WO2018108208A1 - Verwendung einer nickel-chrom-molybdän-legierung - Google Patents

Verwendung einer nickel-chrom-molybdän-legierung Download PDF

Info

Publication number
WO2018108208A1
WO2018108208A1 PCT/DE2017/101066 DE2017101066W WO2018108208A1 WO 2018108208 A1 WO2018108208 A1 WO 2018108208A1 DE 2017101066 W DE2017101066 W DE 2017101066W WO 2018108208 A1 WO2018108208 A1 WO 2018108208A1
Authority
WO
WIPO (PCT)
Prior art keywords
use according
cladding material
nickel
alloy
chromium
Prior art date
Application number
PCT/DE2017/101066
Other languages
English (en)
French (fr)
Inventor
Martin Wolf
Rainer Behrens
Original Assignee
Vdm Metals International Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vdm Metals International Gmbh filed Critical Vdm Metals International Gmbh
Priority to US16/342,675 priority Critical patent/US20200048741A1/en
Priority to KR1020197016716A priority patent/KR102354868B1/ko
Priority to EP17832194.9A priority patent/EP3555329A1/de
Priority to CN201780071437.6A priority patent/CN110036125A/zh
Priority to JP2019531910A priority patent/JP6918114B2/ja
Publication of WO2018108208A1 publication Critical patent/WO2018108208A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials

Definitions

  • the invention relates to the use of a nitrogen-alloyed nickel-chromium-molybdenum alloy for the coating of steels, which has a high corrosion resistance to aggressive media, which can arise during thermal utilization.
  • WO 98/55661 discloses a kneadable homogeneous austenitic nickel alloy having high corrosion resistance to aggressive liquid media under both oxidizing and reducing conditions and having excellent resistance to localized corrosion in acidic media containing chloride.
  • the alloy consists of (mass%) chromium 20.0 - 23.0%, molybdenum 18.5 - 21, 0%, iron max. 1.5%, manganese max. 0.5%, silicon max. 0.1%, cobalt max. 0.3%, tungsten max. 0.3%, copper max. 0.3%, aluminum 0.1 - 0.3%, magnesium 0.001 - 0.15%, calcium 0.001 - 0.01%, carbon max.
  • the alloy is suitable as a material for components that must be resistant to chemical attack and as an over-alloyed filler for other nickel-based materials.
  • Nickel alloys such as FM 625, FM 622 and FM 686 used.
  • heat exchanger tubes Heating surfaces and flue gas touched surfaces and other components are often protected by plating against corrosion occur depending on the material used and operating conditions Abzehrept on the superheater ears and other thermally stressed components that force the operator to shutdowns and costly maintenance.
  • the aim of the invention is to supply the alloy used according to the prior art for years to a new field of application in the field of plating.
  • composition (in% by mass)
  • the critical pitting temperature from the second build-up welding layer is approximately 135 ° C.
  • the pure weld metal has a surprisingly high yield strength RP0.2 with at least 600 MPa in the operationally stressed state.
  • the operating stress increases the hardness, as shown in Table 1.
  • a further increase in hardness in the operating state takes place through the precipitation of intermetallic phases.
  • FIG. 1 shows as an example a heat exchanger tube 1 which can be used in a waste incineration plant (not shown).
  • the tube 1 should be a water-cooled component made of a carbon steel in this example.
  • a hardfacing material 4 is applied under rotation 3 of the tube 1.
  • Table 1 lists the compositions on the one hand of the hardfacing material according to the invention and of alternative materials hitherto used.
  • Table 1 Table 2 lists material data for the materials listed in Table 1 as welded.
  • the material FM 2120 which can be used for components in waste incineration plants, is characterized by higher strength values of RP 0.2 and Rm compared to the comparative materials. Later calculations with Calphad software have shown that this effect is caused, inter alia, by the formation of intermetallic phases, such as the ⁇ -phase. This can also be proven by metallographic investigations.
  • the calculation of the phase diagram in the temperature range below 920 ° C predicts the presence of the intermetallic ⁇ -phase (Figure 2) for the thermodynamic equilibrium state.
  • the amount of these phases is at 650 ° C at about 27 wt .-% ( Figure 3) and leads to the change of the mechanical technological properties and microstructural adjustment of the cladding material.
  • the ⁇ -phase is characterized by the longer lasting Heat influence in the temperature range in the area of existence of this phase formed in the cladding material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Arc Welding In General (AREA)

Abstract

Die Erfindung betrifft die Verwendung einer Legierung der Zusammensetzung (in Masse-%): Cr 20,0 - 23,0%, Mo 18,5 - 21,05%, Fe ≤ 1,5%, Mn ≤ 0,5%, Si ≤ 0,1%, Co ≤ 0,3%, W ≤ 0,3%, Cu ≤ 0,5%, AI ≤ 0,4%, C ≤ 0,01%, P ≤ 0,015%, S ≤ 0,01%, N 0,02 - 0,15%, bedarfsweise V ≤ 0,3%, Nb ≤ 0,2%, Ti ≤ 0,02%, Ni Rest sowie erschmelzungsbedingte Verunreinigungen als Plattierwerkstoff im Bereich von thermischen Verwertungsanlagen und Ersatzstoffbrennanlagen.

Description

Verwendung einer Nickel-Chrom-Molybdän-Legierung
Die Erfindung betrifft die Verwendung einer stickstofflegierten Nickel-Chrom- Molybdän-Legierung für das Beschichten von Stählen, welche eine hohe Korrosionsbeständigkeit gegenüber aggressiven Medien aufweist, die bei der thermischen Verwertung entstehen können.
Die WO 98/55661 offenbart eine knetbare homogene austenitische Nickellegierung mit einer hohen Korrosionsbeständigkeit gegenüber aggressiven flüssigen Medien, sowohl unter oxidierenden als auch reduzierenden Bedingungen und einer ausgezeichneten Beständigkeit gegenüber Lokalkorrosion in sauren, chloridhaltigen Medien. Die Legierung besteht aus (Masse-%) Chrom 20,0 - 23,0%, Molybdän 18,5 - 21 ,0%, Eisen max. 1 ,5%, Mangan max. 0,5%, Silizium max. 0,1 %, Kobalt max. 0,3%, Wolfram max. 0,3%, Kupfer max. 0,3%, Aluminium 0,1 - 0,3%, Magnesium 0,001 - 0,15%, Kalzium 0,001 - 0,01 %, Kohlenstoff max. 0,01 %, Stickstoff 0,05 - 0,15%, Vanadium 0,1 - 0,3%, Rest Nickel und weiteren erschmelzungsbedingten Verunreinigungen. Die Legierung eignet sich als Werkstoff für Bauteile, die gegenüber chemischem Angriff beständig sein müssen und als überlegierter Schweißzusatz für andere Nickel-Basiswerkstoffe.
Als Plattierwerkstoffe in der Anwendung für die thermische Verwertung wie zum Beispiel in Müllverbrennungsanlagen, Ersatzstoffbrennanlagen oder Biomasseanlagen, werden z.Zt. Nickellegierungen wie zum Beispiel FM 625, FM 622 sowie FM 686 eingesetzt. Obwohl Wärmetauscherrohre; Heizflächen sowie Rauchgas berührte Flächen und andere Bauteile vielfach durch Plattieren gegen Korrosion geschützt werden, treten je nach eingesetztem Werkstoff und Betriebsbedingungen Abzehrungen an den Überhitzerohren und anderen thermisch beanspruchten Bauteilen auf, die den Betreiber zu Stillständen und kostenintensiven Wartungsarbeiten zwingen. Ziel der Erfindung ist es, die gemäß Stand der Technik seit Jahren eingesetzte Legierung einem neuen Anwendungsbereich im Bereich des Plattierens zuzuführen.
Dieses Ziel wird erreicht durch die Verwendung einer Legierung der
Zusammensetzung (in Masse-%)
Cr 20,0 - 23,0%
Mo 18,5 - 21 ,05%
Fe < 1 ,5%
Mn < 0,5%
Si -s 0,1 %
Co < 0,3%
W < 0,3%
Cu < 0,5%
AI < 0,4%
C < 0,01 %
P < 0,015%
S < 0,01 %
N 0,03 - 0,15%
bedarfsweise
V <0,3%
Nb < 0,2%
Ti < 0,02%
Ni Rest sowie erschmelzungsbedingte Verunreinigungen
als Plattierwerkstoff im Bereich von thermischen Verwertungsanlagen und
E rsatzstof f bre n n an lag e n .
Vorteilhafte Weiterbildungen des Erfindungsgegenstandes sind den Unteransprüchen zu entnehmen.
Bei Untersuchungen des o.g. Werkstoffes, der bislang ausschließlich im Nasskorrosionsbereich eingesetzt wird, wurde überraschenderweise festgestellt, dass dieser auch im Temperaturbereich der thermischen Verwertung vorteilhaft zu verwenden ist.
Bevorzugte chemische Zusammensetzungen (in Masse-%) werden nachstehend angeführt:
Cr > 20,0 - < 23,0 %
Mo >18,5 - < 21 ,0 %
Fe > 0,1 - < 1 ,0%
Mn > 0,05 - < 0,4 %
Si > 0,05 - < 0,10 %
Co < 0,2 %
W < 0,25 %
Cu < 0,4 %
AI < 0,3 %
C < 0,05 %
P < 0,015 %
S < 0,005 %
N 0,04 - < 0,10 %
bedarfsweise
V < 0,25 %
Nb < 0,2 %
Ti < 0,02 %
Ni Rest sowie erschmelzungsbedingte Verunreinigungen
Korrosionsbeanspruchungen in Bauteilen und mit Rauchgas berührte Flächen von thermischen Verwertungsanlagen sind vielfältig und komplex. So treten diverse (diffusionsgesteuerte) Hochtemperaturkorrosionsarten, wie Korrosion durch Aufkohlung, aufgeschmolzene Salze oder Korrosion durch Halogene (insbesondere Chlor) auf. Darüber hinaus können die eingesetzten Werkstoffe in Stillstands- und Wartungszeiten zusätzlich durch Nasskorrosionsmechanismen stark beansprucht werden. Es hat sich herausgestellt, dass der an sich bekannte Werkstoff hervorragend geeignet ist, um als Plattierwerkstoff im Bereich einer thermischen Verwertungsanlage eingesetzt zu werden. In verschiedenen Untersuchungen wurde nachgewiesen, dass dieser Werkstoff bezogen auf das Verfahren der Schweißplattierung über eine ausgezeichnete Schweißbarkeit (hohe Risssicherheit und gutes Benetzungsvermögen) verfügt. Das Aufbringen der Plattierschichten kann außer durch Auftragschweißen auch zum Beispiel durch Flamm- oder Plasmaspritzen mittels Pulver oder Draht erfolgen.
Im Prüfmedium„Grüner Tod" liegt die kritische Lochfrasstemperatur ab der zweiten Auftragsschweißlage bei ca. 135°C. Damit erscheinen verstärkte Nasskorrosionsangriffe durch Lochfrasskorrosion in Stillstands- und Wartungszeiten eher unwahrscheinlich.
Ferner zeigte sich, dass das reine Schweißgut im betriebsbeanspruchten Zustand mit mindestens 600 MPa über eine überraschend hohe Dehngrenze RP0,2 verfügt. Zudem konnte festgestellt werden, dass durch die Betriebsbeanspruchung eine Zunahme der Härte erfolgt, wie Tabelle 1 zeigt. Zusätzlich zum hohen Chrom und Molybdängehalt der Legierung und dem Mechanismus der Mischkristallhärtung erfolgt eine weitere Härtezunahme im Betriebszustand durch die Ausscheidung intermetallischer Phasen.
Es ist mit diesen experimentellen Ergebnissen zu erwarten, dass unter den harten Bedingungen einer thermischen Verwertungsanlage, wo nicht nur die rein diffusionsgesteuerte/elektrochemische Korrosion eine Rolle spielt, sondern insbesondere auch die Kombination mit dem Widerstand eines Werkstoffes gegen mechanische Beanspruchung, z.B. durch Streu- und Rauchpartikel (Erosion bzw. Erosionskorrosion), dieser Werkstoff über ein neuartiges Eigenschaftsprofil verfügt.
Anhand eines Beispiels wird die Erfindung nachfolgend näher erläutert: Figur 1 zeigt als Beispiel ein Wärmetauscherrohr 1 , das in einer Müllverbrennungsanlage (nicht dargestellt) eingesetzt werden kann. Das Rohr 1 soll in diesem Beispiel ein wassergekühltes Bauteil aus einem C-Stahl sein. Mittels eines nur angedeuteten Schweißbrenners 2 (z.B. MSG oder WIG) wird unter Rotation 3 des Rohres 1 ein Auftragsschweißwerkstoff 4 aufgebracht.
In Tabelle 1 sind die Zusammensetzungen einerseits des erfindungsgemäßen Auftragsschweißwerkstoffes sowie bisher zum Einsatz gelangender alternativer Werkstoffe angeführt.
Figure imgf000007_0001
Tabelle 1 In Tabelle 2 sind Werkstoffdaten der in Tabelle 1 angeführten Werkstoffe im geschweißten Zustand aufgelistet.
Figure imgf000008_0001
Tabelle 2
Figure imgf000008_0002
Ausgangszustand (wie geschweißt) und im ausgelagerten Zustand
Der Werkstoff FM 2120, einsetzbar für Bauteile in Müllverbrennungsanlagen, zeichnet sich gegenüber den Vergleichswerkstoffen durch höhere Festigkeitswerte RP 0,2 sowie Rm aus. Spätere Berechnungen mit Calphad Software haben gezeigt, dass dieser Effekt unter anderem hervorgerufen wird durch die Bildung intermetallischer Phasen, wie zum Beispiel die μ-Phase. Dies lässt sich auch durch metallografische Untersuchungen belegen.
Die Berechnung des Phasendiagramms zeigt in dem Temperaturbereich unterhalb von 920°C die Anwesenheit der intermetallischen μ-Phase (Figur 2) für den thermodynamischen Gleichgewichtszustand voraus. Die Menge dieser Phasen liegt bei 650°C bei etwa 27 Gew.-% (Figur 3) und führt zur Änderung der mechanisch technologischen Eigenschaften und Gefügeeinstellung des Plattierwerkstoffs. Die μ-Phase wird dabei durch den länger andauernden Wärmeeinfluss im Temperaturbereich im Existenzbereich dieser Phase im Plattierwerkstoff gebildet.

Claims

Patentansprüche
1. Verwendung einer Legierung der Zusammensetzung (in Masse-%)
Cr 20,0 - 23,0%
Mo 18,5-21,05%
Fe < 1 ,5%
Mn < 0,5%
Si -s 0,1%
Co < 0,3%
W < 0,3%
Cu < 0,5%
AI < 0,4%
C £0,01%
P < 0,015%
S £0,01%
N 0,02-0,15%
bedarfsweise
V < 0,3%
Nb < 0,2%
Ti < 0,02%
Ni Rest sowie erschmelzungsbedingte Verunreinigungen
als Plattierwerkstoff im Bereich von thermischen Verwertungsanlagen und
Ersatzstoffbrennanlagen.
2. Verwendung nach Anspruch 1 mit folgender Zusammensetzung (in Masse- %):
Cr > 20,0 - < 23,0 %
Mo >18,5 -< 21,0%
Fe > 0,1 - < 1 ,0%
Mn > 0,05 - < 0,4 %
Si > 0,001 -<0,10% Co < 0,2 %
W < 0,25 %
Cu < 0,4 %
AI < 0,3 %
C < 0,05 %
P < 0,015 %
S < 0,005 %
N 0,04 - < 0,1 %
bedarfsweise
V < 0,25 %
Nb < 0,2 %
Ti < 0,02 %
Ni Rest sowie erschmelzungsbedingte Verunreinigungen.
3. Verwendung nach Anspruch 1 oder 2, wobei der Plattierwerkstoff im Bereich von Wärmetauscherrohren der Müllverbrennungsanlage eingesetzt wird.
4. Verwendung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Plattierwerkstoff nach dem Auftragen im betriebsbeanspruchten Zustand eine Dehngrenze Rp 0,2 von min. 600 MPa aufweist.
5. Verwendung nach einem der Ansprüche 1 bis 4, wobei der Plattierwerkstoff als Auftragsschweißwerkstoff eine Dehngrenze Rp02 (Mpa) oberhalb von 600, insbesondere oberhalb von 640, aufweist.
6. Verwendung nach einem der Ansprüche 1 bis 5, wobei der Plattierwerkstoff als Auftragsschweißwerkstoff eine Zugfestigkeit Rm (MPa) oberhalb von 800, insbesondere oberhalb von 840, aufweist.
7. Verwendung nach einem der Ansprüche 1 bis 5 , wobei der Plattierwerkstoff für Reparaturen eingesetzt wird.
PCT/DE2017/101066 2016-12-16 2017-12-12 Verwendung einer nickel-chrom-molybdän-legierung WO2018108208A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/342,675 US20200048741A1 (en) 2016-12-16 2017-12-12 Use of a nickel-chromium-molybdenum alloy
KR1020197016716A KR102354868B1 (ko) 2016-12-16 2017-12-12 니켈-크롬-몰리브덴 합금의 용도
EP17832194.9A EP3555329A1 (de) 2016-12-16 2017-12-12 Verwendung einer nickel-chrom-molybdän-legierung
CN201780071437.6A CN110036125A (zh) 2016-12-16 2017-12-12 镍铬钼合金的用途
JP2019531910A JP6918114B2 (ja) 2016-12-16 2017-12-12 ニッケル−クロム−モリブデン合金の使用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016124588.7 2016-12-16
DE102016124588.7A DE102016124588A1 (de) 2016-12-16 2016-12-16 Verwendung einer nickel-chrom-molybdän-legierung

Publications (1)

Publication Number Publication Date
WO2018108208A1 true WO2018108208A1 (de) 2018-06-21

Family

ID=61005643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2017/101066 WO2018108208A1 (de) 2016-12-16 2017-12-12 Verwendung einer nickel-chrom-molybdän-legierung

Country Status (7)

Country Link
US (1) US20200048741A1 (de)
EP (1) EP3555329A1 (de)
JP (1) JP6918114B2 (de)
KR (1) KR102354868B1 (de)
CN (1) CN110036125A (de)
DE (1) DE102016124588A1 (de)
WO (1) WO2018108208A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11409965B2 (en) 2020-01-15 2022-08-09 International Business Machines Corporation Searching conversation logs of a virtual agent dialog system for contrastive temporal patterns
DE102021106624A1 (de) * 2020-04-06 2021-10-07 Vdm Metals International Gmbh Verwendung einer Nickel-Chrom-Eisen-Legierung
CN111663065B (zh) * 2020-07-24 2021-12-17 正辰激光科技(山东)有限公司 一种锅炉过热管熔覆耐蚀合金粉末及其所得产品和制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3821896A1 (de) * 1988-06-25 1989-12-28 Castolin Sa Pulverfoermiger metallhaltiger werkstoff und verfahren dazu
DE19536978A1 (de) * 1994-10-03 1996-04-04 Daido Steel Co Ltd Verfahren zur Herstellung schweißplattierter Stahlrohre
WO1998055661A1 (de) 1997-06-05 1998-12-10 Krupp Vdm Gmbh Nickel-chrom-molybdän-legierung

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49129016A (de) * 1973-04-24 1974-12-10
US4245698A (en) * 1978-03-01 1981-01-20 Exxon Research & Engineering Co. Superalloys having improved resistance to hydrogen embrittlement and methods of producing and using the same
JPS57171645A (en) * 1981-04-15 1982-10-22 Ebara Corp Filling material for preventing crevice corrosion of austenite stainless steel
US4818486A (en) * 1988-01-11 1989-04-04 Haynes International, Inc. Low thermal expansion superalloy
JP3183958B2 (ja) * 1992-07-16 2001-07-09 株式会社日本製鋼所 高耐食性ニッケル基合金クラッド鋼の溶接方法
JPH07316699A (ja) * 1994-05-18 1995-12-05 Mitsubishi Materials Corp 高硬度および高強度を有する耐食性窒化物分散型Ni基合金
JP2002286621A (ja) * 2001-03-26 2002-10-03 Osaka Gas Co Ltd 焼却炉の金属材料の耐食性評価方法及び金属材料
KR20030003016A (ko) * 2001-06-28 2003-01-09 하이네스인터내셔널인코포레이티드 Ni-Cr-Mo합금의 에이징 처리방법 및 결과의 합금
DE102008018539A1 (de) * 2008-04-12 2009-10-15 Berthold, Jürgen Metallkörper mit metallischer Schutzschicht
CN102049665B (zh) * 2009-11-06 2012-07-11 北京有色金属研究总院 一种Ni-Cr-Mo耐蚀合金筒形件的制备方法
US10112254B2 (en) * 2014-08-21 2018-10-30 Huntington Alloys Corporation Method for making clad metal pipe
CN105618959A (zh) * 2016-03-11 2016-06-01 天津滨海雷克斯激光科技发展有限公司 一种用于MONEL-K500合金激光焊接与熔覆的新型SL-NiCrMo合金材料

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3821896A1 (de) * 1988-06-25 1989-12-28 Castolin Sa Pulverfoermiger metallhaltiger werkstoff und verfahren dazu
DE19536978A1 (de) * 1994-10-03 1996-04-04 Daido Steel Co Ltd Verfahren zur Herstellung schweißplattierter Stahlrohre
WO1998055661A1 (de) 1997-06-05 1998-12-10 Krupp Vdm Gmbh Nickel-chrom-molybdän-legierung

Also Published As

Publication number Publication date
JP2020508872A (ja) 2020-03-26
CN110036125A (zh) 2019-07-19
KR102354868B1 (ko) 2022-01-24
EP3555329A1 (de) 2019-10-23
US20200048741A1 (en) 2020-02-13
DE102016124588A1 (de) 2018-06-21
JP6918114B2 (ja) 2021-08-11
KR20190087464A (ko) 2019-07-24

Similar Documents

Publication Publication Date Title
DE60028853T2 (de) Wärmebeständiges Metallrohr und Verfahren zu dessen Herstellung
DE60004737T2 (de) Hitzebeständige Nickelbasislegierung
JP4780189B2 (ja) オーステナイト系耐熱合金
DE102012014068B3 (de) Austenitische Stahllegierung mit ausgezeichneter Zeitstandfestigkeit sowie Oxidations- und Korrosionsbeständigkeit bei erhöhten Einsatztemperaturen
KR101809360B1 (ko) Ni기 내열합금 용접 조인트의 제조 방법 및 그것을 이용하여 얻어지는 용접 조인트
DE60118834T2 (de) Mehrschichtiges wärmebeständiges Metallrohr mit Verkokungsschutz und Verfahren zur Herstellung davon
US20180066343A1 (en) New powder composition and use thereof
AU2016317860A1 (en) Chromium free and low-chromium wear resistant alloys
JP5842314B2 (ja) 大入熱溶接用鋼
WO2018108208A1 (de) Verwendung einer nickel-chrom-molybdän-legierung
DE2809081A1 (de) Legierung des eisen-nickel-chrom-molybdaen-systems mit hoher festigkeit und duktilitaet sowie verwendung dieser legierung
CN102892546A (zh) 合金、堆焊层及其方法
KR101457776B1 (ko) 저온 인성 및 낙중 특성이 우수한 용접 금속
WO2023169629A1 (de) VERFAHREN ZUR HERSTELLUNG EINES MIT SCHWEIßNÄHTEN VERSEHENEN BAUTEILS AUS EINER NICKEL-CHROM-ALUMINIUM-LEGIERUNG
JPWO2018066573A1 (ja) オーステナイト系耐熱合金およびそれを用いた溶接継手
EP3499172B1 (de) Überhitzer enthaltend eine verbrennungsgasen ausgesetzte rohranordnung enthaltend längstnahtgeschweisste rohre für dampferzeuger mit korrosiven rauchgasen
DE2501144A1 (de) Elektrodendraht
JP2017202493A (ja) オーステナイト系耐熱鋼用溶接材料
JPH0787989B2 (ja) 高強度Cr―Mo鋼のガスシールドアーク溶接施工法
Shinozaki Welding and joining Fe and Ni‐base superalloys
WO2019110041A1 (de) Schweisszusatzwerkstoff
WO2021204326A1 (de) Verwendung einer nickel-chrom-eisen-legierung
JP6447253B2 (ja) 溶接用高張力鋼
DE102007020420B4 (de) Plasmaspritzverfahren zur Beschichtung von Überhitzerrohren und Verwendung eines Metalllegierungspulvers
WO2023208278A1 (de) Verwendung einer nickel-eisen-chrom-legierung mit hoher beständigkeit in hoch korrosiven umgebungen und gleichzeitig guter verarbeitbarkeit und festigkeit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17832194

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197016716

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019531910

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017832194

Country of ref document: EP

Effective date: 20190716