缘罩与所述导电底座的顶端通过螺纹结构连接;所述绝缘罩与所述导电底座连接时,所述通孔的边缘压紧所述碳纳米管。
作为本发明优选的技术方案,所述第一电极为电极杆,所述第一电极的一端固定连接于所述导电底座的底端,所述球管的封闭端设有第一电极孔,所述第一电极的另一端穿过所述第一电极孔并伸至X射线源结构外部连接电源,所述第一电极与所述第一电极孔密封固定,所述电源对所述导电底座施加负电位。
作为本发明优选的技术方案,所述第二电极为电极杆,所述第二电极的一 端固定连接于所述导电环,所述球管的封闭端设有第二电极孔,所述第二电极的另一端穿过所述第二电极孔并伸至X射线源结构外部连接电源,所述第二电极与所述第二电极孔密封固定,所述电源对所述导电环施加零电位。
作为本发明优选的技术方案,所述导电底座的底端为掏空结构。
作为本发明优选的技术方案,还包括有冷却容器,所述冷却容器的顶端开口,底端封闭,所述铍窗通过所述导电环密封盖合在所述冷却容器的开口端,并在所述球管外周围合形成一冷却腔体。
作为本发明优选的技术方案,所述冷却容器设有与所述冷却腔体连通的进油孔和出油孔。
实施本发明的一种图案化碳纳米管阴极的透射式X射线源结构,与现有技术相比较,具有如下有益效果:
将碳纳米管作为X射线的场致发射电子源集成到导电底座上,通过对导电底座施加电压,激发碳纳米管端面的电子,同时通过对导电环施加电压,实现铍窗表面的金属薄膜施加零电位,从而将碳纳米管端面的电子拉出,轰击在铍窗的金属薄膜表面产生X射线。这样的设计,是由于碳纳米管具有很大的纵横比和极小的曲率半径,在相对较低的电场强度下就能发射大电流,并具有阈值电压低、发射电流密度大、稳定性强等优异的场致发射性能,解决传统X射线源采用热阴极作为电子源而导致工作温度高、功耗大、不利于实现射线源的小型化的问题;同时,通过利用铍窗表面的金属薄膜作为阳极靶,实现从碳纳米管端面拉出电子,使得电子轰击金属薄膜后产生X射线并以透射的方式向前照射出去,从而回避了传统采用大块的金属作为阳极靶的设计,大大减轻产品重量,满足向前照射及体内医疗的使用。可见,本发明具有结构紧凑、组 装简单、体积小巧、使用方便、功率低、成本低等优点。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍。
图1是本发明的图案化碳纳米管阴极的透射式X射线源结构的爆炸图;
图2是3D图案化的碳纳米管生长工艺前的效果图;
图3是3D图案化的碳纳米管生长工艺后的效果图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,本发明的优选实施例,一种图案化碳纳米管阴极的透射式X射线源结构,其包括碳纳米管1、导电底座2、绝缘罩3、铍窗4、导电环5和球管6,所述球管6的顶端开口,底端封闭,所述铍窗4通过所述导电环5密封盖合在所述球管6的开口端,并形成一真空腔体,所述碳纳米管1、导电底座2和绝缘罩3均设置在所述真空腔体内,所述导电底座2的顶端设有凹槽21,所述碳纳米管1通过所述绝缘罩3固定在所述凹槽21内,所述导电底座2连接有第一电极7,所述铍窗4朝向所述碳纳米管1的一面设有金属薄膜(图中未指示),所述金属薄膜与所述导电环5连接,所述导电环5连接有第二电极8。
本实施例中,导电底座2优选采用金属导电材料制成,其上具有内嵌凹槽,匹配碳纳米管1的尺寸,从而实现碳纳米管1的限位作用,且方便对碳纳米管1施加电压;绝缘罩3优选采用陶瓷材料制成,用于固定碳纳米管1;球管9优选为玻璃球管9,用于真空封装碳纳米管1、导电底座2、绝缘罩3组成的核心结构,为电子提供良好的迁移环境;导电环5优选采用金属导电材料制成,用于固定铍窗4及封闭球管6,同时有利于散热。
本发明的图案化碳纳米管阴极的透射式X射线源结构的工作原理是,将碳纳米管1作为X射线的场致发射电子源集成到导电底座2上,通过对导电底座2施加电压,激发碳纳米管1端面的电子,同时通过对导电环5施加电压,实现铍窗4表面的金属薄膜施加零电位,从而将碳纳米管1端面的电子拉出,轰击在铍窗4的金属薄膜表面产生X射线。这样的设计,是由于碳纳米管1具有很大的纵横比和极小的曲率半径,在相对较低的电场强度下就能发射大电流,并具有阈值电压低、发射电流密度大、稳定性强等优异的场致发射性能,能解决传统X射线源采用热阴极作为电子源而导致工作温度高、功耗大、不利于实现射线源的小型化的问题。基于碳纳米管1的X射线源在工作过程中,当碳纳米管1的表面电场达到一定的阈值后,就能从碳纳米管1中产生游离的电子,可以说电子的产生是瞬时的,而且这个过程中不产生热量,利用这一特性制成的碳纳米管1X光源,可以通过控制碳纳米管1的表面电场控制电子的产生,进而控制X射线的产生。同时,通过利用铍窗4表面的金属薄膜作为阳极靶,实现从碳纳米管1端面拉出电子,使得电子轰击金属薄膜后产生X射线并以透射的方式向前照射出去,从而回避了传统采用大块的金属作为阳极靶的设计,大大减轻产品重量,满足向前照射及体内医疗的使用。
进一步,本实施例中,所述碳纳米管1是利用微纳加工技术制作出一定高度(如:20um)的微柱,然后利用化学气相沉积(英译简称:CVD)工艺在其表面生长一定高度的碳管,通过精确控制碳管生长高度,以及微柱端面和侧壁的催化剂沉积,进而长出3D图案化的碳纳米管1。需要说明的是,所述3D图案化的碳纳米管1中,碳管在具有刻蚀一定深度微柱的重参杂硅片表面进行CVD生长,一步实现3D图案化碳管制作,如图2和图3所示。其中,微柱端面生长完全突出的碳管和侧壁生长向四周伸展的碳管,构造成3D碳管结构,并保证碳管束之间产生电流不相互影响。
进一步,本实施例中,所述凹槽21的尺寸与所述碳纳米管1的尺寸匹配,从而实现碳纳米管1的限位作用,方便装配。
进一步,本实施例中,所述绝缘罩3设有与所述碳纳米管1相对的通孔31,该通孔31作为碳纳米管1发射电子的窗口。
进一步,本实施例中,为了更好地固定碳纳米管1,所述绝缘罩3与所述导电底座2的顶端通过螺纹结构连接,所述绝缘罩3与所述导电底座2连接时,所述通孔31的边缘压紧所述碳纳米管1,从而实现碳纳米管1的压紧封装作用。
进一步,本实施例中,所述第一电极7为电极杆,所述第一电极7的一端固定连接于所述导电底座2的底端,所述球管6的封闭端设有第一电极孔,所述第一电极7的另一端穿过所述第一电极孔并伸至X射线源结构外部连接电源,所述第一电极7与所述第一电极孔密封固定,所述电源对所述导电底座2施加负电位。其中,导电底座2与碳纳米管1相导通。由此,通过上述第一电极7的设计,不仅提供碳纳米管1的电压要求,同时提供了球管6内部的核心 结构(如:导电底座2、碳纳米管1和绝缘罩3的组合结构)的支撑作用。
进一步,本实施例中,所述第二电极8为电极杆,所述第二电极8的一端固定连接于所述导电环5,所述球管6的封闭端设有第二电极孔,所述第二电极8的另一端穿过所述第二电极孔并伸至X射线源结构外部连接电源,所述第二电极8与所述第二电极孔密封固定,所述电源对所述导电环5施加零电位。其中,导电环5与金属薄膜相导通。由此,通过上述第二电极8的设计,提供金属薄膜的电压要求,而且金属薄膜作为阳极实现零电位,对人体危害小,能够保证体内放射治疗过程中的安全性。
进一步,本实施例中,所述导电底座2的底端为掏空结构,从而大大减轻产品整体重量。
进一步,本实施例中,还包括有冷却容器9,所述冷却容器9的顶端开口,底端封闭,所述铍窗4通过所述导电环5密封盖合在所述冷却容器9的开口端,并在所述球管6外周围合形成一冷却腔体。所述冷却容器9设有与所述冷却腔体连通的进油孔91和出油孔92。由此,可以实现冷却油的更换,带走导电环5和铍窗4的金属薄膜的热量,从而保证了高功率工作时能够正常运行。
综上所述,本发明提出的图案化碳纳米管阴极的透射式X射线源结构具有结构紧凑、组装简单、体积小巧、使用方便、功率低、成本低等优点,可以深入身体作为肿瘤放疗治疗目的使用的X射线源,还可以作为消除静电的X射线管等功能使用。
以上所揭露的仅为本发明的较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明申请专利范围所作的等同变化,仍属本发明所涵盖的范围。

Claims (10)

  1. 一种图案化碳纳米管阴极的透射式X射线源结构,其特征在于,包括碳纳米管、导电底座、绝缘罩、铍窗、导电环和球管,所述球管的顶端开口,底端封闭,所述铍窗通过所述导电环密封盖合在所述球管的开口端,并形成一真空腔体,所述碳纳米管、导电底座和绝缘罩均设置在所述真空腔体内,所述导电底座的顶端设有凹槽,所述碳纳米管通过所述绝缘罩固定在所述凹槽内,所述导电底座连接有第一电极,所述铍窗朝向所述碳纳米管的一面设有金属薄膜,所述金属薄膜与所述导电环连接,所述导电环连接有第二电极。
  2. 如权利要求1所述的图案化碳纳米管阴极的透射式X射线源结构,其特征在于,所述碳纳米管是利用微纳加工技术制作出一定高度的微柱,然后利用CVD工艺在其表面生长一定高度的碳管,通过精确控制碳管生长高度,以及微柱表面的催化剂沉积,进而长出3D图案化的碳纳米管。
  3. 如权利要求1所述的图案化碳纳米管阴极的透射式X射线源结构,其特征在于,所述凹槽的尺寸与所述碳纳米管的尺寸匹配。
  4. 如权利要求1所述的图案化碳纳米管阴极的透射式X射线源结构,其特征在于,所述绝缘罩设有与所述碳纳米管相对的通孔。
  5. 如权利要求4所述的图案化碳纳米管阴极的透射式X射线源结构,其特征在于,所述绝缘罩与所述导电底座的顶端通过螺纹结构连接;所述绝缘罩与所述导电底座连接时,所述通孔的边缘压紧所述碳纳米管。
  6. 如权利要求1所述的图案化碳纳米管阴极的透射式X射线源结构,其特征在于,所述第一电极为电极杆,所述第一电极的一端固定连接于所述导电 底座的底端,所述球管的封闭端设有第一电极孔,所述第一电极的另一端穿过所述第一电极孔并伸至X射线源结构外部连接电源,所述第一电极与所述第一电极孔密封固定,所述电源对所述导电底座施加负电位。
  7. 如权利要求1所述的图案化碳纳米管阴极的透射式X射线源结构,其特征在于,所述第二电极为电极杆,所述第二电极的一端固定连接于所述导电环,所述球管的封闭端设有第二电极孔,所述第二电极的另一端穿过所述第二电极孔并伸至X射线源结构外部连接电源,所述第二电极与所述第二电极孔密封固定,所述电源对所述导电环施加零电位。
  8. 如权利要求1所述的图案化碳纳米管阴极的透射式X射线源结构,其特征在于,所述导电底座的底端为掏空结构。
  9. 如权利要求1至8任一项所述的图案化碳纳米管阴极的透射式X射线源结构,其特征在于,还包括有冷却容器,所述冷却容器的顶端开口,底端封闭,所述铍窗通过所述导电环密封盖合在所述冷却容器的开口端,并在所述球管外周围合形成一冷却腔体。
  10. 如权利要求9所述的图案化碳纳米管阴极的透射式X射线源结构,其特征在于,所述冷却容器设有与所述冷却腔体连通的进油孔和出油孔。
PCT/CN2017/071980 2016-12-19 2017-01-20 一种图案化碳纳米管阴极的透射式x射线源结构 WO2018113069A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611182007.5 2016-12-19
CN201611182007.5A CN106683963A (zh) 2016-12-19 2016-12-19 一种图案化碳纳米管阴极的透射式x射线源结构

Publications (1)

Publication Number Publication Date
WO2018113069A1 true WO2018113069A1 (zh) 2018-06-28

Family

ID=58871076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/071980 WO2018113069A1 (zh) 2016-12-19 2017-01-20 一种图案化碳纳米管阴极的透射式x射线源结构

Country Status (2)

Country Link
CN (1) CN106683963A (zh)
WO (1) WO2018113069A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109473329A (zh) * 2018-12-25 2019-03-15 深圳大学 一种面发射透射式阵列结构的空间相干x射线源

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006066075A (ja) * 2004-08-24 2006-03-09 Keyence Corp 光除電装置
US20110116603A1 (en) * 2007-12-17 2011-05-19 Electronics And Telecommunications Research Institute Microminiature x-ray tube with triode structure using a nano emitter
CN202142495U (zh) * 2011-07-18 2012-02-08 东南大学 基于场发射冷阴极的阵列x射线源

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002141007A (ja) * 2000-08-23 2002-05-17 Ise Electronics Corp 蛍光表示装置
US20030002627A1 (en) * 2000-09-28 2003-01-02 Oxford Instruments, Inc. Cold emitter x-ray tube incorporating a nanostructured carbon film electron emitter
JP5128752B2 (ja) * 2004-04-07 2013-01-23 日立協和エンジニアリング株式会社 透過型x線管及びその製造方法
DE102005049270B4 (de) * 2005-10-14 2012-02-16 Siemens Ag Drehkolbenröhre mit einer von Kühlflüssigkeit durchströmten Kühleinrichtung sowie Verwendung der Kühlflüssigkeit
JP4956701B2 (ja) * 2007-07-28 2012-06-20 エスアイアイ・ナノテクノロジー株式会社 X線管及びx線分析装置
US8406378B2 (en) * 2010-08-25 2013-03-26 Gamc Biotech Development Co., Ltd. Thick targets for transmission x-ray tubes
CN102420088B (zh) * 2011-12-05 2014-09-03 上海康众光电科技有限公司 一种背栅极式可栅控冷阴极x射线管
WO2013174435A1 (en) * 2012-05-24 2013-11-28 Quantum Technologie Gmbh Cooled stationary anode for an x-ray tube
CN104409303A (zh) * 2014-10-31 2015-03-11 深圳先进技术研究院 基于碳纳米管/石墨烯复合阴极结构的x射线源
CN105470078A (zh) * 2015-12-29 2016-04-06 无锡吉仓纳米材料科技有限公司 基于碳纳米管冷阴极的聚焦型三极结构全封装x射线球管

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006066075A (ja) * 2004-08-24 2006-03-09 Keyence Corp 光除電装置
US20110116603A1 (en) * 2007-12-17 2011-05-19 Electronics And Telecommunications Research Institute Microminiature x-ray tube with triode structure using a nano emitter
CN202142495U (zh) * 2011-07-18 2012-02-08 东南大学 基于场发射冷阴极的阵列x射线源

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GUI, JIANBAO: "Design of Electrostatic Focusing Lens for an X-ray Source with Carbon Nanotube Cathode", JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, vol. 5, no. 7, 31 December 2015 (2015-12-31), pages 1 - 5 *
ZHANG, ZHICHENG: "A novel design of ultrafast micro-CT system based on carbon nanotube: A feasibility study in phantom", PHYSICA MEDICA, vol. 32, no. 10, 14 July 2016 (2016-07-14), pages 1302 - 1307, XP029786792 *

Also Published As

Publication number Publication date
CN106683963A (zh) 2017-05-17

Similar Documents

Publication Publication Date Title
CN109273337B (zh) 一种片上微型x射线源及其制造方法
US10325770B2 (en) Field emission light source
US8143775B2 (en) Two-way reciprocal amplification electron/photon source
JP5044005B2 (ja) 電界放射装置
JPH0745224A (ja) X線発生管
KR100577473B1 (ko) 전계방출팁을 이용한 저에너지 대면적 전자빔 조사장치
WO2020155827A1 (zh) 一种增强ecr等离子体源性能的方法
CN102420088B (zh) 一种背栅极式可栅控冷阴极x射线管
TWI552187B (zh) 冷陰極x射線產生器的封裝結構及其抽真空的方法
JP2012104283A5 (zh)
KR102288924B1 (ko) 원통형 엑스선 튜브 및 그 제조 방법
WO2011095131A1 (zh) X射线电子束产生器及其阴极
KR101250305B1 (ko) 인체삽입/근접치료용 초소형 엑스선관
WO2018113069A1 (zh) 一种图案化碳纳米管阴极的透射式x射线源结构
US7750549B2 (en) Field emission lamp
WO2024007504A1 (zh) 一种电子发射装置以及电子装置
WO2018112718A1 (zh) 一种图案化碳纳米管阴极的反射式x射线源结构
KR101956540B1 (ko) 탄소나노튜브 실을 포함한 초소형 엑스레이 소스 및 이를 이용한 엑스레이 발생장치
CN205542692U (zh) 基于碳纳米管冷阴极的聚焦型三极结构全封装x射线球管
KR101615337B1 (ko) 탄소나노튜브 실을 포함한 엑스레이 소스 및 이를 이용한 엑스레이 발생장치
CN209912832U (zh) 一种光诱导场致发射阴极电子发射装置
WO2020118957A1 (zh) 悬浮栅阴极结构、电子枪、电子加速器及辐照装置
US8867706B2 (en) Asymmetric x-ray tube
US2283639A (en) Electric discharge device
CN210668257U (zh) 一种x射线管

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17882401

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17882401

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 01.10.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17882401

Country of ref document: EP

Kind code of ref document: A1