WO2018110144A1 - 無機酸化物粒子担持構造担体の製造方法 - Google Patents

無機酸化物粒子担持構造担体の製造方法 Download PDF

Info

Publication number
WO2018110144A1
WO2018110144A1 PCT/JP2017/040014 JP2017040014W WO2018110144A1 WO 2018110144 A1 WO2018110144 A1 WO 2018110144A1 JP 2017040014 W JP2017040014 W JP 2017040014W WO 2018110144 A1 WO2018110144 A1 WO 2018110144A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic oxide
slurry
random
oxide particles
carrier
Prior art date
Application number
PCT/JP2017/040014
Other languages
English (en)
French (fr)
Inventor
進一 舟部
友章 伊藤
Original Assignee
エヌ・イーケムキャット株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エヌ・イーケムキャット株式会社 filed Critical エヌ・イーケムキャット株式会社
Publication of WO2018110144A1 publication Critical patent/WO2018110144A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/464Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation

Definitions

  • the present invention relates to a method for producing an inorganic oxide particle-supported structure carrier, and more specifically, an inorganic oxide in which a structure carrier for a catalyst having a random three-dimensional network structure is coated with inorganic oxide particles up to the inside of the structure carrier.
  • the present invention relates to a method for producing a product particle-supporting structure carrier.
  • Exhaust gas contains various harmful components.
  • Exhaust gas purification catalysts are generally considered as purifying targets for such various harmful components and purifying the defined targets. .
  • Such catalysts are known as oxidation catalysts, reduction catalysts, three-way catalysts and the like.
  • Such an exhaust gas purifying catalyst has been put to practical use by covering a three-dimensional structure.
  • the composition of harmful components in the exhaust gas may be unique depending on the type of engine that is the source.
  • diesel vehicles contain a large amount of soot and unburned organic components (SOF) contained in the exhaust gas as fine particles, and a filter is used to purify such fine particle components.
  • a DPF Diesel Particle Filter
  • honeycomb wall flow filter
  • CSF Catalyzed Soot Filter
  • the type of honeycomb other than the wall flow filter used for the DPF and CSF includes a flow-through honeycomb in which holes for exhaust gas separated by partition walls are accumulated. Often used.
  • a honeycomb structure is composed of cells separated by partition walls extending in the flow direction of exhaust gas.
  • the exhaust gas purification catalyst as described above has a catalyst component on the surface of such cells (partition walls) or inside the partition walls. It is configured by impregnation.
  • the exhaust gas purification catalyst configured as described above can exhibit high purification performance against harmful components due to a wide geometric surface area derived from the honeycomb.
  • Honeycomb structures used for exhaust gas purifying catalysts are widely made of ceramics obtained by firing porous inorganic oxides or made of metal foil such as stainless steel folded and laminated.
  • a method of coating or impregnating a catalyst composition on a three-dimensional structure such as a honeycomb is generally called a wash coat method.
  • the outline of this method is as follows: “One end or all of the through-holes of the honeycomb are immersed in the catalyst composition slurry. Step of supplying the catalyst composition slurry inside the holes "and” removing excess catalyst composition slurry by supplying airflow (air blowing) to the catalyst composition slurry supplied inside the through holes and through holes The partition wall surface that forms the film is coated with the catalyst composition slurry.
  • the honeycomb coated with the catalyst composition slurry is usually dried and fired to be fixed to become a honeycomb structure type catalyst, which is used for purification of exhaust gas from automobiles and the like.
  • Patent Document 1 In the method of coating the catalyst composition by the wash coat method, a method using centrifugal force instead of the air blowing means has been proposed (Patent Document 1). In this method, by applying centrifugal force to a three-dimensional structure such as a honeycomb after being immersed in the catalyst composition slurry, excess slurry is removed and the surface of the three-dimensional structure is coated with the catalyst composition slurry.
  • Patent Document 2 a pellet type and a structure support in which wires are integrated.
  • the catalyst composition supported on the surface of the pellet may be peeled off due to vibration, and it is no longer used for purification of automobile exhaust gas at present.
  • structural carriers with integrated wires there is little concern of peeling like pellets, and random air holes are formed, so that the flow of air tends to be disturbed and high activity can be expected, and high thermal conductivity
  • the compatibility with the heating means described later is good, there is a concern about pressure loss with respect to the exhaust gas because the exhaust gas vent formed by the accumulation of wires is random. Such pressure loss is a cause of engine output reduction when used for automobile exhaust gas purification, and it has been rarely used as a main catalyst used for automobile exhaust gas purification.
  • urea When the fuel is supplied into the exhaust gas as described above, conventionally, it is often used mainly for the purpose of heating soot and sof in DPF and CSF.
  • urea In the case of urea, it is supplied in front of the reduction catalyst and used for reducing and purifying NOx on the surface of the reduction catalyst.
  • the catalytic reaction using urea is also referred to as ammonia SCR (Selective Catalyzed Reduction), which is widely used today.
  • Urea is used as an ammonia source, and urea is used on the SCR catalyst.
  • a decomposition component is added, urea is decomposed into ammonia, and then used for reduction in the SCR catalyst.
  • a separate urea decomposition catalyst may be arranged between the urea supply sites upstream of the SCR catalyst.
  • the SCR catalyst as described above is widely used. However, in recent years, it is sometimes difficult to achieve the emission control of harmful substances in the exhaust gas with such an SCR catalyst alone. In addition, since the SCR catalyst needs to be provided with urea supply means together with the catalyst, there is a problem that the cost increases when applied to an automobile.
  • LNC Lean NOx Catalyst
  • LNT Lean
  • a technique called “NOx Trap” is also known.
  • the details of the action of LNC and LNT may differ depending on how they are defined, but basically, HC and CO contained in exhaust gas and generally recognized as harmful components are used as reducing components in exhaust gas. It is means for purifying NOx.
  • fuel for operating the engine may be used as a reducing component.
  • the constituent hydrocarbon when the fuel is used as a reducing component, the constituent hydrocarbon may be used as it is, but the fuel is more reactive (reducing) CO, short chain HC, or hydrogen. In some cases, it is used after being converted to.
  • Obtaining a highly active reducing component from such a fuel component is also called fuel reforming, and a catalyst used for fuel reforming is sometimes called a reforming catalyst.
  • the reforming catalyst may be used in the above-mentioned LNT or LNC in the form of being included in the catalyst like the SCR, but a dedicated reforming catalyst structure is used for reduction for the purpose of improving the reaction efficiency. Therefore, it may be arranged in the fuel supply path for this purpose, and specific studies have been made (Patent Document 3).
  • Exhaust gas purification catalysts generally have high activity due to the increase in catalyst temperature due to the temperature of exhaust gas, but in recent years, the amount of fuel supplied to the engine cylinder has been decreasing for the purpose of reducing fuel consumption. After startup, the time to reach a temperature at which the catalyst exhibits sufficient activity may be lengthened. Therefore, means for positively raising the temperature of the catalyst not only depending on the temperature of the exhaust gas has been studied. As a means for raising the catalyst temperature, there is a case in which combustion fuel is supplied into the exhaust gas, the supplied fuel is oxidized or burned on the oxidation catalyst, and the generated heat is used.
  • Patent Document 4 In addition to the heat generated by the catalytic reaction, a method of directly heating the catalyst using a separate heat source has been studied (Patent Document 4). When the catalyst is directly heated, if the structure supporting the catalyst is made of metal, an excellent effect can be expected in combination with such heating means because of its good thermal conductivity.
  • the effective reforming catalyst for that purpose is to use “random structure as a carrier for fuel reforming catalyst” and “external heating to the catalyst to improve the fuel reforming ability by the random structure”. It is preferable to combine them. This combination is expected to have excellent effects in applications such as reforming catalysts due to the synergistic effect of high geometric surface area, turbulence of airflow due to random pores, and good compatibility with heating means.
  • the residence time of the fuel in the catalyst carrier is too short, sufficient reforming cannot be performed and the action of purifying harmful components by the catalyst does not improve.
  • the residence time is too long, the reforming of the fuel may proceed excessively and oxidize. In this case, it is difficult to improve the purification action.
  • the random structure has a random network structure in three dimensions, the fuel can stay in the random structure for an appropriate time.
  • a honeycomb catalyst having a through-hole extending in the flow direction of a general exhaust gas is used for an application such as a reforming catalyst, the through-hole constituting the honeycomb is straight, The residence time of the reforming component is shortened.
  • the tendency for the residence time of the fuel to become shorter becomes stronger.
  • the catalyst composition slurry containing such an active species-supporting inorganic oxide tends to have a high viscosity.
  • the viscosity of the catalyst composition slurry may also exhibit specificity. For example, the viscosity may increase due to the stress applied in the catalyst slurry coating process as described above.
  • the random structure does not have a straight through hole unlike the flow-through honeycomb and the wall flow honeycomb, it is difficult to discharge the excess slurry.
  • an inorganic oxide particle is formed at the center of the random structure due to a synergistic effect with the viscosity and viscosity of the slurry.
  • a film (meniscus) of inorganic oxide particles may be formed so as to cover the mesh portions of the random structure.
  • the inorganic oxide particles are not left uncoated and a meniscus is not formed on a support having a random three-dimensional network structure that is expected to have an effect derived from its unique configuration as described above.
  • covered is provided.
  • the present invention has a random three-dimensional network structure and a breathable structure carrier, a slurry containing inorganic oxide particles is immersed under reduced pressure, and then centrifugal force is applied to the structure carrier to remove excess slurry.
  • the step of firing is performed, and then firing is performed.
  • the present invention also provides an inorganic oxide particle-supported structural carrier, which has a random three-dimensional network structure and is structured to be breathable. It is a product particle carrying structure carrier.
  • the present invention is to immerse a structure carrier having a random three-dimensional network structure and a breathable structure in a slurry containing inorganic oxide particles under reduced pressure, and then applying centrifugal force to the structure carrier to remove excess slurry.
  • the method for producing an inorganic oxide particle-supported structure carrier according to the present invention allows the inorganic oxide particles to be formed without forming a meniscus even though the carrier for coating the inorganic oxide particles is a carrier having a random three-dimensional network structure. Can be coated without being left uncoated.
  • the inorganic oxide particle-supported structure carrier of the present invention is a structure in which inorganic oxide particles are coated on a random structure without forming a meniscus and without being left uncoated.
  • the coating method of the inorganic oxide particles of the present invention is such that the random structure is immersed in the slurry containing the inorganic oxide particles under reduced pressure, and then the centrifugal slurry is applied to remove the excess slurry, thereby removing the inorganic slurry. It is possible to coat without leaving uncoated oxide particles and without forming a meniscus.
  • FIG. 1 It is a schematic diagram of a wire carrier. It is an enlarged view of B part in the schematic diagram of FIG. 1 is a schematic view of a vacuum impregnation device. It is a schematic diagram of a centrifuge.
  • FIG. 3 is a cross-sectional view taken along line AA of the wire carrier after impregnation with slurry in Example 1.
  • 2 is a cross-sectional view of the wire carrier taken along the line AA after firing in Example 1.
  • FIG. It is an enlarged view of C part in sectional drawing of FIG. 2 is a schematic view of a release-system slurry impregnation device of Comparative Example 1.
  • FIG. 6 is a cross-sectional view of the wire carrier taken along the line AA in Comparative Example 1.
  • FIG. 6 is a schematic diagram of slurry film formation in Comparative Example 2.
  • FIG. 3 is a cross-sectional view taken along line AA of the wire carrier after impregnation with slurry in Example 1.
  • the method for producing an inorganic oxide particle-supporting structure carrier of the present invention comprises a random three-dimensional network structure and a breathable structure carrier in a slurry containing inorganic oxide particles. It includes soaking under reduced pressure, applying centrifugal force to the structure carrier to remove excess slurry, and then baking.
  • the random structure used in the method of the present invention is not particularly limited as long as it has a random three-dimensional network structure and is breathable, and does not include a non-random three-dimensional network structure such as a honeycomb structure. .
  • a random structure for example, a material in which metal objects having high thermal conductivity such as a macroporous metal porous body, a metal filament, and a metal wire are integrated and molded can be cited.
  • the kind of metal is not specifically limited, For example, stainless steel, aluminum, copper, silver, gold
  • the metal may be roughened with an acid.
  • a carrier in which metal wires are integrated and molded because of the high porosity, that is, the geometric surface area composed of macropores.
  • a stainless steel wire carrier roughened with an acid is more preferable.
  • the size of the random structure is not particularly limited, but is preferably 1 to 1000 cm 3 , for example, and more preferably 10 to 500 cm 3 .
  • the length of the random structure is not particularly limited, but is preferably 10 to 500 mm, and more preferably 20 to 100 mm, for example.
  • the shape of the random structure is not particularly limited, and examples thereof include a cylindrical column, an elliptical column, and a polygonal column such as a cube.
  • the diameter of the macroporous metal porous body, the metal filament, the metal wire, etc. constituting the random structure is not particularly limited, but is preferably 0.2 to 0.8 mm, for example, More preferably, it is ⁇ 0.5 mm.
  • the wire diameter is 0.2 mm or more, it is possible to maintain structural strength even in an environment where various vibrations and stresses are applied, such as in automobile applications, when the outer shape is integrated and formed, and the gap that is configured However, the flow (ventilation) of gas generated by reforming when used as a reforming catalyst is not hindered.
  • the wire diameter is 0.8 mm or less, it is easy to accumulate and form an outer shape, and even when the catalyst is coated with a wide geometric surface area derived from the wire diameter for use as a reforming catalyst. A sufficient active surface can be obtained.
  • the porosity in the random structure is preferably 60 to 90% by volume, more preferably 70 to 85% by volume. If the porosity is more than 90% by volume, the liquid holding power is poor when a reforming raw material liquid such as fuel is supplied, the geometric surface area per unit volume when catalyzed is reduced, and the reforming efficiency is improved. May decrease. In addition, if the porosity is less than 60% by volume, it may take a long time for the reforming raw material such as fuel to be held on the wire carrier, the reformed reducing component is oxidized, and the reaction efficiency in the catalyst is reduced. There are things to do.
  • the slurry used in the present invention is not particularly limited as long as it contains inorganic oxide particles.
  • the inorganic oxide particles preferably have a catalytic action, and examples thereof include those in which an active metal is supported on an inorganic oxide widely used as a catalyst carrier.
  • the active metal include platinum, rhodium, palladium, iridium and the like.
  • the inorganic oxide include alumina, silica, titania, zirconia, ceria, vanadia, and zeolite.
  • a plurality of these active metals and inorganic oxides may be combined. Moreover, it may be a composite oxide obtained by combining a plurality of inorganic oxides.
  • the size of the inorganic oxide particles is not particularly limited, and for example, the average particle size is 0.1 to 1000 ⁇ m, preferably 3 to 100 ⁇ m.
  • the specific surface area of the inorganic oxide particles is not particularly limited, and is, for example, 0.1 to 1000 m 2 / g, preferably 1 to 300 m 2 / g.
  • the inorganic oxide particles can be produced by a conventionally known method.
  • the solid content concentration in the slurry is not particularly limited, but for example, it is preferably 5 to 40 wt%, and more preferably 10 to 30 wt%.
  • the method of the present invention enables reliable slurry coating to the inside of a random structure, even if it is a highly viscous slurry, but if the solid content concentration is too higher than 30 wt%, the slurry impregnation or It may take time to remove the excess slurry, leading to a reduction in efficiency.
  • the amount of the slurry coated on the structural support may be reduced, and the activity as a reforming catalyst may be reduced.
  • a slurry having a high solid content concentration and a high viscosity can be efficiently applied to a random structure, but the viscosity of such a slurry is not particularly limited, For example, it is preferable to use a slurry having a viscosity of 1,000 to 6,000 [cps] as measured at 60 rpm with a B-type viscometer at room temperature, and to use a slurry having a viscosity of 3,000 to 5,000 [cps]. More preferred. If the viscosity is higher than 6,000 [cps], it may take time to impregnate the slurry and remove the excess slurry, leading to a reduction in efficiency. On the other hand, if the viscosity is lower than 1,000 [cps], the coating amount of the slurry on the random structure may be reduced, and the activity as the reforming catalyst may be reduced.
  • the viscosity there are various factors that determine the viscosity as described above.
  • the particle size of the inorganic oxide, the surface state of the particles, additives other than the inorganic oxide, presence or absence of an activator, inorganic oxide The influence of the specific surface area of the particles, the pH of the slurry, the temperature, etc. can be considered.
  • each of these factors is not particularly limited, and is appropriately selected from known materials in the application to which the present invention is applied. It is preferable to select and achieve the viscosity at the solid content concentration as described above.
  • Solvent 1 to 10000 g
  • Inorganic oxide particles 1 to 10000 g
  • Active metal 0.1 to 1000 g / L
  • Temperature 0-50 ° C
  • the random structure is immersed in the slurry under reduced pressure.
  • This immersion treatment may be part or all of the random structure.
  • the immersion treatment under reduced pressure it is possible to promote deaeration from the inside of the random three-dimensional network structure, and to reliably distribute the slurry to the inside of the three-dimensional network structure.
  • the geometric surface constituting the random structure is coated with the homogeneous slurry.
  • Such decompression operation is not particularly limited, and may be appropriately set depending on the physical properties and composition of the slurry to be used, the density of the random structure (porosity), and the apparatus used for decompression.
  • the pressure is preferably ⁇ 0.001 [MPa] or less, and more preferably ⁇ 0.05 [MPa] or less. With such a negative pressure, the slurry can be surely distributed almost inside the random structure.
  • degassing from the random structure may be promoted by appropriately applying vibration in combination with the reduced pressure.
  • the timing for applying such vibration may be before pressure reduction, during pressure reduction, or after pressure reduction, and the type of vibration to be applied is vertical shaking that applies an inertial force to the random structure. It may be fine vibration such as ultrasonic waves.
  • the time for immersing the random structure in the slurry under reduced pressure is not particularly limited, and is appropriately determined depending on the physical properties and composition of the slurry to be used, the density (void ratio) of the random structure, the apparatus used for the reduced pressure, and the negative pressure. For example, 1 to 300 seconds are preferable, and 30 to 100 seconds are more preferable. By immersing the random structure in such a range of time, the slurry can be impregnated into the random structure.
  • the apparatus used for immersing the random structure in the slurry under reduced pressure is not particularly limited as long as it can appropriately reduce the pressure.
  • a commercially available vacuum dryer manufactured by Espec Corporation or the like can be used.
  • centrifugal force is applied to the structure carrier to remove excess slurry.
  • the directionality of the centrifugal treatment is not particularly limited with respect to the shape of the random structure, and centrifugal force may be applied while rotating the random structure.
  • the centrifugal treatment conditions of the method of the present invention are not particularly limited, but may be appropriately set according to the porosity of the applied random structure, the physical properties of the slurry subjected to the vacuum immersion treatment, and the wire diameter of the random structure. good.
  • the centrifugation treatment time is preferably 1 to 500 seconds, and more preferably 30 to 180 seconds, for example.
  • the centrifugal force applied to the random structure impregnated with the slurry is not particularly limited, and the physical properties and composition of the slurry used, the density of the random structure (porosity), and the centrifugal treatment are used. Although it is appropriately set depending on the structure of the apparatus and its acceleration, for example, it is preferably 0.1 to 250 N, and preferably 10 to 100 N. If the centrifugal force is less than 0.1 N, it may be difficult to remove the excess slurry. If the centrifugal force is more than 250 N, the slurry may be excessively removed or the slurry on the random structure may be biased. is there.
  • a small centrifuge manufactured by Kokusan Co., Ltd.
  • the step of immersing the random structure in the slurry under reduced pressure and then performing the centrifugal treatment may be performed a plurality of times.
  • the method in such a calcination step is not particularly limited, and may be set as appropriate from the conditions generally employed in the catalyst field.
  • the calcination temperature is 400 to 600 ° C.
  • the calcination time is 10 Examples include conditions of minutes to 2 hours.
  • the random structure is immersed in the inorganic oxide-containing slurry under reduced pressure, and the excess slurry is removed by centrifugal force, followed by firing, whereby the random structure is left uncoated.
  • the inorganic oxide particles can be coated without further forming a meniscus, but if necessary, the method of the present invention may be repeated as long as the effects of the present invention are not impaired.
  • the inorganic oxide particles can be thickened, and by using different inorganic oxide containing slurries, different inorganic oxide particles can be coated.
  • the zone coating method examples include known methods. For example, a slurry that is the same as or different from the inorganic oxide-containing slurry used in the method of the present invention (hereinafter referred to as “slurry for zone coating”) is randomly selected. It is possible to immerse part of the structure, such as above and below.
  • the random structure has a rolling part such as a cylindrical shape, a conical shape, a truncated cone shape, and a spherical shape, the slurry for zone coating is put in a flat container, and the random structure is rolled in that. Side radial zones can be coated.
  • the zone coating slurry may be poured into the center of the random structure by pressurization or suction to cover the radial zone in the center of the random structure.
  • the order of performing the zone coating is not particularly limited, and may be, for example, before immersing under reduced pressure in the method of the present invention, before or after centrifuging a random structure, and after firing. May be.
  • excess zone coating slurry may be removed by centrifugation or air blowing.
  • the inorganic oxide particle-supported structure carrier produced by the above-described method of the present invention is one in which the inorganic oxide particles are coated on the three-dimensional network structure of the random structure without forming a film (meniscus), There is no uncoated part (unpainted) of inorganic oxide particles.
  • the inorganic oxide particle-supported structure carrier can be used for applications such as exhaust gas oxidation catalyst, particulate filter, selective reduction catalyst, fuel reforming catalyst, etc., and among these applications, in particular, fuel reforming catalyst Is preferred.
  • an inorganic oxide particle is an alumina or a silica, it can be used for uses, such as fuel reforming.
  • the random structure is a wire carrier, the active species can be effectively used particularly because the wire is covered with inorganic oxide particles.
  • the random structural support is immersed in a slurry containing the inorganic oxide particles under reduced pressure, and then the random structural support is applied to the random structural support.
  • Inorganic oxide particles can be applied by applying centrifugal force to remove excess slurry.
  • Example 1 The whole part of the wire carrier was immersed in the slurry using a vacuum impregnation device (manufactured by Kiriyama Seisakusho, suction bell) (FIG. 3), and subjected to a vacuum treatment at ⁇ 0.075 [MPa] for 60 seconds. The deaeration process from was performed. Next, using a centrifuge (made by Kokusan Co., Ltd., small centrifuge (H-122)) (FIG. 4), a centrifugal force of 21 N (900 rotations) is applied for 90 seconds to remove excess slurry. Removed. The wire carrier from which excess slurry was removed was dried at 200 ° C. and then fired at 450 ° C. for 30 minutes in an air atmosphere using an electric furnace.
  • a centrifuge made by Kokusan Co., Ltd., small centrifuge (H-122)
  • FIG. 5 shows a cross-sectional view of the wire carrier immediately after the slurry impregnation
  • FIG. 6 shows a cross-sectional view of the wire carrier after firing. As shown in FIG. 7, it was confirmed that the wire carrier after firing had no unpainted areas and was coated with inorganic oxide particles without forming a meniscus.
  • Example 2 Using the inorganic oxide particle-carrying wire carrier obtained in Example 1 and the same slurry as in Example 1, the same method as in Example 1 is repeated once again. An inorganic oxide particle-supporting wire carrier in which the inorganic oxide particles are thickened on the wire carrier is obtained.
  • Example 3 Using the same slurry as in Example 1, a known zone coat treatment is performed on a portion of the inorganic oxide particle-carrying wire carrier obtained in Example 1 below. An inorganic oxide particle-supporting wire carrier in which the inorganic oxide particles are thickened at a part below the wire carrier is obtained.
  • Comparative Example 1 A wire carrier of Comparative Example 1 was obtained in the same manner as in Example 1 except that the random structure was immersed in the slurry in an open system (FIG. 8) without reducing the pressure. In this wire carrier, a void was generated at the center, and an island-shaped uncoated portion (unpainted portion) on which inorganic oxide particles were not supported was confirmed (FIG. 9).
  • an inorganic oxide particle-supporting structure carrier that can be used for exhaust gas purification, fuel reforming, or the like can be produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

ランダムな三次元網目構造を有し、通気可能な構造担体を、無機酸化物粒子を含むスラリーに減圧下で浸漬し、次いで、前記構造担体に遠心力を加えて余分なスラリーを除去した後、焼成することを特徴とする無機酸化物粒子担持構造担体の製造方法により、ランダムな三次元網目構造を持つ構造担体に対して、メニスカスを形成せずに無機酸化物粒子を塗り残さず被覆する事を可能にする。

Description

無機酸化物粒子担持構造担体の製造方法
 本発明は、無機酸化物粒子担持構造担体の製造方法に関し、更に詳細には、ランダムな三次元網目構造を有する触媒用の構造担体に、無機酸化物粒子を構造担体内部にまで被覆した無機酸化物粒子担持構造担体の製造方法に関するものである。
 自動車用エンジン等から排出される排ガスは環境問題として近年ますますその注目を集めている。このような排ガス中に含まれる有害物質の排出を抑制する手段としてはエンジンの制御は無論のこと、エンジンから排出された排ガスを触媒に接触させることで浄化する手段もかねてより検討されており、排ガスの浄化手段として極めて重要な技術として当業者においても広く認識されている。
 排ガスには様々な有害成分が含まれているが、排ガス浄化用触媒はそのような様々な有害成分について浄化対象を定め、この定めた対象を浄化するものとして検討されることが一般的である。そのような触媒は酸化触媒、還元触媒、三元触媒等として知られている。このような排ガス浄化用触媒は、三次元構造体に被覆して実用化されている。
 また、排ガス中の有害成分の組成は発生源であるエンジンの種類によって固有なものもある。例えばディーゼル自動車においてはその排ガスに含まれる煤(soot)や未燃焼の有機成分(SOF:soluble organic function)が微粒子として多く含まれており、そのような微粒子成分を浄化することを目的に、フィルター型のハニカム(ウォールフローフィルター)を使用したDPF(Diesel Paticurate Filter)が利用されている。またこのようなDPFにおける微粒子成分の浄化(燃焼除去)を促進するため、DPFを酸化触媒で触媒化することがあり、このように触媒化したDPFはCSF(Catalyzed Soot Filter)として知られている。なお、前記のDPFやCSFに利用されるウォールフローフィルター以外のタイプのハニカムには、隔壁で区切られた排ガスが通気する孔が集積したフロースルーハニカムがあり、前記の三元触媒や酸化触媒に用いられることが多い。
 ハニカム構造体は、排ガスの流れ方向に延伸された隔壁で区切られたセルからなるが、前記のような排ガス浄化用触媒はこのようなセル(隔壁)の表面または、隔壁の内部に触媒成分を含浸させることで構成されている。このように構成された排ガス浄化触媒は、ハニカムに由来する広い幾何学的な表面積により、有害成分に対して高い浄化性能を発揮することができる。排ガス浄化触媒に利用されるハニカム構造体は、多孔質の無機酸化物を焼成したセラミックス製であったり、ステンレス等の金属の箔を折り曲げて積層させた金属製のものが広く普及している。
 ハニカムのような三次元構造体に触媒組成物を被覆または含浸させる方法は、一般にウオッシュコート法と言われ、その概要は「触媒組成物スラリーにハニカムの通孔の一端もしくは全部を浸漬して通孔内部に触媒組成物スラリーを供給する工程」と「通孔内部に供給された触媒組成物スラリーに対して気流を供給し(エアブロー)することで余剰の触媒組成物スラリーを除去すると共に通孔を形成する隔壁表面を触媒組成物スラリーで被覆する」ものである。触媒組成物スラリーが被覆されたハニカムは、通常、乾燥、焼成を経て定着させることでハニカム構造型触媒となり、自動車等の排ガスの浄化に利用される。
 ウオッシュコート法による触媒組成物の被覆方法では、前記エアブロー手段に替えて遠心力を使用した手法も提案されている(特許文献1)。これは触媒組成物スラリーに浸漬した後のハニカムなどの三次元構造体に遠心力に加えることで、余剰のスラリーを除去し、三次元構造体表面を触媒組成物スラリーで被覆するものである。
 一方、排ガス浄化用触媒としては、上記のようなハニカムタイプの他、古くはペレットタイプやワイヤーを集積したタイプの構造担体(特許文献2)も検討されていた。ペレット状の構造担体については、自動車などに搭載した際に振動でペレット表面に担持した触媒組成物が剥離してしまうことがあり、現時点の自動車排ガス用浄化用途には使用されなくなってきている。ワイヤーを集積したタイプの構造担体については、ペレットのような剥離の懸念は少なく、ランダムな通気孔が形成されることから気流の流れにも乱れが生じ易く高い活性が期待でき、高い熱伝導率から後述するような加熱手段との相性が良いものの、ワイヤーの集積によって構成される排ガスの通気孔がランダムであることから、排ガスに対する圧力損失が懸念される。このような圧力損失は自動車排ガス浄化に用いる場合にエンジンの出力低下の要因とされ、自動車排ガス浄化用に使用される主たる触媒には使用されることは少なくなってきていた。
 上記のように排ガスの浄化ではハニカム構造型触媒を使用することが一般的になり、公道を走行するような自動車ではほぼ全ての自動車に使用されるようになっている。しかし、近年益々強化される排ガス中の有害物質の排出規制に対しては、従来使用されてきた各種触媒を排ガス流の中に配置するのみではその規制を満たすことは難しくなってきている。そのような規制を満たすため排ガス流中に触媒における浄化反応を促進するための成分を供給するようにもなってきている。特に希薄燃焼で稼働されるディーゼルエンジンにおいては、排ガス中の有害物質との触媒反応の促進に有効な還元成分が少なく、その還元成分を補う目的で燃料や尿素が供給されることがある。
 前記のように排ガス中に燃料を供給する場合、従来は主にDPFやCSFにおけるsootやSOFを燃焼させるための加熱を目的に使用されることが多い。また、尿素の場合は還元触媒の前方で供給されて還元触媒表面でNOxを還元浄化するために使用される。なお、尿素を使用した触媒反応はアンモニアSCR(Selective Catalyzed Reduction)とも言われ、今日広く普及しているものであるが、ここで尿素はアンモニア源として利用されるものであり、SCR触媒上に尿素分解成分を加え、尿素をアンモニアに分解のうえSCR触媒における還元に利用されることがある。また、更なる効率の向上を目的としてSCR触媒上流の尿素供給部位の間に別途尿素分解触媒を配置する事もある。
 還元触媒としては上記のようなSCR触媒が広く普及しているが、近年の排ガス中の有害物質の排出規制はこのようなSCR触媒のみでは達成することが困難な場合がある。また、SCR触媒は触媒と共に尿素供給手段を設ける必要があることから、自動車に適用するとコスト高になる問題もある。
 このようなコスト高に対応する手段として、またSCR触媒と組み合わせて更なる浄化能力の向上を目的として、またはコスト低減を目的にしたSCR触媒に替わる手段としてLNC(Lean NOx Catalyst)やLNT(Lean NOx Trap)と言われる技術も知られている。LNCやLNTはその定義の仕方によっても作用の細部が異なる場合もあるが、基本的には排ガス中に含まれ一般的に有害成分として認識されているHCやCOを還元成分として利用し排ガス中のNOxを浄化する手段である。また、LNCやLNTにおいてはその還元反応を更に促進するために、エンジンを稼働するための燃料を還元成分として利用することがある。
 ここで、燃料を還元成分として利用する場合は、その構成成分である炭化水素をそのまま使用する場合もあるが、燃料をより反応性(還元性)の高いCOや、短鎖のHC、または水素に変換して使用する場合もある。このような燃料成分から高活性の還元成分を得る事を燃料改質とも言い、燃料改質に使用される触媒を改質触媒ということがある。改質触媒は、前記のLNTやLNCにおいてはSCR同様にその触媒中に含ませる形で使用しても良いが、反応の効率向上を目的に、専用の改質触媒構造体を還元に利用するための燃料の供給経路に配置しても良く、具体的な検討も行われている(特許文献3)。
 そして、触媒反応はその活性を発揮するために、ある程度の温度が必要であることが多いが、排ガス浄化触媒においても同様である。排ガス浄化触媒では一般的に排ガスの温度による触媒温度の上昇により高活性を得ているが、近年は燃費低減を目的にエンジンのシリンダーに供給される燃料の量が少なくなる傾向にあり、エンジンの始動後、触媒が充分な活性を発揮する温度に至る時間が長くなる事がある。そのため、排ガスの温度のみによらず積極的に触媒の温度を上げる手段も検討されている。このような触媒温度の上昇手段としては、排ガス中に燃焼の燃料を供給し、供給された燃料を酸化触媒上で酸化もしくは燃焼させ、その発熱を利用することがある。また、このような触媒反応による発熱の他、別途熱源をもって触媒を直接加熱する方法も検討されている(特許文献4)。触媒を直接加熱する場合、触媒を担持する構造体が金属製であれば、その熱伝導率の良さからこのような加熱手段との組合せにおいて優れた効果が期待できる。
特開昭57-7881号公報 特開2005-180262号公報 再公表2013/039091号公報 特開2012-21488号公報
 このように、排ガス浄化用触媒といってもその使用状況や市場や規制の要求によって様々な手法が適用されているが、厳しさを増す有害物質の排出規制をクリアするためには、これらの技術を組み合わせて使用することが検討されている。そして、前記の様な技術の中からは、「LNT、LNC技術」の利用と、その活性を向上するための「燃料改質触媒」の利用、「燃料改質触媒用担体としてランダムな三次元網目構造を有し、通気可能な構造担体(以下、単に「ランダム構造体」ともいう)」の利用、「ランダム構造体による燃料の改質能力を向上するための触媒に対する外部加熱」の利用、またそれらの組合せが有力な手段として考えられる。
 LNT、LNC技術においては活性を向上するために、改質触媒をもって燃料を改質することの有効性が見込まれる事は前記のとおりである。そのための有効な改質触媒は「燃料改質触媒用担体としてランダム構造体」を利用することと「ランダム構造体による燃料の改質能力を向上するための触媒に対する外部加熱」を利用することを組み合わせることが好ましい。このような組合せにより、高い幾何学的な表面積と、ランダムな細孔による気流の乱れと、加熱手段との相性の良さの相乗効果により、改質触媒のような用途では優れた効果が期待される。
 また、改質触媒のような用途では、触媒担体中における燃料の滞留時間が短すぎると充分な改質が行えず、触媒による有害成分の浄化作用が向上しない。他方、滞留時間が長すぎると燃料の改質が進み過ぎて酸化してしまう事が有り、この場合も浄化作用の向上が難しくなる。ランダム構造体は、ランダムな網目構造を立体的に有しているため、燃料をランダム構造体中に適切な時間滞留することができるものである。一方、一般的な排ガスの流方向に延設された通孔を有するハニカム触媒を改質触媒のような用途に使った場合、ハニカムを構成する通孔が直線的であり、構造型触媒における被改質成分の滞留時間が短くなってしまう。特に排ガスのように一方向にのみ流れる気流を伴う環境での使用においては燃料の滞留時間が短くなってしまう傾向は強くなる。
 改質触媒のような用途では、燃料のような被改質成分の改質は迅速に行われることが望ましいことから、ランダム構造体に被覆される触媒組成物そのものが高活性であることが望まれるが、そのためには、貴金属等の活性種が高分散に担持される必要がある。それを実現する手段としては、比表面積値の大きな無機酸化物粒子に活性種を担持させることが効果的である。このような活性種を担持した無機酸化物粒子を含む懸濁液をスラリーと呼ぶが、活性種をスラリー化することで分散性が向上し活性が上がるだけでなく、構造担体との密着性も増す場合がある。しかし、このような活性種担持無機酸化物を含む触媒組成物スラリーは粘度が高くなる傾向がある。また高比表面積の無機酸化物であると、触媒組成物スラリーの粘性にも特異性を表す事がある。例えば、前記のような触媒スラリーの被覆工程において加えられる応力により増粘する場合もある。
 ところで、ランダム構造体は、フロースルーハニカムやウォールフローハニカムのように直線の通孔を持たないことから、余剰スラリーの排出が困難であった。また、無機酸化物粒子を含む高粘度な触媒組成物スラリーをランダム構造体に被覆しようとした場合には、スラリーの粘度粘性との相乗作用により、ランダム構造体の中心部には無機酸化物粒子が被覆されない部位(塗り残し)を作ってしまうという問題があった。さらに、ランダム構造体の網目部分同士を覆うように無機酸化物粒子の膜(メニスカス)が形成されることがあり、このようなメニスカスを有する担体を、例えば燃料改質用に使用した場合、上記したように供給された燃料が担体中に滞留する時間が長くなり、燃料の改質が行き過ぎて酸化されてしまうという問題もあった。
 本発明は、上記のようなその独特の構成に由来する作用が期待されるランダムな三次元網目構造を持つ担体に対して、無機酸化物粒子を、塗り残さず、かつメニスカスを形成せずに被覆することができる技術を提供するものである。
 すなわち本発明は、ランダムな三次元網目構造を有し、通気可能な構造担体を、無機酸化物粒子を含むスラリーを減圧下に浸漬し、次いで、前記構造担体に遠心力を加えて余分なスラリーを除去した後、焼成することを特徴とする無機酸化物粒子担持構造担体の製造方法である。
 また、本発明は、無機酸化物粒子担持構造担体であって、ランダムな三次元網目構造を有し、通気可能な構造担体に、無機酸化物粒子が被覆していることを特徴とする無機酸化物粒子担持構造担体である。
 さらに、本発明は、ランダムな三次元網目構造を有し、通気可能な構造担体を、無機酸化物粒子を含むスラリーに減圧下で浸漬し、次いで、構造担体に遠心力を加えて余分なスラリーを除去することを特徴とする構造担体への無機酸化物粒子の塗工方法である。
 本発明の無機酸化物粒子担持構造担体の製造方法は、無機酸化物粒子を被覆させる担体がランダムな三次元網目構造を有する担体であるにも関わらず、メニスカスを形成せずに無機酸化物粒子を塗り残さず被覆することができるものである。また、本発明の無機酸化物粒子担持構造担体は、ランダム構造体に無機酸化物粒子がメニスカスを形成せず、また塗り残し無く被覆されたものである。さらに、本発明の無機酸化物粒子の塗工方法は、ランダム構造体を、無機酸化物粒子を含むスラリーを減圧下に浸漬した後、遠心力を加えて余分なスラリーを除去することによって、無機酸化物粒子を塗り残さず、メニスカスを形成せずに被覆することができるものである。
ワイヤー担体の模式図である。 図1の模式図におけるB部分の拡大図である。 減圧含浸装置の略示図である。 遠心装置の略示図である。 実施例1のスラリー減圧含浸後におけるワイヤー担体のA-A断面図である。 実施例1の焼成後におけるワイヤー担体のA-A断面図である。 図6の断面図におけるC部分の拡大図である。 比較例1の解放系スラリー含浸装置の略示図である。 比較例1におけるワイヤー担体のA-A断面図である。 比較例2のスラリー膜形成の模式図である。
 本発明の無機酸化物粒子担持構造担体の製造方法(以下、「本発明方法」という)は、ランダムな三次元網目構造を有し、通気可能な構造担体を、無機酸化物粒子を含むスラリーに減圧下で浸漬し、構造担体に遠心力を加えて余分なスラリーを除去した後、焼成することを含むものである。
1.[ランダム構造体]
 本発明方法に使用されるランダム構造体は、ランダムな三次元網目構造を有し、通気可能なものであれば特に限定されず、ハニカム構造のようなランダムではない三次元網目構造は含まれない。このようなランダム構造体としては、例えば、マクロポア金属多孔質体、金属フィラメント、金属ワイヤー等の熱伝導率が高い金属の物を集積成型したものが挙げられる。金属の種類は特に限定されず、例えば、ステンレス、アルミ、銅、銀、金、鉄、真鍮等が挙げられる。また、金属は酸により粗面処理されていてもよい。これらランダム構造体中でも、その空隙率の高さ、すなわちマクロ孔から構成される幾何学的な表面積の大きさから金属ワイヤーを集積成型した担体(以下、「ワイヤー担体」ということがある。)が好ましく、酸により粗面処理されたステンレスのワイヤー担体がより好ましい。
 上記ランダム構造体の大きさとしては、特に限定されるものではないが、例えば、1~1000cmが好ましく、10~500cmがより好ましい。また、ランダム構造体の長さとしては、特に限定されるものではないが、例えば、10~500mmが好ましく、20~100mmがより好ましい。さらに、ランダム構造体の形状としては、特に限定されないが、円柱や楕円柱、立方体のような多角柱などが挙げられる。ランダム構造体を構成するマクロポア金属多孔質体、金属フィラメント、金属ワイヤー等の線径は、特に限定されるものでは無いが、例えば、0.2~0.8mmであることが好ましく、0.2~0.5mmであることがより好ましい。線径が0.2mm以上であれば、集積して外形を形成した際に自動車用途の様に様々な振動や応力が加わる環境でも構造的な強さを維持可能になり、構成される空隙についても改質触媒として使用した時に改質されて発生したガスの流通(通気)が阻害される事が無い。また、線径が0.8mm以下であれば、集積して外形を形成する事が容易であり、改質触媒用途として線径に由来する幾何学的な表面積も広く触媒を被覆した際にも充分な活性表面を得ることが出来る。
 上記ランダム構造体における空隙率は、60~90体積%であることが好ましく、70~85体積%がより好ましい。空隙率が90体積%より大きすぎると燃料等の改質原料液を供給した際に液体の保持力が劣り、触媒化した際の単位体積あたりの幾何学的な表面積も少なくなり改質効率が低下することがある。また空隙率が60体積%より小さすぎると燃料等の改質原料がワイヤー担体に保持される時間が長くなる事が有り、改質された還元成分等が酸化され、触媒における反応の効率が低下することがある。
2.[無機酸化物粒子含有スラリー]
 本発明に使用されるスラリーは、無機酸化物粒子を含むものであれば特に限定されず、例えば、水、メタノールやエタノール等のアルコール等の溶媒に無機酸化物粒子を懸濁させたもの等が挙げられる。無機酸化物粒子は触媒作用を有するものが好ましく、例えば、触媒担体として広く使用されている無機酸化物に活性金属を担持させたものが挙げられる。活性金属としては、白金、ロジウム、パラジウム、イリジウム等が挙げられる。また、無機酸化物としては、例えば、アルミナ、シリカ、チタニア、ジルコニア、セリア、バナジア、ゼオライト等が挙げられる。これら活性金属や無機酸化物は複数を組み合わせてもよい。また、複数の無機酸化物を組みあわせた複合酸化物となっていてもよい。無機酸化物粒子の大きさは特に限定されず、例えば、平均粒径が0.1~1000μm、好ましくは3~100μmである。無機酸化物粒子の比表面積は特に限定されず、例えば0.1~1000m/g、好ましくは1~300m/gである。また、無機酸化物粒子は従来公知の方法で製造することができる。
 また、スラリー中の固形分濃度は特に限定されないが、例えば、5~40wt%であることが好ましく、10~30wt%であることがより好ましい。本発明方法は高粘度のスラリーであっても、ランダム構造体に対して、その内部まで確実なスラリー塗工が可能なものであるが、固形分濃度が30wt%より高すぎるとスラリーの含浸や過剰なスラリーの除去に時間が掛かり効率低下を招く事がある。また、固形分濃度が10wt%より低すぎるスラリーを使用すると、構造担体へのスラリーの被覆量が少なくなる場合があり、改質触媒としての活性が低下することがある。
 本発明方法によれば、高固形分濃度で高粘度なスラリーを、ランダム構造体に対して、効率的に塗工することが可能であるが、このようなスラリーの粘度は特に限定されず、例えば、B型粘度計により60rpm、室温で測定された粘度として1,000~6,000[cps]であるスラリーの使用が好ましく、3,000~5,000[cps]であるスラリーの使用がより好ましい。粘度が6,000[cps]より高すぎるとスラリーの含浸や過剰なスラリーの除去に時間が掛かり効率低下を招く事がある。また、粘度が1,000[cps]より低すぎるとランダム構造体へのスラリーの被覆量が少なくなる場合があり、改質触媒としての活性が低下することがある。
 上記のような粘度を決定する因子は多様であり、前記の固形分濃度の他、無機酸化物の粒子径、粒子の表面状態、無機酸化物以外の添加物、活性剤の有無、無機酸化物粒子の比表面積、スラリーのpH、温度などの影響が考えられるが、本発明においてはこれら各々の因子については特に限定されるものではなく、本発明を適用する用途における公知の材料の中から適宜選択し、前記のような固形分濃度における粘度を実現することが好ましい。
 また、上記のような粘度になるスラリーの組成としては、以下のものが好ましい。
 溶媒:1~10000g
 無機酸化物粒子:1~10000g
(活性金属:0.1~1000g/L)
 90%粒子径(D90):0.1~100μm (レーザー散乱法により測
 定し、粒子量の体積基準の積算値が全体の90%に達した時の粒子の直径)
 pH:0.01~13
 温度:0~50℃
3.[減圧操作下における無機酸化物粒子含有スラリーへの浸漬]
 本発明方法では、ランダム構造体を、減圧下で前記のスラリー中に浸漬処理をするが、この浸漬処理は、ランダム構造体の一部または全部であっても良い。減圧下で浸漬処理を施すことで、ランダムな三次元網目構造内部からの脱気を促し、三次元網目構造体内部にまで確実にスラリーを行き渡らせることができ、後述する遠心処理により余剰のスラリーを除去した後は、ランダム構造体を構成する幾何学的な表面に均質スラリーが被覆される。
 このような減圧操作は特に限定されるものでは無く、使用するスラリーの物性や組成、ランダム構造体の密度(空隙率)、また減圧に使用する装置によって適宜設定されるものであるが、その負圧は、例えば、-0.001[MPa]以下である事が好ましく、-0.05[MPa]以下であることがより好ましい。この程度の負圧であると、概ねランダム構造体内部に確実にスラリーを行き渡らせることができる。なお、スラリーへの浸漬にあたっては、減圧と併せて適宜振動を加えてランダム構造体からの脱気を促しても良い。このような振動を加える場合のタイミングは減圧の前、減圧中、減圧後のいずれであっても良く、加える振動の種類も、ランダム構造体に慣性力が加わるような鉛直方向の振盪であっても良く、超音波のような微細振動で有っても良い。
 ランダム構造体を減圧下でスラリーに浸漬する時間は特に限定されるものでは無く、使用するスラリーの物性や組成、ランダム構造体の密度(空隙率)、また減圧に使用する装置や負圧によって適宜設定されるものであるが、例えば、1秒~300秒が好ましく、30秒~100秒がより好ましい。このような範囲の時間においてランダム構造体を浸漬することで、ランダム構造体内部にまでスラリーを含浸させることができる。
 なお、ランダム構造体を減圧下でスラリーに浸漬するために使用する装置としては、適切に減圧できるものであれば特に制限されないが、例えば、真空ポンプ等とデシケータや吸引瓶、吸引鐘などを組み合わせてもよいし、市販の真空乾燥機(エスペック株式会社製)等を使用することができる。
4.[遠心処理]
 上記のようにしてランダム構造体をスラリーに浸漬したた後は、この構造担体に遠心力を加えて余分なスラリーを除去する。遠心処理の方向性はランダム構造体の形状に対して特に限定されるものでは無く、ランダム構造体を回転させながら遠心力を加えても良い。本発明方法において、複数のランダム構造体に同時に遠心処理を施す場合には、ランダム構造体の形状の同一方向に遠心力が加わる様に装置に配置したうえで遠心処理を施すことが好ましい。このように配置して遠心処理を行えば遠心装置を簡略化でき、余剰スラリーも均等に除去することができる。
 本発明方法の遠心処理条件は、特に限定されるものでは無いが、適用されるランダム構造体の空隙率や、減圧浸漬処理したスラリーの物性、また、ランダム構造体の線径によって適宜設定すれば良い。前記のように例示されたスラリーを、前記のように例示されたランダム構造体に担持する場合については、遠心の処理時間は、例えば1~500秒が好ましく、30~180秒がより好ましい。このような範囲の時間においてランダム構造体を遠心処理することで、ランダム構造体内部に必要な量のスラリーを行き渡らせることができる。
 本発明方法において、スラリーを含浸したランダム構造体に加えられる遠心力は特に限定されるものではなく、使用するスラリーの物性や組成、ランダム構造体の密度(空隙率)、また遠心処理に使用する装置の構造やその加速度によって適宜設定されるものであるが、例えば、0.1~250Nで有る事が好ましく、10~100Nであることが好ましい。遠心力が0.1Nよりも小さすぎると余剰スラリーの除去が困難な場合があり、遠心力が250Nよりも大きすぎるとスラリーが除去され過ぎたり、ランダム構造体上のスラリーに偏りが生じる場合がある。
 また、遠心処理に使用する装置としては、例えば、小型遠心分離機(株式会社コクサン社製)を使用することができる。なお、ランダム構造体を、減圧下でスラリーに浸漬し、その後、遠心処理を行うという工程は、複数回行ってもよい。
5.[無機酸化物粒子含有スラリーを含浸したランダム構造体の焼成]
 上記のようにスラリーを含浸した構造担体は、必要に応じて乾燥後、焼成することによって、ランダム構造体に無機酸化物粒子の定着が図られる。焼成することによりランダム構造体への無機酸化物粒子の密着が強固になり耐久性が増し、触媒としての使用中に無機酸化物粒子の剥離もおき難くなる。
 このような焼成工程における手法は特に限定されるものでは無く、触媒分野において一般的に採用されている条件から適宜設定すれば良く、例えば、焼成温度としては400~600℃、焼成時間としては10分~2時間の条件が挙げられる。
6.[繰り返し処理]
 本発明方法は、上記したように、ランダム構造体を、無機酸化物含有スラリーに減圧下で浸漬し、遠心力により余分なスラリーを除去後、焼成することにより、ランダム構造体に、塗り残しがなく、更にメニスカスを形成せずに無機酸化物粒子を被覆することができるものであるが、必要に応じて、本発明の効果を損なわない限り、本発明方法を繰り返し行ってもよい。同一の無機酸化物含有スラリーを用いることにより、無機酸化物粒子を厚付けすることができ、また、異なる無機酸化物含有スラリーを用いることにより、異なる無機酸化物粒子を被覆することができる。
7.[従来公知のゾーンコート]
 本発明方法は、さらに、必要に応じて、本発明の効果を損なわない限り、従来公知のゾーンコートを行ってもよい。ゾーンコートを行うことにより、ランダム構造体の一部に同様の無機酸化物粒子を厚付けすることができ、また、異なる無機酸化物粒子を被覆することもできる。
 ゾーンコートの方法としては、公知の方法が挙げられるが、例えば、本発明方法で使用する無機酸化物含有スラリーと同一の又は異なるスラリー(以下、これらを「ゾーンコート用スラリー」という)に、ランダム構造体の上方、下方等の一部を浸漬することが挙げられる。また、ランダム構造体が、円柱形、円錐形、円錐台形、球状等の転がる部位を有するものであれば、平らな容器中にゾーンコート用スラリーを入れ、その中でランダム構造体を転がすことにより、側面のラジアルゾーンを被覆することができる。さらに、ランダム構造体の中心部に、ゾーンコート用スラリーを加圧や吸引により流し入れ、ランダム構造体の中心部のラジアルゾーンを被覆してもよい。
 上記ゾーンコートを行う順序としては、特に限定されず、例えば、本発明方法における減圧下で浸漬する前や、ランダム構造体を遠心処理する前や後であってもよく、さらに、焼成後であってもよい。また、ゾーンコートを行った後に、遠心やエアブローにより余剰のゾーンコート用スラリーを除去してもよい。
 上記した本発明方法により製造される無機酸化物粒子担持構造担体は、ランダム構造体の三次元網目構造に、無機酸化物粒子が膜(メニスカス)を形成せずに被覆しているものであり、無機酸化物粒子の未被覆部分(塗り残し)が無いものである。
 上記無機酸化物粒子担持構造担体は、例えば、排ガスの酸化触媒やパティキュレートフィルタや選択的還元触媒、燃料改質触媒等の用途に用いることができ、これらの用途の中でも特に、燃料改質触媒が好ましい。また、無機酸化物粒子が、アルミナやシリカの場合、燃料改質等の用途に用いることができる。特に、ランダム構造体がワイヤー担体の場合、ワイヤーに無機酸化物粒子が被覆しているため、特に活性種を有効に活用することができる。
 また、構造担体へ無機酸化物粒子を塗工する方法としては、上記詳しく説明したように、ランダム構造担体を、無機酸化物粒子を含むスラリーに減圧下で浸漬し、次いで、このランダム構造担体に遠心力を加えて余分なスラリーを除去することにより、無機酸化物粒子を塗工することができる。
 以下、本発明の実施形態について説明するが、本発明はその必須構成要素を実施するものであれば以下の実施例に限定されるものではない。
 [スラリーの調整]
 水600gに、活性金属担持無機酸化物粒子としてロジウムが金属として150g担持されたγ-アルミナ(BET:150[m/g])を1000g加えて混合した後、ポットミルにて粒径D90:3.5[μm]となるように粉砕してスラリーを得た。スラリーの粘度は、室温(約20℃)、回転数60rpmで2000cpsであり、スラリー中におけるγ-アルミナの固形分濃度は、25wt%であった。
 [ランダム構造体]
 ランダム構造体としては、粗面処理されたステンレス製のワイヤー(線径:0.35[mm])を公知の方法により集積成型した。ワイヤー担体の大きさは、半径2.5cm、高さ5cmであり、空隙率は75体積%であった。ワイヤー担体の模式図を図1に、その拡大図を図2に示す。
[実施例1]
 上記ワイヤー担体の全部分を、減圧含浸装置(桐山製作所社製、吸引鐘)を用いて(図3)、上記スラリーに浸漬し、-0.075[MPa]で60秒間減圧処理し、ワイヤー担体からの脱気処理を行った。次に、ワイヤー担体を、遠心装置(株式会社コクサン社製、小型遠心分離機(H-122))(図4)を用いて、21Nの遠心力(900回転)を90秒間加え余剰なスラリーを除去した。余剰なスラリーを除去したワイヤー担体を、200℃で乾燥後、電気炉を使用し大気雰囲気中で450℃,30分焼成した。
 上記方法により作成された無機酸化物粒子が担持されたワイヤー担体を、ダイヤモンドカッターで中心部から切断したところ、ワイヤー担体内部にまで完全に無機酸化物粒子が被覆されていることが確認された。なお、図5は、スラリー含浸直後のワイヤー担体の断面図を示し、図6は、焼成後のワイヤー担体の断面図を示す。焼成後のワイヤー担体は、図7に示すように、塗り残しが無く、また、メニスカスが形成されずに、無機酸化物粒子が被覆されていることが確認された。
[実施例2]
 実施例1で得られた無機酸化物粒子担持ワイヤー担体及び実施例1と同様のスラリーを用いて、さらにもう一度、実施例1と同様の方法を繰り返す。無機酸化物粒子がワイヤー担体に厚付けされた無機酸化物粒子担持ワイヤー担体を得る。
[実施例3]
 実施例1と同様のスラリーを用いて、実施例1で得られた無機酸化物粒子担持ワイヤー担体の下方の一部に公知のゾーンコート処理を行う。無機酸化物粒子がワイヤー担体の下方の一部に厚付けされた無機酸化物粒子担持ワイヤー担体を得る。
[比較例1]
 減圧をせずに開放系(図8)でスラリーにランダム構造体を浸漬した以外は実施例1と同様にして比較例1のワイヤー担体を得た。このワイヤー担体では、中心部で空隙が生じ、無機酸化物粒子が担持されていないアイランド状の未被覆部分(塗り残し)が確認された(図9)。
[比較例2]
 比較例1の解放系(図8)で無機酸化物粒子含有スラリーにワイヤー担体を浸漬した後、エアナイフを用いたブローにより余剰スラリーの除去を行った。エアブロー後のワイヤー担体では、隣接するワイヤーの間で、ところどころメニスカスが生じ、図10に示すような無機酸化物粒子含有スラリーによる膜が形成された。なお、無機酸化物粒子含有スラリー膜の多くはエアブローの気流の方向に延びて形成されていることが確認された。
 このような無機酸化物粒子含有スラリー膜が形成されてしまう理由は定かでは無いが、エアブローによりスラリー中の水分が揮発して増粘することや、エアブローが方向性を有することから、スラリーが引き伸ばされて隣接するワイヤーとの間にメニスカスが形成されること等、これらの要因が複合的に作用するためではないかと考えられる。
 本発明方法によれば、排ガス浄化用や燃料改質用等に用いることのできる無機酸化物粒子担持構造担体を製造することができる。
 1  ワイヤー担体
 10 減圧含浸装置
 11 スラリー
 12 ワイヤー担体
 13 気泡
 14 吸引
 20 遠心装置
 21 ワイヤー担体
 22 余剰スラリー
 23 遠心
 30 解放系スラリー含浸装置
 31 スラリー
 32 ワイヤー担体
 33 空隙
 34 気泡

 

Claims (9)

  1.  ランダムな三次元網目構造を有し、通気可能な構造担体を、無機酸化物粒子を含むスラリーに減圧下で浸漬し、次いで、前記構造担体に遠心力を加えて余分なスラリーを除去した後、焼成することを特徴とする無機酸化物粒子担持構造担体の製造方法。
  2.  無機酸化物粒子が、触媒作用を有するものである請求項1記載の無機酸化物粒子担持構造担体の製造方法。
  3.  ランダムな三次元網目構造を有し、通気可能な構造担体が、金属ワイヤーを集積成型したものである請求項1または2記載の無機酸化物粒子担持構造担体の製造方法。
  4.  金属ワイヤーの線径が0.2~0.8mmであり、空隙率が60~90体積%である請求項3記載の無機酸化物粒子担持構造担体の製造方法。
  5.  金属ワイヤーが酸により粗面処理されたステンレスである請求項3または4記載の無機酸化物粒子担持構造担体の製造方法。
  6.  無機酸化物粒子を含むスラリー中の固形分濃度が5~40wt%である請求項1~5の何れかに記載の無機酸化物粒子担持構造担体の製造方法。
  7.  無機酸化物粒子を含むスラリーのB型粘度計により測定される粘度が、1,000~6,000cpsである請求項1~6の何れかに記載の無機酸化物粒子担持構造担体の製造方法。
  8.  無機酸化物粒子担持構造担体であって、ランダムな三次元網目構造を有し、通気可能な構造担体に、無機酸化物粒子が被覆していることを特徴とする無機酸化物粒子担持構造担体。
  9.  ランダムな三次元網目構造を有し、通気可能な構造担体を、無機酸化物粒子を含むスラリーに減圧下で浸漬し、次いで、前記構造担体に遠心力を加えて余分なスラリーを除去することを特徴とする前記構造担体への無機酸化物粒子の塗工方法。
PCT/JP2017/040014 2016-12-14 2017-11-07 無機酸化物粒子担持構造担体の製造方法 WO2018110144A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016242148A JP6893779B2 (ja) 2016-12-14 2016-12-14 無機酸化物粒子担持構造担体の製造方法
JP2016-242148 2016-12-14

Publications (1)

Publication Number Publication Date
WO2018110144A1 true WO2018110144A1 (ja) 2018-06-21

Family

ID=62559480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040014 WO2018110144A1 (ja) 2016-12-14 2017-11-07 無機酸化物粒子担持構造担体の製造方法

Country Status (2)

Country Link
JP (1) JP6893779B2 (ja)
WO (1) WO2018110144A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS577881A (en) * 1980-06-19 1982-01-16 Kyatara Kogyo Kk Manufacture of active aluminum clad layer on ceramic substrate
JPS61129043A (ja) * 1984-11-27 1986-06-17 Nippon Shokubai Kagaku Kogyo Co Ltd セラミツク基材への触媒成分担持方法
JPS6249949A (ja) * 1985-08-27 1987-03-04 Nippon Denso Co Ltd 排気ガス浄化用触媒の担体
JPH06178935A (ja) * 1992-12-15 1994-06-28 Nikki Universal Co Ltd 耐水性白色エチレン分解触媒、その製造方法およびエチレン分解装置
JPH11192430A (ja) * 1997-10-27 1999-07-21 Matsushita Electric Ind Co Ltd 排ガス浄化材及びこれを用いた排ガス浄化装置
JP2001170487A (ja) * 1999-12-15 2001-06-26 Toyota Central Res & Dev Lab Inc 排ガス浄化用触媒および排ガス浄化方法
JP2005270714A (ja) * 2004-03-23 2005-10-06 Matsushita Electric Ind Co Ltd 排ガス浄化材及びその製造方法
JP2006526726A (ja) * 2003-04-24 2006-11-24 ビーワイディー カンパニー リミテッド マフラー及び触媒コンバーター装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3770998B2 (ja) * 1997-03-31 2006-04-26 新東工業株式会社 ガス処理装置
JP4423818B2 (ja) * 2001-06-19 2010-03-03 いすゞ自動車株式会社 排気ガス浄化装置
JP6234917B2 (ja) * 2014-12-05 2017-11-22 株式会社神戸製鋼所 金属−空気二次電池用負極材料、及びこれを備える金属−空気二次電池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS577881A (en) * 1980-06-19 1982-01-16 Kyatara Kogyo Kk Manufacture of active aluminum clad layer on ceramic substrate
JPS61129043A (ja) * 1984-11-27 1986-06-17 Nippon Shokubai Kagaku Kogyo Co Ltd セラミツク基材への触媒成分担持方法
JPS6249949A (ja) * 1985-08-27 1987-03-04 Nippon Denso Co Ltd 排気ガス浄化用触媒の担体
JPH06178935A (ja) * 1992-12-15 1994-06-28 Nikki Universal Co Ltd 耐水性白色エチレン分解触媒、その製造方法およびエチレン分解装置
JPH11192430A (ja) * 1997-10-27 1999-07-21 Matsushita Electric Ind Co Ltd 排ガス浄化材及びこれを用いた排ガス浄化装置
JP2001170487A (ja) * 1999-12-15 2001-06-26 Toyota Central Res & Dev Lab Inc 排ガス浄化用触媒および排ガス浄化方法
JP2006526726A (ja) * 2003-04-24 2006-11-24 ビーワイディー カンパニー リミテッド マフラー及び触媒コンバーター装置
JP2005270714A (ja) * 2004-03-23 2005-10-06 Matsushita Electric Ind Co Ltd 排ガス浄化材及びその製造方法

Also Published As

Publication number Publication date
JP6893779B2 (ja) 2021-06-23
JP2018094508A (ja) 2018-06-21

Similar Documents

Publication Publication Date Title
JP5697299B2 (ja) 触媒コンバータ
US8057768B2 (en) Device for the purification of diesel exhaust gases
JP2020008022A (ja) ガソリン車用の汚染物質低減装置
US20080107806A1 (en) Method for Coating a Wall Flow Filter With a Coating Composition
RU2019105493A (ru) Катализатор, содержащий биметаллические наночастицы металлов платиновой группы
EP3590598A1 (en) Filter for exhaust gas cleaning and method for manufacturing same
CN101039749A (zh) 用于利用细小微粒固体涂覆壁流式过滤器的方法和通过这种方法获得的过滤器以及它的使用
MX2012012128A (es) Sistemas de tratamiento de emisiones de motor a gasolina con filtros de particulas.
WO2017170669A1 (en) Exhaust gas purification filter
JP2008253961A (ja) 排ガス浄化フィルタとその製造方法
JP2003334457A (ja) 触媒体および触媒体の製造方法
JP2018528062A (ja) 膜を有する触媒ウォールフロー型フィルター
JP2001327818A (ja) セラミックフィルター及びフィルター装置
JP2009285605A (ja) 排ガス浄化用触媒
JP2006007117A (ja) 排気ガス浄化構造体および該構造体を用いた排気ガス浄化方法
JP5351512B2 (ja) 触媒及び排ガス浄化方法
JP2017100073A (ja) 排ガス浄化用触媒
JP2004330118A (ja) 排ガス浄化用フィルタ
JP2017185467A (ja) 排ガス浄化用触媒
WO2018110144A1 (ja) 無機酸化物粒子担持構造担体の製造方法
JP3827143B2 (ja) 排ガス浄化用触媒
JP2007136357A (ja) 排ガス浄化用触媒の製造方法
JP6781085B2 (ja) 排ガス浄化触媒の製造方法
JP2008229459A (ja) 排ガス浄化装置
JP2018103131A (ja) 排ガス浄化用触媒の製造方法および排ガス浄化用触媒

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17881857

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17881857

Country of ref document: EP

Kind code of ref document: A1