WO2020155827A1 - 一种增强ecr等离子体源性能的方法 - Google Patents

一种增强ecr等离子体源性能的方法 Download PDF

Info

Publication number
WO2020155827A1
WO2020155827A1 PCT/CN2019/121583 CN2019121583W WO2020155827A1 WO 2020155827 A1 WO2020155827 A1 WO 2020155827A1 CN 2019121583 W CN2019121583 W CN 2019121583W WO 2020155827 A1 WO2020155827 A1 WO 2020155827A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonance
hot cathode
ecr
anode
plasma
Prior art date
Application number
PCT/CN2019/121583
Other languages
English (en)
French (fr)
Inventor
王波
张天一
吕广宏
Original Assignee
北京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京工业大学 filed Critical 北京工业大学
Publication of WO2020155827A1 publication Critical patent/WO2020155827A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy

Definitions

  • the invention belongs to the application field of low-temperature plasma sources, and relates to a method for improving plasma parameters by actively injecting electrons into an electron cyclotron resonance (hereinafter referred to as ECR) space.
  • ECR electron cyclotron resonance
  • the invention is suitable for ECR plasma sources.
  • ECR plasma source is suitable for material preparation and surface treatment, and has a wide range of applications. Higher plasma parameters can further enhance its performance and application range.
  • the microwave When the ECR plasma source is in operation, it is necessary for the microwave to reach the resonant magnetic field area in the vacuum chamber smoothly, so that the electrons in the resonant area generate cyclotron resonance to form plasma.
  • the performance parameters of the current ECR plasma source are slightly insufficient. For example, when applied to study the plasma irradiation effect on the inner wall of a fusion device, its beam current density is relatively low.
  • the present invention adopts the method of actively injecting electrons into the resonance region to increase the plasma beam current density.
  • the purpose of the present invention is to propose a method for increasing the beam current density of the ECR plasma source by actively injecting electrons into the resonance region. This method can further increase the electron density in the resonance region and enhance the resonance discharge efficiency, thereby effectively improving the performance of the plasma source.
  • the performance of the plasma source is improved by actively injecting electrons into the ECR resonance zone space.
  • a hot cathode for injecting electrons into the resonance area is installed near the ECR resonance area, and the electric field formed by the hot cathode and the anode must pass through the space of the resonance area.
  • the cathode and anode are placed on the upper and lower sides of the resonance zone (the cathode can be up or down), or the cathode is placed close to the edge of the resonance zone.
  • the voltage between the cathode and anode is in the range of 20V to 200V.
  • the material of the hot cathode refers to the existing corresponding commonly used hot cathode materials, such as tungsten, tungsten-based alloy, tantalum, lanthanum hexaboride and other materials.
  • the anode material is a conventional conductor material, such as copper, stainless steel, molybdenum and so on.
  • the shape of the hot cathode and the anode should not affect the passage of plasma and microwaves, such as a cylindrical shape, a solenoid shape, or the same shape as the cross section of the waveguide used in ECR.
  • the heating method of the hot cathode can be self-energized heating, or other heating methods, such as external heating source baking, high frequency heating, infrared radiation heating, laser heating, and the like.
  • the principle of the present invention is that in the resonance region of the existing ECR, the original source of space electrons is a small amount of free electrons.
  • the electrons are derived from the electrons generated by gas ionization, and the electron density is limited at equilibrium, which limits the plasma.
  • Improved parameters Based on the existing ECR plasma source, the present invention adopts a method of forcibly and actively injecting electrons into the resonance zone space: on the basis of the above-mentioned existing electron source, a hot cathode is used to generate a large number of thermionic electrons, and the electric field passing through the resonance zone Enter the resonance space under control, thereby greatly increasing the electron density in the resonance region. Since the electron density in the resonance zone is greatly increased, the ECR ionization efficiency will be further enhanced, and the beam current density of the ECR plasma source will be improved.
  • the method of forcibly and actively injecting electrons into the space of the resonance region is adopted to enhance the ionization efficiency of ECR, which can significantly improve the plasma performance.
  • Figure 1 is a schematic diagram of the principle of the present invention.
  • the existing typical ECR plasma source usually mainly consists of a microwave window 2, an excitation coil 3, a vacuum chamber 4, a microwave waveguide 7 and a microwave source 9.
  • a low pressure gas of 0.01 Pa to 50 Pa is passed into the vacuum chamber 4, when the microwave output from the microwave source 9 enters the vacuum chamber 4 through the microwave waveguide 7 and the microwave window 2, it will be generated under the combined action of the magnetic field formed by the excitation coil 3.
  • the electron cyclotron resonance forms a plasma 10 in the resonance region and emits a plasma beam 6 downward under the action of a magnetic field gradient.
  • a hot cathode 5 is installed near the ECR resonance zone, and the electric field power line 8 formed by the hot cathode 5 and the anode 1 must pass through the space of the resonance zone, and the voltage between the cathode and the anode is in the range of 20V to 200V.
  • the following is further introduced in combination with three embodiments.
  • the additional hot cathode 5 is made of tungsten wire, made into a solenoid shape, and placed on the resonance area.
  • the anode 1 is made of molybdenum sheet, made into a cylindrical shape, and placed close to the lower edge of the resonance zone.
  • a voltage of 100V is applied between the anode and the cathode, the hot cathode 5 is heated to a common electron emission temperature of tungsten of 2400°C by a self-energizing heating method, and a gas of 50 Pa is passed into the vacuum chamber.
  • the highest plasma beam density that the ECR plasma source can reach is 5 ⁇ 10 21 /m 2
  • the additional hot cathode 5 is made of lanthanum hexaboride, made into a cylindrical shape, and placed under the resonance zone.
  • the anode 1 copper plate is made into the same shape as the cross section of the waveguide and placed on the resonance area.
  • a voltage of 200V is applied between the cathode and anode, the hot cathode 5 is heated to 1500°C, which is the usual electron emission temperature of lanthanum hexaboride, by infrared baking heating, and 1.0 Pa of gas is introduced into the vacuum chamber.
  • the highest plasma beam density that the ECR plasma source can achieve is 2 ⁇ 10 22 /m 2
  • the additional hot cathode 5 is made of a rare earth tungsten alloy sheet, made into a cylindrical shape, and placed close to the lower edge of the resonance zone.
  • the anode 1 is made of stainless steel sheet, made into a cylindrical shape, and placed on the upper edge of the resonance zone.
  • a voltage of 20V is applied between the anode and cathode, the hot cathode 5 is heated to 2000°C, which is the common electron emission temperature of rare earth tungsten, by high-frequency heating, and a gas of 0.01 Pa is introduced into the vacuum chamber.
  • the highest plasma beam density that the ECR plasma source can achieve is 8 ⁇ 10 21 /m 2

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)

Abstract

一种增强ECR等离子体源性能的方法,属于低温等离子体源应用领域。现有ECR的共振区中,空间电子的原始来源是少量游离电子,形成等离子体放电时其电子来源于气体电离产生的电子,平衡时其电子密度有限,限制了等离子体参数的提高。在现有ECR等离子体源基础上,该方法利用热阴极(5)产生大量热电子,并在穿过共振区的电场控制下进入共振空间,从而提高了共振区的电子密度。由于共振区的电子密度提高,将进一步增强ECR电离效率,提高ECR等离子体源的束流密度等性能指标。

Description

一种增强ECR等离子体源性能的方法 技术领域
本发明属于低温等离子体源应用领域,涉及一种通过主动向电子回旋共振(以下简称ECR)空间注入电子来提高等离子体参数的方法,该发明适用于ECR等离子体源。
背景技术
ECR等离子体源适用于材料制备和表面处理,应用广泛,更高的等离子体参数可进一步增强其使用性能和应用范围。
ECR等离子体源在运行时,需要让微波顺利到达真空室内的共振磁场区,使共振区内的电子产生回旋共振,形成等离子体。在某些需要强等离子体束流的应用领域,目前ECR等离子体源的性能参数略显不足,例如在应用于研究聚变装置内壁的等离子体辐照效应时,其束流密度较低。
为了解决ECR等离子体源束流密度较低的问题,本发明将采用主动向共振区注入电子的方式来提高等离子体束流密度。
发明内容
本发明的目的是提出利用主动向共振区注入电子的方式来提高ECR等离子体源束流密度的方法。这种方法可以进一步提高共振区的电子密度,增强共振放电效率,从而有效提高等离子体源的性能。
一种增强ECR等离子体源性能的方法,其特征在于:
在现有ECR等离子体源基础上,通过主动向ECR共振区空间强制注入电子的方法,提高等离子体源性能。具体是通过在ECR共振区附近加装用于向共振区注入电子的热阴极,并且必须要使热阴极与阳极形成的电场穿过共振区的空间。例如将阴极和阳极分置于共振区上下两边(阴极在上或者下都可以),或将阴极置于紧靠共振区边缘。阴、阳极之间的电压在20V至200V范围。
进一步,所述热阴极的材料就是指现有相应的常用热阴极材料,如钨、钨基合金、钽、六硼化镧等材料。所述阳极材料就是常规导体材料,如铜、不锈钢、钼等。
进一步,所述热阴极和阳极的形状应该是不影响等离子体和微波通过,例如圆筒形、螺线管形或与ECR所用波导管截面同形等形状。
进一步,所述热阴极的加热方式可以是自身通电加热方式,也可以是其他加热方式,例如外加热源烘烤、高频加热、红外辐照加热、激光加热等方式。
本发明的原理在于:现有ECR的共振区中,空间电子的原始来源是少量游离电子,形成等离子体放电时其电子来源于气体电离产生的电子,平衡时其电子密度有限,限制了等离子体参数的提高。本发明在现有ECR等离子体源基础上,采用强制主动向共振区空间注入电子的方法:在上述现有电子的来源基础上,利用热阴极产生大量热电子,并在穿过共振区的电场控制下进入共振空间,从而大大提高了共振区的电子密度。由于共振区的电子密度大大提高,将进一步增强ECR电离效率,提高ECR等离子体源的束流密度等性能指标。
本发明的优点在于:
采用强制主动向共振区空间注入电子的方法,增强ECR电离效率,可以显著提高等离子体性能。
附图说明
图1是本发明的原理示意图。
图中:1.阳极;2.微波窗口;3.励磁线圈;4.真空室;5.热阴极;6.等离子体束;7.微波波导管;8.电场电力线;9.微波源;10.共振区等离子体
具体实施方式
下面结合附图和实施例对本发明进一步说明。
如图1所示,现有的典型ECR等离子体源通常主要由微波窗口2、励磁线圈3、真空室4、微波波导管7和微波源9组成。在真空室4内通入0.01Pa至50Pa的低气压气体时,当微波源9输出的微波通过微波波导管7和微波窗口2进入真空室4时,在励磁线圈3形成的磁场共同作用下发生电子回旋共振,形成共振区等离子体10,并在磁场梯度作用下向下发出等离子体束6。
本发明是在ECR共振区附近加装热阴极5,并且必须要使热阴极5与阳极1形成的电场电力线8穿过共振区的空间,阴、阳极之间的电压在20V至200V范围。以下结合三个实施例来进一步介绍。
实施例1:
在现有ECR等离子体源基础上,加装的热阴极5采用钨丝,制成螺线管形状,置于共振区上边。阳极1采用钼片,制成圆筒形状,置于紧靠共振区下缘。在阴阳极之间加载100V电压,热阴极5采用自通电加热方式加热到钨的常用电子发射温度2400℃,真空室通入50Pa的气体。该ECR等离子体源可达到的最高等离子体束流密度为5×10 21/m 2
实施例2:
在现有ECR等离子体源基础上,加装的热阴极5采用六硼化镧,制成圆筒形状,置于共振区下边。阳极1铜板,制成与波导管截面相同的形状,置于共振区上边。在阴阳极之间加载200V电压,热阴极5采用红外烘烤加热方式加热到六硼化镧的常用电子发射温度1500℃,真空室通入1.0Pa的气体。该ECR等离子体源可达到的最高等离子体束流密度为2×10 22/m 2
实施例3:
在现有ECR等离子体源基础上,加装的热阴极5采用稀土钨合金片,制成圆筒形状,置于紧靠共振区下缘。阳极1采用不锈钢片,制成圆筒形状,置于共振区上缘。在阴阳极之间加载20V电压,热阴极5采用高频加热方式加热到稀土钨的常用电子发射温度2000℃,真空室通入0.01Pa的气体。该ECR等离子体源可达到的最高等离子体束流密度为8×10 21/m 2

Claims (7)

  1. 一种增强ECR等离子体源性能的方法,其特征在于:
    通过在ECR共振区外加装用于向共振区注入电子的热阴极,并且必须要使热阴极与阳极形成的电场穿过共振区的空间。
  2. 根据权利要求1所述的方法,其特征在于:将热阴极和阳极分置于共振区上下两边,或将热阴极置于紧靠共振区边缘。
  3. 根据权利要求1所述的方法,其特征在于:阴、阳极之间的电压在20V至200V范围。
  4. 根据权利要求1所述的方法,其特征在于:热阴极为钨基合金、钽或六硼化镧;阳极材料是导体材料。
  5. 根据权利要求1所述的方法,其特征在于:,所述热阴极和阳极的形状为圆筒形、螺线管形或与ECR所用波导管截面同形。
  6. 根据权利要求1所述的方法,其特征在于:所述热阴极的加热方式是自身通电加热、外加热源烘烤、高频加热、红外辐照加热、或者是激光加热。
  7. 根据权利要求1所述的方法,其特征在于:在真空室内通入0.01Pa至50Pa的低气压气体时,当微波源输出的微波通过微波波导管和微波窗口进入真空室时,在励磁线圈形成的磁场共同作用下发生电子回旋共振,形成共振区等离子体,并在磁场梯度作用下向下发出等离子体束,热阴极与阳极形成的电场电力线穿过共振区的空间
PCT/CN2019/121583 2019-01-28 2019-11-28 一种增强ecr等离子体源性能的方法 WO2020155827A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910078140.3A CN109729635A (zh) 2019-01-28 2019-01-28 一种增强ecr等离子体源性能的方法
CN201910078140.3 2019-01-28

Publications (1)

Publication Number Publication Date
WO2020155827A1 true WO2020155827A1 (zh) 2020-08-06

Family

ID=66301183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/121583 WO2020155827A1 (zh) 2019-01-28 2019-11-28 一种增强ecr等离子体源性能的方法

Country Status (2)

Country Link
CN (1) CN109729635A (zh)
WO (1) WO2020155827A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109729635A (zh) * 2019-01-28 2019-05-07 北京工业大学 一种增强ecr等离子体源性能的方法
CN110364060B (zh) * 2019-06-26 2021-03-23 北京航空航天大学 一种用于研究磁线圈束流的实验装置
CN114698219B (zh) * 2020-12-25 2024-03-12 上海光链电子科技有限公司 一种用于氢原子激射器的电离源装置及氢原子激射器
CN112969275A (zh) * 2021-02-03 2021-06-15 西安闪光能源科技有限公司 一种增强放电等离子体辐射以驱动增强材料的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1055275A (zh) * 1990-03-23 1991-10-09 四川大学 微波等离子体的产生方法和装置
JPH06139979A (ja) * 1992-10-29 1994-05-20 Japan Steel Works Ltd:The Ecrイオン源への電子供給方法および装置
CN103956314A (zh) * 2014-05-04 2014-07-30 北京大学 一种微波驱动无铯负氢离子源
CN107195527A (zh) * 2017-05-11 2017-09-22 北京大学 一种提高ecr离子源中氢分子离子比例系统及其方法
CN207083268U (zh) * 2017-06-20 2018-03-09 华中科技大学 一种基于热电子发射阴极的等离子体发生装置
WO2018221036A1 (ja) * 2017-06-02 2018-12-06 株式会社エスイー 水素化マグネシウム等の製造方法、水素化マグネシウムを用いた発電システム及び水素化マグネシウム等の製造装置
CN109729635A (zh) * 2019-01-28 2019-05-07 北京工业大学 一种增强ecr等离子体源性能的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645254A (ja) * 1992-03-13 1994-02-18 Limes:Kk アモルファスシリコン膜の製造方法及び製造装置
US20070077364A1 (en) * 2005-10-05 2007-04-05 Aba Con International Limited Method to coat insulation film on aluminum body of electrolytic capacitor
CN101916607B (zh) * 2010-07-28 2012-06-13 北京大学 一种采用无窗气体靶的小型中子源
US8723422B2 (en) * 2011-02-25 2014-05-13 The Aerospace Corporation Systems and methods for cylindrical hall thrusters with independently controllable ionization and acceleration stages

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1055275A (zh) * 1990-03-23 1991-10-09 四川大学 微波等离子体的产生方法和装置
JPH06139979A (ja) * 1992-10-29 1994-05-20 Japan Steel Works Ltd:The Ecrイオン源への電子供給方法および装置
CN103956314A (zh) * 2014-05-04 2014-07-30 北京大学 一种微波驱动无铯负氢离子源
CN107195527A (zh) * 2017-05-11 2017-09-22 北京大学 一种提高ecr离子源中氢分子离子比例系统及其方法
WO2018221036A1 (ja) * 2017-06-02 2018-12-06 株式会社エスイー 水素化マグネシウム等の製造方法、水素化マグネシウムを用いた発電システム及び水素化マグネシウム等の製造装置
CN207083268U (zh) * 2017-06-20 2018-03-09 华中科技大学 一种基于热电子发射阴极的等离子体发生装置
CN109729635A (zh) * 2019-01-28 2019-05-07 北京工业大学 一种增强ecr等离子体源性能的方法

Also Published As

Publication number Publication date
CN109729635A (zh) 2019-05-07

Similar Documents

Publication Publication Date Title
WO2020155827A1 (zh) 一种增强ecr等离子体源性能的方法
Taylor et al. An advanced high-current low-emittance dc microwave proton source
TWI688987B (zh) 電漿生成裝置及熱電子放出部
US10262833B2 (en) Temperature controlled ion source
JP2010186694A (ja) X線源、x線発生方法およびx線源製造方法。
Glyavin et al. The concept of an electron-optical system with field emitter for a spectroscopic gyrotron
Li et al. Beam test of a novel CNT cathode-based electron gun assembled in a TWT
US3783325A (en) Field effect electron gun having at least a million emitting fibers per square centimeter
US9196449B1 (en) Floating grid electron source
TWI720101B (zh) 間接加熱式陰極離子源與用於離子源室內的斥拒極
JPS5813626B2 (ja) イオンシヤワ装置
US2888591A (en) Charged particle emitter apparatus
Fu et al. Discharge characteristics of the DUHOCAMIS with a high magnetic bottle-shaped field
Hu et al. A novel cold cathode design for S-band continuous-wave magnetron
US4156159A (en) Self crossed field type ion source
TWI803098B (zh) 離子源裝置
Seviour Comparative overview of inductive output tubes
Deichuli et al. Ion source with LaB6 hollow cathode for a diagnostic neutral beam injector
Keller High-intensity ion sources for accelerators with emphasis on H− beam formation and transport
JP3021762B2 (ja) 電子衝撃型イオン源
Smith Noise reduction in microwave tubes by getter-ion pumping
Takagi et al. A 2.45 GHz microwave negative hydrogen ion source
Smirnov et al. Plasma spraying metal-porous cathodes for high-power microwave devices
Zav’yalov et al. Bipolar Optical Systems with Plasma Sources Positioned Behind Rear Cathode Face
RU2231164C1 (ru) Плазменный электронный источник ленточного пучка

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19913909

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19913909

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19913909

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/02/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19913909

Country of ref document: EP

Kind code of ref document: A1