WO2018110943A1 - 전기 퓨즈를 위한 진단 시스템을 포함하는 차량 - Google Patents
전기 퓨즈를 위한 진단 시스템을 포함하는 차량 Download PDFInfo
- Publication number
- WO2018110943A1 WO2018110943A1 PCT/KR2017/014560 KR2017014560W WO2018110943A1 WO 2018110943 A1 WO2018110943 A1 WO 2018110943A1 KR 2017014560 W KR2017014560 W KR 2017014560W WO 2018110943 A1 WO2018110943 A1 WO 2018110943A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- value
- electrical fuse
- current
- fuse
- voltage
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/12—Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
- G01R31/1227—Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/005—Testing of electric installations on transport means
- G01R31/006—Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks
- G01R31/007—Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks using microprocessors or computers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/50—Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
- G01R31/74—Testing of fuses
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07C—TIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
- G07C5/00—Registering or indicating the working of vehicles
- G07C5/08—Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time
- G07C5/0816—Indicating performance data, e.g. occurrence of a malfunction
- G07C5/0825—Indicating performance data, e.g. occurrence of a malfunction using optical means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2400/00—Special features of vehicle units
- B60Y2400/30—Sensors
- B60Y2400/308—Electric sensors
- B60Y2400/3084—Electric currents sensors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2400/00—Special features of vehicle units
- B60Y2400/30—Sensors
- B60Y2400/308—Electric sensors
- B60Y2400/3086—Electric voltages sensors
Definitions
- the present invention relates to a vehicle comprising a diagnostic system for an electrical fuse.
- Electrical fuses are a type of automatic circuit breaker used to prevent an overcurrent from flowing through a wire.
- an electric fuse operates in such a way that the electric fuse melts itself by the heat generated by the overcurrent flowing through the wire and disconnects the wire.
- the resistance of the electric fuse has the smallest resistance of the beginning-of-life, and the resistance increases gradually with age, so that the resistance of the end-of-life is greatest. Therefore, the electric fuse should operate to disconnect the electric wire when an overcurrent flows based on the end-of-life resistance value of the electric fuse.
- the inventors of the present invention have recognized the advantages over a vehicle comprising an electrical fuse diagnostic system for determining whether the electrical fuse is in deteriorated operation and close at the end of its operating life.
- a vehicle that includes a diagnostic system for an electrical fuse in accordance with one embodiment of the present invention.
- the electrical fuse is electrically connected between the battery and the electrical load.
- the vehicle includes a first voltage sensor that generates a first signal representing a first voltage level at a first end of the electrical fuse.
- the vehicle further includes a second voltage sensor generating a second signal indicative of a second voltage level at a second end of the electrical fuse.
- the vehicle further includes a current sensor for generating a third signal indicative of the amount of current flowing through the electrical fuse.
- the vehicle further includes a microcontroller operatively coupled to the first voltage sensor, the second voltage sensor and the current sensor.
- the microcontroller has a memory device that stores a first table.
- the first table includes a plurality of resistance values and a plurality of current values associated with the electrical fuse.
- the microcontroller determines a first voltage value and a second voltage value based on the first signal and the second signal, respectively.
- the microcontroller determines a current value based on the third signal.
- the microcontroller determines a first resistance value of the electric fuse using the first voltage value, the second voltage value, and the current value.
- the microcontroller retrieves a first stored resistance value from the plurality of resistance values included in the first table using the current value as an index for the first table.
- the microcontroller obtains the end-of-life resistance value by multiplying the first stored resistance value by a first value.
- the microcontroller generates a first diagnostic signal indicating deteriorated operation of the electrical fuse when the first resistance value is greater than or equal to the end-of-life resistance value.
- the plurality of resistance values of the first table may correspond to initial life resistance values of the electric fuse.
- the electrical fuse may also be a high current delay operation electrical fuse.
- the vehicle including a diagnostic system for an electric fuse further comprises a vehicle control unit for operative communication with the microcontroller, the vehicle control unit, the first diagnostic signal received And a fuse service message displayed on the vehicle display device in response to the first diagnostic signal.
- the microcontroller may determine the first resistance value of the electric fuse only when the current value is greater than the threshold current value and generate the first diagnostic signal as described above.
- a vehicle comprising a diagnostic system for an electrical fuse.
- the electrical fuse is electrically connected between the battery and the electrical load.
- the vehicle includes a first voltage sensor that generates a first signal representing a first voltage level at a first end of the electrical fuse.
- the vehicle further includes a second voltage sensor generating a second signal indicative of a second voltage level at a second end of the electrical fuse.
- the vehicle further includes a current sensor for generating a third signal indicative of the amount of current flowing through the electrical fuse.
- the vehicle further includes a microcontroller operatively coupled to the first voltage sensor, the second voltage sensor and the current sensor.
- the microcontroller has a memory device that stores a first table.
- the first table includes a plurality of resistance values and a plurality of current values associated with the electrical fuse.
- the microcontroller determines a first voltage value and a second voltage value based on the first signal and the second signal, respectively.
- the microcontroller determines a current value based on the third signal.
- the microcontroller determines a first resistance value of the electric fuse using the first voltage value, the second voltage value, and the current value.
- the microcontroller retrieves a first stored resistance value from the plurality of resistance values included in the first table using the current value as an index for the first table.
- the microcontroller generates a first diagnostic signal indicating deteriorated operation of the electrical fuse when the first resistance value is greater than or equal to the first stored resistance value.
- the plurality of resistance values of the first table may correspond to end-of-life resistance values for the electric fuse.
- the electrical fuse may also be a high current delay operation electrical fuse.
- the vehicle including a diagnostic system for the electric fuse further comprises a vehicle control unit for operative communication with the microcontroller, the vehicle control unit, the first diagnostic signal received And a fuse service message displayed on the vehicle display device in response to the first diagnostic signal.
- the microcontroller may determine the first resistance value of the electric fuse only when the current value is greater than the threshold current value and generate the first diagnostic signal as described above.
- the deteriorated operation of the electric fuse may be diagnosed using the stored lifetime initial resistance value and the multiplication operator and the calculated resistance value of the electric fuse.
- the deteriorated operation of the electric fuse can be diagnosed using the stored end-of-life resistance value and the calculated resistance value.
- FIG. 1 is a schematic structural diagram of a vehicle including a diagnostic system for an electric fuse according to an embodiment of the present invention.
- FIG. 2 shows the data structure of the first table stored in the memory device of the microcontroller used in the diagnostic system of FIG. 1.
- 3 and 4 are flowcharts illustrating a method of determining the deterioration of an electric fuse according to an embodiment of the present invention.
- FIG. 5 shows a data structure of a second table stored in a memory device of a microcontroller used in the diagnostic system of FIG. 1.
- 6 and 7 are flowcharts illustrating a method of determining the deterioration of an electric fuse according to another embodiment of the present invention.
- control unit> means a unit for processing at least one function or operation, which may be implemented in hardware or software, or a combination of hardware and software.
- the vehicle 10 includes a diagnostic system 26 for a battery 20, an electrical fuse 22, an electrical load 24, and an electrical fuse 22.
- the advantage of the diagnostic system 26 is that the stored lifetime initial resistance value of the electrical fuse 22 and to determine whether the electrical fuse 22 is deteriorated in operation, that is, whether or not the performance of the electrical fuse 22 is degraded.
- the multiplication operator and the calculated resistance value are used, or the stored end-of-life resistance value and the calculated resistance value of the electric fuse 22 are used.
- the battery 20 is provided for supplying an operating voltage to the electrical load 24.
- the battery 20 includes a negative terminal 42 and a positive terminal 40.
- the positive terminal 40 is electrically connected to the current sensor 70.
- the negative terminal 42 is electrically connected to the second end of the electrical load 24.
- the battery 20 may be a lithium-ion pouch battery.
- the electrical fuse 22 is electrically connected in series between the current sensor 70 and the first end of the electrical load 24.
- the electrical fuse 22 includes a first end 50 and a second end 52.
- the electrical fuse 22 may be a high-current slow-blow electrical fuse. Of course, other types of electrical fuses may be used.
- the electrical load 24 receives current from the battery 20 through the electrical fuse 22 when the electrical fuse 22 is not blown (eg, when the current is energized).
- a diagnostic system 26 is provided for determining when the electrical fuse 22 is deteriorated.
- the diagnostic system 26 includes a current sensor 70, a voltage sensor 72, a voltage sensor 74, a microcontroller 76, a vehicle control unit 78, and a vehicle display device 80.
- the current sensor 70 is electrically connected in series with the battery 20 and the electric fuse 22.
- the current sensor 70 is electrically connected in series between the positive terminal 40 of the battery 20 and the first end 50 of the electrical fuse 22.
- the current sensor 70 generates a signal indicating the amount of current flowing through the electric fuse 22. The signal is received by the microcontroller 76.
- the voltage sensor 72 is electrically connected to the first end 50 of the electrical fuse 22.
- the voltage sensor 72 generates a signal representing the first voltage level at the first end 50 of the electrical fuse 22.
- the signal is received by the microcontroller 76.
- the voltage sensor 74 is electrically connected to the second end 52 of the electrical fuse 22.
- the voltage sensor 74 generates a signal representing the second voltage level at the second end 52 of the electrical fuse 22.
- the signal is received by the microcontroller 76.
- the microcontroller 76 includes a microprocessor 90 and a memory device 92.
- the microcontroller 76 is programmed to perform at least some of the steps described herein and executes software instructions stored in the memory device 92 to perform the related steps.
- the microcontroller 76 is in operative communication with the current sensor 70, the voltage sensor 72, the voltage sensor 74, the memory device 92, and the vehicle control unit 78.
- the memory device 92 has an exemplary table 100 having a lifetime initial resistance value associated with the electrical fuse 22 used to determine the degraded operation of the electrical fuse 22. It includes.
- the table 100 includes a plurality of records 102, 104, 106, 108, 110, 112, 114. Each record includes (i) the current value and (ii) the lifetime initial resistance value of the electrical fuse 22 associated with the current value.
- the plurality of records 102, 104, 106, 108, 110, 112, 114 may be set to increase the life initial resistance value as the current value increases, except for a current value of less than 50 amperes. . That is, as the amount of current flowing through the electric fuse 22 increases, the lifetime initial resistance value may increase.
- record 104 has a current value of 50 amps and a lifetime initial resistance of 0.22 milliohms.
- the threshold resistance value may be the end of life resistance value. In other words, the end-of-life resistance value may be obtained by multiplying the first-life value by the lifetime initial resistance value.
- the first value corresponds to a multiplication operator, and as the current value of the table 100 increases, the size of the first value gradually decreases. That is, as the amount of current flowing through the electric fuse 22 increases, the magnitude of the first value may decrease. In this case, as the magnitude of the current flowing through the electric fuse 22 increases, the sensitivity for diagnosing the deterioration of the electric fuse 22 increases.
- the first value may be set for each current value and written in advance in the memory device 92.
- the record 106 has a current value of 100 amps and a lifetime initial resistance of 0.25 milliohms.
- the write 112 also has a current value of 250 amps and an initial life resistance value of 0.4 milliohms.
- the first value may be set to 1.40.
- the first value may be set to 1.25. That is, when the amount of current flowing through the electric fuse 22 increases from 100 amps to 250 amps, the first value may be set to decrease from 1.40 to 1.25.
- the first value may be calculated as the ratio of the initial life resistance value and the end life resistance value. That is, the first value may be set as a ratio of the end-of-life resistance value to the end-of-life resistance value.
- the first value is determined by 0.22. It may be a ratio of 0.32, that is, 0.32 / 0.22.
- the first value may be set to satisfy the following equation.
- the first value allocated for each current value may decrease as the total integrated current value for the charge / discharge current increases.
- the microprocessor 90 may calculate the total integrated current value by integrating the current value measured through the current sensor 70, and store and manage the stored current value in the memory device 92.
- the total integrated current value is calculated from the beginning of the life of the battery 20 to the end of the life without being reset to zero.
- a large total integrated current value means that a large amount of current has flowed through the electric fuse 22 by that amount. Therefore, as the total integrated current value increases, decreasing the first value allocated for each current value may increase the diagnostic sensitivity of the electric fuse 22. If the diagnostic sensitivity is increased, maintenance of the electric fuse 22 can be facilitated by proactively diagnosing the deterioration state before the state of the electric fuse 22 reaches the end-of-life state.
- the memory device 92 may determine the end-of-life resistance value associated with the electrical fuse 22 used to determine the deteriorated operation of the electrical fuse 22.
- An exemplary table 140 is provided.
- the table 140 includes a plurality of records 142, 144, 146, 148, 150, 152, 154.
- Each record includes (i) current value and (ii) end-of-life resistance value associated with electrical fuse 22.
- the plurality of records 142, 144, 146, 148, 150, 152, 154 can be set so that the end-of-life resistance value also increases as the current value increases, except for a current value of less than 50 amperes. . That is, as the amount of current flowing through the electric fuse 22 increases, the end-of-life resistance value may increase.
- record 144 has a current value of 50 amps and a terminal lifetime resistance of 0.32 milliohms.
- the electrical fuse 22 should have a resistance value of less than 0.32 milliohms unless the electrical fuse 22 is degraded.
- the electrical fuse 22 is deteriorated.
- step 200 the voltage sensor 72 generates a first signal representing the first voltage level at the first end 50 of the electrical fuse 22. After step 200, the method advances to step 202.
- step 202 the voltage sensor 74 generates a second signal indicative of the second voltage level at the second end 52 of the electrical fuse 22.
- step 204 the method advances to step 204.
- step 204 the current sensor 70 generates a third signal indicative of the amount of current flowing through the electrical fuse 22.
- step 206 the method advances to step 206.
- step 206 the microcontroller 76 determines the first voltage value and the second voltage value, respectively, based on the first signal and the second signal. After step 206, the method advances to step 208.
- step 208 the microcontroller 76 determines the current value based on the third signal. After step 208, the method advances to step 210.
- step 210 the microcontroller 76 determines whether or not the current value corresponds to a greater than the threshold current value. If the value of step 210 is "yes”, the method proceeds to step 212. Otherwise, the method returns to step 200.
- step 212 the microcontroller 76 determines the first resistance value of the electrical fuse 22 using the following equation.
- step 214 the microcontroller 76 uses the current value as an index for the table 100 to obtain a first value from the plurality of life initial resistance values included in the table 100 included in the memory device 92. retrieve the stored resistance value.
- Table 100 includes a plurality of lifetime initial resistance values and a plurality of current values associated with electrical fuse 22.
- step 216 the microcontroller 76 multiplies the first stored resistance value by the first value to obtain the end-of-life resistance value using the following equation.
- step 216 the method advances to step 218.
- microcontroller 76 determines whether the first resistance value is greater than or equal to the end-of-life resistance value. If the value of step 218 is "yes”, then the method proceeds to step 220. Otherwise, the method ends.
- step 220 the microcontroller 76 generates a first diagnostic signal indicative of degraded operation of the electrical fuse 22. After step 220, the method proceeds to step 222.
- the vehicle controller 78 receives the first diagnostic signal, and generates a fuse service message displayed on the vehicle display device 80 in response to the first diagnostic signal. After step 222, the method ends.
- step 300 the voltage sensor 72 generates a first signal representing the first voltage level at the first end 50 of the electrical fuse 22. After step 300, the method advances to step 302.
- step 302 the voltage sensor 74 generates a second signal indicative of the second voltage level at the second end 52 of the electrical fuse 22. After step 302, the method advances to step 304.
- step 304 the current sensor 70 generates a third signal indicative of the amount of current flowing through the electrical fuse 22. After step 304, the method proceeds to step 306.
- step 306 the microcontroller 76 determines the first voltage value and the second voltage value, respectively, based on the first signal and the second signal. After step 306, the method advances to step 308.
- step 308 the microcontroller 76 determines the current value based on the third signal. After step 308, the method advances to step 310.
- step 310 the microcontroller 76 determines whether or not the current value corresponds to a greater than the threshold current value. If the value of step 310 is "yes”, the method proceeds to step 312. Otherwise, the method returns to step 300.
- step 312 the microcontroller 76 determines the first resistance value of the electrical fuse 22 using the following equation.
- step 314 the microcontroller 76 uses the current value as an index to the table 140 to obtain a first value from the plurality of end-of-life resistance values included in the table 140 included in the memory device 92. retrieve the stored resistance value.
- the table 140 includes a plurality of end-of-life resistance values and a plurality of current values associated with the electrical fuse 22.
- step 316 the microcontroller 76 determines whether the first resistance value corresponds to a case where the first resistance value is greater than or equal to the first stored resistance value. If the value of step 316 is "yes”, the method proceeds to step 318. Otherwise, the method ends.
- microcontroller 76 At step 318, microcontroller 76 generates a first diagnostic signal indicative of degraded operation of electrical fuse 22. After step 318, the method advances to step 320.
- the vehicle controller 78 receives the first diagnostic signal and generates a fuse service message displayed on the vehicle display device 80 in response to the first diagnostic signal. After step 320, the method ends.
- Vehicles that include diagnostic systems for electrical fuses described herein provide substantial advantages over other vehicles.
- the vehicle utilizes a diagnostic system for determining the deteriorated operation of the electrical fuse.
- the advantage of the diagnostic system is to use the stored lifetime initial resistance of the electrical fuse and the multiplication operator and the calculated resistance value to determine whether the electrical fuse is deteriorated, or the stored lifetime end resistance of the electrical fuse. Value and the calculated resistance.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Testing Electric Properties And Detecting Electric Faults (AREA)
- Fuses (AREA)
- Semiconductor Integrated Circuits (AREA)
- Design And Manufacture Of Integrated Circuits (AREA)
Abstract
Description
Claims (10)
- 배터리와 전기 부하 사이에 전기적으로 연결되는 전기 퓨즈를 위한 진단 시스템을 포함하는 차량에 있어서,상기 전기 퓨즈의 제1 단부에서의 제1 전압 레벨을 나타내는 제1 신호를 생성하는 제1 전압 센서;상기 전기 퓨즈의 제2 단부에서의 제2 전압 레벨을 나타내는 제2 신호를 생성하는 제2 전압 센서;상기 전기 퓨즈를 통해 흐르는 전류의 양을 나타내는 제3 신호를 생성하는 전류 센서; 및상기 제1 전압 센서, 상기 제2 전압 센서 및 상기 전류 센서에 작동 가능하도록 연결된 마이크로컨트롤러를 포함하고,상기 마이크로컨트롤러는, 상기 전기 퓨즈와 관련된 복수의 저항값 및 복수의 전류값을 포함하는 제1 테이블을 저장하는 메모리 디바이스를 구비하며,상기 마이크로컨트롤러는, 상기 제1 신호 및 제2 신호에 각각 기초하여 제1 전압값 및 제2 전압값을 각각 결정하는 단계;상기 제3 신호에 기초하여 전류값을 결정하는 단계;상기 제1 전압값, 상기 제2 전압값 및 상기 전류값을 이용하여 상기 전기 퓨즈의 제1 저항값을 결정하는 단계;상기 제1 테이블에 대한 인덱스로서 상기 전류값을 이용하여, 상기 제1 테이블에 포함된 상기 복수의 저항값들로부터 제1 저장된 저항값을 검색하는 단계;상기 제1 저장된 저항값에 제1 값을 곱하여 수명 말기 저항값을 구하는 단계; 및상기 제1 저항값이 상기 수명 말기 저항값보다 크거나 같으면 상기 전기 퓨즈의 열화된 동작을 나타내는 제1 진단 신호를 생성하는 단계를 수행하는 것을 특징으로 하는 차량.
- 제1항에 있어서,상기 제1 테이블의 상기 복수의 저항값은 상기 전기 퓨즈에 대한 수명 초기 저항값에 대응하는 것을 특징으로 하는 차량.
- 제1항에 있어서,상기 전기 퓨즈는 고전류 지연 동작 전기 퓨즈인 것을 특징으로 하는 차량.
- 제1항에 있어서,상기 마이크로컨트롤러와 작동 가능하도록 통신하는 차량 제어부를 더 포함하고,상기 차량 제어부는, 상기 제1 진단 신호를 수신하고, 상기 제1 진단 신호에 응답하여 차량 표시 디바이스 상에 표시되는 퓨즈 서비스 메시지를 생성하는 것을 특징으로 하는 차량.
- 제1항에 있어서,상기 마이크로컨트롤러는 상기 전류값이 임계 전류값보다 큰 경우에만 상기 전기 퓨즈의 상기 제1 저항값을 결정하는 것을 특징으로 하는 차량.
- 배터리와 전기 부하 사이에 전기적으로 연결되는 전기 퓨즈를 위한 진단 시스템을 포함하는 차량에 있어서,상기 전기 퓨즈의 제1 단부에서의 제1 전압 레벨을 나타내는 제1 신호를 생성하는 제1 전압 센서;상기 전기 퓨즈의 제2 단부에서의 제2 전압 레벨을 나타내는 제2 신호를 생성하는 제2 전압 센서;상기 전기 퓨즈를 통해 흐르는 전류의 양을 나타내는 제3 신호를 생성하는 전류 센서; 및상기 제1 전압 센서, 상기 제2 전압 센서 및 상기 전류 센서에 작동 가능하도록 연결된 마이크로컨트롤러를 포함하고,상기 마이크로컨트롤러는, 상기 전기 퓨즈와 관련된 복수의 저항값 및 복수의 전류값을 포함하는 제1 테이블을 저장하는 메모리 디바이스를 구비하며,상기 마이크로컨트롤러는, 상기 제1 신호 및 제2 신호에 각각 기초하여 제1 전압값 및 제2 전압값을 각각 결정하는 단계;상기 제3 신호에 기초하여 전류값을 결정하는 단계;상기 제1 전압값, 상기 제2 전압값 및 상기 전류값을 이용하여 상기 전기 퓨즈의 제1 저항값을 결정하는 단계;상기 제1 테이블에 대한 인덱스로서 상기 전류값을 이용하여, 상기 제1 테이블에 포함된 상기 복수의 저항값들로부터 제1 저장된 저항값을 검색하는 단계;상기 제1 저항값이 상기 제1 저장된 저항값보다 크거나 같으면 상기 전기 퓨즈의 열화된 동작을 나타내는 제1 진단 신호를 생성하는 단계를 수행하는 것을 특징으로 하는 차량.
- 제6항에 있어서,상기 제1 테이블의 상기 복수의 저항값은 상기 전기 퓨즈에 대한 수명 말기 저항값에 대응하는 것을 특징으로 하는 차량.
- 제6항에 있어서,상기 전기 퓨즈는 고전류 지연 동작 전기 퓨즈인 것을 특징으로 하는 차량.
- 제6항에 있어서,상기 마이크로컨트롤러와 작동 가능하도록 통신하는 차량 제어부를 더 포함하고,상기 차량 제어부는, 상기 제1 진단 신호를 수신하고, 상기 제1 진단 신호에 응답하여 차량 표시 디바이스 상에 표시되는 퓨즈 서비스 메시지를 생성하는 것을 특징으로 하는 차량.
- 제6항에 있어서,상기 마이크로컨트롤러는 상기 전류값이 임계 전류값보다 큰 경우에만 상기 전기 퓨즈의 상기 제1 저항값을 결정하는 것을 특징으로 하는 차량.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018558303A JP6643505B2 (ja) | 2016-12-12 | 2017-12-12 | 電気ヒューズのための診断システムを含む車両 |
PL17880772T PL3422028T3 (pl) | 2016-12-12 | 2017-12-12 | Pojazd posiadający układ diagnostyczny dla bezpiecznika elektrycznego |
KR1020187025934A KR102055858B1 (ko) | 2016-12-12 | 2017-12-12 | 전기 퓨즈를 위한 진단 시스템을 포함하는 차량 |
EP17880772.3A EP3422028B1 (en) | 2016-12-12 | 2017-12-12 | Vehicle having a diagnostic system for an electrical fuse |
CN201780020436.9A CN109073702B (zh) | 2016-12-12 | 2017-12-12 | 具有用于电熔丝的诊断系统的车辆 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/375,463 US10288665B2 (en) | 2016-12-12 | 2016-12-12 | Vehicle having a diagnostic system for an electrical fuse |
US15/375,463 | 2016-12-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018110943A1 true WO2018110943A1 (ko) | 2018-06-21 |
Family
ID=62488461
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/014560 WO2018110943A1 (ko) | 2016-12-12 | 2017-12-12 | 전기 퓨즈를 위한 진단 시스템을 포함하는 차량 |
Country Status (7)
Country | Link |
---|---|
US (1) | US10288665B2 (ko) |
EP (1) | EP3422028B1 (ko) |
JP (1) | JP6643505B2 (ko) |
KR (1) | KR102055858B1 (ko) |
CN (1) | CN109073702B (ko) |
PL (1) | PL3422028T3 (ko) |
WO (1) | WO2018110943A1 (ko) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111448731B (zh) | 2017-11-08 | 2023-06-30 | 伊顿智能动力有限公司 | 用于电动移动应用的电源分配单元和熔断器管理 |
US11070049B2 (en) | 2017-11-08 | 2021-07-20 | Eaton Intelligent Power Limited | System, method, and apparatus for power distribution in an electric mobile application using a combined breaker and relay |
US11368031B2 (en) | 2017-11-08 | 2022-06-21 | Eaton Intelligent Power Limited | Power distribution and circuit protection for a mobile application having a high efficiency inverter |
DE102018127253B4 (de) * | 2018-09-28 | 2020-06-10 | Kromberg & Schubert Gmbh & Co. Kg | Verfahren zum Ermitteln der Restlebensdauer einer elektrischen Sicherung |
US11670937B2 (en) | 2019-02-22 | 2023-06-06 | Eaton Intelligent Power Limited | Coolant connector having a chamfered lip and fir tree axially aligned with at least one o-ring |
EP3723217A1 (de) * | 2019-04-10 | 2020-10-14 | Siemens Aktiengesellschaft | Schutzeinrichtung zum abschalten eines überstroms in einem gleichspannungsnetz |
DE102019205771A1 (de) * | 2019-04-23 | 2020-10-29 | Robert Bosch Gmbh | Verfahren zur Ermittlung eines Versorgungsstroms eines elektrischen Energieversorgungssystems |
CN114175444A (zh) | 2019-07-15 | 2022-03-11 | 伊顿智能动力有限公司 | 具有高效逆变器的移动应用的电源分配和电路保护 |
CN111243915B (zh) * | 2020-01-10 | 2024-01-05 | 浙江吉利汽车研究院有限公司 | 一种保险丝提示更换装置、方法及汽车 |
CN111880009B (zh) * | 2020-07-10 | 2023-05-30 | 广东电网有限责任公司广州供电局 | 一种中压熔断器熔体电阻精确测量电路及其测量方法 |
US11881371B2 (en) * | 2020-10-21 | 2024-01-23 | Solaredge Technologies Ltd. | Thermal fuse |
KR20220090674A (ko) | 2020-12-22 | 2022-06-30 | 현대자동차주식회사 | 모빌리티의 비상 전력관리 시스템 및 이의 제어 방법 |
EP4086646B1 (en) | 2021-05-03 | 2023-07-19 | Volvo Truck Corporation | A method for estimating the ageing state of fuse elements and an electrical fuse maintenance system |
KR20230072820A (ko) * | 2021-11-18 | 2023-05-25 | 현대자동차주식회사 | 전기차 배터리용 퓨즈 수명 예측 장치 및 그 예측 방법 |
US11906560B2 (en) * | 2021-12-08 | 2024-02-20 | Nanya Technology Corporation | System and method of measuring fuse resistance and non-transitory computer readable medium |
DE102022211027A1 (de) * | 2022-10-18 | 2024-04-18 | Siemens Aktiengesellschaft | Alterungsüberprüfung für Niederspannungskomponenten |
JP2024135573A (ja) * | 2023-03-23 | 2024-10-04 | 株式会社オートネットワーク技術研究所 | 劣化判定装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6008627A (en) * | 1997-05-12 | 1999-12-28 | International Business Machines Corporation | Overvoltage protection circuit for a battery pack |
US20050254189A1 (en) * | 2004-05-07 | 2005-11-17 | Taiwan Semiconductor Manufacturing Co., Ltd. | ESD protection circuit with low parasitic capacitance |
JP2010160026A (ja) * | 2009-01-07 | 2010-07-22 | Nissan Motor Co Ltd | 車両用電力制御装置及び組電池の内部抵抗推定方法 |
KR101547597B1 (ko) * | 2014-04-18 | 2015-08-28 | 익스팬테크주식회사 | 서지보호소자 열화진단장치 |
JP2016124512A (ja) * | 2015-01-08 | 2016-07-11 | 株式会社オートネットワーク技術研究所 | 電気接続箱 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63131426A (ja) | 1986-11-21 | 1988-06-03 | 新日本製鐵株式会社 | 稼動中の低圧動力設備のヒユ−ズ劣化診断方法 |
FR2730814B1 (fr) | 1995-02-20 | 1997-04-30 | Peugeot | Dispositif de surveillance de l'etat de fusibles de protection d'organes fonctionnels d'un vehicule automobile |
KR100485124B1 (ko) * | 2002-04-20 | 2005-04-20 | 김영애 | 차량 관리 시스템 |
MXPA06008328A (es) * | 2005-07-20 | 2007-02-02 | Littelfuse Inc | Indicador de diagnostico de fusible que incluye identificador visual de estado. |
DE102007054297A1 (de) | 2007-11-09 | 2009-05-14 | Siemens Ag | Sicherungslasttrennschalter bzw. Leistungsschalter |
US7792633B2 (en) * | 2008-07-03 | 2010-09-07 | Gm Global Technology Operations, Inc. | Ignition coil module fuse diagnostic |
CN101776720B (zh) * | 2010-01-04 | 2011-09-07 | 苏州热工研究院有限公司 | 熔断器老化状态多因子检测系统及老化状态评估方法 |
JP2014187807A (ja) * | 2013-03-22 | 2014-10-02 | Toyota Motor Corp | 蓄電システム |
US10203362B2 (en) * | 2015-05-22 | 2019-02-12 | GM Global Technology Operations LLC | Manual service disconnect fuse state determination systems and methods |
US10598703B2 (en) * | 2015-07-20 | 2020-03-24 | Eaton Intelligent Power Limited | Electric fuse current sensing systems and monitoring methods |
CN205484567U (zh) * | 2016-01-28 | 2016-08-17 | 武汉标迪电子科技有限公司 | 一种电动汽车用熔断器在线检测装置 |
US9989579B2 (en) * | 2016-06-20 | 2018-06-05 | Eaton Intelligent Power Limited | Monitoring systems and methods for detecting thermal-mechanical strain fatigue in an electrical fuse |
-
2016
- 2016-12-12 US US15/375,463 patent/US10288665B2/en active Active
-
2017
- 2017-12-12 PL PL17880772T patent/PL3422028T3/pl unknown
- 2017-12-12 KR KR1020187025934A patent/KR102055858B1/ko active IP Right Grant
- 2017-12-12 WO PCT/KR2017/014560 patent/WO2018110943A1/ko active Application Filing
- 2017-12-12 CN CN201780020436.9A patent/CN109073702B/zh active Active
- 2017-12-12 EP EP17880772.3A patent/EP3422028B1/en active Active
- 2017-12-12 JP JP2018558303A patent/JP6643505B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6008627A (en) * | 1997-05-12 | 1999-12-28 | International Business Machines Corporation | Overvoltage protection circuit for a battery pack |
US20050254189A1 (en) * | 2004-05-07 | 2005-11-17 | Taiwan Semiconductor Manufacturing Co., Ltd. | ESD protection circuit with low parasitic capacitance |
JP2010160026A (ja) * | 2009-01-07 | 2010-07-22 | Nissan Motor Co Ltd | 車両用電力制御装置及び組電池の内部抵抗推定方法 |
KR101547597B1 (ko) * | 2014-04-18 | 2015-08-28 | 익스팬테크주식회사 | 서지보호소자 열화진단장치 |
JP2016124512A (ja) * | 2015-01-08 | 2016-07-11 | 株式会社オートネットワーク技術研究所 | 電気接続箱 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3422028A4 * |
Also Published As
Publication number | Publication date |
---|---|
US20180164364A1 (en) | 2018-06-14 |
EP3422028A1 (en) | 2019-01-02 |
CN109073702A (zh) | 2018-12-21 |
EP3422028B1 (en) | 2020-05-13 |
CN109073702B (zh) | 2021-09-28 |
KR102055858B1 (ko) | 2019-12-13 |
PL3422028T3 (pl) | 2020-11-16 |
JP6643505B2 (ja) | 2020-02-12 |
US10288665B2 (en) | 2019-05-14 |
EP3422028A4 (en) | 2019-03-20 |
JP2019516107A (ja) | 2019-06-13 |
KR20180107242A (ko) | 2018-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018110943A1 (ko) | 전기 퓨즈를 위한 진단 시스템을 포함하는 차량 | |
WO2019151779A1 (ko) | 프리차지 저항 보호 장치 | |
WO2020055117A1 (ko) | 배터리 관리 장치 | |
WO2017095066A1 (ko) | 언노운 방전 전류에 의한 배터리 셀의 불량 검출 장치 및 방법 | |
WO2017142385A1 (ko) | 스위치 부품의 고장 진단 장치 및 방법 | |
WO2018070684A2 (ko) | 진단 장치 및 이를 포함하는 전원 시스템 | |
WO2012165879A2 (en) | Secondary battery management system and method for exchanging battery cell information | |
WO2018012706A1 (ko) | 배터리 셀 밸런싱의 방법 및 시스템 | |
WO2020076127A1 (ko) | 배터리 관리 장치 및 방법 | |
WO2014030839A1 (ko) | 릴레이 제어 시스템 및 그 제어 방법 | |
WO2018021661A1 (ko) | 션트저항을 이용한 전류 측정 장치 | |
WO2021251653A1 (ko) | 릴레이 진단 장치, 릴레이 진단 방법, 배터리 시스템 및 전기 차량 | |
WO2014084628A1 (ko) | 배터리 전류 측정 장치 및 그 방법 | |
WO2018139741A1 (ko) | 배터리 팩 및 배터리 팩이 연결된 차량 | |
WO2019107976A1 (ko) | 배터리 팩 | |
WO2019117555A1 (ko) | 단락 방지 장치 및 방법 | |
WO2020004774A1 (ko) | 배터리 관리 시스템에 포함된 회로 기판을 테스트하기 위한 장치 및 방법 | |
WO2020080802A1 (ko) | 배터리 모듈 밸런싱 장치 및 방법 | |
WO2023063625A1 (ko) | 배터리 진단 장치, 배터리 팩, 전기 차량, 및 배터리 진단 방법 | |
WO2017034144A1 (ko) | 제어라인 진단 장치 | |
WO2019151631A1 (ko) | 배터리 보호 회로 및 이를 포함하는 배터리 팩 | |
WO2019182253A1 (ko) | 냉각수 누설 검출 장치 | |
WO2019093667A1 (ko) | 릴레이 진단 회로 | |
WO2019107979A1 (ko) | 배터리 팩 | |
WO2023287180A1 (ko) | 배터리 진단 장치, 배터리 팩, 전기 차량 및 배터리 진단 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 20187025934 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020187025934 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017880772 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2017880772 Country of ref document: EP Effective date: 20180927 |
|
ENP | Entry into the national phase |
Ref document number: 2018558303 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17880772 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |