WO2020118957A1 - 悬浮栅阴极结构、电子枪、电子加速器及辐照装置 - Google Patents

悬浮栅阴极结构、电子枪、电子加速器及辐照装置 Download PDF

Info

Publication number
WO2020118957A1
WO2020118957A1 PCT/CN2019/078945 CN2019078945W WO2020118957A1 WO 2020118957 A1 WO2020118957 A1 WO 2020118957A1 CN 2019078945 W CN2019078945 W CN 2019078945W WO 2020118957 A1 WO2020118957 A1 WO 2020118957A1
Authority
WO
WIPO (PCT)
Prior art keywords
grid
cathode
emission
floating
suppression
Prior art date
Application number
PCT/CN2019/078945
Other languages
English (en)
French (fr)
Inventor
畅祥云
Original Assignee
陕西利友百辉科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陕西利友百辉科技发展有限公司 filed Critical 陕西利友百辉科技发展有限公司
Publication of WO2020118957A1 publication Critical patent/WO2020118957A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/22Details of linear accelerators, e.g. drift tubes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H9/00Linear accelerators

Definitions

  • the present disclosure relates to the technical field of electron accelerators, and in particular, to an improved floating grid cathode structure, an electron gun, an electron accelerator, and an irradiation device.
  • Electron linear accelerator is one of the most widely used accelerators. It is widely used in tumor treatment, polymer cross-linking, medical supplies disinfection, casting flaw detection, food preservation, customs inspection, sterilization and insecticide, isotope production, and scientific research. .
  • the conventional electronic linear accelerator is shown in Figure 1, which is mainly composed of a DC section, a beam-forming section and an acceleration section. Since the acceleration section can only accelerate the micro-pulse electron beam composed of discrete beams, the lower-energy DC electron beam generated by the DC gun must pass through the beam-converging section to be converted into a micro-pulse electron beam to be accelerated by the subsequent acceleration section .
  • the microwave electron gun accelerator can directly generate electron beams composed of micro-pulses, so that the generated electron beams can be directly accelerated by the acceleration section.
  • microwave electron guns due to the "anti-bombing" effect, microwave electron guns cannot work in a state of high duty cycle, low average power, and high cost, and are generally not suitable for irradiation accelerator applications.
  • the average current of the microwave electron gun accelerator is very small, only on the order of tens of microamps, the average power is up to several hundred watts, and the efficiency is very low.
  • the related art provides a microwave electron gun accelerator, as shown in FIG. 2, which can completely eliminate most of the poor performance electrons in the anti-detonation electrons and the emitted electrons of the microwave electron gun, so that the microwave electron gun can work in a continuous wave state, thereby The average current of the microwave electron gun can be greatly increased, that is, the average power can be greatly increased.
  • the design of the emitting surface of the cathode 10 in the related art is to apply a layer of emission suppression protective film 20 on the shadow portion corresponding to the floating grid 30 on its surface to prevent this section
  • the emission of electrons also requires that the area of the effective emission surface 101 (that is, the part not covered by the protective film) is slightly smaller, but this makes the area of the effective emission surface 101 smaller, less than 50%, which is not conducive to obtaining a higher Average or pulse current. Therefore, it is necessary to provide a new technical solution to improve one or more problems in the above solution.
  • the purpose of the embodiments of the present invention is to provide a floating grid cathode structure, an electron gun, an electron accelerator, and an irradiation device, and then at least to a certain extent, the polar body is used to emit electron beams;
  • the emission suppression grid is located on the side of the emission surface of the cathode body, has a preset gap with the cathode body, and is electrically connected to a negative pressure end of the power supply;
  • a floating grid is located on the side of the suppression emission grid facing away from the cathode body.
  • the suppression grid is provided with a plurality of first holes
  • the floating grid is provided with a first upper hole corresponding to the plurality of first holes to overcome the limitations and defects caused by the related art One or more problems.
  • a floating gate cathode structure including:
  • the two holes are female, and the positions and shapes of the corresponding first and second holes are the same.
  • the diameter of each first hole is between 80% and 150% of the diameter of the corresponding second hole.
  • the diameter of the second hole is less than 5 mm.
  • the emission suppression grid and the floating grid are made of the same material.
  • the gap between the suspension grid and the suppression emission grid is less than 5 mm; and/or, the preset gap between the cathode body and the suppression emission grid is less than 1 mm.
  • the floating grid cathode structure further includes:
  • the cathode of the floating grid is arranged at the edge of the floating grid
  • the anode of the suspension grid is arranged at a distance from the cathode of the suspension grid;
  • the bias power supply is electrically connected to the anode of the floating gate.
  • the anode of the floating gate is electrically connected to the external bias power supply through a filter channel.
  • a microwave electron gun is provided, and the cavity of the microwave electron gun is provided with the floating grid cathode structure described in any of the above embodiments.
  • an electron accelerator including the microwave electron gun according to any of the above embodiments and an accelerator connected to the microwave electron gun.
  • an irradiation device including the electron accelerator described in the above embodiments.
  • the suppression grid and the cathode body have a predetermined gap, that is, they are in a separated state, and are electrically connected to a negative pressure end of the power supply; in this way, the suppression grid is connected to the power supply to suppress the emission grid
  • the shadow field on the cathode surface does not feel the microwave field in the microwave electron gun, and the emission suppression grid is negatively charged, so the electron emission of the shadow part is suppressed, which plays the role of the suppression film in the prior art; in addition Because the voltage applied to the emission grid is suppressed to be negative, the electron beam emitted by the cathode will be focused to reduce the beam spot size when electrons pass through the suspension grid hole, which allows the size of the effective emission face to be even larger than the size of the suspension grid hole.
  • the area of the effective emission surface is increased to achieve the purpose of increasing the current, and then the average power of the microwave electron gun can be greatly increased.
  • FIG. 1 shows a schematic diagram of an electronic linear accelerator in the prior art
  • FIG. 2 shows a schematic diagram of a microwave electron gun accelerator in the prior art
  • FIG. 3 shows a schematic diagram of the structure of a suspended grid cathode of a microwave electron gun in the prior art
  • FIG. 4 shows a schematic diagram of the structure of a floating gate cathode in an exemplary embodiment of the present invention
  • FIG. 5 shows a schematic structural view of another floating gate cathode in an exemplary embodiment of the present invention
  • FIG. 6 shows a schematic diagram of the distribution pattern of the holes on the emission grid in the embodiment of the present invention.
  • Example embodiments will now be described more fully with reference to the drawings.
  • the example embodiments can be implemented in various forms, and should not be construed as being limited to the examples set forth herein; on the contrary, providing these embodiments makes the present invention more comprehensive and complete, and fully conveys the concept of the example embodiments For those skilled in the art.
  • the described features, structures, or characteristics may be combined in one or more embodiments in any suitable manner.
  • a floating grid cathode structure is first provided, as shown in FIG. 4, which may include a cathode body 10, an emission suppression grid 20', and a floating grid 30.
  • the cathode body 10 is used to emit electron beams.
  • the suppression emission grid 20' is located on one side of the emission surface of the cathode body 10, has a predetermined gap d with the cathode body 10, and is electrically connected to the negative pressure end of a power supply U.
  • the floating grid 30 is located on the side of the suppression emission grid 20' facing away from the cathode body 10.
  • a predetermined gap d between the emission suppression grid 20' and the cathode body 10 is in a separated state, that is, an existing emission suppression protective film is replaced by an emission suppression grid 20'
  • the suppression of the shadow of the emission grid 20' on the surface of the cathode body 10 can not feel the microwave field in the microwave electron gun, plus the suppression of the emission grid 20' is a band Negative electricity, so that the electron emission in the shaded portion is suppressed, which plays a role in suppressing the emission film in the prior art;
  • the voltage applied to the emission grid 20' is suppressed to be negative, the electron beam emitted by the cathode body 10 will be focused Therefore, the beam spot size when electrons pass through the hole 301 of the suspension grid 30 is reduced, which allows the size of the effective emission face 201 to be even larger than the size of the suspension grid hole 301, so that the effective emission surface area is increased
  • the cathode body 10 may be a hot cathode body.
  • the hot cathode body may use hot cathode materials such as lanthanum hexaboride (LaB6), cesium hexaboride (CeB6), and field cathodes. Made of emissive material, etc.
  • the hot cathode material is not limited to this.
  • the floating gate 30 may be supported by an insulator (not shown) at the edge to achieve “electrical suspension” of the gate body.
  • "Floating” as used herein refers to "electrical levitation” without conductors connected to it rather than physical levitation.
  • the floating gate is supported by an insulator located at its edge.
  • the insulator is generally made of high temperature resistant insulating materials such as ceramic materials or barium oxide (BeO) materials. These can refer to the prior art and will not be described in detail here.
  • the negative pressure provided by the negative end of the power supply U is generally between several volts and tens of volts.
  • a plurality of first holes 201 are provided on the suppression emission grid 20', and a plurality of first holes 201 are provided on the floating grid 30
  • the second hole 301 corresponding to the hole 201, and the positions and shapes of the corresponding first hole 201 and the second hole 301 are consistent.
  • the suppression grid 20' and the floating grid 30 are provided with a plurality of corresponding holes distributed in a mesh structure, and the positions and shapes of the openings such as the shape may be consistent.
  • the size of the holes in the suppression grid 20' and the floating grid 30 may be the same or different.
  • the distribution patterns of the multiple holes on the emission grid 20' and the floating grid 30 are suppressed as shown in FIG.
  • the number of holes can be set as needed, and there is no limitation on this.
  • the distribution form of the plurality of holes may also be a stripe shape, a concentric circle shape or a combination thereof in other embodiments, which is not limited in this embodiment.
  • the diameter of each first hole 201 is 80% to 150% of the diameter of the second hole 301, such as 90% to 140%, or 110% to 130%, etc. . Further, optionally, in an embodiment, the diameter of the second hole 301 is less than 5 mm.
  • the gap between the floating grid 30 and the suppression grid 20' may be less than 5 mm.
  • the predetermined gap d between the suppression emission grid 20' and the cathode body 10 is less than 1 mm. In this embodiment, the gap of the suppression grid is relatively small, much smaller than the aperture on the suppression emission grid 20'.
  • the part of the surface of the cathode body 10 that is not blocked by the suppression grid 20' i.e., the portion of the cathode surface corresponding to the hole 201 can sense the microwave electric field and emit electron beams.
  • the suppression emitter grid 20' and the suspension grid 30 are made of the same material, for example, high temperature resistant materials such as tungsten, manganese, pyrolytic graphite, etc. may be used to make the suppression
  • the cathode processing in the prior art is complicated.
  • the cathode and the emission protection film are made of different materials, the different expansion coefficients of the two materials make it easy to fall off and deform during use; the problem is that the cathode is replaced every time. It is necessary to re-align with the grid, which increases the cost and installation difficulty.
  • the suppression grid 20' and the suspension grid 30 can be simultaneously processed with the same material under the same conditions. In this way, on the one hand, it is conducive to collimation work during installation, on the other hand, because they are the same material and work at approximately the same temperature at the same time, it can ensure that they maintain collimation and relative gaps during work. In addition, suppressing the collimation and gap adjustment of the emission grid 20' and the floating grid 30 is extremely delicate work.
  • the solution provided in this embodiment allows the cathode to be separated from the grid system, so that there is no tedious process when changing the cathode Alignment and gap adjustment work to simplify the installation difficulty.
  • the floating gate cathode structure may further include a floating gate cathode 50, a floating gate anode 60, and a bias power supply V.
  • the floating grid cathode 50 is disposed at the edge of the floating grid 30, for example, at the circumferential edge of the body of the floating grid 30, the floating grid cathode 50 may be an independent component disposed at the edge of the floating grid 30, or may be It is integrally formed with the floating grid 30, which is not limited in the embodiment of the present invention.
  • the floating grid anode 60 and the floating grid cathode 50 are relatively spaced apart, and a specific separation distance can be set by those skilled in the art according to needs, and there is no limitation on this.
  • the bias power source V is electrically connected to the floating gate anode 60.
  • the floating gate anode 60 may be electrically connected to the external bias power source V through a filter channel 70.
  • the filter channel 70 may be formed by a plate capacitor or a coaxial capacitor, which is not limited.
  • the floating grid cathode 50 at the edge of the floating grid 30 can emit electrons, and there is a corresponding floating grid anode 60 opposite to the floating grid cathode 50.
  • the floating grid anode 60 passes through a filter channel 70
  • the external bias power supply V is connected.
  • the electrons intercepted by the floating grid cathode 50 will be discharged to the floating grid anode 60 through the floating grid cathode 50, so that the maximum amplitude of the DC component of the floating grid is affected by
  • the DC bias control of the floating grid anode 60 allows the DC component of the floating grid 30 to be controlled by controlling the DC bias of the floating grid anode 60 to further control the emission of electron beams, which can further improve the beam quality.
  • An embodiment of the present invention further provides a microwave electron gun, and the cavity of the microwave electron gun is provided with the floating grid cathode structure described in any one of the above embodiments.
  • the structure of the floating gate cathode reference may be made to the detailed description in the foregoing embodiments, and details are not repeated here.
  • An embodiment of the present invention further provides an electron accelerator, including the microwave electron gun described in any of the above embodiments, and an accelerator connected to the microwave electron gun.
  • the electron accelerator may be an electron linear accelerator, but it is not limited thereto.
  • an embodiment of the present disclosure further provides an irradiation device, and the irradiation device may include the electron accelerator described in any of the above embodiments.
  • the electronic accelerator reference may be made to the foregoing embodiment, and no further description is provided here.
  • the irradiation device may include, but is not limited to, an irradiation sterilization device, a medical irradiation device, and the like.
  • the microwave electron gun, the electron accelerator, and the irradiation device of the above embodiment of the present invention it is suppressed that there is a predetermined gap between the emission grid and the cathode body, that is, it is in a separated state, and it is electrically connected to a power supply negative pressure end;
  • the emission grid is connected to the power supply, which suppresses the shadow of the emission grid on the cathode surface from the microwave field in the microwave electron gun.
  • the suppression of the emission grid is negatively charged, so the electron emission of the shadow is suppressed, which plays a role in the prior art.
  • the emission suppression film in the middle;
  • the voltage applied to the emission grid is suppressed to be negative, the electron beam emitted by the cathode will be focused to reduce the beam spot size when the electron passes through the suspension grid hole, which allows effective emission of the face
  • the size of is even larger than the size of the floating grid hole, so that the effective emission surface area is increased to achieve the purpose of increasing current, which in turn can greatly increase the average power of the microwave electron gun.
  • first and second are used for description purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated.
  • the features defined as “first” and “second” may explicitly or implicitly include one or more of the features.
  • the meaning of “plurality” is two or more, unless otherwise specifically limited.
  • the terms “installation”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection , Or integrated; it can be mechanical connection or electrical connection; it can be directly connected or indirectly connected through an intermediary, it can be the connection between two components or the interaction between two components.
  • installation can be a fixed connection or a detachable connection , Or integrated; it can be mechanical connection or electrical connection; it can be directly connected or indirectly connected through an intermediary, it can be the connection between two components or the interaction between two components.
  • the first feature "above” or “below” the second feature may include the direct contact of the first and second features, or may include the first and second features Contact not directly but through another feature between them.
  • the first feature is “above”, “above” and “above” the second feature includes that the first feature is directly above and obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • the first feature is “below”, “below” and “below” the second feature includes that the first feature is directly below and obliquely below the second feature, or simply means that the first feature is less horizontal than the second feature.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Particle Accelerators (AREA)

Abstract

一种改进的悬浮栅阴极结构,其能更好的应用于电子加速器及辐照装置中。该悬浮栅阴极结构包括:阴极本体(10),用以发射电子束;抑制发射栅(20'),位于所述阴极本体(10)发射面的一侧,与所述阴极本体(10)之间具有预设间隙(d),且电连接至一电源(U)负压端;悬浮栅(30),位于所述抑制发射栅(20')背离所述阴极本体(10)的一侧。

Description

悬浮栅阴极结构、电子枪、电子加速器及辐照装置
本申请要求在2018年12月13日提交的,申请号为2018115228803,名称为“悬浮栅阴极结构、电子枪、电子加速器及辐照装置”的中国专利申请的优先权,上述申请的全部内容通过引用并入本文。
技术领域
本公开涉及电子加速器技术领域,尤其涉及一种改进的悬浮栅阴极结构、电子枪、电子加速器及辐照装置。
背景技术
随着科学技术的发展,电子加速器的应用领域越来越广泛。电子直线加速器是加速器中用途最为广泛的一种,它广泛应用于肿瘤治疗,高分子交联,医疗用品消毒,铸件探伤,食品保鲜,海关检查,灭菌杀虫,同位素生产以及科学科研等方面。常规电子直线加速器如图1所示,主要由直流段、聚束段和加速段组成。由于加速段只能加速由分立束团组成的微脉冲电子束,由直流枪产生的较低能量的直流电子束必须经过聚束段使其转换成微脉冲电子束才能被后面的加速段所加速。而微波电子枪加速器可直接产生微脉冲组成的电子束,从而使得所产生的电子束可直接被加速段加速。但是微波电子枪由于“反轰”效应无法工作在高占空比的状态,平均功率低,成本高,通常不适于辐照加速器应用。一般的,微波电子枪加速器的平均电流很小,只有几十微安量级,平均功率最多几百瓦,效率很低。
相关技术中提供一种微波电子枪加速器,如图2所示,其可以完全消 除微波电子枪的反轰电子和其发射电子中的大部分差性能电子,使得微波电子枪可以工作在连续波状态下,从而使得微波电子枪平均电流可以大幅提高,也就是平均功率可以大幅提高。
为减少悬浮栅截获电流,如图3所示,相关技术中对阴极10发射面的设计是在其表面上与悬浮栅30所对应的阴影部分涂装一层抑制发射保护膜20以阻止该部分的电子发射,同时要求有效发射面101(即没有被保护膜覆盖的部分)的面积要略小一些,但这使得有效发射面101的面积变小,只有不到50%,不利于获得较高的平均或脉冲电流。因此,有必要提供一种新的技术方案改善上述方案中存在的一个或者多个问题。
需要注意的是,本部分旨在为权利要求书中陈述的本发明的实施方式提供背景或上下文。此处的描述不因为包括在本部分中就承认是现有技术。
发明内容
本发明实施例的目的在于提供一种悬浮栅阴极结构、电子枪、电子加速器及辐照装置,进而至少在一定程度极本体,用以发射电子束;
抑制发射栅,位于所述阴极本体发射面的一侧,与所述阴极本体之间具有预设间隙,且电连接至一电源负压端;
悬浮栅,位于所述抑制发射栅背离所述阴极本体的一侧。
本发明的实施例中,所述抑制发射栅上设有多个第一孔,所述悬浮栅上设有与所述多个第一孔对应的第上克服由于相关技术的限制和缺陷而导致的一个或者多个问题。
根据本发明实施例的第一方面,提供一种悬浮栅阴极结构,包括:
阴二孔,且对应的第一孔和第二孔的位置和形态一致。
本发明的实施例中,各所述第一孔的孔径是对应第二孔的孔径的80%到150%之间。
本发明的实施例中,所述第二孔的孔径小于5mm。
本发明的实施例中,所述抑制发射栅和悬浮栅采用相同的材料制成。
本发明的实施例中,所述悬浮栅与抑制发射栅之间的间隙小于5mm;和/或,所述阴极本体与所述抑制发射栅之间的所述预设间隙小于1mm。
本发明的实施例中,可选的,该悬浮栅阴极结构还包括:
悬浮栅阴极,设置于所述悬浮栅的边缘;
悬浮栅阳极,与该悬浮栅阴极相对间隔设置;
偏压电源,与该悬浮栅阳极电连接。
进一步的,本发明的实施例中,所述悬浮栅阳极通过一滤波通道与外部的所述偏压电源电连接。
根据本发明实施例的第二方面,提供一种微波电子枪,该微波电子枪的腔室内设有上述任一实施例所述的悬浮栅阴极结构。
根据本发明实施例的第三方面,提供一种电子加速器,包括上述任一实施例所述微波电子枪,以及与该微波电子枪连接的加速器。
根据本发明实施例的第四方面,提供一种辐照装置,包括上述实施例所述电子加速器。
本发明的实施例提供的技术方案可以包括以下有益效果:
本发明的实施例中,抑制发射栅与所述阴极本体之间具有预设间隙即处于分离状态,且电连接至一电源负压端;这样,由于抑制发射栅与电源相接,抑制发射栅在阴极表面上的阴影部分感受不到微波电子枪中的微波场,加上抑制发射栅是带负电,因而阴影部分的电子发射被抑制,起到了现有技术中抑制发射膜所起的作用;另外,由于抑制发射栅所加电压为负,阴极发射的电子束会受到聚焦作用从而减小电子通过悬浮栅孔时的束斑大小,这样就允许有效发射面孔的大小甚至大于悬浮栅孔的大小,使得有效发射面面积增大从而达到提高电流的目的,继而可使微波电子枪的平均功率大幅提高。
附图说明
图1示出现有技术中电子直线加速器示意图;
图2示出现有技术中一微波电子枪加速器示意图;
图3示出现有技术中微波电子枪的悬浮栅阴极结构示意图;
图4示出本发明示例性实施例中悬浮栅阴极结构示意图;
图5示出本发明示例性实施例中另一悬浮栅阴极结构示意图;
图6示出本发明实施例中抑制发射栅上的孔的分布形态示意图。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施方式使得本发明将更加全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施方式中。
此外,附图仅为本发明的示意性图解,并非一定是按比例绘制。图中相同的附图标记表示相同或类似的部分,因而将省略对它们的重复描述。附图中所示的一些方框图是功能实体,不一定必须与物理或逻辑上独立的实体相对应。
本示例实施方式中首先提供一种悬浮栅阴极结构,如图4所示,其可以包括阴极本体10、抑制发射栅20’和悬浮栅30。其中,所述阴极本体10用以发射电子束。所述抑制发射栅20’位于所述阴极本体10发射面的一侧,与所述阴极本体10之间具有预设间隙d,且电连接至一电源U的负压端。所述悬浮栅30位于所述抑制发射栅20’背离所述阴极本体10的一侧。
本发明的上述实施例中,所述抑制发射栅20’与所述阴极本体10之间具有预设间隙d即处于分离状态,即由一个抑制发射栅20’来替代现有 的抑制发射保护膜的作用;这样,由于抑制发射栅20’与电源U相接,抑制发射栅20’在阴极本体10表面上的阴影部分感受不到微波电子枪中的微波场,加上抑制发射栅20’是带负电,因而阴影部分的电子发射被抑制,起到了现有技术中抑制发射膜所起的作用;另外,由于抑制发射栅20’所加电压为负,阴极本体10发射的电子束会受到聚焦作用从而减小电子通过悬浮栅30的孔301时的束斑大小,这样就允许有效发射面孔201的大小甚至大于悬浮栅孔301的大小,使得有效发射面面积增大从而达到提高电流如平均电流或脉冲电流的目的,继而可使微波电子枪的平均功率大幅提高。
具体的,在一个实施例中,所述阴极本体10可以是热阴极本体,该热阴极本体可采用六硼化镧(LaB6),六硼化铯(CeB6)等热阴极材料,还有场致发射材料等制成,当然该热阴极材料并不限于此。
所述悬浮栅30可以由处于边缘的绝缘体(图未示)支撑以实现栅体的“电悬浮”。本文中的“悬浮”指没有导体与之相连的“电悬浮”而非物理悬浮。通常悬浮栅都是由处于其边沿处的绝缘体支撑,该绝缘体一般采用耐高温绝缘材料如陶瓷材料或氧化钡(BeO)材料等,这些可参考现有技术,此处不再详述。
在一个实施例中,所述电源U的负压端提供的负压一般在几伏到几十伏之间。
在本发明的一实施例中,结合图5和图6所示,所述抑制发射栅20’上设有多个第一孔201,所述悬浮栅30上设有与所述多个第一孔201对应的第二孔301,且对应的第一孔201和第二孔301的位置和形态一致。例如,所述抑制发射栅20’和悬浮栅30上开有网状结构分布的多个对应的孔,开孔的位置和形态如形状可以是一致的。所述抑制发射栅20’和悬浮栅30上的孔的大小可以相同也可以不同。另外,抑制发射栅20’和悬浮栅30上的多个孔的分布形态如图6所示的圆形,图6中仅为示意,孔的数量 可根据需要设置,对此不作限制。该多个孔的分布形态也可以是其他实施例中的条形,同心圆型或它们的组合等分布方式,本实施例中对此不作限制。
可选的,在本发明的一实施例中,各所述第一孔201的孔径是第二孔301的孔径的80%到150%,例如90%至140%,或者110%~130%等。进一步的,可选的,在一个实施例中,所述第二孔301的孔径小于5mm。
可选的,本发明的一实施例中,所述悬浮栅30与抑制发射栅20’之间的间隙可以小于5mm。本发明实施例中抑制发射栅20’与阴极本体10之间有一个所述预设间隙d,即抑制栅间隙,抑制发射栅20’与阴极本体10两者没有接触,而没有接触使得抑制发射栅20’可以被施加一个负电压,阴极仍然可接地。在本发明的一实施例中,所述抑制发射栅20’与阴极本体10之间所述预设间隙d小于1mm。本实施例中该抑制栅间隙较小,远小于抑制发射栅20’上的孔径。由于抑制栅间隙小并且抑制发射栅孔径大,阴极本体10表面未被该抑制发射栅20’遮挡的部分(即孔201对应的阴极表面部分)是可以感受到微波电场并发射电子束的。
可选的,在本发明的一实施例中,所述抑制发射栅20’和悬浮栅30采用相同的材料制成,例如可以采用钨,锰,热解石墨等耐高温材料制成所述抑制发射栅20’和悬浮栅30,当然该材料并不限于此。
现有技术中的阴极加工复杂,同时由于阴极和抑制发射保护膜采用不同材料制成,两种材料的不同膨胀系数使得在使用过程中容易发生脱落,变形等问题;再有就是每次更换阴极的时候须要重新和栅极准直,增加了成本和安装难度。
本实施例中可以在相同条件下用相同的材料同时加工抑制发射栅20’和悬浮栅30。这样,一方面有利于安装时的准直工作,另一方面由于它们是相同材料又同时工作在大致相同的温度下,能保证它们在工作中保持准直和相对间隙。另外,抑制发射栅20’和悬浮栅30的的准直和间隙调整是 极为精细的工作,本实施例提供的方案使得阴极可以和栅极系统分离,这样在换阴极的时候就不用再进行繁琐的准直和间隙调整工作,简化安装难度。
可选的,在上述各实施例的基础上,本发明的另一实施例中,该悬浮栅阴极结构还可以包括悬浮栅阴极50、悬浮栅阳极60和偏压电源V。其中,所述悬浮栅阴极50设置于所述悬浮栅30的边缘,例如设置于悬浮栅30本体周向边缘,该悬浮栅阴极50可以是独立部件设置于所述悬浮栅30的边缘,也可是与所述悬浮栅30一体成型,本发明实施例对此不作限制。所述悬浮栅阳极60与该悬浮栅阴极50相对间隔设置,具体间隔距离本领域技术人员可根据需要设置,对此也不作限制。所述偏压电源V与该悬浮栅阳极60电连接。
进一步的,在本发明的一实施例中,所述悬浮栅阳极60可以通过一滤波通道70与外部的所述偏压电源V电连接。该滤波通道70可以由平板电容器或同轴电容器形成,对此也不作限制。
具体的,工作时,所述悬浮栅30边缘处的悬浮栅阴极50可发射电子,悬浮栅阴极50的对面有一与之对应的悬浮栅阳极60,该悬浮栅阳极60通过一滤波通道70而与处于外部的偏压电源V连接。在上述实施例中当悬浮栅阴极50不存在的时候,由于悬浮栅30对主束流杂散电子的截获效应最终会充满负电从而完全阻止主阴极即阴极本体10的发射。而在本实施例中由于悬浮栅阴极50的存在,悬浮栅阴极50截获的电子会通过悬浮栅阴极50泻放到悬浮栅阳极60上,这样,悬浮栅极的直流分量的最高幅值就受悬浮栅阳极60的直流偏压控制,从而可以通过控制悬浮栅阳极60的直流偏压来控制悬浮栅30的直流分量,进而实现对电子束发射的控制,如此可进一步提高束流品质。
本发明实施例还提供一种微波电子枪,该微波电子枪的腔室内设有上述任一实施例所述的悬浮栅阴极结构。关于该悬浮栅阴极结构,具体 可参考前述实施例中的详细描述,此处不再赘述。
本发明实施例还提供一种电子加速器,包括上述任一实施例所述微波电子枪,以及与该微波电子枪连接的加速器。该电子加速器可以是电子直线加速器,但不限于此。
进一步的,本公开实施例还提供一种辐照装置,该辐照装置可以包括上述任一实施例中所述的电子加速器。关于该电子加速器可参考上述实施例,此处不再赘述。该辐照装置可以包括但不限于是辐照灭菌装置、医疗用辐照装置等。
本发明上述实施例的微波电子枪、电子加速器以及辐照装置中,抑制发射栅与所述阴极本体之间具有预设间隙即处于分离状态,且电连接至一电源负压端;这样,由于抑制发射栅与电源相接,抑制发射栅在阴极表面上的阴影部分感受不到微波电子枪中的微波场,加上抑制发射栅是带负电,因而阴影部分的电子发射被抑制,起到了现有技术中抑制发射膜所起的作用;另外,由于抑制发射栅所加电压为负,阴极发射的电子束会受到聚焦作用从而减小电子通过悬浮栅孔时的束斑大小,这样就允许有效发射面孔的大小甚至大于悬浮栅孔的大小,使得有效发射面面积增大从而达到提高电流的目的,继而可使微波电子枪的平均功率大幅提高。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本 发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。此外,本领域的技术人员可以将本说明书中描述的不同实施例或示例进行接合和组合。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本申请旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本发明未公开的本技术领域中的公知常识或惯用技术手段。说 明书和实施例仅被视为示例性的,本发明的真正范围和精神由所附的权利要求指出。

Claims (11)

  1. 一种悬浮栅阴极结构,其特征在于,包括:
    阴极本体,用以发射电子束;
    抑制发射栅,位于所述阴极本体发射面的一侧,与所述阴极本体之间具有预设间隙,且电连接至一电源负压端;
    悬浮栅,位于所述抑制发射栅背离所述阴极本体的一侧。
  2. 根据权利要求1所述悬浮栅阴极结构,其特征在于,所述抑制发射栅上设有多个第一孔,所述悬浮栅上设有与所述多个第一孔对应的第二孔,且对应的第一孔和第二孔的位置和形态一致。
  3. 根据权利要求2所述悬浮栅阴极结构,其特征在于,各所述第一孔的孔径是对应第二孔的孔径的80%到150%之间。
  4. 根据权利要求3所述悬浮栅阴极结构,其特征在于,所述第二孔的孔径小于5mm。
  5. 根据权利要求1~4之一所述悬浮栅阴极结构,其特征在于,所述抑制发射栅和悬浮栅采用相同的材料制成。
  6. 根据权利要求5所述悬浮栅阴极结构,其特征在于,所述悬浮栅与抑制发射栅之间的间隙小于5mm;和/或,所述阴极本体与所述抑制发射栅之间的所述预设间隙小于1mm。
  7. 根据权利要求1~4之一所述悬浮栅阴极结构,其特征在于,还包括:
    悬浮栅阴极,设置于所述悬浮栅的边缘;
    悬浮栅阳极,与该悬浮栅阴极相对间隔设置;
    偏压电源,与该悬浮栅阳极电连接。
  8. 根据权利要求7所述悬浮栅阴极结构,其特征在于,所述悬浮栅阳极通过一滤波通道与外部的所述偏压电源电连接。
  9. 一种微波电子枪,其特征在于,该电子枪的腔室内设有上述权利要 求1~8任一项所述的悬浮栅阴极结构。
  10. 一种电子加速器,其特征在于,包括权利要求7或8所述微波电子枪,以及与该微波电子枪连接的加速器。
  11. 一种辐照装置,其特征在于,包括权利要求9所述电子加速器。
PCT/CN2019/078945 2018-12-13 2019-03-21 悬浮栅阴极结构、电子枪、电子加速器及辐照装置 WO2020118957A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811522880.3A CN111328176B (zh) 2018-12-13 2018-12-13 悬浮栅阴极结构、电子枪、电子加速器及辐照装置
CN201811522880.3 2018-12-13

Publications (1)

Publication Number Publication Date
WO2020118957A1 true WO2020118957A1 (zh) 2020-06-18

Family

ID=71076212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/078945 WO2020118957A1 (zh) 2018-12-13 2019-03-21 悬浮栅阴极结构、电子枪、电子加速器及辐照装置

Country Status (2)

Country Link
CN (1) CN111328176B (zh)
WO (1) WO2020118957A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113078039A (zh) * 2021-03-30 2021-07-06 上海联影医疗科技股份有限公司 电子枪装置以及医用直线加速器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11120931A (ja) * 1997-10-15 1999-04-30 Mitsubishi Electric Corp 電子銃およびその製法
CN1339812A (zh) * 2000-08-23 2002-03-13 东芝株式会社 电子枪组件及阴极射线管装置
CN201859827U (zh) * 2010-11-11 2011-06-08 中国电子科技集团公司第十二研究所 悬浮式栅控多注速调管电子枪结构
CN107768218A (zh) * 2017-09-15 2018-03-06 华中科技大学 一种低能强流栅控电子枪
CN108648976A (zh) * 2018-06-12 2018-10-12 电子科技大学 基于多物理场协同仿真确定电子枪栅网装配间距的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61200643A (ja) * 1985-03-01 1986-09-05 Toshiba Corp マイクロ波管用電子銃の製造方法
CN201138653Y (zh) * 2007-09-11 2008-10-22 安徽华东光电技术研究所 一种双模多注行波管栅控电子枪
CN102945781B (zh) * 2012-10-17 2015-08-26 安徽华东光电技术研究所 一种用于双模行波管的双模式多注电子枪及其控制方法
US9196449B1 (en) * 2014-10-09 2015-11-24 Far-Tech, Inc. Floating grid electron source
CN205004301U (zh) * 2015-09-15 2016-01-27 安徽华东光电技术研究所 一种多注电子枪结构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11120931A (ja) * 1997-10-15 1999-04-30 Mitsubishi Electric Corp 電子銃およびその製法
CN1339812A (zh) * 2000-08-23 2002-03-13 东芝株式会社 电子枪组件及阴极射线管装置
CN201859827U (zh) * 2010-11-11 2011-06-08 中国电子科技集团公司第十二研究所 悬浮式栅控多注速调管电子枪结构
CN107768218A (zh) * 2017-09-15 2018-03-06 华中科技大学 一种低能强流栅控电子枪
CN108648976A (zh) * 2018-06-12 2018-10-12 电子科技大学 基于多物理场协同仿真确定电子枪栅网装配间距的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113078039A (zh) * 2021-03-30 2021-07-06 上海联影医疗科技股份有限公司 电子枪装置以及医用直线加速器

Also Published As

Publication number Publication date
CN111328176B (zh) 2021-12-17
CN111328176A (zh) 2020-06-23

Similar Documents

Publication Publication Date Title
US6456691B2 (en) X-ray generator
US9257253B1 (en) Systems and methods utilizing a triode hollow cathode electron gun for linear particle accelerators
US10269527B2 (en) Electron emitting construct configured with ion bombardment resistant
CN109065428B (zh) 一种双栅控制式冷阴极电子枪及其制备方法
US11239040B2 (en) Thermally isolated repeller and electrodes
RU2014109915A (ru) Осаждение из паровой фазы для нанесения покрытия с погружением в дуговую плазму низкого давления и ионная обработка
TW201810338A (zh) 用於增益型離子化的離子源
WO2020118957A1 (zh) 悬浮栅阴极结构、电子枪、电子加速器及辐照装置
US8750458B1 (en) Cold electron number amplifier
WO2020118938A1 (zh) 多悬浮栅阴极结构、电子枪、电子加速器及辐照装置
US4499405A (en) Hot cathode for broad beam electron gun
US10431415B2 (en) X-ray tube ion barrier
US2452044A (en) High emission cathode
US2888591A (en) Charged particle emitter apparatus
WO2020118939A1 (zh) 电子枪、电子加速器以及辐照装置
US20190272969A1 (en) Triode electron gun
RU2644416C2 (ru) Катодно-сеточный узел с автоэмиссионным катодом из углеродного материала
CN206363982U (zh) 一种多电极的栅控电子枪
KR100866980B1 (ko) 평판형 냉음극 전자총
KR20190136892A (ko) 전계 방출 엑스선원 및 그의 구동 방법
RU181037U1 (ru) Автоэмиссионная электронная пушка со сходящимся ленточным пучком
KR20130058162A (ko) 마이크로 포커스 엑스 레이 튜브
Darmaev et al. Experimental investigations and numerical simulation of the electron flow shaped by Grigor’ev-Shesterkin matrix carbon field-emission cells
JP2000504143A (ja) 線状焦点電子ビームデバイスのための陰極アセンブリ
US2265746A (en) Secondary emission multiplier

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19897451

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19897451

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19897451

Country of ref document: EP

Kind code of ref document: A1