WO2018108178A1 - 自移动设备的回归方法、自移动设备、存储介质和服务器 - Google Patents

自移动设备的回归方法、自移动设备、存储介质和服务器 Download PDF

Info

Publication number
WO2018108178A1
WO2018108178A1 PCT/CN2017/116684 CN2017116684W WO2018108178A1 WO 2018108178 A1 WO2018108178 A1 WO 2018108178A1 CN 2017116684 W CN2017116684 W CN 2017116684W WO 2018108178 A1 WO2018108178 A1 WO 2018108178A1
Authority
WO
WIPO (PCT)
Prior art keywords
path
regression
self
base station
mobile device
Prior art date
Application number
PCT/CN2017/116684
Other languages
English (en)
French (fr)
Inventor
周昶
谭一云
邵勇
刘芳世
王家达
Original Assignee
苏州宝时得电动工具有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710034583.3A external-priority patent/CN108308059B/zh
Application filed by 苏州宝时得电动工具有限公司 filed Critical 苏州宝时得电动工具有限公司
Priority to EP21205706.1A priority Critical patent/EP4029372A1/en
Priority to EP17882141.9A priority patent/EP3557359A4/en
Publication of WO2018108178A1 publication Critical patent/WO2018108178A1/zh
Priority to US16/442,428 priority patent/US20190369620A1/en
Priority to US17/525,154 priority patent/US20220075376A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/0088Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/006Control or measuring arrangements
    • A01D34/008Control or measuring arrangements for automated or remotely controlled operation
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K15/00Devices for taming animals, e.g. nose-rings or hobbles; Devices for overturning animals in general; Training or exercising equipment; Covering boxes
    • A01K15/02Training or exercising equipment, e.g. mazes or labyrinths for animals ; Electric shock devices ; Toys specially adapted for animals
    • A01K15/021Electronic training devices specially adapted for dogs or cats
    • A01K15/023Anti-evasion devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/005Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 with correlation of navigation data from several sources, e.g. map or contour matching
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/2297
    • G05D1/2464
    • G05D1/248
    • G05D1/6484
    • G05D1/661
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • G05D1/0278Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using satellite positioning signals, e.g. GPS
    • G05D2105/15
    • G05D2107/23
    • G05D2109/10

Definitions

  • the present invention relates to the field of robot technology, and in particular, to a regression method from a mobile device, a self-mobile device, a memory, and a server.
  • the intelligent lawn mower can realize automatic mowing, which brings great convenience to people's life.
  • the traditional intelligent lawn mower system can set a boundary line around the working area and energize, so that the intelligent lawn mower can judge the boundary by detecting the magnetic field signal around the current.
  • the intelligent mower needs to return to the charging station to supplement the electric energy, first find the boundary line, find the boundary line and then move back to the charging station along the boundary line. By controlling the movement of the machine across the boundary line, the machine can be roughly aligned with the charging station, thereby achieving precision. Docking.
  • Automatic control systems such as automatic mower systems, are able to automate tasks such as maintaining the lawn, and are increasingly popular with users.
  • self-mobile devices such as automatic lawn mowers, are restricted to activities within a certain work area.
  • a map of a work area is generated by a mobile station, and then the mobile station navigates the self-mobile device according to the work area defined by the map.
  • embodiments of the present invention provide a regression method, a mobile device, a storage medium, and a server from a mobile device.
  • the self-mobile device can reliably return the target device to the self-mobile device in the work area.
  • One aspect of the present invention provides a regression method from a mobile device that autonomously moves within a work area based on a map.
  • the regression method includes: obtaining a current location of the mobile device in the work area; selecting a regression path to the target location according to the current location; and determining that the regression path is reused, being repeated based on the regression path In the case of use, it is determined whether to reselect the regression path; and the self-mobile device returns to the target location according to the selected regression path.
  • the determining that the regression path is reused includes: determining a length of the regression path being reused and/or a frequency of being reused, if the regression path is reused And/or the frequency of being reused exceeds a preset threshold, then it is determined to reselect the regression path.
  • the currently selected regression path is referred to as a first regression path, and when the reused length and/or the frequency of being reused is greater than a preset first threshold, the selection and the first regression path are selected.
  • the second regression path that does not coincide is used as the regression path.
  • the currently selected regression path is referred to as a first regression path, and when the length of the reused and/or the frequency of being reused is greater than a preset second threshold, selecting the first regression path
  • the disjoint second regression path is used as the regression path.
  • the determining the length of the regression path to be reused and/or the frequency of being reused includes: storing usage information of at least part of the regression path, and determining the regression path according to the information The length to be reused and / or the frequency of reuse.
  • the selecting a regression path to the target location according to the current location comprises: calculating an optimal path between the current location and the target location, and using the optimal path as the regression path.
  • the calculating an optimal path between the current location and the target location comprises calculating a shortest path between the current location and the target location.
  • the regression method further includes: preset a plurality of preset regression paths; and selecting, according to the current location, the return path to the target location comprises: selecting one of the plurality of preset regression paths as the Return path.
  • the obtaining, after the current location of the mobile device in the working area further comprises: calculating an optimal path between the current location and the preset regression path; Returning the target location in accordance with the selected regression path includes causing the self-mobile device to move to the predetermined regression path in accordance with the optimal path.
  • the predetermined regression path includes a plurality of closed patterns in the work area and a line connecting the plurality of closed patterns and the target position; Returning the selected regression path to the target location includes: moving the self-mobile device in a current direction of motion or in any direction, and along the edge of one of the plurality of closed graphics when in contact with one of the plurality of graphics Moving to the line and returning to the target position along the line.
  • the plurality of closed patterns are a plurality of closed rings.
  • the regression method further includes: presetting a virtual boundary line of the work area; and selecting, according to the current location, a regression path to the target location: selecting along the virtual boundary line or approaching the The path of the virtual boundary line serves as the regression path.
  • the returning the self-mobile device to the target location according to the selected regression path further comprises: charging the self-mobile device docking charging post.
  • the charging the self-mobile device to charge the charging post comprises:
  • the charging the self-mobile device to charge the charging post comprises: causing the self-mobile device to retreat a predetermined distance away from the charging post at the target position, and at the preset The distance completes the attitude adjustment and causes the self-mobile device to move toward the charging post in the attitude to charge the charging post.
  • the self-mobile device is caused to record the target location and the gesture before the mobile device enters operation.
  • a self-mobile device including an acquisition module and a control module, wherein the acquisition module is configured to acquire a current location of the mobile device in a work area; the control module is configured to use the current Position, selecting a regression path to the target location; determining that the regression path is reused, determining whether to reselect the regression path based on the case where the regression path is reused; and controlling the self-mobile device according to the selected The regression path returns to the target location.
  • control module includes a first statistical unit and a control unit, wherein the first statistical unit is configured to count the length of the first regression path being reused and/or the frequency of being reused, if The control unit determines to reselect the regression path if the length of the regression path is reused and/or the frequency of being reused exceeds a preset threshold.
  • control unit refers to the currently selected regression path as a first regression path, when the length of the reused and/or the frequency of being reused is greater than a preset first threshold, The control unit selects a second regression path that does not coincide with the first regression path as the regression path.
  • control module further includes a first storage unit, the first storage unit is further configured to store usage information of at least part of the regression path, and the first statistical unit is further configured to The information determines the length of the regression path being reused and/or the frequency of reuse.
  • control module further includes a first calculation unit and a control unit, the first calculation unit is configured to calculate an optimal path between the current location and the target location, and the control unit Control selects the optimal path as the regression path.
  • control module further includes a first preset unit and a control unit: the first preset unit is configured to preset a plurality of regression paths, and the control unit is configured to select the plurality of preset regression paths. One of them is the return path.
  • control module further includes a second calculating unit, configured to calculate an optimal path of the current location and the regression path, so that the control module unit controls the self The mobile device moves along the optimal path to the regression path.
  • the first preset unit is further configured to preset a virtual boundary line of the working area; the control unit controls the self-moving device along the virtual boundary line or near the virtual boundary line The path returns to the target location.
  • control module further includes a posture determining unit and an adjusting unit, wherein the posture determining unit is configured to determine a posture of the self-mobile device when the self-mobile device moves to the target position,
  • the attitude adjustment unit is configured to adjust a posture of the self-mobile device to charge the self-mobile device docking charging pile.
  • control module further includes a second preset unit and a comparison unit, wherein the preset unit is configured to set a standard distance/relative position with the charging post and a charging posture from the mobile device, the comparison The unit is configured to compare the current gesture of the self-mobile device with the charging gesture and to bring the gesture of the self-mobile device to the charging gesture.
  • Yet another aspect of the present invention provides a storage medium storing computer readable instructions for performing the above method when the computer readable instructions are invoked.
  • a further aspect of the invention provides a server comprising a memory and a processor, wherein the memory stores computer readable instructions for invoking the computer readable instructions to perform the above method.
  • the regression method of the self-mobile device provided by the embodiment of the present invention, the self-mobile device, the memory, and the server can reliably return the self-mobile device to the target location by selecting the return path from the mobile device.
  • the present invention also provides an automatic working system, comprising: a self-moving device, moving and working in a work area defined by a map; a navigation module for recording position coordinates of the work area, and generating a work area map; the navigation module includes A calibration device for assisting positioning.
  • the calibration device includes a laser beam emitter for emitting a laser beam and forming a spot on the ground.
  • a predetermined location is preset, and it is determined whether the position coordinates recorded by the navigation module are accurate to assist positioning by determining whether the spot of the laser beam on the ground is at a predetermined position.
  • the calibration device further includes an attitude detection module and a laser ranging module for correcting errors caused by the yaw of the navigation module.
  • the attitude detecting module obtains a yaw angle ⁇ and a yaw angle ⁇ of the navigation module in two different directions
  • the laser ranging module is configured to measure a distance of the laser beam at a spot on the ground. L.
  • the calibration device obtains corresponding deviation correction values ⁇ X and ⁇ Y according to the yaw angle ⁇ , the yaw angle ⁇ and the distance L obtained by the attitude detection module and the laser ranging module to correct the navigation module.
  • the present invention also provides an automatic working system, comprising: a self-moving device, moving and working in a work area defined by a map; a navigation module for recording position coordinates of the work area, and generating a work area map; the navigation module includes And a mobile station and at least two base stations capable of communicating with the mobile station, the mobile station being selectable to communicate with one of the at least two base stations to transmit a differential message.
  • said at least two base stations are in communication with said mobile station over the same channel to transmit said differential message.
  • the at least two base stations comprise a primary base station and at least one standby base station, and when the primary base station is not faulty, the primary base station communicates with the mobile station through the channel, when the primary base station fails And the standby base station communicates with the mobile station through the channel.
  • said at least two base stations are in communication with said mobile station over different channels to transmit said differential message.
  • the at least two base stations comprise a first base station and a second base station
  • the mobile station presets a first channel that communicates with the first base station and a second channel that communicates with the second base station, when the first channel
  • the mobile station communicates with the first base station through the first channel, and when the first channel does not receive the differential message, the mobile station switches to the second channel and the second Base station communication.
  • the present invention also provides a differential global positioning system comprising a base station and at least one mobile station, the base station comprising an encoding module for encoding the mobile station, the base station establishing communication with the mobile station according to the encoding, The differential correction data is transmitted to the mobile station, and the base station is capable of establishing communication with a plurality of the mobile stations.
  • the base station includes a base station communication station for storing and transmitting the differential correction data
  • the base station communication station includes a data service hotspot pre-configured with an access permission password
  • the mobile station having the license password is The base station communication station can be accessed and the differential correction data can be obtained.
  • the differential correction data is encrypted according to a certain rule, and only the mobile station that knows the rule can obtain the differential correction data.
  • the present invention aims to solve at least one of the technical problems in the related art to some extent.
  • the present invention proposes a location information processing method based on differential positioning technology, so as to realize a process in which the mobile station does not need to re-execute moving along the boundary of the working area to generate a map when the base station position changes, simplifying the operation steps for solving When the base station moves, the position coordinates of the mobile station output will be deviated, and the map of the work area needs to be regenerated, which is a cumbersome technical problem.
  • the invention proposes a mobile station applied to a navigation module.
  • the present invention proposes another mobile station that is applied to the navigation module.
  • the present invention provides a computer readable storage medium.
  • the present invention provides a computer program product.
  • the first aspect of the present invention provides a location information processing method based on a differential positioning technology, which is applied to a navigation module, where the navigation module includes a base station, and is solved according to the differential information sent by the base station.
  • a mobile station having a relative position to the base station comprising:
  • the mobile station acquires a first relative position with the base station before the absolute position of the base station changes;
  • the mobile station maintains the same absolute position before and after the absolute position change of the base station;
  • the mobile station After the absolute position of the base station changes, the mobile station acquires a second relative position with the base station;
  • the mobile station acquires the first relative position with the base station before the absolute position of the base station changes, and then the mobile station remains absolutely before and after the change of the absolute position of the base station.
  • the location is the same, after the absolute position of the base station changes, the mobile station acquires the second relative position with the base station, so that the mobile station can update the map of the working area of the mobile station according to the first relative position and the second relative position, or notify the base station to store The absolute position of the base station is updated; points in the map are used to indicate the relative position with the base station.
  • the mobile station does not need to re-execute the movement along the boundary of the working area to generate a map, and the operation steps are simplified.
  • the position coordinates output by the mobile station will occur. Deviation, need to regenerate the map of the work area, the steps are more cumbersome technical problems.
  • the second aspect of the present invention provides a mobile station applied to a navigation module, where the navigation module is based on a differential positioning technology, including a base station, and is solved according to the differential information sent by the base station.
  • a mobile station that describes a relative location of a base station the mobile station comprising:
  • a calculating module configured to acquire a first relative position with the base station before the absolute position change of the base station; and obtain a second relative position with the base station after the absolute position of the base station changes;
  • control module configured to keep the absolute position of the mobile station the same before and after the change of the absolute position of the base station
  • an update module configured to update a map of the working area of the mobile station according to the first relative position and the second relative position, or notify the base station to update an absolute position of the stored base station; A point is used to indicate a relative position with the base station.
  • the mobile station applied to the navigation module acquires the first relative position with the base station before the absolute position of the base station changes, and then the mobile station maintains the same absolute position before and after the change of the absolute position of the base station.
  • the mobile station acquires a second relative position with the base station, so that the mobile station can update the map of the mobile station working area according to the first relative position and the second relative position, or notify the base station to the stored base station.
  • the absolute position is updated; points in the map are used to indicate the relative position with the base station. Therefore, when the location of the base station changes, the mobile station does not need to re-execute the movement along the boundary of the working area to generate a map, and the operation steps are simplified.
  • the base station moves, the position coordinates output by the mobile station will occur. Deviation, need to regenerate the map of the work area, the steps are more cumbersome technical problems.
  • the third aspect of the present invention provides another mobile station applied to the navigation module, and the navigation module is based on a differential positioning technology, including a base station, and is solved according to the differential information sent by the base station.
  • a mobile station having a relative position to the base station, the mobile station comprising: a memory, a processor, and a computer program stored on the memory and operable on the processor, when the processor executes the program, implementing the program.
  • a fourth aspect of the present invention provides a computer readable storage medium having stored thereon a computer program, wherein the program is executed by a processor to implement an embodiment of the first aspect of the present invention.
  • a location information processing method based on differential positioning technology.
  • a fifth aspect of the present invention provides a computer program product for performing differential positioning based on an embodiment of the first aspect of the present invention when an instruction in the computer program product is executed by a processor Technology location information processing method.
  • the invention aims at the problem that the traditional electronic pet collar is susceptible to interference and low positioning accuracy, and provides a pet collar system and a pet collar control method.
  • a pet collar system includes: a base station, a collar body, and a training device disposed on the collar body, the base station stores base station coordinate information, and the base station receives base station positioning data observed by the satellite positioning system, and the base station performs base station coordinate information and base station positioning data according to the base station. Calculating the difference observation value, obtaining a positioning error correction value, and transmitting the positioning error correction value to the training device; the training device includes a mobile satellite antenna, a base station radio antenna, a microprocessor, and an alarm, wherein
  • the mobile satellite antenna is configured to receive the collar positioning data observed by the satellite positioning system, and send the received collar positioning data to the microprocessor;
  • the base station radio antenna is configured to receive a positioning error correction value sent by the base station, and send the received positioning error correction value to the microprocessor;
  • the microprocessor pre-stores the pet activity boundary area, and the pet is restricted to be active in the pet activity boundary area; the microprocessor performs positioning correction processing according to the collar positioning data and the positioning error correction value, and determines the boundary between the pet and the pet active boundary area. Whether the distance is less than or equal to the preset distance threshold, when the distance between the pet and the pet activity boundary area is less than or equal to the preset distance threshold, the microprocessor sends an alarm signal to the alarm;
  • the alarm is used to output an alarm message based on the alarm signal.
  • the microprocessor comprises:
  • a storage unit for storing a pet activity boundary area
  • a positioning correction unit configured to perform positioning correction processing according to the collar positioning data and the positioning error correction value, to obtain coordinate information of the current position of the pet
  • a position determining unit configured to calculate a distance between the pet and the pet activity boundary region according to the pet current position coordinate information, and determine whether the distance between the pet and the pet activity boundary region is less than or equal to a preset distance threshold;
  • the alarm unit is configured to output an alarm signal to the alarm when the distance between the pet and the pet activity boundary area is less than or equal to the preset distance threshold.
  • the above-mentioned pet collar further includes an acceleration sensor, the acceleration sensor is disposed on the collar body, and the acceleration sensor is coupled to the microprocessor, and the acceleration sensor is configured to collect the motion acceleration of the pet and collect the acceleration of the pet motion. Send to the microprocessor;
  • the microprocessor further includes a power management unit, configured to receive the pet motion acceleration, and compare the pet motion acceleration with a pre-stored acceleration threshold, and when the pet motion acceleration is less than or equal to the acceleration threshold, initiate the sleep mode, and the micro processing The device enters a sleep state; when the pet motion acceleration is greater than the acceleration threshold, the microprocessor wakes up.
  • a power management unit configured to receive the pet motion acceleration, and compare the pet motion acceleration with a pre-stored acceleration threshold, and when the pet motion acceleration is less than or equal to the acceleration threshold, initiate the sleep mode, and the micro processing The device enters a sleep state; when the pet motion acceleration is greater than the acceleration threshold, the microprocessor wakes up.
  • the pet collar further includes a terminal communication module, and the microprocessor exchanges information with the remote terminal through the terminal communication module, and the remote terminal includes one or more of a mobile phone, a tablet, or a computer.
  • the pet activity boundary area is delineated by a map software on a cell phone, tablet or computer.
  • the base station is a smart lawn mower base station
  • the boundary area is a map boundary area learned by the intelligent lawn mower.
  • a pet collar control method for restricting a pet to an activity in a pet activity boundary area includes the following steps:
  • Position correction processing is performed according to the collar positioning data and the positioning error correction value, and the current position coordinate information of the pet is obtained;
  • the alarm signal is output when the distance between the pet and the pet activity boundary region is less than or equal to the preset distance threshold.
  • the method before receiving the tracking data of the satellite positioning system and receiving the positioning error correction value sent by the base station, the method includes the following steps:
  • the base station receives the base station positioning data observed by the satellite positioning system, and performs differential observation calculation on the base station positioning data and the pre-stored base station coordinate information to obtain a positioning error correction value.
  • the pet collar control method further includes the following steps:
  • the sleep mode is initiated to cause the microprocessor to enter a sleep state; when the pet motion acceleration is greater than The microprocessor wakes up when the acceleration threshold is reached.
  • the method before receiving the tracking data of the satellite positioning system and receiving the positioning error correction value sent by the base station, the method includes the following steps:
  • the remote terminal includes one or more of a mobile phone, a tablet or a computer.
  • the boundary area is a map boundary area learned by the intelligent lawn mower.
  • the pet collar and the remote terminal are connected by network communication, and the pet collar control method further includes the following steps:
  • the pet collar sends the current position coordinate information of the pet to the remote terminal in real time, and when the distance between the pet and the pet activity boundary area is less than or equal to the preset distance threshold, the pet collar sends an alarm signal to the remote terminal; the remote terminal receives the pet current position coordinate The information and the alarm signal, and the remote terminal outputs a control command to the pet collar according to the pet current position coordinate information or the alarm signal.
  • the pet collar system and the pet collar control method described above are used to form a virtual pet fence in a pet activity boundary area, and restrict the pet to the pet activity boundary area to prevent the pet from being lost.
  • the pet collar system and the pet collar control method perform positioning correction processing according to the collar positioning data observed by the satellite positioning system and the positioning error correction value sent by the base station, and determine whether the distance between the pet and the pre-stored pet activity boundary region is less than or equal to The distance threshold is set. When the distance between the pet and the pet activity boundary region is less than or equal to the preset distance threshold, the microprocessor outputs an alarm signal to the alarm, and the alarm device outputs an alarm message to prevent the pet from coming out of the preset active boundary region. Avoid pets lost.
  • the pet collar system and the pet collar control method locate the position of the pet through the satellite positioning system, and the boundary wiring is not needed, and the operation is simple and convenient, and the pet collar system and the pet collar control method calculate the positioning result according to the difference observation value of the base station according to the base station.
  • the obtained positioning error correction value is corrected, thereby eliminating the influence of various interference factors on the positioning progress, and the centimeter-level precision positioning can be achieved, and the precise positioning of the pet is realized, and the positioning precision is high.
  • FIG. 1 is a flowchart of a method for regressing a mobile device according to an embodiment of the present invention.
  • FIG. 2 is a flowchart of a method for selecting a regression path according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of a method for determining an optimal path according to an embodiment of the present invention.
  • 4a-4b are schematic diagrams showing preset regression paths according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of an acquisition module according to an embodiment of the present invention.
  • 5b-5f are schematic diagrams of a control module according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a control module according to an embodiment of the present invention.
  • Figure 7 is a schematic view of an automatic working system of a first embodiment of the present invention.
  • Figure 8 is a schematic view showing the structure of an automatic lawn mower according to a first embodiment of the present invention.
  • 9a and 9b are schematic diagrams showing the composition of a navigation module according to a first embodiment of the present invention.
  • 10a-10d are schematic views showing the operation of the calibration device of the first embodiment of the present invention.
  • Figure 11 is a schematic diagram of a mobile station wheel device according to a sixth embodiment of the present invention.
  • Figure 12 is a schematic view of a grid of a first embodiment of the present invention.
  • Figure 13 is a diagram showing the operation of the navigation module of the first embodiment of the present invention.
  • FIG. 14 is a schematic diagram of communication between a base station and a mobile station according to the first embodiment of the present invention.
  • 15a to 15c are diagrams showing the principle of base station position correction according to the first embodiment of the present invention.
  • Figure 16 is a flow chart showing the base station position correction of the first embodiment of the present invention.
  • 17 to 21 are schematic views showing the movement path of the automatic lawn mower according to the first embodiment of the present invention.
  • 22 to 24 are schematic diagrams showing a regression path of the automatic lawn mower according to the first embodiment of the present invention.
  • FIG. 25 is a schematic flowchart diagram of a first location information processing method based on a differential positioning technology according to an embodiment of the present disclosure
  • 26a is a schematic diagram of a position of a base station before moving according to an embodiment of the present invention.
  • 26b is a schematic diagram showing a position of a base station after being moved according to an embodiment of the present invention.
  • FIG. 27 is a schematic flowchart diagram of a second location information processing method based on differential positioning technology according to an embodiment of the present disclosure
  • FIG. 28 is a schematic structural diagram of a mobile station applied to a navigation module according to an embodiment of the present invention.
  • FIG. 29 is a schematic structural diagram of another mobile station applied to a navigation module according to an embodiment of the present invention.
  • FIG. 30 is a schematic structural diagram of a mobile station applied to a navigation module according to an embodiment of the present invention.
  • Figure 31 is a schematic structural view of a pet collar system in an embodiment
  • Figure 32 is a structural schematic diagram of a training device in an embodiment
  • 33 is a schematic diagram of an application scenario of a pet collar system in an embodiment
  • Figure 34 is a schematic diagram showing the flow of a pet collar control method in an embodiment
  • 35 is a schematic diagram of an application environment for training a pet by using a pet collar system in an embodiment
  • 36 is a flow chart of applying a pet collar system to train a pet in one embodiment.
  • the satellite navigation technology can obtain its own position information according to the navigation signal by sending a navigation signal to the robot, so that the robot can judge whether it is in the work area according to the position information.
  • the robot can for example be provided with a GPS mobile station that can receive satellite positioning signals.
  • a fixed GPS base station can be installed around the working area to provide a positioning correction signal.
  • a GPS base station disposed outside the work area can receive a satellite positioning signal, and generate a positioning correction signal based thereon, and transmit the positioning correction signal to a GPS mobile station disposed at the robot, so that the robot can be more accurately positioned.
  • the differential GPS technology in this embodiment is an RTK technology, that is, a carrier phase difference technology, and the mobile station performs calculation using a carrier phase algorithm.
  • Differential GPS technology can also be CORS technology.
  • the robot can obtain a map of the work area in the following ways.
  • the user can circle the work area in the map directly loaded in the robot's system.
  • the map can be Baidu or Google Maps.
  • the robot can be walked along the work area, for example, one circle to acquire a map.
  • the user can push the machine to walk in the work area, or the user can control the machine to walk with the remote controller, or let the robot follow the user, or configure the boundary sensor on the machine to detect the working area.
  • the GPS mobile station can be detachably arranged from the machine so that the GPS mobile station can be carried by the user alone along the work area.
  • the map of the work area may include coordinates of water, shrubs or other feature information in the work area in addition to the boundary coordinates. Therefore, the machine can work in a targeted manner according to the map of the work area that is mastered. For example, the work performed can be weeded, cultivated, fertilized, etc., but the present invention does not limit the type of work of the machine in the work area.
  • An embodiment of the present invention provides a regression method for a self-mobile device that moves autonomously within a work area based on a map.
  • the method includes: S100 acquires a current location from a mobile device in a work area; S200 selects a regression path to a target location according to the current location; and S300 determines that the regression path is reused, based on If the regression path is reused, it is determined whether to reselect the regression path; and S400 causes the self-mobile device to return to the target location according to the regression path.
  • the target device can be reliably returned to the target position by selectively selecting the regression path according to the current position and the target position. According to the case where the regression path is reused, it is judged whether to re-select the regression path, and the robot is prevented from repeatedly moving and crushing the lawn along the same path to ensure the beauty of the lawn.
  • the robot records the previous regression paths.
  • the case where the regression path is reused includes whether the regression path overlaps with the previous or previous regression paths, including the length of the reused, or is repeated. The frequency of use.
  • the self-mobile device can be positioned by satellite navigation, obtain the coordinates of the mobile device in the work area, and combine the coordinates of the target position and the map of the work area to select a regression path that can pass.
  • the self-mobile device described above can be a lawn mower that moves through wheels or tracks.
  • the regression path should avoid water beds, bushes, obstacles, and the like. That is to say, it is necessary to ensure that the machine can pass without jamming, falling, impacting, etc. during the movement.
  • determining whether to reselect the regression path includes: S1001 refers to the currently selected regression path as the first a regression path, S1002 statistics the length and/or frequency of use of the first regression path being reused, and S1003 determining whether the self-mobile device is along the length according to the length of the reused and/or the frequency of being reused
  • the first regression path returns to the target location. For example, when the working area is a lawn, when the lawn mower is required to return to the target position to charge, if the same route is taken every time, the grass of the lawn on the path may be crushed, thereby affecting the appearance of the lawn. By returning the lawn to a target location along different paths each time, it is possible to prevent certain areas of the lawn from being damaged.
  • a second regression path that does not coincide with the first regression path may be selected as the Regression path.
  • the second regression path may be completely different or partially different from the first regression path.
  • the first regression path and the second regression path may share the path of the part without the grass area, and the paths of the two parts are different in other parts.
  • the second regression path may not completely have any intersection with the first regression path.
  • the second regression path may be the first regression path. Partially intersecting or small parts coincide.
  • usage information for at least a portion of the first regression path may be recorded and based on the information, the length and frequency at which the first regression path is reused may be determined.
  • the machine can calculate the first regression path according to the current position and the target position. That is, if the current position is determined and the target position is also determined, the machine can first calculate a fixed first regression path. After the machine returns to the target position along the first regression path, it can record the first regression path once, so that the record can decide whether to select the basis for the return of the first regression path.
  • by recording related information of the regression path it is convenient to determine that the regression path is reused, and lay a foundation for the subsequent path selection.
  • the selecting the regression path according to the current location and the target location comprises: determining an optimal path between the current location and the target location, and using the optimal path as the regression path .
  • the determining an optimal path between the current location and the target location may include: S1010 loading a map of the work area in the self-mobile device; and marking S1011 on the map An equidistant grid; and S1012 determining the shortest path based on the grid. Or the loaded map can also be directly a raster map. In this case, the above step S1011 is omitted.
  • Determining an optimal path between the current location and the target location includes calculating a shortest path between the current location and the target location.
  • the regression route from the mobile device is a straight line; the determining the most path according to the map includes: selecting a path between the current location and the target location that covers a line or a fold line that minimizes the grid .
  • the optimal path needs to consider the distance of the distance, the difficulty of walking, etc.
  • the difficulty of walking includes the number of slopes in the path, the number of obstacles, and the number of times the machine needs to adjust the posture.
  • the above-mentioned straight line or polyline needs to avoid obstacles, water beds, etc. in the working area, and may be a straight line or a plurality of fold lines, with a straight line or a plurality of fold lines between the current position and the target position. The sum is shorter.
  • the return path between the current position and the target position may also be a combination of at least two of a straight line, a broken line, or a curve.
  • the regression method further includes: presetting a plurality of preset regression paths; causing the self-mobile device to return to the target location along one of the preset regression paths. That is, one or more return paths can be set in the work area, so that the machine can return to the target position along one of the paths when it needs to return to the target.
  • the machine can obtain its position coordinates in the work area and calculate the shortest distance from the preset regression path based on the position coordinates so that the machine can quickly reach the preset return path through the shortest distance.
  • the preset regression path may be a plurality of paths 12, 13, 14 in the working area, and the paths may share a part of the paths (for example, the path of the shared part has no lawn, and therefore, the mobile device may be multiple times Walking), so that when the mobile device is working in the work area, the optimal walking plan of the preset plurality of paths can be calculated by itself, and after reaching the preset path, moving to the target position 2 along the preset path.
  • the portion of the preset path between the obstacles 4 in the work area is the shared path.
  • the preset path may also be a plurality of closed return paths 12, 13, 14 disposed in the work area.
  • the plurality of regression paths may be a plurality of sets of rings or a set of rectangular rings (described as a set of rectangles in FIG. 4), and the circular or rectangular rings 12, 13, 14 may be straight by the target position
  • the 16 are coupled together such that when the machine moves along a circular or rectangular ring to the intersection with the line, the attitude is adjusted and further moved along the line 16 to the target position 2.
  • the outermost regression path 14 can be close to the boundary line of the work area.
  • the outermost regression path 14 can pass directly through the target position 2, so that when the machine needs to return to the target position, it can continue to travel along its current direction of motion, and when it intersects with the preset return path, that is, return to the target along the preset path. position.
  • the machine can be more easily returned to the target position, and the collision process can be prevented from hitting an obstacle or falling over.
  • the regression method further includes: presetting a virtual boundary line of the work area; selecting a path along the virtual boundary line or near the virtual boundary line as the regression path.
  • the target position can be returned by the machine along the boundary line or a position close to the boundary line by marking a boundary line on the map.
  • the machine returns along the preset regression path, or returns along the virtual boundary line/near the virtual boundary line.
  • the case where the path is reused may be considered, and the path may be reused and the path may be switched.
  • the method further includes: charging the self-mobile device to charge the charging post.
  • the charging the self-mobile device to charge the charging post includes: adjusting the self-moving device to adjust a posture at the target position such that a charging portion thereof charges the charging post.
  • the self-mobile device may first be moved back by a preset distance with respect to the charging post at the target position, and posture adjustment is completed at the preset distance, and the self-mobile device is in the posture. Moving to the charging post to dock the charging post.
  • the automatic charging of the machine can be conveniently realized, and the intelligent experience of the user is improved.
  • the charging the self-mobile device to charge the charging post further comprises: causing the self-mobile device to record the preset distance and the posture, so that the self-mobile device may be pre-set from the charging pile A distance is provided and the charging pile is docked and charged in the posture. That is to say, the machine records its position, posture and process of charging the charging pile successfully, so that the charging can be completed more quickly when the next charging is performed.
  • the docking parameters of the machine and the charging pile can also be recorded in advance. That is, after loading the map of the work area, the machine can be placed on the charging station, and the position and posture of the machine can be recorded, so that the machine can be moved back away from the charging station by a predetermined distance, and then the forward docking is performed. If the docking is successful, the machine stores the machine. The preset preset distance/retracted position, and the charging posture at the position, with the position as the target position. That is to say, in general, the machine needs to maintain a certain distance from the charging station in order to perform posture adjustment. When returning to the docking, the machine can first return to the position and complete the attitude adjustment at that position to complete the docking charging with the charging post.
  • This scheme can, for example, cooperate with a virtual regression path, ie the machine returns to that location along the virtual path.
  • This method requires high positioning accuracy, and can be used when the docking mode allows a certain positioning error.
  • the precise connection between the machine and the charging pile can be realized by means of infrared, ultrasonic, guiding lines and guide rails.
  • the returning to the target position of the machine may also be for maintenance, returning to the parking area after the work is completed, or refueling, etc., which is not limited by the present invention.
  • the self-mobile device 1 includes an acquisition module 110 and a control module 120.
  • the acquisition module 110 is configured to acquire a current location of the mobile device 1 in a work area.
  • the control module 120 is configured to use the current Position, selecting a regression path to the target location; determining that the regression path is reused, determining whether to reselect the regression path based on the case where the regression path is repeatedly used; and controlling the self-mobile device 1 according to the The regression path returns to the target location.
  • the machine provided by the embodiment of the invention can quickly return to the target position in the working area, and has a good application prospect. According to the case where the regression path is reused, it is judged whether to re-select the regression path, and the robot is prevented from repeatedly moving and crushing the lawn along the same path to ensure the beauty of the lawn.
  • the control module includes a first statistic unit 121 and a control unit 122, and the currently selected regression path is referred to as a first regression path, wherein the first statistic unit 120 is used in a statistic Determining the length and/or frequency of use of the first regression path, and the control unit 122 determines whether the self-mobile device 1 is along the first regression path according to the length and/or frequency of use of the reuse Return to the target location.
  • control unit 122 is further configured to: when the length of being reused is greater than a preset threshold (for example, the preset threshold is 1/3 of the total length of the first regression path) or the use frequency is greater than or equal to 2 times a day And controlling the self-mobile device 1 to return to the target location along a second regression path that does not coincide completely with the first regression path, partially does not coincide or does not intersect.
  • a preset threshold for example, the preset threshold is 1/3 of the total length of the first regression path
  • the use frequency is greater than or equal to 2 times a day
  • controlling the self-mobile device 1 to return to the target location along a second regression path that does not coincide completely with the first regression path, partially does not coincide or does not intersect.
  • the machine of this embodiment can avoid the damage of the working area and improve the user experience by returning the machine to the target position along the path that is not completely coincident.
  • the first statistic unit 121 is configured to record related information of the regression path, and determine, according to the information, a case where the regression path is repeatedly used. That is, the first statistic unit 121 may record information that the regression path is used (eg, may include the length of reused and/or the frequency used, etc.) so that when all or part of the path of the regression path is used too much
  • the control unit 122 controls the machine to bypass to prevent damage to the work area.
  • the control module 120 further includes a first calculating unit 123, the first calculating unit 123 is configured to calculate an optimal path between the current location and the target location, and The control unit 122 uses the optimal path as the regression path.
  • the calculation process may be that the acquisition module acquires the position coordinates of the current machine, and calculates an optimal path according to the coordinates of the coordinates and the target position.
  • the optimal path can be the shortest path.
  • the control module 120 may further include a loading unit 125 and an annotation unit 126; wherein the loading unit 125 is configured to load the work area map; the labeling unit 126 is used to A reference grid is marked on the map (eg, the equidistant grid in the map can be a square square).
  • the first calculating unit 123 is configured to determine the optimal path according to the grid.
  • the control module 120 may not include the labeling unit. The optimal path needs to consider the distance of the distance, the difficulty of walking, etc., that is, to find a balance between difficulty in walking and distance.
  • the distance of the distance can be determined by the number of virtual cells covered by the path, and the more cells, the longer the path, and vice versa.
  • the difficulty of walking includes the number of slopes in the path, the number of obstacles, and the number of times the machine needs to adjust the posture.
  • the regression path can be an L-shaped path or a straight path.
  • the control module further includes a first preset unit 127.
  • the first preset unit 127 is configured to preset a plurality of preset regression paths; the control unit 122 is configured to control the self-mobile device 1 to return to the target location along the return path.
  • the regression path may be a plurality of closed patterns in the working area, and may be a plurality of rectangular rings or a plurality of rings. When the machine needs to return to the target position, it can continue to move in its current direction of motion and return to the target position along the ring or rectangle when one of the plurality of rectangular rings or rings intersects.
  • the virtual circular regression lines set in the work area may be connected in a straight line in an area close to the target position, and the other end of the straight line is connected to the target position. Therefore, when the machine returns, it first moves along the virtual circular regression line to the position intersecting the straight line, and moves along the straight line to the target position.
  • the control module 120 may further include a second calculating unit 128, where the second calculating unit 128 is configured to calculate an optimality of the current location and the preset regression path.
  • the path (including the shortest path) such that the control die unit 122 controls the self-mobile device to move along the optimal path to the target position. That is, when the machine needs to return to the target position, it can first obtain its own position information, and according to the relationship between the position and the preset regression line on the map, calculate the optimal path to the preset regression line, so that the optimal path can be quickly along the optimal path. Reach the preset regression line.
  • the first preset unit 127 is configured to preset a virtual boundary line of the working area; the control unit 122 controls the self-mobile device along the virtual boundary line or near the The virtual boundary line returns to the target location.
  • the machine can be reliably and quickly returned to the target position, and the situation of jamming, rollover or impact obstacles during the regression process is avoided.
  • the control module 120 further includes a posture determining unit 128 and an adjusting unit 129, when the posture determining unit 128 is configured to move the mobile device 1 to the target position.
  • the posture of the self-moving device 1 is determined, and the posture adjusting unit 129 is configured to adjust the posture of the self-mobile device 1 to charge the self-mobile device 1 to dock the charging post.
  • control module 120 may further include a second preset unit and a comparison unit.
  • the preset unit is configured to set a standard distance/relative position with the charging post and a charging posture from the mobile device
  • the comparing unit is configured to compare the current posture of the self-mobile device with the charging posture, and Adjusting the attitude of the self-mobile device to the charging posture.
  • control module may further include a recording unit.
  • the recording unit may be used to record the posture of the machine capable of docking the charging post and the distance/relative position from the charging post. Thereby the control unit can control the position from the mobile device to move to the position with the charging post/the position and adjust to a position that can be charged, thereby quickly achieving charging from the mobile device.
  • the shadow area is encountered from the mobile device (ie, the satellite navigation signal in the working area is weak, and the area that the mobile device cannot navigate normally), it may be determined that the mobile device needs to pass in the current motion direction. The distance and time of the shaded area. If the distance or time required exceeds a preset threshold, you can choose to bypass the shaded area.
  • the self-mobile device may include a preset unit and a determination unit.
  • the preset unit is configured to preset a threshold of a distance or time that can be accurately navigated when the mobile device moves in the shadow zone
  • the determining unit is configured to determine whether the shadow zone encountered by the mobile device exceeds the threshold of the distance or time. And according to the judgment result, it is decided whether to bypass the above shadow area.
  • Yet another embodiment of the present invention provides a storage medium storing computer readable instructions for performing a regression method of the above machine when the computer readable instructions are invoked.
  • Yet another embodiment of the present invention provides a server including a memory and a processor, wherein the memory stores computer readable instructions, and the processor is configured to invoke the computer readable instructions to perform the method of returning the machine .
  • FIG. 7 is a schematic illustration of an automated working system 100 in accordance with a first embodiment of the present invention.
  • the automated working system includes self-mobile devices.
  • the self-moving device is an automatic lawn mower 1.
  • the self-mobile device may also be an unattended device such as an automatic cleaning device, an automatic watering device, an automatic snow sweeper, and the like.
  • the automated working system 100 also includes a charging station 2 for refueling the automatic mower 1.
  • the automatic working system 100 includes a navigation module for outputting the current position of the automatic mower.
  • the navigation module includes a base station 17 and a mobile station 15.
  • the automatic working system is used to operate in a predetermined working area.
  • the working area includes at least two sub-working areas separated from each other, and the sub-working areas are connected by the passage 400.
  • a boundary 200 is formed between the work area and the non-work area, and the work area includes obstacles 9, 11 and the obstacle includes trees, pits and the like.
  • the structure of the automatic lawn mower 1 in this embodiment is as shown in FIG.
  • the automatic mower 1 includes a housing 3, a moving module, a task execution module, an energy module, a control module, and the like.
  • the moving module comprises a crawler belt 5 driven by a driving motor to drive the automatic mower 1 to move.
  • the task execution module includes a cutting assembly 7 that performs mowing work.
  • the energy module includes a battery pack (not shown) that provides electrical energy for the movement and operation of the automatic mower 1.
  • the control module is electrically connected to the mobile module, the task execution module and the energy module, and the control mobile module drives the automatic mower 1 to move, and controls the task execution module to perform work tasks.
  • the composition of the navigation module in this embodiment is as shown in FIGS. 9(a) and (b).
  • the navigation module includes a base station 17 and a mobile station 15. Both the base station 17 and the mobile station 15 receive satellite signals, and the base station 17 transmits a positioning correction signal to the mobile station 15 to implement differential satellite positioning.
  • the base station 17 and the mobile station 15 receive GPS positioning signals to implement differential GPS positioning.
  • base station 17 and mobile station 15 may also receive positioning signals such as Galileo satellite navigation systems, or Beidou satellite navigation systems, or GLONASS.
  • the base station 17 includes a GPS antenna 19, which receives a GPS positioning signal, and a GPS card 21 that processes the received GPS positioning signal and generates a positioning correction signal.
  • the communication module 23 will The positioning correction signal is sent to the mobile station 15.
  • the communication module 23 includes a station and a station antenna 25; the base station further includes an indicator (not shown) that can output an indication of whether the satellite signal at the current location is good.
  • the base station 17 is disposed at the charging station 2 and integrated with the charging station 2. In other embodiments, the base station 17 can also be provided separately from the charging station 2, for example, at a location such as a roof that can better receive satellite signals.
  • the mobile station 15 includes a housing 27, a GPS antenna 29 that receives a GPS positioning signal, a GPS board 31 that processes the received GPS positioning signal, and a communication module 33 that receives the positioning correction signal sent by the base station 17, the communication module. 33 includes radio and radio antennas 35.
  • the mobile station 15 integrates an inertial navigation device (not shown), and the inertial navigation device outputs inertial navigation data. When the mobile station 15 is working, it may use only the GPS positioning signal to navigate, or may use the positioning signal of the GPS positioning signal and the inertial navigation data after the fusion processing to navigate, or when the GPS signal is weak, it may also use only inertial navigation. Data to navigate.
  • the mobile station 15 also includes an indicator (not shown) that outputs an indication of whether the GPS signal at the current location is good.
  • the mobile station 15 is detachably coupled to the casing 3 of the automatic mower 1.
  • the mobile station 15 includes a first interface (not shown) that is coupled to the housing of the automatic lawn mower 1.
  • the mobile station 15 is mounted to the casing 3 of the automatic mower 1 when the automatic mower 1 is in operation.
  • the mobile station 15 When the mobile station 15 is connected to the casing 3 of the automatic mower 1, electrical connection with the control module of the automatic mower 1 can be realized, the mobile station 15 outputs the current position coordinates of the automatic mower 1, and the control module is based on automatic cutting.
  • the current position of the lawnmower 1 controls the movement and operation of the automatic mower 1.
  • the mobile station 15 includes an independent power supply module 37, which can operate independently when separated from the housing 3 of the automatic lawn mower 1.
  • a map of the work area needs to be established before the automatic lawn mower enters the work.
  • the map of the work area is established by using the navigation module of the automatic working system. Establishing a map of the work area includes the steps of recording the map.
  • the steps of recording the map are started.
  • the mobile station when the map is recorded, the mobile station is separated from the casing of the automatic mower, the mobile station operates independently, and the user holds the mobile station to record the map.
  • Recording the map includes the steps of starting from the starting point, in this embodiment, the charging station position, starting along the boundary of the working area, recording the boundary position coordinates; walking along the obstacle in the working area, recording the obstacle position coordinates; and separating the islands along the working area Walk, record the position coordinates of the isolated island; walk along the channel of the connected working area, and record the coordinates of the channel position.
  • the inertial navigation device when the user holds the mobile station to record the map, the inertial navigation device is in the off state. The reason is that when the user is holding the mobile station to move, due to the shaking of the hand, the mobile station may be anterior-posterior yaw, which will cause serious interference to the inertial navigation device.
  • the mobile station in order to accurately record the map and eliminate or reduce the error, includes a calibration device.
  • the calibration device includes a laser beam emitter for assisting positioning.
  • a laser beam emitter is mounted below the housing of the mobile station to generate a laser beam perpendicular to the bottom surface of the mobile station.
  • the user walks with the mobile station to observe the spot of the laser beam on the ground, and determines whether the spot of the laser beam on the ground is at a predetermined position, for example, when the user walks along the boundary, the user It is judged whether or not the photoelectricity of the laser beam on the ground is on the boundary.
  • the calibration device further includes a posture detecting module 39 and a laser ranging module 41, as shown in FIG. 10(b), for correcting the position of the laser beam on the ground caused by the yaw of the mobile station. The error between the actual positions of the mobile stations.
  • the mobile station when the map is recorded, the mobile station is installed in the casing of the automatic lawn mower, and the user remotely controls the automatic lawn mower movement by using a smart terminal device such as a mobile phone or a tablet.
  • the steps of recording the map include recording the boundaries of the work area, obstacles within the work area, passages connecting the sub-areas, and the like.
  • the inertial navigation device can be activated during the process of recording the map, because the mobile station is installed in the casing of the automatic lawn mower, and the movement of the mobile station is relatively stable.
  • the task execution module of the automatic mower keeps the closed state during the process of recording the map.
  • the automatic lawn mower includes a push rod that is detachably mounted to the housing of the automatic lawn mower.
  • the mobile station is installed in the casing of the automatic mower, and the push rod is installed in the casing of the automatic mower, and the user operates the push rod to push the automatic mower to move, thereby recording the boundary, obstacle, and passage of the working area. Wait. Similarly, the task execution module of the automatic mower remains off.
  • the automatic mower includes an ultrasonic device such that the automatic mower can follow the user at a certain distance.
  • the mobile station is installed in the casing of the automatic mower, the user walks along the boundary of the work area, or obstacles, passages, etc., and the automatic mower follows the user's movement to record the map. Similarly, the task execution module of the automatic mower remains off.
  • the advantage of this is that the automatic mower follows the user's movement when the map is recorded, and it is possible to judge whether the position of the map record is accurate or not, and to check the map.
  • the mobile station when the map is recorded, the mobile station is separated from the automatic lawn mower, and the mobile station is placed on the pushable cart.
  • the mobile station can be installed on a hand push device, and the user pushes
  • the trolley walks and records the boundaries, obstacles, passages, etc. of the work area.
  • the advantage of this is that the movement of the mobile station is smooth and the inertial navigation device can be activated.
  • the mobile station 15 includes a roller device 43 that is detachably coupled to the housing 27 of the mobile station.
  • the mobile station 15 includes a direction sensor 47 and a ranging sensor, and the ranging sensor includes a tachometer 49 that is mounted in the roller device 43.
  • the roller device 43 also includes a push rod 45. When the map is recorded, the mobile station 15 is separated from the casing 3 of the automatic mower, and the roller device 43 is connected to the casing 27 of the mobile station 15, and the user manipulates the push rod 45 to push the mobile station 15 to move to record the map.
  • the ranging information outputted by the tachometer 49 and the direction information output by the direction sensor 47 can be used to calculate the auxiliary positioning information for correcting the positioning error of the satellite positioning or the inertial navigation.
  • the positioning error is small and the cost is low.
  • the mobile station includes a second interface that is coupled to the user's smart terminal.
  • Smart terminals such as mobile phones and tablets can be installed on the mobile station through the second interface.
  • the second interface can include an electrical interface such that an electrical connection to the mobile station is achieved when the smart terminal is installed on the mobile station.
  • the mobile station wirelessly communicates with the intelligent terminal through the communication module, and the wireless communication mode may be wifi, cellular network, Bluetooth, or the like.
  • the smart terminal is installed on the mobile station to display the information recorded by the mobile station in real time.
  • the mobile station includes a plurality of buttons for inputting instructions such as "recording map" and "complete recording”.
  • the mobile station includes a display screen that displays real-time information in place of the smart terminal.
  • the charging station is used as the starting point of the map, and the automatic mower starts working at the charging station.
  • the mobile station is installed in the automatic mower to make the automatic mower in the charging state, or simulate the charging state of the automatic mower, that is, the docking state is completed, the recording is confirmed manually or the recording is confirmed by the charging signal.
  • the charging station position information, the charging station position information includes position coordinates, and also includes posture information of the automatic lawn mower.
  • the automatic mower includes an acceleration sensor, an electronic compass, etc. When recording the position of the charging station, the information such as the direction and the tilt angle of the automatic mower at this time is recorded by the acceleration sensor, the electronic compass, etc., so as to facilitate the return of the automatic mower. Accurate docking.
  • the mobile station includes a map generation module that generates a map of the work area based on the recorded location coordinates and saves the map.
  • a map command is generated by button input, and map information of the closed area is generated. For example, when the user records the boundary of the work area, walks along the boundary of the sub-work area, walks one week along the boundary of the sub-work area, generates the boundary of the sub-work area, and then starts recording the boundary of the next sub-work area.
  • the user records obstacles and passages they walk along obstacles or passages to form a closed area, generate map information corresponding to the enclosed area, and then record the next closed area.
  • the recorded closed area is given a feature attribute. For example, if the recorded closed area is given a boundary attribute, the automatic mower can work within the area and cannot leave the area. If the recorded enclosed area is given an obstacle property, the automatic mower cannot enter the area. At the same time, the obstacle must be within the boundary, so its part outside the boundary will be discarded. If the recorded closed area is given the channel attribute, the automatic mower can enter the area, but the mowing work cannot be performed in the area. The channel can be inside or outside the boundary. If it is outside the boundary, it is used to connect two separate sub-working areas, so it must have a boundary with two sub-working areas. If it is within the boundary, it is usually non- The road surface of the lawn, therefore, also prohibits the automatic mower from performing mowing work.
  • a Cartesian coordinate system is established to generate a map.
  • the first point at the time of starting the recording is taken as the (0, 0) point of the coordinate axis, and the position coordinate of the corresponding mobile station output is (x0, y0).
  • the (0, 0) point of the coordinate axis corresponds to the position coordinates of the charging station.
  • the mobile station outputs the position coordinates (x1, y1), and converts the position coordinates (x1, y1) into (x1-x0, y1-y0) when generating the map, thereby converting the satellite positioning coordinate system into a right angle. Coordinate System.
  • a raster map is generated on the basis of a Cartesian coordinate system.
  • the grid precision such as 1mm.
  • the X and Y axes are lined at intervals of 1mm to form a grid map. Converts the recorded position coordinates to a grid within a Cartesian coordinate system.
  • the process of recording the map is equivalent to the process of marking on the raster map.
  • each point will also record some other information, such as the GPS signal at that point, the altitude of the point, the positioning error of the point, and so on.
  • the above methods are used for the generation of boundaries, obstacles, and passages.
  • the grid attribute includes the coordinates, whether the automatic mower can cover the grid, whether the automatic mower passes the grid, the number of passes, the GPS signal condition, the positioning error, the altitude, Slope, temperature, humidity, sunlight intensity, etc. If the grid attribute of the grid indicates that the automatic mower cannot cover the grid, the control module controls the automatic mower to change the movement mode away from the corresponding position of the grid when the automatic lawn mower approaches the corresponding position of the grid. If the grid attribute of the grid indicates that the automatic mower can cover the grid, the grid's elapsed count attribute is incremented by one each time the automatic mower passes the grid.
  • the recorded coordinate points are filtered, and the low-precision coordinate points are eliminated.
  • the screening of coordinate points is mainly to analyze the GPS signal of the point.
  • the coordinate points output by the mobile station are divided into several types, one is a high-precision coordinate point, and when the GPS signal is good, the mobile station outputs a high-precision coordinate point, and the high-precision coordinate point is RTK fixed solution. The other is a low-precision coordinate point. When the GPS signal is poor, the mobile station outputs low-precision coordinate points.
  • the low-precision coordinate points are further divided into several levels, including pseudo-distance decomposition and single-point difference decomposition.
  • RTK floating-point solution also includes the inertial guided solution
  • the inertial guided solution is the coordinate of the pure inertial navigation positioning output when the GPS signal is lost.
  • the accuracy level of the coordinate point is output as an additional value together with the coordinate value.
  • the methods for eliminating low-precision coordinate points include the following:
  • a low-precision coordinate point is mixed in consecutive high-precision coordinate points, and it is generally considered that when the time of occurrence of low-precision coordinate points in the map is within 30 seconds, in this case, After the low-precision coordinate points are removed, the curve analysis is performed according to the high-precision coordinate points at both ends, and the fitting is performed.
  • the third case is that there is a long time low-precision coordinate point. It is generally considered that this occurs when the time of occurrence of low-precision coordinate points when the map is recorded is 30S or more.
  • the indicator of the mobile station issues a prompt.
  • the signal prompts the user that the map accuracy is not enough.
  • the user can draw the modified map through the display interface of the smart terminal or the display screen. If the user does not modify, the accuracy of these low-precision coordinate points is evaluated, and the error range is determined, and these are low according to the error range.
  • the coordinate points of the precision deviate from the working area by a certain distance, so that the working area defined by the map must be within the actual working area.
  • an offset operation is performed on the map to eliminate the positioning error.
  • the mobile station When the automatic mower is working, the mobile station is installed in the shell of the automatic mower, and outputs the current position coordinates of the automatic mower.
  • the positioning center of the automatic mower differs from the positioning center of the mobile station when the map is recorded, if not This deviation is corrected and may lead to safety issues. For example, when the automatic mower moves to the boundary position and the center of the automatic mower is still within the boundary, the automatic mower will continue to move, causing the automatic mower to move beyond the boundary.
  • the map is offset.
  • the magnitude of the positioning error is related to the GPS signal condition, that is, to the accuracy level of the coordinate point.
  • the positioning error is small, and the positioning error is large when the GPS signal is poor.
  • the map is offset to eliminate the positioning error, the positioning error of the position is first evaluated according to the GPS signal situation at different positions, which is also called error evaluation, and then the offset of the map is adjusted according to the error evaluation of different positions.
  • the offset operation also includes corrosion and expansion.
  • the area map can be spliced with the maps of other areas.
  • the mobile station further includes an auxiliary positioning device, which includes a pedometer, a laser radar, a camera, an odometer, an ultrasonic wave, etc., and the inertial navigation device can also be regarded as an auxiliary positioning device.
  • the auxiliary positioning device is configured to cooperate with the GPS positioning when the GPS signal is poor, and correct the positioning error by using the correction value output by the auxiliary positioning device, so that the generated map has higher precision.
  • the work area has a boundary of a regular shape, such as a rectangular boundary.
  • a regular shape such as a rectangular boundary.
  • the user only needs to record the vertex position of the work area, and when the map is generated, the boundary is obtained by connecting the vertex.
  • the method is equally applicable to channels and obstacles of shape rules. This method can improve the efficiency of map generation and avoid the area where the possible GPS signal difference is possible.
  • GPS positioning is implemented by communication between the base station and the mobile station.
  • the setting of the base station includes several modes.
  • the base station is disposed at the charging station and is powered by the charging station.
  • the base station can also be separately configured from the charging station, and the base station can be powered by an independent energy source, for example, a solar power, wind energy, or the like can be utilized.
  • the user in order to ensure that the satellite signal of the base station location is good, before installing the charging station, the user first puts the automatic lawn mower in the position to be installed, or removes the mobile station from the automatic lawn mower and moves to the position where it is desired to be installed. , open the positioning, determine the positioning accuracy, confirm the positioning accuracy and then fix the charging station.
  • a device such as sound and light is used on the base station to feedback the status of the satellite signal, and is used to indicate whether the base station installation location or reception quality is reasonable.
  • the base station can determine whether there is an occlusion or other abnormality through historical coordinate comparison. If the positioning accuracy is lowered, the base station may be occluded. After the base station finds an abnormality, the base station sends a prompt message to the user or the automatic lawn mower through the communication module, or switches the state and waits for normal recovery. .
  • the base station receives the satellite signal through the GPS antenna, and transmits the collected carrier phase information to the mobile station through the communication module, where the communication module includes the radio station and the radio antenna, and may also include Sub-1G, wifi, 2G/3G/4G/5G module, the mobile station also receives the satellite signal through the GPS antenna, and simultaneously receives the carrier phase signal collected by the base station through the communication module corresponding to the base station, thereby calculating the relative position coordinates of the mobile station relative to the base station, and the relative position coordinates. Including longitude and latitude, it can also include altitude with an accuracy of up to centimeter. In order to ensure the reliability of the base station and the mobile station when transmitting over a long distance, the GPS positioning navigation data can be transmitted through a wireless network such as 2G/3G/4G/5G.
  • the communication diagram between the base station and the mobile station is shown in FIG.
  • the mobile station may choose to communicate with one of a plurality of different base stations, for example, the mobile station may choose to communicate with the first base station or the second base station.
  • the automatic working system includes multiple base stations, or base stations of different automatic working systems located in a certain area can be implemented universally. The plurality of base stations switch to each other, and when the communication between the mobile station and the first base station is abnormal, the two base stations can be automatically switched to communicate with the second base station.
  • the interstellar enhancement system can also be used to implement GPS navigation.
  • the communication between the base station and the mobile station can also use the lora technology.
  • the GPS positioning is implemented based on the base station being fixed at a certain position.
  • the position coordinates output by the mobile station will be deviated.
  • the mobile station is used to obtain the mobile station's mobile position, and the generated mobile map is used to correct the generated map.
  • the process of modifying the map is as follows: 1) the base station 17 is fixed at point A, the mobile station 15 records and generates a map; 2) as shown in Fig. 15(a), the user is at point A for some reason.
  • the mobile station includes a path generation module that generates a path plan based on the work area map.
  • the work area is partitioned according to the boundaries, obstacles, passages, etc. of the work area, and the division of the work area makes the automatic mower cover more efficient. For example, when dividing the two sub-working areas connected by the channel, when the automatic mower performs the mowing work, the coverage is completed in one of the sub-work areas, and then the other sub-work area is operated via the channel. In this way, avoid the inefficient work caused by the automatic mower to the two ends of the channel. For another example, the two parts of the work area separated by the obstacle are divided into two sub-areas to prevent the automatic mower from frequently encountering obstacles.
  • the part of the boundary shape rule and the irregular part into different sub-areas according to the shape of the boundary, so that the automatic mower can be covered by the regular path in the regular sub-area and the random path in the irregular sub-area. cover.
  • the adjacent sub-areas have overlapping portions, so that portions between adjacent sub-areas cannot be covered.
  • the area size of the area in which the operation is performed is estimated based on the battery pack power amount to determine the partition size.
  • the path of the automatic mower in each sub-area is planned.
  • the preset path of the automatic mower in each sub-area may be a regular path, such as a parallel path, a spiral path, or the like, or may be a random path.
  • the sub-working area W shown in Fig. 17 includes a region S in which the GPS signal is poor, which is indicated by a hatched portion.
  • the automatic mower is moved in a parallel path in the sub-working area W.
  • parallel lines are drawn in the sub-working area W, and each parallel line is the preset path when the automatic mower works.
  • the spacing of the parallel lines should be less than the cutting width of the automatic mower to ensure that the cutting range overlaps when the automatic mower moves along adjacent parallel lines.
  • the automatic mower is moved from a good area of the GPS signal, and when the automatic mower moves to the boundary, the steering moves in the opposite direction.
  • the automatic mower may not be able to move according to the original path due to the low accuracy of the positioning signal. In this case, the automatic mower is allowed to be converted into a random path. mobile.
  • the automatic mower when the automatic mower leaves the region S where the GPS signal is poor, the automatic mower is returned to the originally planned path to continue moving.
  • the navigation module outputs a new position coordinate, which is a high-precision position coordinate.
  • the automatic mower compares according to the position coordinate.
  • the originally planned path find the nearest point C on the planned path, and move to that point to continue moving along the originally planned path. After the automatic mower completes the coverage of the working area, the automatic mower is returned to the vicinity of the shadow area, and the uncovered area of the originally planned path is re-covered to ensure the integrity of the area coverage.
  • the sub-working area D shown in FIG. 18 includes the building 51. It can be foreseen that in the area near the building 51, due to the occlusion of the building, the satellite signal is poor, and the positioning accuracy of the navigation module is low.
  • the lawn mower moves in a path parallel to the edge of the building 51.
  • the navigation module will continue to output low-precision signals, and the automatic mower may not be able to move according to the planned path, or Mobile efficiency is low.
  • the path of the edge area of the building 51 can be planned as a path perpendicular to the building 51, so that the navigation module outputs a low-precision signal only when the automatic mower is near the edge of the building 51, when automatically mowing
  • the navigation module outputs a high-precision signal.
  • the satellite signal is poor, the positioning error of the inertial navigation device is accumulated, and the positioning accuracy is gradually reduced.
  • the satellite signal recovers well and can be used to correct the inertial navigation.
  • the path planning is automatically generated by the path generation module.
  • the user may manually adjust according to the situation of the working area, or the automatic mower may be adjusted in real time according to the accuracy of the positioning signal during the moving process.
  • the automatic lawn mower can adjust the direction of reciprocating walking in real time during the movement.
  • the path when the automatic mowing obstacle is obstacle may be moved around the obstacle or may be folded back. If the obstacle moves around the obstacle, the navigation module can be used to generate a vector diagram of the obstacle.
  • the automatic lawn mower can distinguish between dynamic obstacles and fixed obstacles during the movement.
  • a fixed obstacle is an obstacle with a fixed position in the work area, usually a recorded obstacle in the map. If the automatic mower moves multiple times at the same position during the movement of the mower, and the obstacle is not recorded in the map, it can also be judged. It is a newly discovered fixed obstacle.
  • Dynamic obstacles are obstacles that appear in an unfixed position in the work area, usually obstacles that are temporarily encountered during the movement of the automatic lawn mower, and occur at a low frequency in the same position. Dynamic disorders may be people, animals, etc. that appear in the work area.
  • the automatic mower distinguishes between dynamic obstacles and fixed obstacles according to the frequency of obstacles encountered at the same position, and adopts different obstacle avoidance strategies, including obstacle movement, folding back, and the like.
  • the moving range is adjusted according to the condition of the positioning signal during the movement of the automatic mower.
  • the moving range is reduced, the movement continues in a small range, or the movement is stopped.
  • the navigation module further includes a gyroscope for controlling the automatic mower to move in a straight line.
  • a gyroscope for controlling the automatic mower to move in a straight line.
  • the preset path is divided into multiple segments, and when the automatic mower starts moving, the moving direction is determined.
  • the gyroscope is used for navigation, and the gyroscope is used to control the automatic mower. Move in a straight line to prevent the movement direction of the automatic mower from shifting. After the automatic mower completes the movement of a certain path, the GPS positioning signal is used to correct the moving direction.
  • the control module determines whether the current position of the automatic mower is located on the preset path, and if the current position of the automatic mower is deviated from the preset path, adjusting the moving direction of the automatic mower to return to the preset path on.
  • the automatic mower uses the gyroscope to move linearly in the direction of correction.
  • the control module determines that the distance of the current position of the automatic mower from the preset path is greater than a preset value, the moving direction of the automatic mower can be corrected in real time, and the segment can be re-lined.
  • the automatic mower moves along a parallel path, and when the automatic mower moves to the boundary, the steering moves in the opposite direction, and the automatic mower covers the adjacent parallel path when the steering is turned.
  • a plurality of points F, G are in between to ensure the integrity of the coverage, and to avoid the problem that the area near the boundary caused by the right-angle turn is not covered (refer to FIG. 21(a)).
  • the navigation module continuously outputs a low-precision positioning signal, and the automatic mower is controlled to adjust the movement mode.
  • the automatic mower adjusts the movement mode, including the automatic mower switching working state, for example, the automatic mower switches to the random walking mode, or returns to the charging station, or enters the search mode to search for a good satellite signal.
  • the automatic mower adjusts the movement mode to also cause the task execution module to stop working, or to retreat, or turn, or stop.
  • the path generation module is further configured to generate a regression path.
  • the current charging station 2 is located in the work area.
  • the path generation module calculates the shortest path from the automatic mower 1 to the charging station 2 according to the current position information and map information of the automatic mower 1, and generates a regression path 53, the control module.
  • the automatic lawn mower 1 is controlled to move along the return path 53 and return to the charging station 2.
  • the calculation of the shortest path is related to the location of the charging station 2, and also to the distribution of obstacles in the work area, and whether there is a channel between the automatic mower 1 and the charging station 2.
  • the least grid is passed.
  • the control module records the regression path of the automatic lawn mower 1.
  • the control module compares the newly generated regression path with the previous or previous regression paths to determine a new one. Whether the generated regression path overlaps with the previous or previous regression paths, if there is an overlap, modify the regression path to avoid overlapping of the regression paths, for example, offset a part of the regression path by a certain distance.
  • the method for generating the regression path by the path generation module is different from the method in the first embodiment.
  • the path generation module sets a number according to the generated map.
  • the strip return path 53 moves to one of the regression paths 53 when the automatic mower 1 needs to return to the charging station 2.
  • the control module determines the shortest distance from the automatic lawn mower 1 to the plurality of regression paths 53, selects the nearest one of the regression paths 53, and controls the automatic lawn mower 1 to move along the shortest distance path to the nearest return path 53, and along the The regression path 53 returns to the charging station 2.
  • the automatic mower 1 can also be randomly moved to the nearest return path 53.
  • the automatic mower 1 when the automatic mower 1 needs to return to the charging station 2, it moves randomly.
  • the control module determines that the automatic mower 1 is located on one of the regression paths 53, the automatic mower 1 is controlled to return to the charging station 2 along the regression path 53. .
  • the regression path can also be recorded by the user when the map is recorded. Specifically, the user holds the mobile station, moves from different positions of the work area to the charging station, records the position where the movement passes, and forms a regression path.
  • the method for generating the regression path by the path generation module is different from the method in the first embodiment.
  • the automatic lawn mower 1 needs to return to the charging station 2, it first moves to the boundary 200. Move along the boundary 200 to the location of the charging station 2 and then to the charging station 2.
  • the path generation module determines the point on the boundary 200 that is the shortest distance from the automatic mower 1 according to the current position of the automatic mower 1 and the position of the boundary 200, and connects the current position of the automatic mower 1 with the point to form
  • the first path according to the position of the point and the position of the charging station 2, calculates the shortest path that the automatic mower 1 moves from the point along the boundary 200 and then moves from the boundary 200 to the front of the charging station 2, and the shortest calculated according to the calculation
  • the path generates a second segment path, and the first segment path and the second segment path are combined to generate a regression path 53.
  • the automatic mower 1 moves along the boundary 200 to directly move directly to the front of the charging station 2, and when the charging station 2 is not located on the boundary 200, the automatic mower 1 After moving along the boundary 200 to the vicinity of the charging station 2, it moves to the front of the charging station 2.
  • the path of the automatic mower 1 moving along the boundary 200 is different each time. Specifically, the automatic mower 1 is moved along the boundary 200 with a variable distance relative to the boundary 200, that is, the automatic mower 1 returns every time. The distance from the boundary 200 is different when moving along the boundary 200, so that the crushing damage to the lawn caused by the automatic lawn mower 1 returning along the boundary 200 at a fixed distance can be avoided.
  • the automatic mower 1 is moved to the front of the charging station 2, for example, about 1 m, the docking process is started, and since the docking angle, the tilt angle, and the like are recorded when the map is recorded, the information can be relied upon.
  • the automatic mower 1 is docked in a constant direction to reduce the docking error.
  • the automatic lawn mower can also automatically determine the working time plan according to characteristics such as the area and shape of the map, including the working time of each sub-area, the working order between the sub-areas, and the sub-area of each sub-area. The number of times of coverage, etc.
  • the clock chip can be replaced with a GPS clock.
  • the safety problem is solved by combining the navigation module and the environment detecting sensor, and the environment detecting sensor includes a step sensor, a grass sensor, an optical sensor, a camera, a radar, an ultrasonic sensor, a collision detecting sensor, and the like.
  • the environment detecting sensor detects an abnormal environment
  • the navigation module records the current position and the corresponding abnormal condition, and records it in the map.
  • the moving mode of the automatic lawn mower is adjusted to avoid a safety accident.
  • the map and the path are respectively generated by the map generating module and the path generating module of the mobile station. It can be understood that, in other embodiments, the control module of the automatic mower acquires the position coordinates recorded by the mobile station, which may be The control module generates maps and paths.
  • the charging station is a wireless charging station, and the automatic lawn mower can approach the charging station from any direction to perform docking. Therefore, according to the current position of the automatic mower and the position of the charging station, the automatic lawn mower can be conveniently guided back to the charging station by GPS navigation and docked with the charging station.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place. Or it can be distributed to multiple network elements. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, and a Read-Only Memory (ROM).
  • a medium that can store a program check code such as a random access memory (RAM, Random, Access, Memory), a magnetic disk, or an optical disk.
  • the mobile station is changed before the absolute position of the base station changes. Obtaining a first relative position with the base station, and then, before and after the change of the absolute position of the base station, the mobile station maintains the same absolute position.
  • the mobile station After the absolute position of the base station changes, the mobile station acquires a second relative position with the base station, so that the mobile station can Updating the map of the working area of the mobile station according to the first relative position and the second relative position, or notifying the base station to update the absolute position of the stored base station; each point in the map is used to indicate a relative position with the base station.
  • FIG. 25 is a schematic flowchart diagram of a first location information processing method based on a differential positioning technology according to an embodiment of the present invention.
  • the location information processing method based on the differential positioning technology is applied to a navigation module, and the navigation module includes a base station, and a mobile station that obtains a relative position with the base station according to the differential information sent by the base station.
  • both the mobile station and the base station can receive satellite signals, and the base station can send a positioning correction signal to the mobile station, thereby implementing differential satellite positioning.
  • the base station and the mobile station can receive a Global Position System (GPS) signal to implement a Differential Global Positioning System (DGPS or Differential GPS) positioning, or the base station and the mobile station can also receive Galileo.
  • GPS Global Position System
  • DGPS Differential Global Positioning System
  • GLONASS Global Navigation Satellite System
  • the signals of the satellite navigation system, the Beidou satellite navigation system, and the Global Navigation Satellite System (GLONASS) are not limited in this embodiment of the present invention.
  • differential GPS technology includes Real-Time Kinematic (RTK) carrier phase difference technology and Continuously Operating Reference Stations (CORS) technology.
  • RTK Real-Time Kinematic
  • CORS Continuously Operating Reference Stations
  • a base station and a mobile station receive an example of a GPS signal.
  • both the base station and the mobile station may include a GPS antenna, and the base station and the mobile station may receive the GPS signal through the GPS antenna.
  • the location information processing method based on the differential positioning technology includes the following steps:
  • S101 The mobile station acquires a first relative position with the base station before the absolute position of the base station changes.
  • the absolute position refers to the absolute position relative to the earth.
  • both the base station and the mobile station may include a communication module, and the base station and the mobile station may implement communication between the two through the communication module.
  • the communication module may include a radio station and a radio antenna. Further, in order to ensure reliability between the base station and the mobile station when transmitting over a long distance, the communication module may further include a Sub-1G, WIFI, 2G/3G/4G/5G module. There is no limit to this.
  • the base station may send the differential information to the mobile station by using the self-communication module. Accordingly, the mobile station may receive the differential information of the base station by using a communication module corresponding to the base station, and simultaneously, the mobile station It is also possible to receive GPS signals via a GPS antenna. Then, the mobile station can calculate the relative position coordinates of the mobile station relative to the base station according to the difference information sent by the base station, which is recorded as the first relative position in the embodiment of the present invention.
  • the first relative position may include information such as longitude, latitude, altitude, and the like.
  • a map of the work area needs to be generated.
  • the user can record the map by walking with the handheld mobile station.
  • Recording the map includes the steps: the user can start from the starting point, for example, the charging station position, starting along the boundary of the working area, the mobile station can record the boundary position coordinates; walking along the obstacle in the working area, the mobile station can record the obstacle position coordinates; The isolated island in the area walks, the mobile station can record the position coordinates of the isolated island; the walking along the path connecting the sub-working areas of the working area, the mobile station can record the position coordinates of the channel.
  • the mobile station can be installed on the self-mobile device, for example, the mobile station can be detachably connected to the housing of the mobile device, so that the mobile station can synchronize with the mobile device.
  • the self-moving device can be an unattended device such as an automatic lawn mower, an automatic cleaning device, an automatic watering device, an automatic snow sweeper, and the like.
  • the mobile station can be installed on the self-mobile device, and the user can remotely move from the mobile device through a smart terminal device such as a mobile phone or a tablet, so that the mobile station can record the coordinates of each location point.
  • the steps of recording the map include recording the boundaries of the work area, obstacles within the work area, passages connecting the sub-areas, and the like.
  • the mobile device may include a push rod and is detachably mounted on the housing of the mobile device.
  • the mobile station is installed on the self-mobile device, and the push rod is installed on the housing of the self-moving device, and the user operates the push rod to push the mobile device to move, so that the mobile station can record the boundary, obstacle, channel, and the like of the working area.
  • the self-mobile device may include an ultrasonic device, so that the self-mobile device can follow the user to travel at a certain distance.
  • the mobile station is installed on the self-mobile device, the user walks along the boundary of the work area, or an obstacle, or a passage, and the like, and then the mobile device can follow the user's movement, so that the mobile station can record the map.
  • the mobile station when the map is recorded, the mobile station is separated from the mobile device, and the mobile station is placed on the pushable car.
  • the mobile station can be installed on a hand push device. The user pushes the trolley to walk, so that the mobile station can record the boundaries, obstacles, passages, etc. of the work area.
  • a preset coordinate system such as a Cartesian coordinate system XY, may be established to generate a map.
  • the first point at the start of recording is taken as the (0, 0) point of the coordinate axis.
  • the position of the charging station can be used as the (0, 0) point of the coordinate axis, and the corresponding mobile station outputs the position.
  • the coordinates are (x 0 , y 0 ).
  • the mobile station In the process of the user recording the map, the mobile station outputs the position coordinates (x 1 , y 1 ), and converts the position coordinates (x 1 , y 1 ) into (x 1 - x 0 , y 1 - y 0 ) when the map is generated. Thereby the satellite positioning coordinate system is converted into a Cartesian coordinate system.
  • the map recorded in the work area generated by the mobile station may be the absolute coordinates of each position point relative to the earth, that is, the latitude and longitude, or the coordinates recorded in the map may be the coordinates in the coordinate system XY, which is not limited thereto. .
  • the mobile station keeps the absolute position the same before and after the absolute position change of the base station.
  • the GPS positioning is implemented based on the base station being fixed at a certain position.
  • the user can move the location of the base station according to his own needs. For example, referring to Fig. 26a, it is assumed that the base station is located at point A before the absolute position change.
  • the user can move the base station to other idle positions.
  • the user can base the base station. Move to point B.
  • the absolute position of the base station changes, the position coordinates output by the mobile station will deviate. At this time, the mobile station has to re-record the map.
  • the mobile station can maintain the same absolute position, and then use the mobile station to acquire the mobile station's mobile position, and then use the obtained mobile position correction to generate the generated map.
  • the mobile station After the absolute position of the base station changes, the mobile station acquires a second relative position with the base station.
  • the base station can receive the GPS signal through the GPS antenna at point B, and then the base station can send the differential information to the mobile station through the self communication module, correspondingly
  • the mobile station can receive the differential information of the mobile base station through a communication module corresponding to the base station, and the mobile station can also receive the GPS signal through the GPS antenna.
  • the mobile station can calculate the relative position coordinates of the base station after the relative movement of the mobile station according to the difference information sent by the base station, which is recorded as the second relative position in the embodiment of the present invention.
  • the second relative position may also include information such as longitude, latitude, altitude, and the like.
  • the first correction information for indicating the amount of displacement of the base station may be generated according to the first relative position and the second relative position. Specifically, according to a first predetermined relative position in a coordinate system, such as the relative position of the coordinates in the rectangular coordinate system XY (x 1, 1 y) coordinates relative position and a second relative position of the XY coordinate system (x 2, y 2 ), generate the first correction information First correction information for:
  • the first correction information can be sent to the base station. So that the base station according to the absolute position of the base station before the mobile and the first correction information Determine the absolute location of the updated base station. Specifically, the absolute position of the base station before the movement and the first correction information may be Perform vector superposition to obtain the updated absolute position of the base station. Therefore, the base station can generate differential information according to the updated absolute position of the base station, and the mobile station can calculate the relative position of the base station after the mobile station according to the difference information sent by the mobile base station, and update the location of the base station in the map.
  • second correction information for indicating a relative position change amount of the mobile station relative to the base station may be generated according to the first relative position and the second relative position. Specifically, according to a first predetermined relative position in a coordinate system, such as the relative position of the coordinates in the rectangular coordinate system XY (x 1, 1 y) coordinates relative position and a second relative position of the XY coordinate system (x 2, y 2 ), generate second correction information Second correction information for:
  • the work map can be updated according to the second correction information.
  • the position vector and the second correction information of each point in the map before the update in the coordinate system XY can be Perform vector superposition to obtain the position vector of each point in the updated map, thereby obtaining an updated map.
  • the differential GPS technology used is RTK technology, that is, carrier phase difference technology, and the mobile station uses a carrier phase algorithm for calculation.
  • the mobile station acquires the first relative position with the base station before the absolute position of the base station changes, and then the mobile station maintains the absolute position before and after the change of the absolute position of the base station. Similarly, after the absolute position of the base station changes, the mobile station acquires a second relative position with the base station, so that the mobile station can update the map of the working area of the mobile station according to the first relative position and the second relative position, or notify the base station to store the The absolute position of the base station is updated; points in the map are used to indicate the relative position with the base station.
  • the operation process in the case of base station movement from the user's use angle will be described below.
  • the operation process includes:
  • the base station is fixed at point A as shown in Fig. 26a, and the base station is powered to transmit a differential signal to the mobile station.
  • the mobile station or the self-mobile device that installs the mobile station has a display screen, and the relative position of the mobile station itself can also be displayed in the map of the work area.
  • the mobile station and the self-mobile device that installs the mobile station do not have a display screen, and may also send the relative position of the mobile station and the map of the work area to a specific terminal device, so that The relative position of the mobile station itself is displayed in the map of the work area.
  • the self-mobile device installed with the mobile station to move and work in the work area.
  • the lawn mower can be controlled to move and mowing in the work area. Since the obstacle has been avoided when drawing the map of the work area, the virtual boundary is drawn, and the mobile station can know its relative position relative to the base station. Therefore, in the course of work, the self-mobile device can be based on the relative position of the mobile station. Navigate inside the virtual boundary to avoid obstacles.
  • the mobile device For example, if the mobile device is in the working state of moving in the working area before the base station moves from point A to point B, then control the mobile station to pause or end the work, keep it stationary, and then move the base station from point A to Point B.
  • the mobile station has virtual buttons or mechanical buttons for updating the map.
  • the user can click on the virtual button or mechanical button for updating the map to cause the mobile station to perform map update.
  • the mobile station has a virtual button or mechanical button for notifying the base station to update the absolute position of the stored base station.
  • the user can click on the virtual button or the mechanical button to cause the mobile station to notify the base station to update the absolute position of the stored base station.
  • the mobile station calculates and determines the relative position change amount with the base station is greater than the difference information sent by the base station.
  • the first offset threshold and/or, when the base station determines that the absolute position change amount is greater than the second offset threshold according to the acquired GPS signal, may determine that the base station is in an abnormal state.
  • the abnormal state here is specifically the absolute position change.
  • the step of updating the map of the working area of the mobile station or the step of updating the absolute position of the base station is performed.
  • the first offset threshold may be preset by the built-in program of the mobile station, or the first offset threshold may be set by the user, and the second offset threshold may be preset by the built-in program of the base station, or The second offset threshold can be set by the user, and no limitation is imposed thereon. It should be understood that when the user moves the base station according to his own needs, since the moving distance is limited, the first offset threshold and the second threshold should not be set too large.
  • the base station may need to be moved in the following scenarios:
  • the user needs to move the base station. For example, the user needs to construct a flower bed at point A as shown in Fig. 26a, so that the base station needs to move from point A to another position, as shown by point B in Fig. 26b.
  • the mobile station After the mobile station moves the base station, the mobile station determines, according to the differential information sent by the base station, that the relative position change amount with the base station is greater than the first offset threshold, and/or the base station determines that the absolute position change amount is greater than the acquired GPS signal. In the case of the second offset threshold, it can be determined that the base station is in an abnormal state in which the absolute position changes.
  • the base station when the position vector in the coordinate system XY of the mobile station working area is deviated in the coordinate system XY, and is greater than the first offset threshold, the base station may be determined to be in an absolute position change.
  • the abnormal state when the position vector in the coordinate system XY of the mobile station working area is deviated in the coordinate system XY, and is greater than the first offset threshold, the base station may be determined to be in an absolute position change. The abnormal state.
  • the base station may further determine, by using historical coordinate comparison, that the absolute position change amount is greater than the second offset threshold, and may determine that the base station is in an abnormal state of absolute position change.
  • the base station is in an abnormal state under the action of an external force.
  • the base station when the base station is occluded, when the base station determines the positioning accuracy by comparing the historical coordinates, it indicates that the base station may be occluded, and the base station may be determined to be in an abnormal state of occlusion.
  • the base station may determine that the base station is in an abnormal state in which the absolute position changes.
  • the base station may send a prompt message or a local alarm to the user or the self-mobile device through the communication module, and wait for the user to perform operations to restore the normal operation, such as updating the map, moving or replacing the base station, and the like.
  • the base station is two source base stations including an absolute position of the base station before the change, and a target base station located at the absolute position of the changed base station.
  • the source base station needs to be replaced by the target base station, the mobile station needs to be kept stationary and replaced.
  • Figure 27 shows the specific implementation process.
  • the location information processing method based on the differential positioning technology may further include the following steps:
  • the base station when the absolute position of the source base station changes, the position coordinates output by the mobile station will deviate. At this time, the base station can disconnect the communication connection with the mobile station.
  • the automatic working system may include multiple base stations, or base stations of different automatic working systems located in a certain area may be implemented universally.
  • the mobile station can automatically switch to communicate with other base stations.
  • the mobile station may perform a pairing process with the target base station again, and then the mobile station may acquire a second relative position with the base station.
  • the location of the base station may not change, and the mobile station remains unchanged, and the base station replacement is completed through the disconnection and pairing process.
  • the mobile station when the mobile station is installed on the self-mobile device and synchronized with the self-mobile device, after updating the working map of the mobile station, the mobile station can calculate the relative to the base station according to the differential information sent by the base station. The location, and then, the mobile terminal can navigate the mobile device according to the work area defined by the map, thereby providing efficient and reliable navigation data for the automatic mobile device, and improving navigation accuracy.
  • the present invention also proposes a mobile station applied to the navigation module.
  • FIG. 28 is a schematic structural diagram of a mobile station applied to a navigation module according to an embodiment of the present invention.
  • the navigation module is based on a differential positioning technology, including a base station, and a mobile station that resolves the relative position with the base station according to the differential information sent by the base station.
  • the mobile station includes a solution module 410, a control module 420, and an update module 430. among them,
  • the solving module 410 is configured to acquire a first relative position with the base station before the absolute position of the base station changes, and acquire a second relative position with the base station after the absolute position of the base station changes.
  • the control module 420 is configured to maintain the absolute position of the mobile station before and after the change of the absolute position of the base station.
  • the update module 430 is configured to update the map of the working area of the mobile station according to the first relative position and the second relative position, or notify the base station to update the absolute position of the stored base station; each point in the map is used to indicate the relationship with the base station. relative position.
  • the updating module 430 is specifically configured to generate, according to the first relative position and the second relative position, first modification information for indicating a base station displacement amount, and send the first modification information to the base station, so that the base station according to the mobile
  • the former base station absolute position and the first correction information determine the updated base station absolute position, and generate differential information according to the updated base station absolute position.
  • the updating module 430 is specifically configured to use the relative position coordinates (x 1 , y 1 ) in the preset coordinate system XY according to the first relative position and the relative position of the second relative position in the coordinate system XY. Position coordinates (x 2 , y 2 ), generating first correction information
  • the updating module 430 is further configured to generate second correction information for indicating a relative position change amount of the mobile station relative to the base station according to the first relative position and the second relative position; and update according to the second correction information.
  • Work map is further configured to generate second correction information for indicating a relative position change amount of the mobile station relative to the base station according to the first relative position and the second relative position; and update according to the second correction information.
  • the updating module 430 is specifically configured to use the coordinates (x 1 , y 1 ) in the coordinate system XY and the coordinates (x 2 , y 2 ) in the coordinate system XY according to the first relative position, Generate second correction information Position vector and second correction information of each point in the map before the update in the coordinate system XY Perform vector superposition to obtain the position vector of each point in the updated map, thereby obtaining an updated map.
  • the mobile station applied to the navigation module may further include:
  • the determining module 440 is configured to: before updating the working map of the mobile station, or notify the base station to perform the absolute location update, in case the mobile station keeps the absolute position fixed, the mobile station solves the determination and the base station according to the differential information sent by the base station
  • the relative position change amount is greater than the first offset threshold, and/or the base station determines that the absolute position change amount is greater than the second offset threshold according to the acquired GPS signal, and determines that the base station is in an abnormal state; the abnormal state includes an absolute position change.
  • the base station includes a source base station located at an absolute position of the base station before the change, and a target base station located at an absolute position of the changed base station.
  • the pairing module 450 is disconnected for disconnecting the communication connection between the source base station and the mobile station; performing a pairing process with the target base station.
  • the mobile station is installed on the self-mobile device and moves synchronously with the self-mobile device.
  • the processing module 460 is configured to perform navigation on the mobile device according to the working area defined by the map after the relative position of the base station is obtained according to the difference information sent by the base station.
  • the mobile station applied to the navigation module in this embodiment acquires the first relative position with the base station before the absolute position of the base station changes, and then the mobile station maintains the absolute position before and after the absolute position change of the base station. After the absolute position of the base station changes, the mobile station acquires a second relative position with the base station, so that the mobile station can update the map of the working area of the mobile station according to the first relative position and the second relative position, or notify the base station to absolutely store the stored base station.
  • the location is updated; points in the map are used to indicate the relative location to the base station.
  • the present invention also proposes a mobile station applied to the navigation module.
  • FIG. 30 is a schematic structural diagram of a mobile station applied to a navigation module according to an embodiment of the present invention.
  • the navigation module is based on a differential positioning technology, including a base station, and a mobile station that resolves the relative position with the base station according to the differential information sent by the base station.
  • the mobile station applied to the navigation module includes: a memory 601, a processor 602, and a computer program stored on the memory 601 and operable on the processor 602.
  • the processor 602 executes the program, the implementation is as shown in FIG.
  • the position information processing method based on the carrier phase difference technique proposed in the foregoing embodiment is invented.
  • the present invention further provides a computer readable storage medium having stored thereon a computer program, wherein the program is executed by a processor to implement a differential positioning technique according to the foregoing embodiment of the present invention.
  • Location information processing method
  • the present invention further provides a computer program product that, when executed by a processor, executes a location information processing method based on the differential positioning technique proposed by the foregoing embodiments of the present invention.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
  • a "computer-readable medium” can be any apparatus that can contain, store, communicate, propagate, or transport a program for use in an instruction execution system, apparatus, or device, or in conjunction with the instruction execution system, apparatus, or device.
  • computer readable media include the following: electrical connections (electronic devices) having one or more wires, portable computer disk cartridges (magnetic devices), random access memory (RAM), Read only memory (ROM), erasable editable read only memory (EPROM or flash memory), fiber optic devices, and portable compact disk read only memory (CDROM).
  • the computer readable medium may even be a paper or other suitable medium on which the program can be printed, as it may be optically scanned, for example by paper or other medium, followed by editing, interpretation or, if appropriate, other suitable The method is processed to obtain the program electronically and then stored in computer memory.
  • portions of the invention may be implemented in hardware, software, firmware or a combination thereof.
  • multiple steps or methods may be implemented in software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if implemented in hardware and in another embodiment, it can be implemented by any one or combination of the following techniques well known in the art: discrete with logic gates for implementing logic functions on data signals Logic circuits, application specific integrated circuits with suitable combinational logic gates, programmable gate arrays (PGAs), field programmable gate arrays (FPGAs), and the like.
  • each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may exist physically separately, or two or more units may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the integrated modules, if implemented in the form of software functional modules and sold or used as stand-alone products, may also be stored in a computer readable storage medium.
  • the above mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • a pet collar system includes a base station 600 and a pet collar.
  • the pet collar includes a collar body 700 and a training device 300 disposed on the collar body 700.
  • the base station 600 is in communication with the training device 300, the base station 600 stores base station coordinate information, and the base station 600 receives base station positioning data observed by the satellite positioning system, and the base station 600 performs differential observation calculation based on the base station coordinate information and the base station positioning data to obtain a positioning error correction value. And the positioning error correction value is sent to the training device 300.
  • the base station 600 includes a satellite antenna, a satellite signal processing module and a radio antenna.
  • the satellite antenna is used for receiving base station positioning data observed by the satellite system; the satellite signal processing module performs base station positioning data to obtain a positioning error correction value; the radio antenna is used for The base station solves the obtained positioning error correction value and transmits it to the training device 300 by wireless transmission.
  • the satellite signal processing module uses the carrier phase difference algorithm to perform a difference calculation of the positioning error correction value of the received base station positioning data and the base station coordinate information.
  • Carrier phase difference calculation is a real-time dynamic positioning technology based on carrier phase observations. It can provide three-dimensional positioning results of the station in the specified coordinate system in real time, and is not affected by various types of errors and occlusion factors, even if the interference is serious. The centimeter-level accuracy is achieved, so that the base station 600 can provide the accurate positioning error correction value for the training device 300, realizing accurate positioning of the pet position in real time, high positioning accuracy and high positioning efficiency.
  • the training device 300 includes a mobile satellite antenna 310, a base station radio antenna 320, a microprocessor 330, and an alarm 340. among them,
  • the mobile satellite antenna 310 is configured to receive the collar positioning data observed by the satellite positioning system, and send the received collar positioning data to the microprocessor 330.
  • the base station radio antenna 320 is configured to receive a positioning error correction value transmitted by the base station, and send the received positioning error correction value to the microprocessor 330.
  • the microprocessor 330 pre-stores a pet activity boundary area, and the pet is restricted to be active in the pet activity boundary area; the microprocessor 330 performs positioning correction processing according to the collar positioning data positioning error correction value, and determines between the pet and the pet active boundary area. Whether the distance is less than or equal to the preset distance threshold, when the distance between the pet and the pet active boundary region is less than or equal to the preset distance threshold, the microprocessor 330 sends an alarm signal to the alarm 340. In this embodiment, the microprocessor corrects the collar positioning data by the positioning error correction value, and the integrated solution can obtain the centimeter-level precision positioning, which greatly improves the pet positioning accuracy.
  • the alarm 340 is for outputting alarm information according to the alarm signal.
  • the pet collar system described above is used to form a virtual pet fence in the boundary area of the pet activity to prevent the pet from being lost.
  • the pet collar uses the satellite positioning system to locate the position of the pet, without border wiring, and the operation is simple and convenient, and the pet collar corrects the positioning result according to the positioning correction value calculated by the base station through the continuous differential observation processing, so as to correct the correction.
  • the positioning accuracy can be greatly improved.
  • the positioning signal of the pet collar system is not affected by various interference factors, and can achieve centimeter-level positioning accuracy, realizing precise positioning of pets, high positioning accuracy, and effectively preventing pets from coming out of the preset activity boundary area, avoiding pets losing, and protecting pets. Safety.
  • the microprocessor 330 includes:
  • the storage unit 332 is configured to store a pet activity boundary area.
  • the positioning correction unit 334 is configured to perform positioning correction processing according to the collar positioning data and the positioning error correction value to obtain the pet current position coordinate information.
  • the position determining unit 336 is configured to calculate a distance between the pet and the pet activity boundary region according to the pet current position coordinate information, and determine whether the distance between the pet and the pet activity boundary region is less than or equal to a preset distance threshold.
  • the storage unit 332 is further configured to store a preset distance threshold between the pet and the pet active boundary region.
  • the value of the specific preset distance threshold can be arbitrarily set according to actual needs.
  • the alarm unit 338 is configured to output an alarm signal to the alarm when the distance between the pet and the pet active boundary region is less than or equal to the preset distance threshold.
  • the pet moves within the active boundary region, and there is no loss or security risk, and no processing is needed.
  • the distance between the pet and the pet activity boundary area is less than or equal to the preset distance threshold, the pet moves to the pet activity boundary area, there is a risk of loss or a safety hazard, and an alarm message needs to be output to warn the pet.
  • the alarm signal includes an audible and visual alarm signal and a shock alarm signal.
  • the alarm 340 includes an audible and visual alarm 342 and a shock bar 344.
  • the alarm unit 338 When the distance between the pet and the pet activity boundary area is equal to the preset distance threshold, the alarm unit 338 outputs an acousto-optic alarm signal to the sound and light alarm 342, and the sound and light alarm 342 outputs the sound and light alarm information to remind the pet. If the pet continues to move, when the distance between the pet and the pet activity boundary region is less than the preset distance threshold, the alarm unit 338 outputs a shock alarm signal to the electric shock bar 344 to perform a shock warning to the pet, and between the pet and the pet activity boundary region.
  • the pet is subjected to multi-level warning by the sound and light alarm 340 and the electric shock bar 344.
  • the distance between the pet and the pet active boundary region is less than or equal to the preset distance threshold, the pet is between the pet active boundary region. The smaller the distance, the higher the alarm level to establish a conditional reflection on the pet.
  • the pet collar further includes an acceleration sensor 350 disposed on the collar body 310, and the acceleration sensor 350 is coupled to the microprocessor 330, and the acceleration sensor 350 is configured to collect The motion acceleration of the pet is sent to the microprocessor 330 for the collected pet motion acceleration.
  • the microprocessor 330 further includes a power management unit 339 for receiving the pet motion acceleration, and comparing the pet motion acceleration with a pre-stored acceleration threshold, and starting the sleep mode when the pet motion acceleration is less than or equal to the acceleration threshold. , the microprocessor 330 is put into a sleep state. When the pet motion acceleration is greater than the acceleration threshold, the microprocessor 330 wakes up and the microprocessor 330 operates normally.
  • the motion state of the pet is determined by detecting the motion acceleration of the pet, and the working state of the microprocessor 330 is adjusted according to the motion state of the pet. Specifically, the acceleration of the movement of the pet when walking is greater than the acceleration amplitude when the pet is stopped or lying, and the pet does not lose when it is at rest, and the pet is generally not lost when the movement is slow. Therefore, the acceleration threshold is preset, and the microprocessor starts the working mode only when the detected pet motion acceleration is greater than the acceleration threshold. Otherwise, the microprocessor is in the power-saving sleep mode to reduce the microprocessor power consumption and implement the system. Power saving, which can reduce the battery volume, reduce the weight of the pet collar, is more suitable for pets to wear, and can effectively reduce costs.
  • the pet collar further includes a terminal communication module 360.
  • the microprocessor 330 performs information interaction with the remote terminal through the terminal communication module 360.
  • the remote terminal includes one or more of a mobile phone, a tablet, or a computer.
  • the terminal communication module 360 is communicably connected to the remote terminal through a wireless network, a mobile communication network, or the Internet.
  • the pet activity boundary area is delineated by a map software on a cell phone, tablet or computer.
  • the map software can be Google Maps, Baidu Maps, and the like.
  • the pet activity boundary area includes boundary coordinate information of the active area and boundary coordinate information of the prohibited pet active area in the active area
  • the prohibited pet active area includes an area that the pet, such as a flower bed and a swimming pool, cannot enter.
  • the pet activity area is delimited on a Google map on a mobile phone, tablet or computer according to the specific facilities in the area.
  • the microprocessor 330 accepts boundary information related to the delineated pet active area transmitted by the mobile phone, tablet or computer through the terminal communication module 337 and stores it to the storage unit 332.
  • the base station 600 is a smart lawn mower base station
  • the boundary area is a map boundary area learned by the intelligent lawn mower.
  • the pet collar shares the base station of the intelligent lawn mower, and the pet collar and the intelligent lawn mower share one base station, which can effectively save the base station cost.
  • the pet collar can directly use the intelligent lawn mower to learn the map boundary area without the need to define the boundary area of the pet activity, and can flexibly adjust the pet activity area, which is greatly convenient for the user to use.
  • the base station 600 adopts the intelligent lawn mower base station
  • the map boundary area that the smart lawn mower has learned is read on the mobile phone, the tablet or the computer, and the read map boundary area is sent to the pet collar for storage. Further, the user can also set the map boundary area that the intelligent lawn mower has learned according to actual needs, and select a pet activity area.
  • the intelligent lawn mower learns the map boundary area including the house in the lawn and the lawn area.
  • the user can set the boundary around the house as the boundary area of the pet activity, and the pet can only move in the house; the user can also shield the border around the house so that the pet can move in the lawn area and in the house.
  • the initial boundary area may also be directly defined on the electronic map of the pet collar.
  • An electronic device including an electronic map is installed in the pet collar, and the microprocessor 330 includes a receiving unit, and the electronic device and the receiving unit are connected, and the pet activity area is directly defined on the electronic map of the electronic device, and the electronic device defines the pet activity.
  • the boundary information of the area is transmitted to the receiving unit, and the microprocessor 330 receives the boundary information of the pet active area and stores it to the storage unit 332.
  • the pet collar further includes a battery 370 for providing power to the mobile satellite antenna 310, the base station radio antenna 320, the microprocessor 330, the acousto-optic alarm 342, and the electric shock wand 344.
  • FIG. 33 is a schematic diagram of an application scenario of a pet collar system in an embodiment.
  • the base station 600 receives the base station positioning data observed by the satellite positioning system 800
  • the training device 300 receives the collar positioning data observed by the satellite positioning system
  • the base station coordinate information and the base station positioning data sent by the base station 600 and the training device 300 locates according to the collar.
  • the data, the base station coordinate information and the base station positioning data are subjected to differential observation processing to obtain coordinate information of the current position of the pet, and determine whether the distance between the pet and the pet active boundary region is less than or equal to a preset distance threshold, when the pet and the pet active boundary region
  • the alarm information is output when the distance between the distances is less than or equal to the preset distance threshold, so that the pet is trained to cause the pet to generate a conditional reflection and prevent the pet from being lost.
  • the satellite system includes a Beidou satellite navigation system, a GPS (Global Positioning System), a GLONASS satellite navigation system, or a Galileo satellite positioning system.
  • a Beidou satellite navigation system includes a GPS (Global Positioning System), a GLONASS satellite navigation system, or a Galileo satellite positioning system.
  • a pet collar control method including the following steps:
  • S402 Receive collar positioning data observed by the satellite positioning system, and receive a positioning error correction value sent by the base station.
  • the base station stores the base station coordinate information
  • the base station receives the base station positioning data observed by the satellite positioning system, and the base station performs differential observation calculation according to the base station coordinate information and the base station positioning data, obtains the positioning error correction value, and sends the positioning error correction value to the Training device.
  • the training device receives the collar positioning data observed by the satellite positioning system and the positioning error correction value sent by the base station.
  • S404 Perform positioning correction processing according to the positioning error correction value of the collar positioning data to obtain coordinate information of the current position of the pet.
  • the training device performs differential observation processing according to the collar positioning data, the base station coordinate information, and the base station positioning data, to obtain the pet current position coordinate information.
  • S406 Calculate a distance between the pet and the preset pet activity boundary region according to the pet current position coordinate information, and determine whether the distance between the pet and the preset pet activity boundary region is less than or equal to a preset distance threshold.
  • S408 Output an alarm signal when a distance between the pet and the pet activity boundary region is less than or equal to a preset distance threshold.
  • the method includes the following steps: the base station receives the base station positioning data observed by the satellite positioning system, and performs differential observation calculation on the base station positioning data and the pre-stored base station coordinate information to obtain a positioning error correction value.
  • the above pet collar control method further includes the following steps:
  • the sleep mode is initiated to cause the microprocessor to enter a sleep state; when the pet motion acceleration is greater than The microprocessor wakes up when the acceleration threshold is reached.
  • the motion state of the pet is collected by the acceleration sensor to determine the motion state of the pet, and the working state of the microprocessor is adjusted according to the motion state of the pet.
  • the microprocessor starts. In sleep mode, enter the sleep power saving state to save system power consumption.
  • the method further includes the following steps: receiving and storing a pet activity boundary area sent by the remote terminal, where the remote terminal includes one or more of a mobile phone, a tablet, or a computer.
  • the pet activity boundary area is sent to the training device for storage by being mapped on a map software on a mobile phone, a tablet, or a computer.
  • the base station may adopt a base station of the intelligent lawn mower, and the intelligent activity lawn border area directly adopts the intelligent lawn mower to learn the good map boundary area, and the mobile lawn, the tablet or the computer learns the stored intelligent lawn mower.
  • the map boundary area is sent to the training device storage.
  • the pet collar system and the remote terminal are connected by using a network communication
  • the pet collar control method further includes the following steps: the pet collar sends the pet current position coordinate information to the remote terminal in real time, and the pet and the pet When the distance between the active boundary regions is less than or equal to the preset distance threshold, the pet collar sends an alarm signal to the remote terminal; the remote terminal receives the pet current position coordinate information and the alarm signal, and the remote terminal outputs according to the pet current position coordinate information or the alarm signal. Control commands to the pet collar.
  • the pet collar can be connected to the remote terminal such as a mobile phone, a tablet or a computer via a wifi wireless communication network or a 3G/4G mobile communication network.
  • the pet collar sends the location of the pet to the remote terminal in real time, and when the pet is close to the boundary, the pet collar sends an alarm signal to the remote terminal, and the user can view the activity position of the pet in real time through the remote terminal, and timely know whether the pet is out of the boundary, thereby further facilitating the user. View pet activities to prevent pets from being lost.
  • users can also send control commands to pet collars through remote terminals to enable users to remotely control pet activities.
  • the pet collar system and the pet collar control method are described above.
  • the pet collar system and the pet collar control method will be described below with reference to specific application examples in conjunction with FIGS. 35 and 36.
  • the satellite positioning system is GPS
  • the terminal uses a mobile phone
  • the map software is described by Google Map.
  • the pet collar system is employed to train the pet such that the pet produces conditional reflections that only move within the set active area.
  • the pre-delineed lawn 900 is a pet activity area
  • the swimming pool 1000 is inside the lawn.
  • the system setting and the boundary area of the pet activity need to be first set.
  • the base station 600 is set at the point A in the lawn 900 and the base station 600 is powered, and the point A is recorded. Coordinate A (Xa, Ya, Za).
  • the pet collar is opened, and the pet collar establishes a communication connection with the mobile phone.
  • define the boundary area of the pet activity that is, define the range of the virtual pet fence.
  • the map boundary is drawn first, and the user removes the pet collar from the pet, and sets the area boundary setting mode. The user carries the pet collar to the boundary of the lawn 900, and walks along the boundary in a circle.
  • the pet collar automatically sends the geographic coordinate data of each point of the boundary where the GPS observation user walks to the mobile phone, draws the lawn boundary, and forms a boundary map on the mobile phone.
  • you want to restrict your pet to a dangerous area such as a swimming pool
  • the user then carries the pet collar to the swimming pool 1000 boundary to walk for a circle of the pool.
  • the user edits on the Google map on the mobile phone to confirm that the area outside the pool boundary is the pet activity area, and the area outside the lawn boundary and the pool boundary is the activity prohibition area.
  • the map After editing the map, the map will be The boundary information of the pet activity area and the prohibited pet activity area is sent to the pet collar storage, and the pet collar records the range of the virtual pet fence. After that, the pet is wearing a pet collar, the pet collar is placed on the pet's neck, the working mode is activated, and the pet is trained.
  • the pet moves in the boundary area of the pet activity, and the pet collar receives the collar positioning data observed by the satellite positioning system, the base station coordinate information sent by the base station, and the base station positioning data, and performs according to the collar positioning data, the base station coordinate information, and the base station positioning data.
  • Differential observation processing calculating the current position coordinates of the pet, obtaining the R point coordinate R (Xn, Yn, Zn) of the pet's position, calculating the distance between the pet and the pet's active boundary region according to the pet's current position coordinate, and determining the pet and pet activity boundary region.
  • the pet may be trained multiple times.
  • the pet When the pet generates a conditional reflection on the alarm information during the training process, if the sound and light alarm information or a slight electric shock is received, the pet stops moving forward and returns to the active area. , the user can stop training, rest assured that the pet is active in the area, and the pet collar system can monitor the pet activity.
  • the preset distance threshold is 2 m
  • the user can train the pet by: first, inserting a small flag at intervals of 2 to 3 m on the boundary, and wearing the collar on the pet's neck. Holding the pet from the inside of the area close to the boundary, when the distance is 2m from the boundary, the collar will sound a "beep". At this time, the pet will continue to approach the boundary. The distance is less than 2m, and the collar will be shocked. The higher the electric shock intensity, or the higher the frequency, the pet is very uncomfortable.
  • the pet will produce conditioned reflexes, which will not be close to the boundary, so that the pet can roughly know the position of the small flag on the boundary, and thus stay in the set safe area, which is effective. Avoid pets lost.
  • the pet collar monitors the movement state of the pet in real time through the acceleration sensor disposed thereon, and when the pet is in a lying state or the pet moves slowly, the detected pet
  • the microprocessor of the pet collar initiates the sleep mode, and the pet collar stops working to enter the sleep power saving state; when the pet starts to move and detects that the pet motion acceleration is greater than the preset acceleration threshold, the micro processing The device is activated and the pet collar monitors the pet activity to prevent the pet from getting out of the border.
  • the user can also view the pet's position in real time on the Google map of the mobile phone, monitor the pet's position status, and further prevent the pet from being lost.
  • a GPS tracker can be installed on the pet collar. If a pet is lost, the user can also perform GPS tracking through the mobile phone to track the position of the pet and ensure that the pet is retrieved.
  • the information interaction between the pet collar and the mobile phone is not limited to the above-described boundary area setting information transfer.
  • the user can communicate with the pet collar through the wifi or the 3G/4G mobile communication network by using the mobile phone, and the pet collar can send the position of the pet to the mobile phone in real time, and the pet collar can also send an alarm signal when the alarm is alarmed.
  • the user is notified to the remote terminal, and the user can remotely check the active location of the pet through the mobile phone to know whether the pet is out of the boundary.
  • the user can also send control commands to the pet collar through the mobile phone to remotely control the pet's activities.
  • the user can find that the pet is approaching the border area by viewing the mobile phone, and the user can send an alarm instruction through the mobile phone to activate the alarm to provide early warning to the pet.
  • the user can periodically activate the alarm to allow the pet to get up and running.
  • the pet collar can also send the collected pet motion acceleration data to the mobile phone through the terminal communication module, calculate and count the number of motion steps of the pet in a period of time through the step counting application on the mobile phone, if the pet has fewer moving steps
  • the user can send a motion command to the pet collar, and the pet collar outputs an audible and visual alarm signal according to the motion instruction or an electric shock to the pet, so that the pet can move to prevent the pet from becoming overweight due to less exercise.
  • the pet activity boundary area is set on the mobile phone, and the set boundary information is sent to the pet collar storage.
  • the pet activity boundary area may also be directly set on the pet collar, and the pet collar sends the set boundary information to the mobile phone to facilitate the user to monitor through the mobile phone.
  • the pet collar is provided with a boundary demarcation device, and the boundary demarcation device is connected with the electronic device containing the electronic map in the pet collar, and the boundary demarcation device may be a button or a touch display screen, and the boundary delimiting device adopts a button as an example.
  • the user When delineating the pet activity boundary area, the user carries the pet collar to the area boundary, presses the button, the electronic device records the boundary start position, the user continues to walk along the boundary, and when walking to the boundary end point, press the button again
  • the electronic device records the boundary end position, records the path that the user passes through as the area boundary, and generates boundary coordinate information to be sent to the mobile phone.
  • the defined boundary area may be divided into a pet activity area or a pet activity prohibited area by a preset number of pressing button buttons. For example, if a button is pressed at the start and end positions of the area boundary, the boundary is defined within the boundary.
  • the area is the pet activity area, and the button is continuously pressed twice at the start and end positions of the area boundary, and the area within the demarcated boundary is the prohibited pet activity area.
  • the specific area division rule may be set according to the actual needs.
  • the division of the area by the number of button presses is only an embodiment, and is not specifically limited.
  • the pet activity boundary area is directly defined on the pet collar, and when a communication failure occurs between the pet collar and the mobile phone, the pet collar can be normally used, which is further convenient for the user to use.

Abstract

一种自移动设备的回归方法、自移动设备、存储器和服务器。在自移动设备的回归方法中,其中所述自移动设备基于地图在工作区域内自主移动,该方法包括:获取自移动设备在工作区域中的当前位置;根据所述当前位置,选择至目标位置的回归路径;以及判断所述回归路径被重复使用的情况,基于所述回归路径被重复使用的情况,判断是否重新选择回归路径;使所述自移动设备按照所选择的回归路径返回所述目标位置。本自移动设备的回归方法,通过选择回归路径,可以使自移动设备可靠地返回目标位置。根据回归路径被重复使用的情况,判断是否重新选择回归路径,避免机器人沿同一段路径重复移动压坏草坪,保证草坪的美观。

Description

自移动设备的回归方法、自移动设备、存储介质和服务器 技术领域
本发明涉及机器人技术领域,具体涉及一种自移动设备的回归方法、自移动设备、存储器和服务器。
背景技术
随着大数据、云计算和人工智能的快速发展,智能机器人业已逐渐进入人类生活的各个领域,并日益发挥着越来越重要的作用。
作为机器人的一种,智能割草机能够实现自动割草,从而为人们的生活带来极大的方便。传统的智能割草机系统,为了避免智能割草机驶出工作边界区域,可以在工作区域周围设置边界线,并通电,从而智能割草机可以通过检测电流周围的磁场信号判断边界。当智能割草机需要返回充电站补充电能时,先寻找边界线,找到边界线后沿边界线移动回到充电站,通过控制机器跨边界线移动,可使机器与充电站大致对齐,从而实现精确对接。
自动控制系统,例如自动割草机系统,能够自动完成维护草坪等任务,越来越受用户的欢迎。自动工作系统中,自移动设备,例如自动割草机,被限制在一定的工作区域内活动。现有技术中,通过移动站生成工作区域的地图,而后移动站根据地图所限定的工作区域,对自移动设备进行导航。
这种方式下,当基站移动后,移动站输出的位置坐标将发生偏差,需要重新生成工作区域的地图,步骤较为繁琐。
随着电子信息技术的发展,电子宠物项圈应用越来越广泛,尤其是无需布置边界导线的虚拟电子宠物项圈,深受人们青睐。然而,传统虚拟电子宠物项圈在定位的过程当中,由于受大气误差、卫星钟差、卫星星历误差,以及,高楼等障碍物遮挡引起的多路径效应等因素影响,卫星定位的精度只能达到10米左右,因此,传统虚拟电子宠物项圈存在易受干扰,定位精度低 的技术问题,会出现宠物出走的情况,无法保证宠物安全。
发明内容
有鉴于此,本发明实施例提供了一种自移动设备的回归方法、自移动设备、存储介质和服务器。该自移动设备,可以使工作区域内的自移动设备,可靠的返回目标位置。
本发明的一个方面提供了一种自移动设备的回归方法,所述自移动设备基于地图在工作区域内自主移动。该回归方法包括:获取自移动设备在工作区域中的当前位置;根据所述当前位置,选择至目标位置的回归路径;以及判断所述回归路径被重复使用的情况,基于所述回归路径被重复使用的情况,判断是否重新选择回归路径;使所述自移动设备按照所选择的回归路径返回所述目标位置。
在一个实施例中,所述判断所述回归路径被重复使用的情况,包括:判断所述回归路径被重复使用的长度和/或被重复使用的频率,若所述回归路径被重复使用的长度和/或被重复使用的频率超过预设阈值,则判断重新选择所述回归路径。
在一个实施例中,将当前选择的回归路径称为第一回归路径,当所述被重复使用的长度和/或被重复使用的频率大于预设的第一阈值时,选择与第一回归路径不重合的第二回归路径作为回归路径。
在一个实施例中,将当前选择的回归路径称为第一回归路径,当所述被重复使用的长度和/或被重复使用的频率大于预设的第二阈值时,选择与第一回归路径不相交的第二回归路径作为回归路径。
在一个实施例中,所述判断所述回归路径被重复使用的长度和/或被重复使用的频率包括:存储所述回归路径的至少部分的使用信息,以及根据所述信息判断所述回归路径被重复使用的长度和/或被重复使用的频率。
在一个实施例中,所述根据所述当前位置,选择至目标位置的回归路径包括:计算所述当前位置与所述目标位置之间的最优路径,并将该最优路径作为所述回归路径。
在一个实施例中,所述计算所述当前位置与所述目标位置之间的最优路 径包括,计算所述当前位置与所述目标位置之间的最短路径。
在一个实施例中,该回归方法还包括:预设若干预设回归路径;所述根据所述当前位置,选择至目标位置的回归路径包括:选择所述若干预设回归路径之一作为所述回归路径。
在一个实施例中,所述获取自移动设备在工作区域中的当前位置之后还包括:计算所述当前位置与所述预设回归路径之间的最优路径;所述使所述自移动设备按照所选择的回归路径返回所述目标位置包括:使所述自移动设备按所述最优路径运动到所述预设回归路径。
在一个实施例中,所述预设回归路包括在所述工作区域内的多个封闭图形以及连接所述多个封闭图形和所述目标位置的直线;所述使所述自移动设备沿所选择的回归路径返回所述目标位置包括:使所述自移动设备沿当前运动方向或任意方向运动,且在与所述多个图形之一的接触时,沿该多个封闭图形之一的边线运动至所述直线并沿所述直线返回所述目标位置。
在一个实施例中,所述多个封闭图形为多个封闭的圆环。
在一个实施例中,回归方法还包括:预设所述工作区域的虚拟边界线;所述根据所述当前位置,选择至目标位置的回归路径包括:选择沿所述虚拟边界线或靠近所述虚拟边界线的路径作为所述回归路径。
在一个实施例中,所述使所述自移动设备按照所选择的回归路径返回所述目标位置之后还包括:使所述自移动设备对接充电桩充电。
在一个实施例中,所述使所述自移动设备对接所述充电桩充电包括:
使所述自移动设备在所述目标位置调整姿态,以使其充电部分对接所述充电桩充电。
在一个实施例中,所述使所述自移动设备对接所述充电桩充电包括:使所述自移动设备在所述目标位置向远离所述充电桩后退预设距离,并在所述预设距离完成姿态调整,以及使所述自移动设备以所述姿态向所述充电桩运动以对接该充电桩充电。
在一个实施例中,在自移动设备进入工作前,使所述自移动设备记录所述目标位置和所述姿态。
本发明的另一个方面提供了一种自移动设备,包括获取模块和控制模块;其中所述获取模块用于获取自移动设备在工作区域中的当前位置;所述控制模块用于根据所述当前位置,选择至目标位置的回归路径;判断所述回 归路径被重复使用的情况,基于所述回归路径被重复使用的情况,判断是否重新选择回归路径;以及控制所述自移动设备按照所选择的回归路径返回所述目标位置。
在一个实施例中,所述控制模块包括第一统计单元和控制单元,其中所述第一统计单元用于统计所述第一回归路径被重复使用的长度和/或被重复使用的频率,若所述回归路径被重复使用的长度和/或被重复使用的频率超过预设阈值,则所述控制单元判断重新选择所述回归路径。
在一个实施例中,所述控制单元将当前选择的回归路径称为第一回归路径,当所述被重复使用的长度和/或被重复使用的频率大于预设的第一阈值时,所述控制单元选择与第一回归路径不重合的第二回归路径作为回归路径。
在一个实施例中,所述控制模块还包括第一存储单元,所述第一存储单元还用于存储所述回归路径的至少部分的使用信息,所述第一统计单元还用于根据所述信息判断所述回归路径被重复使用的长度和/或被重复使用的频率。
在一个实施例中,所述控制模块还包括第一计算单元和控制单元,所述第一计算单元用于计算所述当前位置与所述目标位置之间的最优路径,并且所述控制单元控制选择该最优路径作为所述回归路径。
在一个实施例中,所述控制模块还包括第一预设单元和控制单元:所述第一预设单元用于预设若干回归路径;所述控制单元用于选择所述若干预设回归路径之一作为所述回归路径。
在一个实施例中,所述控制模块还包括第二计算单元,所述第二计算单元用于计算所述当前位置与所述回归路径的最优路径,从而所述控制模单元控制所述自移动设备沿所述最优路径运动至所述回归路径。
在一个实施例中,所述第一预设单元还用于预设所述工作区域的虚拟边界线;所述控制单元控制所述自移动设备沿所述虚拟边界线或靠近所述虚拟边界线的路径返回所述目标位置。
在一个实施例中,所述控制模块还包括姿态确定单元和调整单元,所述姿态确定单元用于在所述自移动设备运动至所述目标位置时,确定所述自移动设备的姿态,所述姿态调整单元用于调整所述自移动设备的姿态,以使所述自移动设备对接充电桩充电。
在一个实施例中,所述控制模块还包括第二预设单元和比较单元,其中所述预设单元用于设置与充电桩的标准距离/相对位置以及自移动设备的充电姿态,所述比较单元用于将将所述自移动设备的当前姿态与所述充电姿态相比较,并将所述自移动设备的姿态至所述充电姿态。
本发明的又一个方面提供了一种存储介质,存储有计算机可读指令在所述计算机可读指令被调用时,执行上述方法。
本发明的再一个方面提供了一种服务器,包括存储器和处理器,其中所述存储器存储有计算机可读指令,所述处理器用于调用所述计算机可读指令从而执行上述方法。
本发明的实施例提供的自移动设备的回归方法、自移动设备、存储器和服务器,通过选择自移动设备的返回路径,可以使自移动设备可靠地返回目标位置。
本发明还提供一种自动工作系统,包括:自移动设备,在地图限定的工作区域内移动和工作;导航模块,用于记录工作区域的位置坐标,并生成工作区域地图;所述导航模块包括用于辅助定位的校偏装置。
优选的,所述校偏装置包括用于发射激光束且在地面形成光点的激光束发射器。
优选的,预设一预订位置,通过判断所述激光束在地面上的光点是否在预定位置来判断所述导航模块记录的位置坐标是否准确以辅助定位。
优选的,所述校偏装置还包括用于修正所述导航模块的偏摆所造成的误差的姿态检测模块和激光测距模块。
优选的,所述姿态检测模块获得所述导航模块在两个不同方向上的偏摆角α、偏摆角β,所述激光测距模块用于测量所述激光束在地面的光点的距离L。
优选的,所述校偏装置根据所述姿态检测模块与所述激光测距模块获得的偏摆角α、偏摆角β和距离L获得对应的偏差修正值ΔX与ΔY以修正所述导航模块的偏摆所造成的误差,所述偏差修正值通过如下公式计算:ΔX=L*sinα,ΔY=L*sinβ。
本发明还提供一种自动工作系统,包括:自移动设备,在地图限定的工作区域内移动和工作;导航模块,用于记录工作区域的位置坐标,并生成工作区域地图;所述导航模块包括移动站及至少两个能够与所述移动站通信的 基站,所述移动站可选择与所述至少两个基站中的一个基站通信以传输差分电文。
优选的,所述至少两个基站是通过同一信道与所述移动站通信以传输所述差分电文。
优选的,所述至少两个基站包括一个主基站及至少一个备用基站,当所述主基站无故障时,所述主基站通过所述信道与所述移动站通信,当所述主基站故障时,所述备用基站通过所述信道与所述移动站通信。
优选的,所述至少两个基站是通过不同的信道与所述移动站通信以传输所述差分电文。
优选的,所述至少两个基站包括第一基站与第二基站,所述移动站预设与第一基站通信的第一信道及与第二基站通信的第二信道,当所述第一信道能接到所述差分电文时,所述移动站通过第一信道与第一基站通信,当所述第一信道收不到所述差分电文时,所述移动站切换到第二信道与第二基站通信。
本发明还提供一种差分全球定位系统,包括基站和至少一个移动站,所述基站包括编码模块,用于对所述移动站编码,所述基站根据所述编码和所述移动站建立通讯,传输差分校正数据给所述移动站,所述基站能够和多个所述移动站建立通讯。
优选的,所述基站包括用于存储与发送所述差分校正数据的基站通讯电台,所述基站通讯电台包括预设有访问许可密码的数据服务热点,具有所述许可密码的所述移动站才可以访问所述基站通讯电台并获得所述差分校正数据。
优选的,所述差分校正数据按照一定规则加密,只有知晓所述规则的所述移动站才能获得所述差分校正数据。
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本发明提出一种基于差分定位技术的位置信息处理方法,以实现在基站位置发生变化时,无需移动站重新执行沿工作区域边界移动以生成地图的过程,简化操作步骤,用于解决现有当基站移动后,移动站输出的位置坐标将发生偏差,需要重新生成工作区域的地图,步骤较为繁琐的技术问题。
本发明提出一种应用于导航模块的移动站。
本发明提出另一种应用于导航模块的移动站。
本发明提出一种计算机可读存储介质。
本发明提出一种计算机程序产品。
为达上述目的,本发明第一方面实施例提出了一种基于差分定位技术的位置信息处理方法,应用于导航模块,所述导航模块包括基站,以及根据所述基站发送的差分信息解算得到与所述基站的相对位置的移动站,包括:
在所述基站绝对位置变化之前,所述移动站获取与所述基站的第一相对位置;
在所述基站绝对位置变化前和变化后,所述移动站保持绝对位置相同;
在所述基站绝对位置变化后,所述移动站获取与所述基站的第二相对位置;
根据所述第一相对位置和所述第二相对位置,更新所述移动站工作区域的地图,或者,通知所述基站对存储的基站绝对位置进行更新;所述地图中各点用于指示与所述基站之间的相对位置。
本发明实施例的基于差分定位技术的位置信息处理方法,通过在基站绝对位置变化之前,移动站获取与基站的第一相对位置,而后,在基站绝对位置变化前和变化后,移动站保持绝对位置相同,在基站绝对位置变化后,移动站获取与基站的第二相对位置,从而移动站可以根据第一相对位置和第二相对位置,更新移动站工作区域的地图,或者,通知基站对存储的基站绝对位置进行更新;地图中各点用于指示与基站之间的相对位置。由此,可以实现在基站位置发生变化时,无需移动站重新执行沿工作区域边界移动以生成地图的过程,简化操作步骤,解决现有技术中当基站移动后,移动站输出的位置坐标将发生偏差,需要重新生成工作区域的地图,步骤较为繁琐的技术问题。
为达上述目的,本发明第二方面实施例提出了一种应用于导航模块的移动站,所述导航模块基于差分定位技术,包括基站,以及根据所述基站发送的差分信息解算得到与所述基站的相对位置的移动站,所述移动站包括:
解算模块,用于在所述基站绝对位置变化之前,获取与所述基站的第一相对位置;以及在所述基站绝对位置变化后,获取与所述基站的第二相对位置;
控制模块,用于保持在所述基站绝对位置变化前和变化后,移动站绝对位置相同;
更新模块,用于根据所述第一相对位置和所述第二相对位置,更新所述移动站工作区域的地图,或者,通知所述基站对存储的基站绝对位置进行更新;所述地图中各点用于指示与所述基站之间的相对位置。
本发明实施例的应用于导航模块的移动站,通过在基站绝对位置变化之前,移动站获取与基站的第一相对位置,而后,在基站绝对位置变化前和变化后,移动站保持绝对位置相同,在基站绝对位置变化后,移动站获取与基站的第二相对位置,从而移动站可以根据第一相对位置和第二相对位置,更新移动站工作区域的地图,或者,通知基站对存储的基站绝对位置进行更新;地图中各点用于指示与基站之间的相对位置。由此,可以实现在基站位置发生变化时,无需移动站重新执行沿工作区域边界移动以生成地图的过程,简化操作步骤,解决现有技术中当基站移动后,移动站输出的位置坐标将发生偏差,需要重新生成工作区域的地图,步骤较为繁琐的技术问题。
为达上述目的,本发明第三方面实施例提出了另一种应用于导航模块的移动站,所述导航模块,基于差分定位技术,包括基站,以及根据所述基站发送的差分信息解算得到与所述基站的相对位置的移动站,所述移动站包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时,实现如本发明第一方面实施例所述的基于差分定位技术的位置信息处理方法。
为了实现上述目的,本发明第四方面实施例提出了一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现如本发明第一方面实施例所述的基于差分定位技术的位置信息处理方法。
为了实现上述目的,本发明第五方面实施例提出了一种计算机程序产品,当所述计算机程序产品中的指令由处理器执行时,执行如本发明第一方面实施例所述的基于差分定位技术的位置信息处理方法。
本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
本发明针对传统电子宠物项圈易受干扰,定位精度低的问题,提供一种宠物项圈系统及宠物项圈控制方法。
一种宠物项圈系统,包括:基站、项圈本体和设置在项圈本体上的训练装置,基站存储基站坐标信息,且基站接收卫星定位系统观测的基站定位数据,基站根据基站坐标信息和基站定位数据进行差分观测值计算,获得定位 误差修正值,并将定位误差修正值发送至训练装置;训练装置包括移动卫星天线、基站电台天线、微处理器和报警器,其中,
移动卫星天线用于接收卫星定位系统观测的项圈定位数据,并将接收到的项圈定位数据发送至微处理器;
基站电台天线用于接收基站发送的定位误差修正值,并将接收到的定位误差修正值发送至微处理器;
微处理器预先存储宠物活动边界区域,宠物被限制在所述宠物活动边界区域内活动;微处理器根据项圈定位数据和定位误差修正值进行定位修正处理,判断宠物与宠物活动边界区域之间的距离是否小于或等于预设距离阈值,当宠物与宠物活动边界区域之间的距离小于或等于预设距离阈值时,微处理器发送报警信号至报警器;
报警器用于根据报警信号输出报警信息。
在其中一个实施例中,微处理器包括:
存储单元,用于存储宠物活动边界区域;
定位修正单元,用于根据项圈定位数据和定位误差修正值进行定位修正处理,得到宠物当前位置坐标信息;
位置判断单元,用于根据宠物当前位置坐标信息计算宠物与宠物活动边界区域之间的距离,判断宠物与宠物活动边界区域之间的距离是否小于或等于预设距离阈值;
报警单元,用于当宠物与宠物活动边界区域之间的距离小于或等于预设距离阈值时,输出报警信号至报警器。
在其中一个实施例中,上述是宠物项圈还包括加速度传感器,加速度传感器设置在项圈本体上,且加速度传感器与微处理器连接,加速度传感器用于采集宠物的运动加速度并将采集到的宠物运动加速度发送至微处理器;
微处理器还包括电源管理单元,电源管理单元用于接收宠物运动加速度,并将宠物运动加速度与预先存储的加速度阈值进行比较,当宠物运动加速度小于或等于加速度阈值时,启动休眠模式,微处理器进入休眠状态;当所述宠物运动加速度大于所述加速度阈值时,所述微处理器唤醒工作。
在其中一个实施例中,上述的宠物项圈还包括终端通信模块,微处理器通过终端通信模块与远程终端进行信息交互,远程终端包括手机、平板或电脑中的一种或多种。
在其中一个实施例中,上述宠物活动边界区域通过在手机、平板或电脑上的地图软件上划定。
在其中一个实施例中,基站为智能割草机基站,上述边界区域为智能割草机学习好的地图边界区域。
一种宠物项圈控制方法,用于将宠物限制在宠物活动边界区域内活动,包括以下步骤:
接收卫星定位系统观测的项圈定位数据,并接收基站发送的定位误差修正值;
根据项圈定位数据和定位误差修正值进行定位修正处理,得到宠物当前位置坐标信息;
根据宠物当前位置坐标信息计算宠物与预设宠物活动边界区域之间的距离,判断宠物与预设宠物活动边界区域之间的距离是否小于或等于预设距离阈值;
当宠物与宠物活动边界区域之间的距离小于或等于预设距离阈值时,输出报警信号。
在其中一个实施例中,接收卫星定位系统观测的项圈定位数据,并接收基站发送的定位误差修正值的步骤之前,包括以下步骤:
基站接收卫星定位系统观测的基站定位数据,将基站定位数据与预先存储的基站坐标信息进行差分观测值计算,获得定位误差修正值。
在其中一个实施例中,上述宠物项圈控制方法还包括以下步骤:
检测宠物的运动加速度,并将宠物运动加速度与预先存储的加速度阈值进行比较,当宠物运动加速度小于或等于加速度阈值时,启动休眠模式,使微处理器进入休眠状态;当所述宠物运动加速度大于所述加速度阈值时,所述微处理器唤醒工作。
在其中一个实施例中,接收卫星定位系统观测的项圈定位数据,并接收基站发送的定位误差修正值的步骤之前,包括以下步骤:
接收远程终端发送的宠物活动边界区域并存储,远程终端包括手机、平板或电脑中的一种或多种。
在其中一个实施例中,上述边界区域为智能割草机学习好的地图边界区域。
在其中一个实施例中,宠物项圈与远程终端之间通过网络通信连接,上 述宠物项圈控制方法还包括以下步骤:
宠物项圈实时发送宠物当前位置坐标信息至远程终端,且当宠物与宠物活动边界区域之间的距离小于或等于预设距离阈值时,宠物项圈发送报警信号至远程终端;远程终端接收宠物当前位置坐标信息和报警信号,且远程终端根据宠物当前位置坐标信息或报警信号输出控制指令至宠物项圈。
上述的宠物项圈系统及宠物项圈控制方法用于在宠物活动边界区域形成虚拟宠物篱笆,将宠物限制在宠物活动边界区域内活动,以防止宠物走失。上述宠物项圈系统及宠物项圈控制方法根据卫星定位系统观测的项圈定位数据和基站发送的定位误差修正值进行定位修正处理,判断宠物与预先存储的宠物活动边界区域之间的距离是否小于或等于预设距离阈值,当宠物与宠物活动边界区域之间的距离小于或等于预设距离阈值时,微处理器输出报警信号至报警器,由报警器输出报警信息以防止宠物走出预设活动边界区域,避免宠物走失。上述宠物项圈系统及宠物项圈控制方法通过卫星定位系统对宠物所处位置进行定位,无需边界布线,实施操作简单方便,且上述宠物项圈系统及宠物项圈控制方法对定位结果根据基站通过差分观测值计算获得的定位误差修正值进行修正处理,从而排除各项干扰因素对定位进度的影响,可达到厘米级精度的定位,实现对宠物精准定位,定位精度高。
附图说明
图1为本发明实施例提供的自移动设备回归方法流程图。
图2所示为本发明实施例提供的选择回归路径的方法流程图。
图3所示为本发明实施例中判断最优路径的方法流程图。
图4a-4b所示为本发明实施例提供的预设回归路径示意图。
图5a为本发明实施例提供的获取模块示意图。
图5b-5f为本发明实施例的控制模块示意图。
图6为本发明实施例的控制模块的示意图。
图7为本发明的第一实施例的自动工作系统示意图。
图8为本发明的第一实施例的自动割草机结构示意图。
图9a、图9b为本发明的第一实施例的导航模块的组成示意图。
图10a-10d为本发明的第一实施例的校偏装置的工作示意图。
图11为本发明的第六实施例的移动站滚轮装置示意图。
图12为本发明的第一实施例的栅格示意图。
图13为本发明的第一实施例的导航模块的工作原理图。
图14为本发明的第一实施例的基站与移动站的通讯示意图。
图15a-图15c为本发明的第一实施例的基站位置修正原理图。
图16为本发明的第一实施例的基站位置修正流程图。
图17-图21为本发明的第一实施例的自动割草机的移动路径示意图。
图22-图24为本发明的第一实施例的自动割草机的回归路径示意图。
图25为本发明实施例所提供的第一种基于差分定位技术的位置信息处理方法的流程示意图;
图26a为本发明实施例中基站移动前的位置示意图;
图26b为本发明实施例中基站移动后的位置示意图;
图27为本发明实施例所提供的第二种基于差分定位技术的位置信息处理方法的流程示意图;
图28为本发明实施例所提供的一种应用于导航模块的移动站的结构示意图;
图29为本发明实施例所提供的另一种应用于导航模块的移动站的结构示意图;
图30为本发明一实施例提出的应用于导航模块的移动站的结构示意图。
图31为一个实施例中宠物项圈系统的结构示意图;
图32为一个实施例中训练装置的结构原理图;
图33为一个实施例中宠物项圈系统的应用场景示意图;
图34为一个实施例中宠物项圈控制方法的流程原理图;
图35为一个实施例中应用宠物项圈系统训练宠物的应用环境示意图;
图36为一个实施例中应用宠物项圈系统训练宠物的流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
卫星导航技术通过向机器人发送导航信号,机器人可以根据导航信号实时获取自身的位置信息,从而机器人可以根据这些位置信息,判断其自身是否处于工作区域内。具体而言,机器人上例如可以设有GPS移动站,其可以接收卫星定位信号。为了进一步提高定位精度,可以在工作区域周边安装固定的GPS基站来提供定位修正信号。例如,设置在工作区域外的GPS基站可以接收卫星定位信号,并据此生成定位修正信号,并将定位修正信号发送给设置在机器人的GPS移动站,从而机器人可以被更准确的定位。
具体的,本实施例中的差分GPS技术为RTK技术,即载波相位差分技术,移动站利用载波相位算法进行计算。差分GPS技术也可以为CORS技术。
此外,为了使机器人能够可靠的在工作区域工作,机器人需要大致了解其工作区域的地图。例如,机器人可以按照如下几种方法获取工作区域的地图。第一,用户可以在机器人的系统中直接加载的地图中圈出工作区域,例如,地图可以是百度或谷歌地图。第二,在GPS移动站与机器人为一体结构的情况下,可以使机器人沿工作区域行走例如一圈,以获取地图。具体地,可以为用户推着机器在工作区域内行走,或用户采用遥控器控制机器行走,或者使机器人跟随用户走,或者在机器上配置以检测工作区域的边界传感器等。此外,GPS移动站可以与机器可分离设置,从而可以由用户单独携带GPS移动站沿工作区域走一圈。
需要说明的是,工作区域的地图除了可以包含边界坐标之外,还可以包括工作区域内的水坛、灌木丛或其它特征信息的坐标。从而在机器可以根据掌握的工作区域地图,针对性的开展工作。例如,所开展的工作可以除草、耕地、施肥等,但本发明对机器在工作区域的作业类型不做限制。
本发明一实施例提供了一种自移动设备的回归方法,该自移动设备基于 地图在工作区域内自主移动。参见图1,该方法包括:S100获取自移动设备在工作区域中的当前位置;S200根据所述当前位置,选择至目标位置的回归路径;S300判断所述回归路径被重复使用的情况,基于所述回归路径被重复使用的情况,判断是否重新选择回归路径;以及S400使所述自移动设备按照所述回归路径返回所述目标位置。本实施例的自移动设备的回归方法,通过根据当前位置与目标位置有针对性的选择回归路径,可以使自移动设备可靠的返回目标位置。根据回归路径被重复使用的情况,判断是否重新选择回归路径,避免机器人沿同一段路径重复移动压坏草坪,保证草坪的美观。
本实施例中,机器人会记录前面若干次的回归路径,回归路径被重复使用的情况包括回归路径与前一次或前面若干次的回归路径是否有重复,包括被重复使用的长度情况,或者被重复使用的频率情况。
如前所述,自移动设备可以是通过卫星导航定位,获取自移动设备在工作区域的坐标,并结合目标位置的坐标以及工作区域的地图,选择可以通行的回归路径。例如,上述自移动设备可以为通过轮子或履带运动的割草机。例如,该回归路径应当避开水坛、灌木丛、障碍物等。也即需要保证机器能够通行,而不会在运动过程中发生卡死、跌落、撞击等情况。
在一个实施例中,参见图2,判断所述回归路径被重复使用的情况,基于所述回归路径被重复使用的情况,判断是否重新选择回归路径包括:S1001将当前选择的回归路径称为第一回归路径,S1002统计所述第一回归路径被重复使用的长度和/或使用频率,以及S1003根据所述被重复使用的长度和/或被重复使用的频率决定所述自移动设备是否沿所述第一回归路径返回所述目标位置。例如,当工作区域为草坪时,割草机在需要返回目标位置充电时,如果每次都走同一路线,可能会使该路径上的草坪的草被压坏,从而影响草坪美观。通过使草坪每次沿不同的路径返回目标位置,可以防止草坪中的某些区域被过破坏的部分。
例如,当所述被重复使用的长度大于第一回归路径总长度的1/3时或一天内使用次数大于等于2时,可以选择与所述第一回归路径不重合的第二回归路径作为所述回归路径。需要指出,第二回归路径可以与第一回归路径完全不同或者一部分不同。例如,当草坪中留有无草区时,第一回归路径和第二回归路径可以共用该部分无草区的路径,而二者在其它部分的路径不同。 例如,如果机器返回目标的次数过多或工作区域的障碍较多时,第二回归路径很可能无法完全与第一回归路径没有任何交点,在此情况下,第二回归路径可以与第一回归路径部分相交或小部分重合。通过使机器返回目标位置的路径不重合或不相交以及部分相交或部分重合,可以避免对工作区域的某一位置过破坏,同时便于机器在工作区域中运动,提高机器的智能体验。
在一个实施例中,可以记录第一回归路径的至少一部分的使用信息,并根据该信息判断第一回归路径被重复使用的长度和频率。通常情况下,例如,在工作区域地图的包含虚拟网格时,机器根据所处当前位置和目标位置,即可以计算出第一回归路径。也就是说,如果当前位置确定,目标位置也确定,机器可以首先计算出固定的第一回归路径。机器在沿第一回归路径返回目标位置后,其可以记录一次该第一回归路径,从而该记录可以决定是否选择该第一回归路径返回的依据。本实施例通过记录回归路径的相关信息,可以方便的确定该回归路径被重复使用的情况,为其后的路径选择打下基础。
在一个实施例中,所述根据所述当前位置与目标位置,选择回归路径包括:判断所述当前位置与所述目标位置之间的最优路径,并将该最优路径作为所述回归路径。参见图3,例如,所述判断所述当前位置与所述目标位置之间的最优路径可以包括:S1010在所述自移动设备中加载所述工作区域的地图;S1011在所述地图上标注等距网格;以及S1012根据所述网格确定所述最短路径。或者加载的地图也可以直接为栅格地图,在此情况下,则省去上述S1011步骤。判断所述当前位置与所述目标位置之间的最优路径包括,计算当前位置与目标位置之间的最短路径。例如,所述自移动设备的回归路线为直线;所述根据所述地图确定所述最路径包括:选择所述当前位置和所述目标位置之间覆盖所述栅格最少的直线或折线的路径。
最优路径需要综合考虑距离的远近、行走的难易等,行走的难易包括路径中的斜坡的多少、障碍物的数量的多少以及机器需要调整姿态的次数等。
需要说明的是,上述直线或折线需要避开工作区域的障碍物、水坛等,且既可以是直线,也可以是多次折线,以当前位置和目标位置之间的直线或多个折线距离之和较短为原则。例如,当前位置与目标位置之间的返回路径也可以为直线、折线或曲线中至少两个的组合。
在计算最短路径时,当机器人与目标位置之间存在通道时,从通道到目标位置的部分路径会发生重叠,采用本实施例的方案,可以有效避免路径重 复,从而避免对草坪的碾压损伤。
在一个实施例中,回归方法还包括:预设若干预设回归路径;使所述自移动设备沿所述预设回归路径之一返回所述目标位置。即可以在工作区域内设置一条或多条返回路径,从而机器在需要返回目标时,可以沿其中的一条路径返回目标位置。
在该实施例中,例如,机器可以获取其在工作区域的位置坐标,并根据该位置坐标计算与预设回归路径的最短距离,从而机器可以通过该最短距离快速的到达预设回归路径。参见图4a,例如,预设回归路径可以是在工作区域内的多条路径12,13,14,这些路径可以共用一部分路径(比如,共用部分的路径没有草坪,因此,自移动设备可以多次行走),从而在自移动设备在工作区域内工作时,可以自行计算到预设的多条路径的最佳行走方案,并且在到达预设路径之后,沿预设路径运动至目标位置2。例如,预设路径在工作区域的障碍物4之间的部分即为共用路径。参见图4b,例如,预设路径也可以是在工作区域内设置多条封闭的回归路经12,13,14。例如,多个回归路径可以为多个一组圆环或一组矩形环(图4中所述为一组矩形),这些圆环或矩形环12,13,14可以在靠近目标位置处由直线16连接在一起,从而当机器沿圆环或矩形环运动到与直线的交点时,即调整姿态,并进一步沿该直线16运动到该目标位置2。例如,最外侧的回归路径14可以靠近该工作区域的边界线。例如,位于最外侧的回归路径14可以直接通过目标位置2,从而机器需要返回目标位置时,可以继续沿其当前运动方向行进,在与预设返回路径相交时,即沿该预设路径返回目标位置。本实施例通过预设回归路线,可以使机器更容易的返回目标位置,避免返回过程发生撞击障碍物、翻倒等情况。
在一个实施例中,回归方法还包括:预设工作区域的虚拟边界线;选择沿所述虚拟边界线或靠近所述虚拟边界线的路径作为所述回归路径。可以通过在上述地图上标注边界线,从而机器可以沿所述边界线或靠近所述边界线的位置返回所述目标位置。通过设定虚拟边界线,并使机器沿该虚拟边界线返回,可以避免对工作区域内草坪造成毁坏,提高自移动设备的用户体验。
可以理解的是,机器沿预设回归路径回归,或沿虚拟边界线/靠近虚拟边界线回归可以不考虑路径被重复使用的情况,也可以考虑路径被重复使用的情况并切换路径。
一些实施例中,所述使所述自移动设备按照所述回归路径返回所述目标位置之后还包括:使所述自移动设备对接所述充电桩充电。例如,所述使所述自移动设备对接所述充电桩充电包括:使所述自移动设备在所述目标位置调整姿态,以使其充电部分对接所述充电桩充电。
在一些场景下,例如,目标位置与充电桩的距离过近时,机器很难在目标位置直接与充电桩对接。在此情况下,可以首先使所述自移动设备在所述目标位置相对所述充电桩后退预设距离,并在所述预设距离完成姿态调整,以及使所述自移动设备以所述姿态向所述充电桩运动以对接该充电桩充电。该实施例通过将充电步骤分为到达充电桩前固定位置,并后退和调整姿态以及前进对接,可以方便地实现机器的自动充电,并提高用户的智能体验。
此外,所述使所述自移动设备对接所述充电桩充电还包括:使所述自移动设备记录所述预设距离和所述姿态,从而所述自移动设备可以在距所述充电桩预设距离且以所述姿态与所述充电桩对接充电。也就是说,机器自行记录其能够成功对接充电桩充电的位置、姿态和过程,从而在下次充电时,可以更加快捷的按此完成充电。
此外,还可以预先记录机器与充电桩的对接参数。即在加载工作区域的地图后,可以将机器放置在充电站上,并记录机器的位置和姿态,使机器后退离开充电站预设距离,再进行前进对接,如果能对接成功,则机器存储机器后退的预设距离/后退的位置,以及在该位置的充电姿态,以该位置为目标位置。也就是说,通常情况下,机器为了进行姿态调整,需要与充电站保持一定距离。在回归对接时,机器可以首先回到该位置,并在该位置完成姿态调整,从而完成与充电桩的对接充电。该方案例如可以与虚拟回归路径配合,即机器沿虚拟路径回归到该位置。这种方法对定位精度要求较高,当对接方式允许一定的定位误差时可采用该方法。当对接方式允许的定位误差小时,还可以辅以红外、超声、接引导线和导轨等方式,实现机器与充电桩的精准对接。
需要说明的是,除了对接充电桩充电以外,机器返回目标位置也可以是为了检修,工作完毕后返回其停驻区,或者加油等,本发明对此不作限定。
本发明另一实施例的另一个方面提供了一种自移动设备。参见图5a,该自移动设备1包括获取模块110和控制模块120;其中所述获取模块110用于获取自移动设备1在工作区域中的当前位置;所述控制模块120用于根据 所述当前位置,选择至目标位置的回归路径;判断所述回归路径被重复使用的情况,基于所述回归路径被重复使用的情况,判断是否重新选择回归路径;以及控制所述自移动设备1按照所述回归路径返回所述目标位置。本发明本实施例提供的机器,可以在工作区域快速返回目标位置,具有良好的应用前景。根据回归路径被重复使用的情况,判断是否重新选择回归路径,避免机器人沿同一段路径重复移动压坏草坪,保证草坪的美观。
在一个实施例中,参见图5b,所述控制模块包括第一统计单元121和控制单元122,将当前选择的回归路径称为第一回归路径,其中所述第一统计单元120用于统计所述第一回归路径被重复使用的长度和/或使用频率,并且所述控制单元122根据所述被重复使用的长度和/或使用频率确定所述自移动设备1是否沿所述第一回归路径返回所述目标位置。例如,所述控制单元122还用于在被重复使用的长度大于预设阈值时(例如,预设阈值为第一回归路径全长的1/3)或所述使用频率大于等于一天内2次时,控制所述自移动设备1沿与所述第一回归路径完全不重合、部分不重合或不相交的第二回归路径返回所述目标位置。本实施例的机器,通过使机器沿不完全重合的路径返回目标位置,可以避免造成工作区域的破坏,提升用户体验。
在该实施例中,所述第一统计单元121用于记录回归路径的相关信息,并根据所述信息判断回归路径被重复使用的情况。也就是说,第一统计单元121可以记录回归路径被使用的信息(例如,可以包括被重复使用的长度和/或被使用的频率等),从而在该回归路径的全部或部分路径使用过多时,控制单元122控制机器予以绕开,防止破坏工作区域。
在一个实施例中,参见图5c,所述控制模块120还包括第一计算单元123,所述第一计算单元123用于计算所述当前位置与所述目标位置之间的最优路径,并且所述控制单元122以该最优路径作为所述回归路径。例如,计算过程可以是获取模块获取当前机器所处的位置坐标,并根据该坐标与目标位置的坐标计算出最优路径。如上所述,该最优路径可以为最短路径。
在该实施例中,参见图5d,例如,所述控制模块120还可以包括加载单元125和标注单元126;其中所述加载单元125用于加载所述工作区域地图;所述标注单元126用于在所述地图上标注参考网格(例如,地图中的等距网格可以为正方形的方格)。所述第一计算单元123用于根据所述网格确定所述最优路径。同样,在所加载的地图本身即为栅格地图时,控制模块 120可以不包括标注单元。该最优路径需要综合考虑距离的远近、行走的难易等,即在行走难易和距离远近之间寻求平衡。具体地,距离的远近可以由路径覆盖的虚拟单元格的多少来确定,单元格越多,则路径越长,反之亦然。行走的难易包括路径中的斜坡的多少、障碍物的数量的多少以及机器需要调整姿态的次数等。例如,回归路径可以是L型路径或直线路径。
在一个实施例中,参见图5e,所述控制模块还包括第一预设单元127。所述第一预设单元127用于预设若干预设回归路径;所述控制单元122用于控制所述自移动设备1沿所述回归路径返回所述目标位置。请参照之前的描述和附图,回归路径可以是在工作区域的多个封闭图形,具体可以为多个矩形环或多个圆环。在机器需要返回目标位置时,可以沿其当前运动方向继续运动,并在于多个矩形环或圆环之一相交时,即沿该圆环或矩形环返回目标位置。例如,这些设置在工作区域的虚拟的环形回归线可以在靠近目标位置的区域以直线连接,且直线的另一端连接该目标位置。从而机器回归时,首先沿虚拟环形回归线运动到与该直线相交的位置,并沿直线运动到目标位置。
在该实施例中,例如,参见图5f,所述控制模块120还可以包括第二计算单元128,所述第二计算单元128用于计算所述当前位置与所述预设回归路径的最优路径(包括最短路径),从而所述控制模单元122控制所述自移动设备沿所述最优路径运动至所述目标位置。即机器需要返回目标位置时,可以首先获取其自身位置信息,并根据该位置与预设回归线在地图上的关系,计算出到达预设回归线的最优路径,从而可以沿该最优路径快速的到达该预设回归线。
此外,另一实施例中,所述第一预设单元127用于预设所述工作区域的虚拟边界线;所述控制单元122控制所述自移动设备沿所述虚拟边界线或靠近所述虚拟边界线返回所述目标位置。
上述实施例通过预设若干预设回归路径/虚拟边界线,可以使机器可靠、迅速地返回目标位置,也避免了回归过程中发生卡死、侧翻或撞击障碍物等的情况。
在上述一些实施例中,参见图6,所述控制模块120还包括姿态确定单元128和调整单元129,所述姿态确定单元128用于在所述自移动设备1运动至所述目标位置时,确定所述自移动设备1的姿态,所述姿态调整单元 129用于调整所述自移动设备1的姿态,以使所述自移动设备1对接充电桩充电。
例如,所述控制模块120还可以包括第二预设单元和比较单元。其中所述预设单元用于设置与充电桩的标准距离/相对位置以及自移动设备的充电姿态,所述比较单元用于将所述自移动设备的当前姿态与所述充电姿态相比较,并将所述自移动设备的姿态调整至所述充电姿态。
同样,控制模块还可以包括记录单元,例如,记录单元可以用于记录机器能够对接充电桩的姿态及与充电桩的距离/相对位置等。从而控制单元可以控制自移动设备首先运动到与充电桩具有该距离的位置/该位置,并调整到可以充电的姿态,从而快速实现自移动设备的充电。
一些实施例中,如果自移动设备遇到阴影区(即工作区域内卫星导航信号弱,自移动设备无法正常导航的区域),则可以判断自移动设备沿当前运动方向运动的情况下,需要通过的阴影区的距离和时间。如果距离或所需时间超过预设阈值,则可以选择绕过该阴影区。
在此情况下,例如,自移动设备可以包括预设单元和判断单元。预设单元用于预设自移动设备在阴影区中运动时可精确导航的距离或时间的阈值,判断单元用于判断自移动设备所遇到的阴影区是否会超出上述距离或时间的阈值,并根据判断结果决定是否绕开上述阴影区。
本发明的又一实施例提供一种存储介质,其存储有计算机可读指令,在所述计算机可读指令被调用时,执行上述机器的回归方法。
本发明的再一实施例提供一种服务器,其包括存储器和处理器,其中所述存储器存储有计算机可读指令,所述处理器用于调用所述计算机可读指令从而执行上述机器的回的方法。
以上各个实施例可以彼此组合,且具有更好的效果。
以下结合附图并通过若干实施例对本发明进一步说明。
图7为本发明的第一实施例的自动工作系统100示意图。自动工作系统包括自移动设备。本实施例中,自移动设备为自动割草机1,在其他实施例中,自移动设备也可以为自动清洁设备、自动浇灌设备、自动扫雪机等适合无人值守的设备。自动工作系统100还包括充电站2,用于为自动割草机1补给电能。本实施例中,自动工作系统100包括导航模块,用于输出自动割 草机的当前位置。具体的,导航模块包括基站17和移动站15。
如图7所示,自动工作系统用于在预定的工作区域内工作,本实施例中,工作区域包括至少两个相互分离的子工作区域,子工作区域由通道400连通。工作区域与非工作区域之间形成边界200,工作区域内包括障碍9、11,障碍包括树木、凹坑等。
本实施例中的自动割草机1的结构如图8所示。自动割草机1包括壳体3,移动模块,任务执行模块,能源模块,控制模块等。其中,移动模块包括履带5,由驱动马达驱动以带动自动割草机1移动。任务执行模块包括切割组件7,执行割草工作。能源模块包括电池包(图未示),为自动割草机1的移动和工作提供电能。控制模块与移动模块、任务执行模块和能源模块电连接,控制移动模块带动自动割草机1移动,并控制任务执行模块执行工作任务。
本实施例中的导航模块的组成如图9(a)、(b)所示。导航模块包括基站17和移动站15。基站17和移动站15均接收卫星信号,基站17向移动站15发送定位修正信号,实现差分卫星定位。本实施例中,基站17和移动站15接收GPS定位信号,实现差分GPS定位。当然,在其他实施例中,基站17和移动站15也可以接收伽利略卫星导航系统、或北斗卫星导航系统、或GLONASS等定位信号。
如图9(a)所示,本实施例中,基站17包括GPS天线19,接收GPS定位信号;GPS板卡21,处理接收到的GPS定位信号,并生成定位修正信号;通讯模块23,将定位修正信号发送给移动站15,本实施例中,通讯模块23包括电台及电台天线25;基站还包括指示器(图未示),指示器能够输出当前位置的卫星信号是否良好的指示。本实施例中,基站17设置于充电站2,与充电站2一体。在其他实施例中,基站17也可以与充电站2分离设置,例如,可以设置在屋顶等能够更好的接收卫星信号的位置。
本实施例中,移动站15包括壳体27;GPS天线29,接收GPS定位信号;GPS板卡31,处理接收到的GPS定位信号;通讯模块33,接收基站17发送的定位修正信号,通讯模块33包括电台及电台天线35。本实施例中, 移动站15集成了惯导装置(图未示),惯导装置输出惯性导航数据。移动站15工作时,可以只利用GPS定位信号来导航,也可以利用GPS定位信号与惯性导航数据经融合处理后的定位信号来导航,或者,在GPS信号弱的时候,也可以只利用惯性导航数据来导航。移动站15还包括指示器(图未示),输出当前位置的GPS信号是否良好的指示。本实施例中,移动站15与自动割草机1的壳体3可拆卸的连接。移动站15包括与自动割草机1的壳体连接的第一接口(图未示)。自动割草机1工作时移动站15安装于自动割草机1的壳体3。移动站15与自动割草机1的壳体3连接时,可实现与自动割草机1的控制模块的电连接,移动站15输出自动割草机1的当前位置坐标,控制模块根据自动割草机1的当前位置控制自动割草机1的移动和工作。本实施例中,移动站15包括独立的电源模块37,移动站15与自动割草机1的壳体3分离时,可以独立工作。
本实施例中,在自动割草机进入工作之前,需建立工作区域的地图。具体的,本实施例中,利用自动工作系统的导航模块建立工作区域的地图。建立工作区域的地图包括记录地图的步骤。
用户安装好基站后,开始记录地图的步骤。本发明的第一实施例中,记录地图时,将移动站与自动割草机的壳体分离,移动站独立工作,用户手持移动站行走来记录地图。记录地图包括步骤:从起点,本实施例中为充电站位置,开始沿工作区域的边界行走,记录边界位置坐标;沿工作区域内的障碍行走,记录障碍位置坐标;沿工作区域内的隔离岛行走,记录隔离岛位置坐标;沿连接子工作区域的通道行走,记录通道位置坐标。本实施例中,用户手持移动站记录地图时,惯导装置处于关闭状态。原因为,用户手持移动站移动时,由于手的抖动,移动站会发生前后左右偏摆的情况,这将对惯导装置产生严重干扰。
本实施例中,为了能够准确记录地图,消除或减小误差,移动站包括校偏装置,具体的,校偏装置包括激光束发射器,用于辅助定位。激光束发射器安装于移动站壳体下方,生成垂直于移动站底面的激光束。参考图10(a),记录地图时,用户手持移动站行走,观察激光束在地面的光点,判断激光束 在地面的光点是否在预定位置上,例如,当用户沿边界行走时,用户判断激光束在地面的光电是否在边界上,当用户沿障碍行走时,用户判断激光束在地面的光点是否在障碍的外围,等等。用户根据判断结果实时调整移动站的位置,使得激光束在地面的光点保持在预定位置,从而使激光束发射器起到辅助定位作用。本实施例中,校偏装置还包括姿态检测模块39和激光测距模块41,如图10(b)所示,用于修正由于移动站的偏摆导致的激光束在地面的光点位置与移动站的实际位置之间的误差。如图10(b)、(c)、(d)所示,用户手持移动站行走时,移动站会发生偏摆,导致激光束在地面的光点位置与移动站的实际位置之间存在误差,在这种情况下,用户观察到激光束在地面的光点位置在预定位置上,移动站的实际位置并不位于预定位置,用户不能通过观察来消除该误差。通过姿态检测模块获得移动站的偏摆角α、β,通过激光测距模块测得移动站到激光束在地面的光点的距离L,就可以利用公式ΔX=L*sinα,ΔY=L*sinβ获得偏差修正值。通过上述方法,消除记录地图过程中移动站的偏摆造成的误差,保证了记录地图的准确性。
本发明的第二实施例中,记录地图时,移动站安装于自动割草机的壳体,用户用手机、平板等智能终端设备遥控自动割草机移动。同样的,记录地图的步骤包括记录工作区域的边界、工作区域内的障碍、连通子区域的通道等。本实施例中,记录地图的过程中可以启用惯导装置,原因为移动站安装于自动割草机的壳体,移动站的运动较为稳定。本实施例中,记录地图的过程中自动割草机的任务执行模块保持关闭状态。
参见图11,本发明的第三实施例中,自动割草机包括推杆,可拆卸的安装于自动割草机的壳体。记录地图时,移动站安装于自动割草机的壳体,推杆安装于自动割草机的壳体,用户操作推杆来推动自动割草机移动,从而记录工作区域的边界、障碍、通道等。同样的,自动割草机的任务执行模块保持关闭状态。
本发明的第四实施例中,自动割草机包括超声波装置,使得自动割草机可以跟随用户一定距离行走。记录地图时,移动站安装于自动割草机的壳体,用户沿工作区域的边界、或障碍、或通道等行走,自动割草机跟随用户移动, 从而记录地图。同样的,自动割草机的任务执行模块保持关闭状态。这样做的好处是,在记录地图时自动割草机跟随用户移动,能够判断地图记录的位置是否准确,起到检查地图的作用。
本发明的第五实施例中,记录地图时,移动站与自动割草机分离,将移动站放置在可推行的小车上,例如,可以将移动站安装在某一手推设备上,用户推着小车行走,记录工作区域的边界、障碍、通道等。这样做的好处是移动站的运动平稳,可以启用惯导装置。
本发明的第六实施例中,移动站15包括滚轮装置43,与移动站的壳体27可拆卸的连接。移动站15包括方向传感器47和测距传感器,测距传感器包括转速计49,安装在滚轮装置43中。滚轮装置43还包括推杆45。记录地图时,移动站15与自动割草机的壳体3分离,滚轮装置43与移动站15的壳体27连接,用户操纵推杆45推动移动站15移动来记录地图。记录地图时,通过转速计49输出的测距信息,和方向传感器47输出的方向信息,可以计算得出辅助定位信息,用于校正卫星定位或惯导的定位误差。使用该方法定位误差小,且成本低。
本发明的第一实施例中,移动站包括与用户的智能终端连接的第二接口。手机、平板等智能终端可以通过第二接口安装在移动站上。第二接口可以包括电性接口,使得智能终端安装在移动站上时实现与移动站的电连接。本实施例中,移动站通过通讯模块与智能终端无线通讯,无线通讯方式可以为wifi、蜂窝网络、蓝牙等。记录地图时,智能终端安装在移动站上,实时显示移动站记录的信息。本实施例中,移动站包括若干按钮,用于输入“记录地图”、“完成记录”等指令。在其他实施例中,移动站包括显示屏,代替智能终端显示实时信息。
本实施例中以充电站为地图的起点,自动割草机在充电站开始工作。记录充电站位置时,移动站安装于自动割草机,使自动割草机处于充电状态,或模拟自动割草机的充电状态,即完成了对接的状态,手动确认记录或通过充电信号确认记录充电站位置信息,充电站位置信息包括位置坐标,还包括自动割草机的姿态信息。自动割草机包括加速度传感器、电子罗盘等,记录 充电站位置时,通过加速度传感器、电子罗盘等记录此时的自动割草机的方向、倾斜角等信息,以方便自动割草机回归时能准确对接。
本发明的第一实施例中,移动站包括地图生成模块,根据记录的位置坐标生成工作区域地图并保存地图。本实施例中,用户行走每形成一个封闭区域,就通过按钮输入生成地图指令,生成该封闭区域的地图信息。例如,用户记录工作区域的边界时,沿子工作区域的边界行走,沿子工作区域的边界行走一周后,生成该子工作区域的边界,然后开始记录下一个子工作区域的边界。同样的,用户记录障碍和通道时,沿障碍或通道行走形成一个封闭区域,生成对应封闭区域的地图信息,然后记录下一个封闭区域。在所生成的地图中,赋予所记录的封闭区域以特征属性。例如,若赋予所记录的封闭区域以边界属性,则自动割草机能够在该区域内工作,不能离开该区域。若赋予所记录的封闭区域以障碍属性,则自动割草机不能进入该区域。同时,障碍必须位于边界内,因此,其在边界外的部分将被舍弃。若赋予所记录的封闭区域以通道属性,则自动割草机能够进入该区域,但不能在该区域内进行割草工作。通道可以在边界内或边界外,若在边界外,则其用于连接两个相互分离的子工作区域,因此其必须和两个子工作区域都有交界,若在边界内,则其通常为非草坪的路面,因此也禁止自动割草机执行割草工作。
本实施例中,建立直角坐标系来生成地图。具体的,以开始记录时的第一个点作为坐标轴的(0,0)点,其对应的移动站输出的位置坐标为(x0,y0)。本实施例中,坐标轴的(0,0)点对应充电站的位置坐标。用户记录地图的过程中,移动站输出位置坐标(x1,y1),生成地图时将位置坐标(x1,y1)转换为(x1-x0,y1-y0),从而将卫星定位坐标系转换为直角坐标系。本实施例中,在直角坐标系的基础上生成栅格图。定义栅格精度,比如1mm,在直角坐标系中,X、Y轴分别以1mm为间隔打直线,从而形成栅格图。将记录的位置坐标转换为直角坐标系内的栅格。这样,记录地图的过程,就相当于在栅格图上打点的过程。在打点的同时,每个点还会记录一些其他信息,比如该点GPS信号情况,该点的海拔,该点的定位误差等。边界、障碍、通道的生成均采用上述方法。
生成栅格图后,为栅格赋予格属性,格属性包括坐标,自动割草机能否覆盖该栅格,自动割草机是否经过该栅格,经过次数,GPS信号情况,定位误差,海拔,坡度,温度,湿度,阳光强度等。若栅格的格属性指示自动割草机不能覆盖该栅格,则自动割草机接近该栅格对应的位置时,控制模块控制自动割草机改变移动方式以远离该栅格对应的位置。若栅格的格属性指示自动割草机能够覆盖该栅格,则自动割草机每经过该栅格,该栅格的经过次数格属性就加一。
本实施例中,为了保证生成地图的准确性,对记录的坐标点进行筛选,剔除低精度的坐标点。对坐标点的筛选,主要是对该点的GPS信号情况进行分析。本实施例中,根据GPS信号情况,移动站输出的坐标点分为几种,一种为高精度的坐标点,GPS信号良好时,移动站输出高精度的坐标点,高精度的坐标点为RTK固定解。另一种为低精度的坐标点,GPS信号差时,移动站输出低精度的坐标点,根据GPS信号情况,低精度的坐标点又分为几个等级,包括伪距差分解,单点差分解,RTK浮点解,还包括惯导解,惯导解为GPS信号丢失时纯惯导定位输出的坐标。记录地图时,坐标点的精度等级作为附加值与坐标值一起输出。
参考图12,根据坐标点的精度等级的分布特点,剔除低精度的坐标点的方法包括以下几种:
第一种情况为,在连续的高精度的坐标点中夹杂个别低精度的坐标点,这种情况下,直接剔除低精度的坐标点。
第二种情况为,在连续的高精度的坐标点中夹杂一段低精度的坐标点,一般认为记录地图时低精度的坐标点的出现时间在30S以内时属于这种情况,这种情况下,剔除低精度的坐标点后,根据两端的高精度的坐标点,进行曲线分析,并进行拟合。
第三种情况为,出现长时间的低精度的坐标点,一般认为记录地图时低精度的坐标点的出现时间在30S以上时属于这种情况,这种情况下,移动站的指示器发出提示信号,提示用户地图精度不够,用户可以通过智能终端或显示屏的显示界面绘制修改地图,若用户未修改,则对这些低精度的坐标点 进行精度评估,判断误差范围,根据误差范围将这些低精度的坐标点向工作区域内偏差一定距离,保证地图限定的工作区域必须在实际工作区域内。
本实施例中,对地图进行偏移操作来消除定位误差。自动割草机工作时,移动站安装于自动割草机的壳体,输出自动割草机的当前位置坐标,自动割草机的定位中心与记录地图时移动站的定位中心有偏差,若不对该偏差进行校正,可能导致安全性问题。例如,当自动割草机移动至边界位置时,自动割草机的定位中心还在边界以内,则自动割草机将继续移动,导致自动割草机移动至边界以外。为了消除自动割草机的定位中心与记录地图时移动站的定位中心的偏差导致的定位误差,对地图进行偏移操作。判断自动割草机的定位中心与记录地图时移动站的定位中心的偏差距离D,将边界、障碍、通道等在地图上向工作区域内偏移距离D,即相当于边界、通道向内缩进距离D,障碍向外扩张距离D。边界、通道向内缩进的操作也称为地图腐蚀,障碍向外扩张的操作也称为地图膨胀。
记录地图时也存在定位误差,定位误差的大小与GPS信号情况相关,也就是与坐标点的精度等级相关。GPS信号良好时定位误差较小,GPS信号差时定位误差较大。对地图进行偏移操来消除定位误差时,首先根据不同位置的GPS信号情况评估该位置的定位误差,也称为误差评价,然后根据不同位置的误差评价调整地图的偏移量。偏移操作同样包括腐蚀和膨胀。
本实施例中,某一个工作区域的地图偏移后,该区域地图可以与其他区域的地图进行拼接。
完成偏移操作后,就完成了生成工作区域地图的步骤。
本实施例中,移动站还包括辅助定位装置,辅助定位装置包括计步器、激光雷达、摄像头、里程计、超声波等,惯导装置也可以被认为是辅助定位装置。辅助定位装置用于在GPS信号差时配合GPS定位,使用辅助定位装置输出的修正值修正定位误差,使生成的地图精度更高。
本发明的第七实施例中,工作区域具有形状规则的边界,例如矩形边界,记录地图时,用户只需记录工作区域的顶点位置,生成地图时,通过将顶点连线得到边界。该方法同样适用于形状规则的通道和障碍等。该方法能够提 高地图生成效率,并且避免了中间可能的GPS信号差的区域。
本发明的第一实施例中,GPS定位通过基站与移动站的通信来实现,为了使基站和移动站可靠、高效的为自动工作系统提供导航数据,基站的设置包括几种方式。本实施例中,基站设置于充电站,由充电站供电。当然,在其他实施例中,基站也可以与充电站分离设置,基站可以由独立的能源供电,例如,可以利用太阳能、风能等供电形式。本实施例中,为保证基站位置卫星信号良好,安装充电站之前,用户先把自动割草机放到希望安装的位置,或将移动站从自动割草机上拆下后移动到希望安装的位置,开启定位,判断定位精度,确认定位精度高再固定充电站。基站上有声光电等装置用来反馈卫星信号状况,用来提示基站安装位置或接收质量是否合理。基站能够通过历史坐标对比判断是否有被遮挡等异常,若定位精度降低,说明基站可能被遮挡,基站发现异常后通过通讯模块向用户或自动割草机发送提示信息,或切换状态,等待恢复正常。
为了使基站和移动站可靠、高效的为自动工作系统提供导航数据,还需保证基站与移动站之间的通讯可靠、高效。
如图13所示,本实施例中,基站通过GPS天线接收卫星信号,将采集的载波相位信息通过通讯模块发送给移动站,通讯模块包括电台和电台天线,也可以包括Sub-1G、wifi、2G/3G/4G/5G模块,移动站也通过GPS天线接收卫星信号,同时通过与基站对应的通讯模块接收基站采集的载波相位信号,从而解算出移动站相对基站的相对位置坐标,相对位置坐标包括经度、纬度,还可以包括海拔,精度可达厘米级。为了保证基站与移动站之间在远距离传输时的可靠性,可通过2G/3G/4G/5G等无线网络方式传输GPS定位导航数据。基站与移动站的通讯示意图如图14所示。
本实施例中,移动站可选择与多个不同基站的其中一个通讯,例如,移动站可选择与第一基站或第二基站通讯。具体的,自动工作系统包括多个基站,或者,位于一定区域范围内的不同自动工作系统的基站可以实现通用。多个基站相互切换,当移动站与第一基站的通讯出现异常时,可以自动切换到与第二基站通讯。
本实施例中,还可以用星际增强系统,来实现GPS导航。
本实施例中,基站与移动站的通讯还可以使用lora技术。
本实施例中,GPS定位基于基站固定在某一位置不动来实现,当基站移动时,移动站输出的位置坐标将发生偏差。为避免基站移动后,重新记录地图的麻烦,本实施例中,利用移动站来获得基站的移动位置,利用所获得的移动位置修正已生成的地图。参考图15和图16,修正地图的过程如下:1)基站17固定在A点,移动站15记录并生成地图;2)如图15(a),用户由于某种原因,如要在A点建一花坛,欲将基站17移动到另一位置B;3)如图15(b),将移动站15移动到B点,移动站15将B点位置坐标发送给基站17;4)如图15(c),基站17移动到位置B,基站17对自身位置进行修正,同时移动站15获知基站17位置的偏移量,根据偏移量修正地图。修正后的地图与修正前的地图重合,因此无需再记录地图。
本发明的第一实施例中,移动站包括路径生成模块,根据工作区域地图生成路径规划。首先,根据工作区域的边界、障碍、通道等,对工作区域进行分区,工作区域的划分使得自动割草机的覆盖更有效率。例如,划分由通道连接的两个子工作区域,自动割草机执行割草工作时,先在其中一个子工作区域中完成覆盖,再经由通道进入另一个子工作区域工作。这样,避免自动割草机往返通道两端造成的低效工作。又例如,将工作区域中被障碍隔开的两个部分划分为两个子区域,避免自动割草机频繁遇障碍。还可以根据边界形状,将边界形状规则的部分和不规则的部分划分为不同子区域,这样,可以令自动割草机在规则的子区域以规则路径覆盖,在不规则的子区域以随机路径覆盖。本实施例中,令相邻子区域具有重叠部分,避免相邻子区域之间的部分不能被覆盖到。本实施例中,根据电池包电量估算一次工作的区域面积来确定分区大小。本实施例中,还可以根据植物生长状况来分区,使得自动割草机在植物茂盛的区域的切割功率大、切割时间长,在植物稀疏的区域的切割功率小、切割时间短。本实施例中,还可以根据区域重要度来分区,例如将用户的前院和后院划分为不同子区域,使自动割草机以不同工作策略在前院和后院工作。当然,还可以根据障碍物多少等综合因素来分区。
完成区域划分后,对自动割草机在每个子区域内的路径进行规划。自动割草机在每个子区域内的预设路径可以为规则路径,例如平行路径、螺旋路径等,也可以为随机路径。
如图17所示的子工作区域W包括GPS信号差的区域S,以阴影部分表示。本实施例中,令自动割草机在子工作区域W内以平行路径移动。生成路径时,在子工作区域W内打平行直线,每一条平行直线即为自动割草机工作时的预设路径。平行直线的间距应小于自动割草机的切割宽度,以保证自动割草机沿相邻的平行直线移动时切割范围有重叠量。自动割草机工作时,令自动割草机从GPS信号良好的区域开始移动,自动割草机移动至边界时,转向向相反方向移动。自动割草机工作过程中,若进入GPS信号差的区域S,由于定位信号精度低,自动割草机不一定能按原来路径移动,在这种情况下,允许自动割草机变换为随机路径移动。本实施例中,当自动割草机离开GPS信号差的区域S时,使自动割草机回到原来规划好的路径上继续移动。具体的,当自动割草机离开GPS信号差的区域S时,导航模块会输出一个新的位置坐标,该位置坐标为高精度的位置坐标,此时,自动割草机根据该位置坐标,对比原来规划好的路径,找到最近的位于规划好的路径上的点C,并移动至该点,沿原来规划好的路径继续移动。当自动割草机完成工作区域的覆盖后,再令自动割草机回到阴影区域附近,重新覆盖原来规划好的路径上未覆盖的区域,以保证区域覆盖的完整性。
本实施例中,可以在同一子工作区域内规划不同的路径。如图18所示的子工作区域D,包括建筑物51,可以预知的是,在建筑物51附近的区域,由于受建筑物的遮挡,卫星信号差,导航模块的定位精度低,若令自动割草机以平行于建筑物51边缘的路径移动,则自动割草机在建筑物51附近移动时,导航模块将持续输出低精度信号,自动割草机可能无法按规划好的路径移动,或移动效率低。为了避免上述情况,可以将建筑物51边缘区域的路径规划为垂直于建筑物51的路径,这样,只有在自动割草机靠近建筑物51边缘时导航模块才输出低精度信号,当自动割草机远离建筑物51边缘时,导航模块输出高精度信号。自动割草机靠近建筑物51边缘时,卫星信号差, 惯导装置的定位误差累积,定位精度逐渐降低,当自动割草机远离建筑物51边缘时,卫星信号恢复良好,可用于校正惯导误差,因此,采用这种路径移动能够保证导航模块在大部分情况下输出良好的定位信号。本实施例中,路径规划由路径生成模块自动生成,当然,也可以由用户根据工作区域的情况进行手动调整,也可以令自动割草机在移动过程中根据定位信号的精度实时调整,以图18所示的情况为例,自动割草机在移动过程中可以实时调整往复行走的方向。
如图19(a)、(b)所示,本实施例中,自动割草机遇障碍时的路径可以是绕障碍移动,也可以为折返。若遇障碍时绕障碍移动,则可以利用导航模块生成绕障碍的矢量图。
本实施例中,自动割草机在移动过程中,能够区分动态障碍与固定障碍。固定障碍为在工作区域中具有固定位置的障碍,通常为地图中已记录的障碍,若自动割草机移动过程中多次在同一位置遇到障碍,而地图中未记录该障碍,也可以判断其为新发现的固定障碍。动态障碍为出现在工作区域中的不固定位置的障碍,通常为自动割草机移动过程中临时遇到的障碍,在同一位置出现的频率低。动态障碍可能为出现在工作区域中的人、动物等。自动割草机根据障碍是否记录在地图中,或者根据在同一位置遇到障碍的频率,区分动态障碍与固定障碍,并采取不同的避障策略,避障策略包括绕障碍移动、折返等。
本实施例中,自动割草机移动过程中根据定位信号的情况调整移动范围。当自动割草机移动至定位信号差的位置时,缩小移动范围,在小范围内继续移动,或停止移动。
本实施例中,导航模块还包括陀螺仪,用于控制自动割草机沿直线移动。自动割草机沿预设路径移动时,组合使用陀螺仪和GPS定位信号进行导航。如图20所示,将预设路径分成多段,自动割草机开始移动时,确定移动方向,自动割草机在每一段上移动时,使用陀螺仪导航,陀螺仪用于控制自动割草机沿直线移动,防止自动割草机的移动方向发生偏移。自动割草机完成一段路径的移动后,使用GPS定位信号来校正移动方向。具体的,控制模 块判断自动割草机的当前位置是否位于预设路径上,若自动割草机的当前位置偏离预设路径,则调整自动割草机的移动方向,使之回到预设路径上。自动割草机沿下一段路径移动时,再利用陀螺仪沿校正的方向直线移动。自动割草机移动过程中,若控制模块判断自动割草机的当前位置偏离预设路径的距离大于预设值,可以实时校正自动割草机的移动方向,还可以重新划线段。
如图21(b)所示,本实施例中,自动割草机沿平行路径移动,当自动割草机移动至边界时,转向向相反方向移动,转向时令自动割草机覆盖相邻平行路径之间的多个点F、G,以保证覆盖的完整性,避免直角转弯导致的边界附近的区域未覆盖到的问题(参考图21(a))。
本实施例中,自动割草机移动过程中,若基站与移动站的通讯发生异常,如通讯中断,或GPS信号差,导航模块持续输出低精度定位信号时,控制自动割草机调整移动方式。自动割草机调整移动方式包括,自动割草机切换工作状态,例如自动割草机切换为随机行走模式,或者回归充电站,或者进入搜索模式,搜索良好的卫星信号。自动割草机调整移动方式还包括令任务执行模块停止工作,或后退,或转向,或停机等。
本实施例中,路径生成模块还用于生成回归路径。以图22所示的工作区域为例,当前充电站2位于工作区域内。自动割草机1需要回归充电站2时,路径生成模块根据自动割草机1的当前位置信息和地图信息,计算自动割草机1到充电站2的最短路径,生成回归路径53,控制模块控制自动割草机1沿回归路径53移动,回归充电站2。最短路径的计算与充电站2的位置相关,还与工作区域中障碍分布、以及自动割草机1与充电站2之间是否存在通道相关。自动割草机1沿最短路径移动时,经过最少的栅格。本实施例中,控制模块记录自动割草机1的回归路径,当自动割草机1再次启动回归时,控制模块比较新生成的回归路径与前一次、或前若干次的回归路径,判断新生成的回归路径与前一次、或前若干次的回归路径是否存在重叠部分,若存在重叠部分,则修改回归路径,以避免回归路径重叠,例如,使回归路径的部分偏移一定距离等。采用上述方法,在自动割草机1回归充电站2时需要经过通道的情况下,可以有效避免从通道到充电站2的部分路径的 重叠,从而避免自动割草机1多次沿同一段路径回归导致的对草坪的碾压损伤。
本发明的第八实施例中,路径生成模块生成回归路径的方法与第一实施例中的方法不同,如图23所示,地图生成模块生成地图后,路径生成模块根据生成的地图设定若干条回归路径53,当自动割草机1需要回归充电站2时,移动至其中一条回归路径53。具体的,控制模块判断自动割草机1到若干条回归路径53的最短距离,选择最近的一条回归路径53,控制自动割草机1沿最短距离路径移动至最近的回归路径53,并沿该回归路径53回归充电站2。当然,自动割草机1也可以随机移动至最近的回归路径53。或者,自动割草机1需要回归充电站2时,随机移动,当控制模块判断自动割草机1位于其中一条回归路径53上时,控制自动割草机1沿该回归路径53回归充电站2。采用上述方法,能够避免自动割草机1沿同一路径回归导致的对草坪的碾压损伤。可以理解的是,回归路径也可以在记录地图时由用户记录,具体的,用户手持移动站,从工作区域的不同位置向充电站移动,记录移动经过的位置,形成回归路径。
本发明的第九实施例中,路径生成模块生成回归路径的方法与第一实施例中的方法不同,如图24所示,自动割草机1需要回归充电站2时,先移动至边界200,沿边界200向充电站2所在位置移动,再移动至充电站2。具体的,路径生成模块根据自动割草机1的当前位置和边界200位置,判断边界200上与自动割草机1的距离最短的点,连接自动割草机1的当前位置与该点,形成第一段路径,根据该点位置和充电站2的位置,计算自动割草机1从该点沿边界200移动,再从边界200移动至充电站2正前方的最短路径,根据计算得到的最短路径生成第二段路径,拼接第一段路径与第二段路径生成回归路径53。本实施例中,当充电站2位于边界200上时,自动割草机1沿边界200移动能够直接移动至充电站2正前方,当充电站2不位于边界200上时,自动割草机1沿边界200移动至充电站2附近后,再移动至充电站2正前方。本实施例中,自动割草机1每次沿边界200移动的路径不同,具体的,使自动割草机1相对边界200以可变距离沿边界200移动,即 自动割草机1每次回归,沿边界200移动时相对边界200的距离不同,这样可以避免自动割草机1以固定距离沿边界200回归导致的对草坪的碾压损伤。
本发明的第一实施例中,自动割草机1移动至充电站2正前方后,例如1m左右,开始对接过程,由于记录地图时记录了对接角度、倾斜角等,因此可以依靠这些信息,使自动割草机1以恒定的方向对接,减小对接误差。
本发明的第一实施例中,自动割草机还可以根据地图的面积和形状等特性自动确定工作时间计划,包括每个子区域的工作时间,各个子区域之间的工作顺序、每个子区域的覆盖次数等等。
本实施例中,可以利用GPS时钟替代时钟芯片。
本实施例中,利用导航模块与环境检测传感器组合解决安全问题,环境检测传感器包括台阶传感器、草地传感器、光学传感器、摄像头、雷达、超声波传感器、碰撞检测传感器等等。当环境检测传感器检测到异常环境时,利用导航模块记录当前位置以及对应的异常情况,记录在地图中,自动割草机移动至该位置时调整自动割草机的移动方式,避免发生安全事故。
本实施例中,地图和路径分别由移动站的地图生成模块和路径生成模块生成,可以理解的是,在其他实施例中,自动割草机的控制模块获取移动站记录的位置坐标,可以由控制模块生成地图和路径。
本发明的第十实施例中,充电站为无线充电站,自动割草机能够从任意方向接近充电站,进行对接。因此,依据自动割草机的当前位置和充电站的位置,能够方便的通过GPS导航引导自动割草机回归充电站,并与充电站对接。
本发明不局限于所举的具体实施例,基于本发明构思的结构和方法均属于本发明保护范围。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方。或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)。随机存取存储器(RAM,Random,Access,Memory)、磁碟或者光盘等各种可以存储程序校验码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。
针对现有技术中当基站移动后,移动站输出的位置坐标将发生偏差,需 要重新生成工作区域的地图,步骤较为繁琐的问题,本发明实施例中,通过在基站绝对位置变化之前,移动站获取与基站的第一相对位置,而后,在基站绝对位置变化前和变化后,移动站保持绝对位置相同,在基站绝对位置变化后,移动站获取与基站的第二相对位置,从而移动站可以根据第一相对位置和第二相对位置,更新移动站工作区域的地图,或者,通知基站对存储的基站绝对位置进行更新;地图中各点用于指示与基站之间的相对位置。由此,可以实现在基站位置发生变化时,无需移动站重新执行沿工作区域边界移动以生成地图的过程,而后利用修正值修正工作区域的地图,从而无需重新生成地图,简化操作步骤。
下面参考附图描述本发明实施例的基于差分定位技术的位置信息处理方法和移动站。
图25为本发明实施例所提供的第一种基于差分定位技术的位置信息处理方法的流程示意图。该基于差分定位技术的位置信息处理方法,应用于导航模块,导航模块包括基站,以及根据基站发送的差分信息解算得到与基站的相对位置的移动站。
本发明实施例中,移动站和基站均可以接收卫星信号,基站可以向移动站发送定位修正信号,从而实现差分卫星定位。例如,基站和移动站可以接收全球定位系统(Global Position System,简称GPS)信号,实现差分全球定位系统(Differential Global Positioning System,简称DGPS或差分GPS)定位,或者,基站和移动站也可以接收伽利略卫星导航系统、北斗卫星导航系统、全球导航卫星系统(Global Navigation Satellite System,简称GLONASS)等信号,本发明实施例对此不作限制。
需要说明的是,差分GPS技术包括实时动态(Real-Time Kinematic,简称RTK)载波相位差分技术以及连续运行卫星定位服务参考站(Continuously Operating Reference Stations,简称CORS)技术。
本发明实施例以基站和移动站接收GPS信号示例,具体地,基站和移动站均可以包括GPS天线,基站和移动站可以通过GPS天线接收GPS信号。
如图25所示,该基于差分定位技术的位置信息处理方法包括以下步骤:
S101,在基站绝对位置变化之前,移动站获取与基站的第一相对位置。
其中,绝对位置是指相对于地球的绝对位置。
本发明实施例中,基站和移动站均可以包括通讯模块,基站和移动站可 以通过通讯模块实现两者之间的通讯。其中,通讯模块可以包括电台和电台天线,进一步地,为了保证基站与移动站之间在远距离传输时的可靠性,通信模块还可以包括Sub-1G、WIFI、2G/3G/4G/5G模块,对此不作限制。
可选地,基站通过GPS天线接收GPS信号后,可以将差分信息,通过自身通讯模块发送至移动站,相应地,移动站可以通过与基站对应的通讯模块接收基站的差分信息,同时,移动站也可以通过GPS天线接收GPS信号。而后,移动站可以根据基站发送的差分信息,解算得到移动站相对基站的相对位置坐标,本发明实施例记为第一相对位置。其中,第一相对位置可以包括经度、纬度、海拔等信息。
本发明实施例中,在移动站工作之前,需生成工作区域的地图。
作为本发明实施例的第一种可能的实现方式,用户可以通过手持移动站行走来记录地图。记录地图包括步骤:用户可以从起点,例如为充电站位置,开始沿工作区域的边界行走,移动站可以记录边界位置坐标;沿工作区域内的障碍行走,移动站可以记录障碍位置坐标;沿工作区域内的隔离岛行走,移动站可以记录隔离岛位置坐标;沿连接工作区域的子工作区域的通道行走,移动站可以记录通道位置坐标。
作为本发明实施例的第二种可能的实现方式,移动站可以安装于自移动设备上,例如移动站可以与自移动设备的壳体可拆卸的连接,从而移动站可以与自移动设备同步运动。其中,自移动设备可以为自动割草机、自动清洁设备、自动浇灌设备、自动扫雪机等适合无人值守的设备。记录地图时,移动站可以安装于自移动设备上,用户可以通过手机、平板等智能终端设备遥控自移动设备移动,从而移动站可以记录各个位置点的坐标。同样的,记录地图的步骤包括记录工作区域的边界、工作区域内的障碍、连通子区域的通道等。
作为本发明实施例的第三种可能的实现方式,自移动设备上可以包括推杆,可拆卸的安装于自移动设备的壳体。记录地图时,移动站安装于自移动设备上,推杆安装于自移动设备的壳体,用户操作推杆来推动自移动设备移动,从而移动站可以记录工作区域的边界、障碍、通道等。
作为本发明实施例的第四种可能的实现方式,自移动设备可以包括超声波装置,从而自移动设备可以跟随用户一定距离行走。记录地图时,移动站安装于自移动设备上,用户沿工作区域的边界、或障碍、或通道等行走,而 后自移动设备可以跟随用户移动,从而移动站可以记录地图。
作为本发明实施例的第五种可能的实现方式,记录地图时,移动站与自移动设备分离,将移动站放置在可推行的小车上,例如,可以将移动站安装在某一手推设备上,用户推着小车行走,从而移动站可以记录工作区域的边界、障碍、通道等。
本发明实施例中,可以建立预设坐标系,例如直角坐标系XY来生成地图。具体地,以开始记录时的第一个点作为坐标轴的(0,0)点,例如,可以以充电站的位置作为坐标轴的(0,0)点,其对应的移动站输出的位置坐标为(x 0,y 0)。在用户记录地图的过程中,移动站输出位置坐标(x 1,y 1),生成地图时将位置坐标(x 1,y 1)转换为(x 1-x 0,y 1-y 0),从而将卫星定位坐标系转换为直角坐标系。
需要说明的是,移动站生成工作区域的地图中记录的可以为各个位置点相对于地球的绝对坐标,即经纬度,或者,地图中记录的可以为在坐标系XY中的坐标,对此不作限制。
S102,在基站绝对位置变化前和变化后,移动站保持绝对位置相同。
本发明实施例中,GPS定位是基于基站固定在某一位置不动来实现的,实际应用时,用户可以根据自身需求,移动基站的位置。例如,参见图26a,假设基站绝对位置变化之前位于A点,当用户想要在A点修建一花坛,此时,用户可以将基站移动至其他空闲位置,例如,参见图26b,用户可以将基站移动至B点。而当基站绝对位置发生变化时,移动站输出的位置坐标将发生偏差,此时,移动站得重新记录地图。为了避免基站移动后,移动站重新记录地图的麻烦,本发明实施例中,可以通过移动站保持绝对位置相同,而后利用移动站来获取基站的移动位置,进而利用所获得的移动位置修正生成的地图。
S103,在基站绝对位置变化后,移动站获取与基站的第二相对位置。
本发明实施例中,在基站绝对位置变化后,例如基站移动到B点,基站可以在B点通过GPS天线接收GPS信号,而后基站可以将差分信息,通过自身通讯模块发送至移动站,相应地,移动站可以通过与基站对应的通讯模块接收移动后的基站的差分信息,同时,移动站也可以通过GPS天线接收GPS信号。而后,移动站可以根据基站发送的差分信息,解算得到移动站相对移动后的基站的相对位置坐标,本发明实施例记为第二相对位置。其 中,第二相对位置同样可以包括经度、纬度、海拔等信息。
S104,根据第一相对位置和第二相对位置,更新移动站工作区域的地图,或者,通知基站对存储的基站绝对位置进行更新;地图中各点用于指示与基站之间的相对位置。
作为一种可能的实现方式,本发明实施例中,可以根据第一相对位置和第二相对位置,生成用于指示基站位移量的第一修正信息。具体地,可以根据第一相对位置在预设坐标系,例如直角坐标系XY内的相对位置坐标(x 1,y 1)和第二相对位置在坐标系XY内的相对位置坐标(x 2,y 2),生成第一修正信息
Figure PCTCN2017116684-appb-000001
则第一修正信息
Figure PCTCN2017116684-appb-000002
为:
Figure PCTCN2017116684-appb-000003
在移动站生成第一修正信息
Figure PCTCN2017116684-appb-000004
后,可以向基站发送第一修正信息
Figure PCTCN2017116684-appb-000005
以使基站根据移动前的基站绝对位置和第一修正信息
Figure PCTCN2017116684-appb-000006
确定更新后的基站绝对位置。具体地,可以将移动前的基站绝对位置和第一修正信息
Figure PCTCN2017116684-appb-000007
进行矢量叠加,得到更新后的基站绝对位置。从而基站可以根据更新后的基站绝对位置生成差分信息,进而移动站可以根据移动后的基站发送的差分信息解算得到与移动后的基站的相对位置,并更新基站在地图中的位置。
作为另一种可能的实现方式,本发明实施例中,可以根据第一相对位置和第二相对位置,生成用于指示移动站相对基站的相对位置变化量的第二修正信息。具体地,可以根据第一相对位置在预设坐标系,例如直角坐标系XY内的相对位置坐标(x 1,y 1)和第二相对位置在坐标系XY内的相对位置坐标(x 2,y 2),生成第二修正信息
Figure PCTCN2017116684-appb-000008
则第二修正信息
Figure PCTCN2017116684-appb-000009
为:
Figure PCTCN2017116684-appb-000010
在移动站生成第二修正信息
Figure PCTCN2017116684-appb-000011
后,可以根据第二修正信息,更新工作地图。具体地,可以将更新前的地图中各点在坐标系XY内的位置矢量和第二修正信息
Figure PCTCN2017116684-appb-000012
进行矢量叠加,得到更新后的地图中各点的位置矢量,从而得到更新的地图。
本实施例中,采用的差分GPS技术为RTK技术,即载波相位差分技术,移动站利用载波相位算法进行计算。
本实施例的基于差分定位技术的位置信息处理方法,通过在基站绝对位置变化之前,移动站获取与基站的第一相对位置,而后,在基站绝对位置变化前和变化后,移动站保持绝对位置相同,在基站绝对位置变化后,移动站 获取与基站的第二相对位置,从而移动站可以根据第一相对位置和第二相对位置,更新移动站工作区域的地图,或者,通知基站对存储的基站绝对位置进行更新;地图中各点用于指示与基站之间的相对位置。由此,可以实现在基站位置发生变化时,无需移动站重新执行沿工作区域边界移动以生成地图的过程,简化操作步骤。
为了清楚说明本实施例,下面将从用户使用角度对基站移动情况下的操作过程进行说明。操作过程包括:
1)将基站固定在如图26a所示的A点,对基站供电,使其向移动站发送差分信号。
2)启动移动站,使其加载工作区域的地图,并根据差分信号,获知自身的精确相对位置。在某些应用场景下,移动站或安装移动站的自移动设备具有显示屏,还可以将移动站自身的相对位置在工作区域的地图中进行显示。或者,在另一些应用场景下,移动站及安装移动站的自移动设备均不具有显示屏,还可以将移动站自身的相对位置和工作区域的地图发送至某一特定终端设备,使其在工作区域的地图中对移动站自身的相对位置进行显示。
3)控制安装有该移动站的自移动设备在工作区域内移动并工作。例如:在自移动设备为割草机的情况下,可以控制割草机在工作区域内移动并割草。由于绘制工作区域的地图时已经避开了障碍物,绘制了虚拟边界,而且移动站能够获知自身相对基站的相对位置,因此,在工作过程中,自移动设备能够根据移动站的相对位置,在虚拟边界内部进行导航,从而避开障碍物。
4)将基站从如图26a所示的A点移动至固定在如图26b所示的B点,对基站供电,使其向移动站发送差分信号。在基站从A点移动至B点的过程中,保持移动站绝对位置相同,也就是说不去移动移动站。
例如:若在基站从A点移动至B点之前,自移动设备处于在工作区域内移动的工作状态,则控制自移动设备暂停或结束工作,使其保持静止后,将基站从A点移动至B点。
5)在移动站保持绝对位置相同的情况下,更新移动站的工作区域的地图。
在某些场景下,移动站具有用于更新地图的虚拟按键或者机械按键。用户可以点击该用于更新地图的虚拟按键或者机械按键,使得移动站进行地图更新。
需要说明的是,作为更新地图的替代方案,在另一些场景下,移动站具有用于通知基站对存储的基站绝对位置进行更新的虚拟按键或者机械按键。用户可以点击该虚拟按键或者机械按键,使得移动站通知基站对存储的基站绝对位置进行更新。
6)当移动站地图更新完成后,控制安装有该移动站的自移动设备重新开始在工作区域内移动并工作。
可见,在前述操作过程中,用户无需操作移动站使其沿工作区域边界移动以生成地图的过程,简化了用户的操作步骤,解决现有技术中当基站移动后,移动站输出的位置坐标将发生偏差,需要重新生成工作区域的地图,步骤较为繁琐的技术问题。
为了避免不必要的地图更新和基站绝对位置更新,本发明实施例中,在移动站保持绝对位置相同的情况下,移动站根据基站发送的差分信息,解算确定与基站的相对位置变化量大于第一偏移阈值,和/或,基站根据获取的GPS信号,确定绝对位置变化量大于第二偏移阈值的情况下,可以判定基站处于异常状态。这里的异常状态具体为绝对位置变化。
在移动站判定基站处于异常状态的情况下,才执行更新移动站的工作区域的地图,或者是基站绝对位置更新的步骤。
其中,第一偏移阈值可以为移动站的内置程序预先设定的,或者,第一偏移阈值可以由用户进行设置,第二偏移阈值可以为基站的内置程序预先设定的,或者,第二偏移阈值可以由用户进行设置,对此不作限制。应当理解的是,当用户根据自身需求移动基站时,由于移动距离有限,因此,第一偏移阈值和第二阈值不应设置的过大。
具体在以下几种场景下可以需要对基站进行移动:
场景一
用户需要对基站进行移动。例如:用户需要在如图26a所示的A点修建花坛,从而基站需要从A点移动至另一位置,如图26b所示的B点。
用户对基站移动之后,移动站根据基站发送的差分信息,解算确定与基站的相对位置变化量大于第一偏移阈值,和/或,基站根据获取的GPS信号,确定绝对位置变化量大于第二偏移阈值的情况下,可以判定基站处于绝对位置变化的异常状态。
具体来说,作为一种可能的实现方式,当移动站工作区域的地图中的各 点在坐标系XY内的位置矢量发生偏差时,且大于第一偏移阈值,可以判定基站处于绝对位置变化的异常状态。
作为另一种可能的实现方式,基站还可以通过历史坐标对比,确定绝对位置变化量大于第二偏移阈值的情况下,可以判定基站处于绝对位置变化的异常状态。
场景二
基站在外力作用下处于异常状态。
例如:基站被遮挡,当基站通过历史坐标对比,确定定位精度降低时,表明基站可能被遮挡,可以判定基站处于遮挡的异常状态。
又例如:基站通过历史坐标对比,确定绝对位置变化量大于第二偏移阈值的情况下,可以判定基站处于绝对位置变化的异常状态。
可选地,当基站处于异常状态时,基站可以通过通信模块向用户或自移动设备发送提示信息或本地报警,等待用户执行使其恢复正常的操作,如更新地图,移动或替换基站等。
需要说明的是,由于用户操作导致的异常状态,可以不执行前述的报警过程。
场景三
在进行基站替换的情况下,需要对基站进行切换,将处于A点的源基站切换为处于B点的目标基站。
具体地,基站为两台包括位于变化前的基站绝对位置的源基站,以及位于变化后的基站绝对位置的目标基站,当需要利用目标基站替换源基站时,需保持移动站不动,在替换完成后,更新地图。为了清楚说明这一过程,图27给出了具体实现过程。
参见图27,在图25所示实施例的基础上,在S104之前,还基于差分定位技术的位置信息处理方法还可以包括以下步骤:
S201,断开源基站与移动站的通信连接。
本发明实施例中,当源基站的绝对位置变化时,移动站输出的位置坐标将发生偏差,此时,基站可以断开与移动站的通信连接。
可选地,自动工作系统中可以包括多个基站,或者,位于一定区域范围内的不同自动工作系统的基站可以实现通用。当断开源基站与移动站的通信连接后,移动站可以自动切换到与其他基站通讯。
S201,与目标基站执行配对过程。
可选地,当目标基站的位置固定后,移动站可以重新与目标基站执行配对过程,而后移动站可以获取与基站的第二相对位置。
在其他实施例中,当需要更换基站时,基站位置也可能不发生变化,同样保持移动站不动,通过断开和配对过程完成基站更换。
本发明实施例中,当移动站安装于自移动设备上,与自移动设备同步运动时,当更新移动站的工作地图后,移动站可以根据基站发送的差分信息,解算得到与基站的相对位置,而后,移动终端可以根据地图所限定的工作区域,对自移动设备进行导航,从而可以为自动移动设备提供高效、可靠的导航数据,提升导航的精确性。
为了实现上述实施例,本发明还提出一种应用于导航模块的移动站。
图28为本发明实施例提供的一种应用于导航模块的移动站的结构示意图。其中,导航模块基于差分定位技术,包括基站,以及根据基站发送的差分信息解算得到与基站的相对位置的移动站。
如图28所示,移动站包括:解算模块410、控制模块420,以及更新模块430。其中,
解算模块410,用于在基站绝对位置变化之前,获取与基站的第一相对位置;以及在基站绝对位置变化后,获取与基站的第二相对位置。
控制模块420,用于保持在基站绝对位置变化前和变化后,移动站绝对位置相同。
更新模块430,用于根据第一相对位置和第二相对位置,更新移动站工作区域的地图,或者,通知基站对存储的基站绝对位置进行更新;地图中各点用于指示与基站之间的相对位置。
本发明实施例中,更新模块430,具体用于根据第一相对位置和第二相对位置,生成用于指示基站位移量的第一修正信息;向基站发送第一修正信息,以使基站根据移动前的基站绝对位置和第一修正信息,确定更新后的基站绝对位置,并根据更新后的基站绝对位置生成差分信息。
作为一种可能的实现方式,更新模块430,具体用于根据第一相对位置在预设坐标系XY内的相对位置坐标(x 1,y 1)和第二相对位置在坐标系XY内的相对位置坐标(x 2,y 2),生成第一修正信息
Figure PCTCN2017116684-appb-000013
本发明实施例中,更新模块430,还用于根据第一相对位置和第二相对 位置,生成用于指示移动站相对基站的相对位置变化量的第二修正信息;根据第二修正信息,更新工作地图。
可选地,更新模块430,具体用于根据第一相对位置在坐标系XY内的坐标(x 1,y 1)和第二相对位置在坐标系XY内的坐标(x 2,y 2),生成第二修正信息
Figure PCTCN2017116684-appb-000014
将更新前的地图中各点在坐标系XY内的位置矢量和第二修正信息
Figure PCTCN2017116684-appb-000015
进行矢量叠加,得到更新后的地图中各点的位置矢量,从而得到更新的地图。
进一步地,在本发明实施例的一种可能的实现方式中,参见图29,在图28所示实施例的基础上,该应用于导航模块的移动站还可以包括:
确定模块440,用于在更新移动站的工作地图,或者,通知基站进行绝对位置更新之前,在移动站保持绝对位置固定的情况下,移动站根据基站发送的差分信息,解算确定与基站的相对位置变化量大于第一偏移阈值,和/或,基站根据获取的GPS信号,确定绝对位置变化量大于第二偏移阈值的情况下,判定基站处于异常状态;异常状态包括绝对位置变化。
本发明实施例中,基站包括位于变化前的基站绝对位置的源基站,以及位于变化后的基站绝对位置的目标基站。
断开配对模块450,用于断开源基站与移动站的通信连接;与目标基站执行配对过程。
本发明实施例中,移动站安装于自移动设备上,与自移动设备同步运动。
处理模块460,用于根据基站发送的差分信息解算得到与基站的相对位置后,根据地图所限定的工作区域,对自移动设备进行导航。
需要说明的是,前述对基于载波相位差分技术的位置信息处理方法实施例的解释说明也适用于该实施例的应用于导航模块的移动站,此处不再赘述。
本实施例的应用于导航模块的移动站,通过在基站绝对位置变化之前,移动站获取与基站的第一相对位置,而后,在基站绝对位置变化前和变化后,移动站保持绝对位置相同,在基站绝对位置变化后,移动站获取与基站的第二相对位置,从而移动站可以根据第一相对位置和第二相对位置,更新移动站工作区域的地图,或者,通知基站对存储的基站绝对位置进行更新;地图中各点用于指示与基站之间的相对位置。由此,可以实现在基站位置发生变化时,无需移动站重新执行沿工作区域边界移动以生成地图的过程,简 化操作步骤。
为了实现上述实施例,本发明还提出一种应用于导航模块的移动站。
图30为本发明一实施例提出的应用于导航模块的移动站的结构示意图。其中,导航模块,基于差分定位技术,包括基站,以及根据基站发送的差分信息解算得到与基站的相对位置的移动站。
如图30所示,该应用于导航模块的移动站包括:存储器601、处理器602及存储在存储器601上并可在处理器602上运行的计算机程序,处理器602执行程序时,实现如本发明前述实施例提出的基于载波相位差分技术的位置信息处理方法。
为了实现上述实施例,本发明还提出一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现如本发明前述实施例提出的基于差分定位技术的位置信息处理方法。
为了实现上述实施例,本发明还提出一种计算机程序产品,当所述计算机程序产品中的指令由处理器执行时,执行如本发明前述实施例提出的基于差分定位技术的位置信息处理方法。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现定制逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外 的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。如,如果用硬件来实现和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本发明各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一 个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。
请参阅图31至图32,一种宠物项圈系统,包括:基站600和宠物项圈,宠物项圈包括项圈本体700和设置在项圈本体700上的训练装置300。
基站600与训练装置300通信连接,基站600存储基站坐标信息,且基站600接收卫星定位系统观测的基站定位数据,基站600根据基站坐标信息和基站定位数据进行差分观测值计算,获得定位误差修正值,并将定位误差修正值发送至训练装置300。
基站600包括卫星天线、卫星信号处理模块和电台天线,卫星天线用于接收卫星系统观测的基站定位数据;卫星信号处理模块将基站定位数据进行解算,获得定位误差修正值;电台天线用于将基站解算获得定位误差修正值通过无线传输发送给训练装置300。
具体的,卫星信号处理模块采用载波相位差分算法对接收到的基站定位数据和基站坐标信息进行求差解算定位误差修正值。载波相位差分计算是基于载波相位观测值的实时动态定位技术,能够实时地提供测站点在指定坐标系中的三维定位结果,且不受各类误差及遮挡等干扰因素影响,即使干扰严重也可达到厘米级精度,从而使基站600能够为训练装置300提供精准定位误差修正值,实现实时、精确定位宠物位置,定位精度高且定位效率高。
训练装置300包括移动卫星天线310、基站电台天线320、微处理器330和报警器340。其中,
移动卫星天线310用于接收卫星定位系统观测的项圈定位数据,并将接收到的项圈定位数据发送至微处理器330。
基站电台天线320用于接收基站发送的定位误差修正值,并将接收到的定位误差修正值发送至微处理器330。
微处理器330预先存储宠物活动边界区域,宠物被限制在所述宠物活动边界区域内活动;微处理器330根据项圈定位数据定位误差修正值进行定位 修正处理,判断宠物与宠物活动边界区域之间的距离是否小于或等于预设距离阈值,当宠物与宠物活动边界区域之间的距离小于或等于预设距离阈值时,微处理器330发送报警信号至报警器340。本实施例中,微处理器通过定位误差修正值对项圈定位数据进行修正处理,综合解算可得到厘米级精度的定位,大大提高宠物定位精度。
报警器340用于根据报警信号输出报警信息。
上述宠物项圈系统用于在宠物活动边界区域形成虚拟宠物篱笆,防止宠物走失。宠物项圈通过卫星定位系统对宠物所处位置进行定位,无需边界布线,实施操作简单方便,且上述宠物项圈根据基站通过连续差分观测值处理计算出的定位修正值对定位结果进行修正处理,使修正后的定位精度能够大幅提高。上述宠物项圈系统的定位信号不受各项干扰因素影响,可达到厘米级定位精度,实现了对宠物精准定位,定位精度高,能够有效防止宠物走出预设活动边界区域,避免宠物走失,保障宠物安全。
如图32所示,在一个实施例中,微处理器330包括:
存储单元332,用于存储宠物活动边界区域。
定位修正单元334,用于根据项圈定位数据和定位误差修正值进行定位修正处理,得到宠物当前位置坐标信息。
位置判断单元336,用于根据宠物当前位置坐标信息计算宠物与宠物活动边界区域之间的距离,判断宠物与宠物活动边界区域之间的距离是否小于或等于预设距离阈值。
具体的,在一个实施例中,存储单元332还用于存储宠物与宠物活动边界区域之间的预设距离阈值。具体预设距离阈值的取值可根据实际需要任意设置。
报警单元338,用于当宠物与宠物活动边界区域之间的距离小于或等于预设距离阈值时,输出报警信号至报警器。
具体的,当宠物与宠物活动边界区域之间的距离大于预设距离阈值时,宠物在活动边界区域之内运动,不存在走失或安全隐患,无需处理。当宠物与宠物活动边界区域之间的距离小于或等于预设距离阈值时,则宠物运动到宠物活动边界区域,存在走失风险或安全隐患,需要输出报警信息对宠物实施警告。
在一个实施例中,报警信号包括声光报警信号和电击报警信号。如图1 所示,报警器340包括声光报警器342和电击棒344。当宠物与宠物活动边界区域之间的距离等于预设距离阈值时,报警单元338输出声光报警信号至声光报警器342,声光报警器342输出声光报警信息对宠物进行提醒。若宠物继续运动,当宠物与宠物活动边界区域之间的距离小于预设距离阈值时,报警单元338输出电击报警信号至电击棒344对宠物实施电击警告,且宠物与宠物活动边界区域之间的距离越小,电击强度越大。本实施例中,通过声光报警器340和电击棒344对宠物进行多级警告,当宠物与宠物活动边界区域之间的距离小于或等于预设距离阈值后,宠物距离宠物活动边界区域之间的距离越小,报警级别越高,以对宠物建立条件反射。
如图31、图32所示,在一个实施例中,宠物项圈还包括加速度传感器350,加速度传感器350设置在项圈本体310上,且加速度传感器350与微处理器330连接,加速度传感器350用于采集宠物的运动加速度并将采集到的宠物运动加速度发送至微处理器330。
微处理器330还包括电源管理单元339,电源管理单元339用于接收宠物运动加速度,并将宠物运动加速度与预先存储的加速度阈值进行比较,当宠物运动加速度小于或等于加速度阈值时,启动休眠模式,使微处理器330进入休眠状态。当宠物运动加速度大于加速度阈值时,微处理器330唤醒工作,微处理器330正常工作。
本实施例中,通过检测宠物的运动加速度判断宠物的运动状态,并根据宠物的运动状态调整微处理器330的工作状态。具体的,宠物行走时的运动加速度大于宠物停止或躺卧时的加速度幅值,而宠物处于静止状态时不会出现走失的情况,且宠物运动缓慢时一般也不会走失。因此,预先设定加速度阈值,只有当检测到的宠物运动加速度大于加速度阈值时,微处理器才启动工作模式,否则,微处理器处于省电的休眠模式,以降低微处理器耗电,实现系统节电,从而可以减小电池体积,减轻宠物项圈的重量,更适合宠物佩戴,且能够有效降低成本。
在一个实施例中,宠物项圈还包括终端通信模块360,微处理器330通过终端通信模块360与远程终端进行信息交互,远程终端包括手机、平板或电脑中的一种或多种。具体的,终端通信模块360通过无线网络、移动通信网络或互联网与远程终端通信连接。
在一个实施例中,宠物活动边界区域通过在手机、平板或电脑上的地图 软件上划定。具体的,地图软件可以为谷歌地图、百度地图等。
具体的,宠物活动边界区域包括活动区域的边界坐标信息和活动区域内的禁止宠物活动区域的边界坐标信息,禁止宠物活动区域包括如花坛、泳池等宠物不能进入的区域。在本实施例中,根据区域内的具体设施情况,在手机、平板或电脑上的谷歌地图上划定宠物活动区域。微处理器330通过终端通信模块337接受手机、平板或电脑发送的与划定的宠物活动区域相关的边界信息并将其存储至存储单元332。
在一个实施例中,基站600为智能割草机基站,上述边界区域为智能割草机学习好的地图边界区域。
具体的,本实施例中,宠物项圈共享智能割草机的基站,宠物项圈与智能割草机共用一个基站,能够有效节省基站成本。并且,宠物项圈可以直接使用智能割草机学习好的地图边界区域,无需进行宠物活动边界区域划定,且可灵活调整宠物活动区域,大大方便用户使用。当基站600采用智能割草机基站时,在手机、平板或电脑上读取智能割草机已经学习好的地图边界区域,将读取到的地图边界区域发送给宠物项圈进行存储。进一步的,用户还可以根据实际需要对智能割草机已经学习好的地图边界区域进行设置,选取宠物活动区域,如,智能割草机学习好的地图边界区域包括草坪和草坪区域内的房子,用户可以设置房子周围的边界为宠物活动边界区域,则宠物只能在房子内活动;用户也可以屏蔽房子周围的边界,使宠物可以在草坪区域内和房子内活动。
需要说明的是,在其它实施例中,也可以直接在宠物项圈的电子地图上划定初始边界区域。宠物项圈中安装有含有电子地图的电子设备,微处理器330包括接收单元,电子设备和接收单元连接,直接在该电子设备的电子地图上划定宠物活动区域,电子设备将划定的宠物活动区域的边界信息发送给接收单元,微处理器330接收宠物活动区域的边界信息并存储至存储单元332。
在一个实施例中,宠物项圈还包括电池370,用以为移动卫星天线310、基站电台天线320、微处理器330、声光报警器342和电击棒344提供电力。
请参阅图33,其为一个实施例中宠物项圈系统的应用场景示意图。本实施例中,基站600接收卫星定位系统800观测的基站定位数据,训练装置300接收卫星定位系统观测的项圈定位数据及基站600发送的基站坐标信息 和基站定位数据,且训练装置300根据项圈定位数据、基站坐标信息和基站定位数据进行差分观测值处理,得到宠物当前位置坐标信息,判断宠物与宠物活动边界区域之间的距离是否小于或等于预设距离阈值,当宠物与宠物活动边界区域之间的距离小于或等于预设距离阈值时输出报警信息,以对宠物进行训练,使宠物产生条件反射,避免宠物走失。具体宠物项圈系统的结构及工作原理如上所述,在此不予赘述。
具体的,在一个实施例中,卫星系统包括北斗卫星导航系统、GPS(Global Positioning System,全球定位系统)、格洛纳斯(GLONASS)卫星导航系统或伽利略卫星定位系统。
请参阅图34,在一个实施例中,提供一种宠物项圈控制方法,包括以下步骤:
S402:接收卫星定位系统观测的项圈定位数据,并接收基站发送的定位误差修正值。
具体的,基站存储基站坐标信息,且基站接收卫星定位系统观测的基站定位数据,基站根据基站坐标信息和基站定位数据进行差分观测值计算,获得定位误差修正值,并将定位误差修正值发送至训练装置。训练装置接收卫星定位系统观测的项圈定位数据及基站发送的定位误差修正值。
S404:根据项圈定位数据定位误差修正值进行定位修正处理,得到宠物当前位置坐标信息。
训练装置根据项圈定位数据、基站坐标信息和基站定位数据进行差分观测值处理,得到宠物当前位置坐标信息。
S406:根据宠物当前位置坐标信息计算宠物与预设宠物活动边界区域之间的距离,判断宠物与预设宠物活动边界区域之间的距离是否小于或等于预设距离阈值。
S408:当宠物与宠物活动边界区域之间的距离小于或等于预设距离阈值时,输出报警信号。
进一步的,S402之前,包括以下步骤:基站接收卫星定位系统观测的基站定位数据,将基站定位数据与预先存储的基站坐标信息进行差分观测值计算,获得定位误差修正值。
进一步的,上述宠物项圈控制方法还包括以下步骤:
检测宠物的运动加速度,并将宠物运动加速度与预先存储的加速度阈值 进行比较,当宠物运动加速度小于或等于加速度阈值时,启动休眠模式,使微处理器进入休眠状态;当所述宠物运动加速度大于所述加速度阈值时,所述微处理器唤醒工作。
具体的,通过加速度传感器采集宠物的运动加速度判断宠物的运动状态,根据宠物的运动状态调整微处理器的工作状态,当检测到的宠物运动加速度小于或等于预设加速度阈值时,微处理器启动休眠模式,进入休眠节电状态,以节约系统耗电。
进一步的,S402之前还包括以下步骤:接收远程终端发送的宠物活动边界区域并存储,远程终端包括手机、平板或电脑中的一种或多种。
具体的,宠物活动边界区域通过在手机、平板或电脑上的地图软件上划定好后发送至训练装置存储。进一步的,在一个实施例中,基站可以采用智能割草机的基站,宠物活动边界区域直接采用智能割草机学习好的地图边界区域,手机、平板或电脑将存储的智能割草机学习好的地图边界区域发送至训练装置存储即可。
进一步的,在一个实施例中,宠物项圈系统与远程终端之间通过网络通信连接,上述宠物项圈控制方法还包括以下步骤:宠物项圈实时发送宠物当前位置坐标信息至远程终端,且当宠物与宠物活动边界区域之间的距离小于或等于预设距离阈值时,宠物项圈发送报警信号至远程终端;远程终端接收宠物当前位置坐标信息和报警信号,且远程终端根据宠物当前位置坐标信息或报警信号输出控制指令至宠物项圈。
具体的,宠物项圈与手机、平板或电脑等远程终端之间可通过wifi无线通信网络或3G/4G移动通信网络通信连接。宠物项圈实时将宠物的位置发送至远程终端,且当宠物靠近边界时,宠物项圈向远程终端发送报警信号,用户可通过远程终端实时查看宠物的活动位置,及时了解宠物是否走出边界,进一步方便用户查看宠物活动,有效防止宠物走失,同时,用户还可以通过远程终端发送控制指令至宠物项圈,实现用户远程控制宠物活动。
以上分别对宠物项圈系统及宠物项圈控制方法进行说明,为便于理解,下面同时结合图35、图36列举具体应用实施例对上述宠物项圈系统、宠物项圈控制方法进行说明。为方便说明,本实施例中,以卫星定位系统为GPS,终端采用手机,地图软件采用谷歌地图进行说明。
在一个实施例中,应用上述宠物项圈系统训练宠物,使宠物产生条件反 射只在设定的活动区域内活动。如图35所示,预划定草坪900为宠物活动区域,草坪内有游泳池1000。
如图35、图36所示,对宠物进行训练前,需要先进行系统设置及宠物活动边界区域划定,首先将基站600设置在草坪900内的A点处并对基站600供电,记录A点坐标A(Xa,Ya,Za)。之后,开启宠物项圈,宠物项圈与手机建立通信连接。然后划定宠物活动边界区域,即划定虚拟宠物篱笆的范围。划定宠物活动边界区域时,先进行地图边界绘制,用户将宠物项圈从宠物身上取下,设置成区域边界设置模式,用户携带宠物项圈走到草坪900的边界,沿着边界行走一圈,在用户行走过程中,宠物项圈自动将GPS观测的用户行走过的边界的各个点的地理坐标数据发送至手机,绘制草坪边界,在手机上便形成了一个边界地图。另外,如果要限制宠物不到游泳池等危险的区域去,可沿游泳池走一圈,再将游泳池边界设为禁止进入区域。具体的,绘制好草坪900的边界后,用户再携带宠物项圈至游泳池1000边界行走一圈,进行游泳池边界绘制。完成地图边界绘制后,用户在手机上的谷歌地图上进行编辑,确认草坪边界内,泳池边界外为宠物活动区域,草坪边界以外及泳池边界以内的区域为活动禁止区,编辑好地图后,将宠物活动区域和禁止宠物活动区域的边界信息发送至宠物项圈存储,宠物项圈记录虚拟宠物篱笆的范围。之后,给宠物佩戴宠物项圈,将宠物项圈套在宠物脖子上,启动工作模式,对宠物进行训练。
训练过程中,宠物在宠物活动边界区域内活动,宠物项圈接收卫星定位系统观测的项圈定位数据及基站发送的基站坐标信息和基站定位数据,并根据项圈定位数据、基站坐标信息和基站定位数据进行差分观测值处理,计算宠物当前位置坐标,得到宠物所在位置R点坐标R(Xn,Yn,Zn)根据宠物当前位置坐标计算宠物与宠物活动边界区域之间的距离,判断宠物与宠物活动边界区域之间的距离是否小于或等于预设距离阈值,当宠物与宠物活动边界区域之间的距离等于预设距离阈值时,输出声光报警信息,对宠物实施声光告警,若宠物没有停下,继续向边界靠近,则对宠物实施电击告警,且宠物越靠近边界(即虚拟宠物篱笆),电击强度越强,以使宠物停止前进,防止宠物走出边界。为使宠物建立条件反射,可对宠物进行多次训练,当宠物在训练过程中对报警信息产生条件反射,如接收到声光报警信息或轻微电击时,宠物就停止向前,返回活动区域内,则用户可以停止训练,放心让宠 物在区域内活动,由宠物项圈系统监控宠物活动即可。
具体的,在一个实施例中,上述的预设距离阈值为2m,用户可通过以下方式对宠物进行训练:首先,在边界上间隔2~3m插上小旗,将项圈戴在宠物脖子上,牵着宠物从区域内部靠近边界,当距离边界2m时,项圈便发出“哔哔”的告警声,此时,牵着宠物继续靠近边界,距离边界小于2m,项圈便发出电击,越靠近边界,电击强度越高,或频次越高,让宠物很不舒服。一般经过48小时的往复几次的训练宠物便会产生条件反射,不会靠近边界,使宠物能大致知道边界上小旗离自己的位置,从而乖乖地呆在设定的安全区域内,可有效避免宠物走失。
进一步的,当完成宠物训练,由宠物项圈系统监控宠物活动后,宠物项圈通过设置在其上的加速度传感器实时监测宠物的运动状态,当宠物处于躺卧静止状态或宠物运动缓慢,检测到的宠物运动加速度小于或等于预设加速度阈值时,宠物项圈的微处理器启动休眠模式,宠物项圈停止工作进入休眠节电状态;当宠物开始运动,检测到宠物运动加速度大于预设加速度阈值时,微处理器启动,宠物项圈监控宠物活动,避免宠物走出边界。
进一步的,当完成宠物训练,由宠物项圈监控宠物活动后,用户还可以在手机的谷歌地图上实时查看宠物的位置,监控宠物的位置状态,进一步防止宠物走失。更进一步的,宠物项圈上还可以安装GPS追踪器,若一旦发生宠物走失,用户也可通过手机进行GPS追踪,追踪宠物的位置,确保找回宠物。
在其它实施例中,宠物项圈与手机之间的信息交互并不只限于上述的边界区域设定信息传递。在一个实施例中,用户可利用手机通过wifi或3G/4G移动通信网络与宠物项圈通信连接,宠物项圈可实时将宠物的位置发送至手机,当报警器报警时,宠物项圈还可以发送报警信号至远程终端对用户进行通知,用户可通过手机远程查看宠物的活动位置,及时了解宠物是否走出边界。并且用户也可通过手机向宠物项圈发送控制指令,远程控制宠物的活动。如,在一个实施例中,用户通过查看手机发现宠物正在靠近边界区域,则用户可通过手机发送报警指令,启动报警器对宠物进行提前预警。在又一个实施例中,如,宠物体重偏胖,用户可定时启动报警器,让宠物起来活动。或者,宠物项圈还可以将采集到的宠物运动加速度数据通过终端通信模块发送至手机,通过手机上的计步应用计算并统计宠物在一段时间内的运动步 数,如果宠物的运动步数较少,则用户可以发送运动指令至宠物项圈,宠物项圈根据运动指令输出声光报警信号或对宠物实施电击,以使宠物活动起来,可避免宠物因运动少而导致体重过胖。
本实施例中,在手机上进行宠物活动边界区域设定,再将设定好的边界信息发送至宠物项圈存储。在其它实施例中,也可以直接在宠物项圈上设定宠物活动边界区域,宠物项圈再将设定好的边界信息发送至手机,以方便用户通过手机进行监控。具体的,宠物项圈上设置有边界划定装置,边界划定装置与宠物项圈中含有电子地图的电子设备连接,边界划定装置可以为按钮或触摸显示屏,以边界划定装置采用按钮为例,当划定宠物活动边界区域时,用户携带宠物项圈走到区域边界,按下按钮,则电子设备记录边界起始位置,用户继续沿着边界行走,当行走到边界终点时,再次按下按钮,电子设备记录边界终点位置,记录用户经过的路径为区域边界,生成边界坐标信息发送至手机。进一步的,还可通过预设按动按钮次数区分划定的边界区域为宠物活动区域或禁止宠物活动区域,如,在区域边界起始及终止位置处都按一次按钮,则划定的边界内的区域为宠物活动区域,在区域边界起始及终止位置处都连续按两次按钮,则划定的边界内的区域为禁止宠物活动区域。在其它实施例中,可根据实际需要设置具体区域划分规则,本实施例以按钮按动次数区分划定区域只是一个实施例,并不做具体限定。本实施例中,直接在宠物项圈上划定宠物活动边界区域可在宠物项圈与手机之间出现通信故障时,确保宠物项圈也可正常使用,进一步方便用户使用。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (28)

  1. 一种自移动设备的回归方法,所述自移动设备基于地图在工作区域内自主移动,其特征在于,包括:
    获取自移动设备在工作区域中的当前位置;
    根据所述当前位置,选择至目标位置的回归路径;以及
    判断所述回归路径被重复使用的情况,基于所述回归路径被重复使用的情况,判断是否重新选择回归路径;
    使所述自移动设备按照所选择的回归路径返回所述目标位置。
  2. 根据权利要求1所述的回归方法,其特征在于,所述判断所述回归路径被重复使用的情况,包括:
    判断所述回归路径被重复使用的长度和/或被重复使用的频率,若所述回归路径被重复使用的长度和/或被重复使用的频率超过预设阈值,则判断重新选择所述回归路径。
  3. 根据权利要求2所述的回归方法,其特征在于,将当前选择的回归路径称为第一回归路径,当所述被重复使用的长度和/或被重复使用的频率大于预设的第一阈值时,选择与第一回归路径不重合的第二回归路径作为回归路径。
  4. 根据权利要求2所述的回归方法,其特征在于,将当前选择的回归路径称为第一回归路径,当所述被重复使用的长度和/或被重复使用的频率大于预设的第二阈值时,选择与第一回归路径不相交的第二回归路径作为回归路径。
  5. 根据权利要求2所述的回归方法,其特征在于,所述判断所述回归路径被重复使用的长度和/或被重复使用的频率包括:
    存储所述回归路径的至少部分的使用信息,以及根据所述信息判断所述回归路径被重复使用的长度和/或被重复使用的频率。
  6. 根据权利要求1所述的回归方法,其特征在于,所述根据所述当前位置,选择至目标位置的回归路径包括:
    计算所述当前位置与所述目标位置之间的最优路径,并将该最优路径作为所述回归路径。
  7. 根据权利要求6所述的回归方法,其特征在于,所述计算所述当前 位置与所述目标位置之间的最优路径包括,计算所述当前位置与所述目标位置之间的最短路径。
  8. 根据权利要求1所述的回归方法,其特征在于,还包括:
    预设若干预设回归路径;
    所述根据所述当前位置,选择至目标位置的回归路径包括:
    选择所述若干预设回归路径之一作为所述回归路径。
  9. 根据权利要求8所述的回归方法,其特征在于,所述获取自移动设备在工作区域中的当前位置之后还包括:
    计算所述当前位置与所述预设回归路径之间的最优路径;
    所述使所述自移动设备按照所选择的回归路径返回所述目标位置包括:
    使所述自移动设备按所述最优路径运动到所述预设回归路径。
  10. 根据权利要求8所述的回归方法,其特征在于,所述预设回归路包括在所述工作区域内的多个封闭图形以及连接所述多个封闭图形和所述目标位置的直线;
    所述使所述自移动设备沿所选择的回归路径返回所述目标位置包括:
    使所述自移动设备沿当前运动方向或任意方向运动,且在与所述多个图形之一的接触时,沿该多个封闭图形之一的边线运动至所述直线并沿所述直线返回所述目标位置。
  11. 根据权利要求10所述的回归方法,其特征在于,所述多个封闭图形为多个封闭的圆环。
  12. 根据权利要求1所述的回归方法,其特征在于,还包括:预设所述工作区域的虚拟边界线;
    所述根据所述当前位置,选择至目标位置的回归路径包括:
    选择沿所述虚拟边界线或靠近所述虚拟边界线的路径作为所述回归路径。
  13. 根据权利要求1-12任一项所述的回归方法,其特征在于:所述使所述自移动设备按照所选择的回归路径返回所述目标位置之后还包括:
    使所述自移动设备对接充电桩充电。
  14. 根据权利要求13所述的回归方法,其特征在于,所述使所述自移动设备对接所述充电桩充电包括:
    使所述自移动设备在所述目标位置调整姿态,以使其充电部分对接所述 充电桩充电。
  15. 根据权利要求13所述的回归方法,其特征在于,所述使所述自移动设备对接所述充电桩充电包括:
    使所述自移动设备在所述目标位置向远离所述充电桩后退预设距离,并在所述预设距离完成姿态调整,以及使所述自移动设备以所述姿态向所述充电桩运动以对接该充电桩充电。
  16. 根据权利要求14或15所述的回归方法,其特征在于,在自移动设备进入工作前,
    使所述自移动设备记录所述目标位置和所述姿态。
  17. 一种自移动设备,其特征在于,包括获取模块和控制模块;
    其中所述获取模块用于获取自移动设备在工作区域中的当前位置;
    所述控制模块用于根据所述当前位置,选择至目标位置的回归路径;
    判断所述回归路径被重复使用的情况,基于所述回归路径被重复使用的情况,判断是否重新选择回归路径;以及
    控制所述自移动设备按照所选择的回归路径返回所述目标位置。
  18. 根据权利要求17所述的自移动设备,其特征在于,所述控制模块包括第一统计单元和控制单元,其中所述第一统计单元用于统计所述第一回归路径被重复使用的长度和/或被重复使用的频率,若所述回归路径被重复使用的长度和/或被重复使用的频率超过预设阈值,则所述控制单元判断重新选择所述回归路径。
  19. 根据权利要求18所述的自移动设备,其特征在于,所述控制单元将当前选择的回归路径称为第一回归路径,当所述被重复使用的长度和/或被重复使用的频率大于预设的第一阈值时,所述控制单元选择与第一回归路径不重合的第二回归路径作为回归路径。
  20. 根据权利要求19所述的自移动设备,其特征在于,所述控制模块还包括第一存储单元,所述第一存储单元还用于存储所述回归路径的至少部分的使用信息,所述第一统计单元还用于根据所述信息判断所述回归路径被重复使用的长度和/或被重复使用的频率。
  21. 根据权利要求17所述的自移动设备,其特征在于,所述控制模块还包括第一计算单元和控制单元,所述第一计算单元用于计算所述当前位置与所述目标位置之间的最优路径,并且所述控制单元控制选择该最优路径作 为所述回归路径。
  22. 根据权利要求18所述的自移动设备,其特征在于,所述控制模块还包括第一预设单元和控制单元:
    所述第一预设单元用于预设若干回归路径;
    所述控制单元用于选择所述若干预设回归路径之一作为所述回归路径。
  23. 根据权利要求22所述的自移动设备,其特征在于,所述控制模块还包括第二计算单元,所述第二计算单元用于计算所述当前位置与所述回归路径的最优路径,从而所述控制模单元控制所述自移动设备沿所述最优路径运动至所述回归路径。
  24. 根据权利要求23所述的自移动设备,其特征在于,所述第一预设单元还用于预设所述工作区域的虚拟边界线;所述控制单元控制所述自移动设备沿所述虚拟边界线或靠近所述虚拟边界线的路径返回所述目标位置。
  25. 根据权利要求17-24任一项所述的自移动设备,其特征在于:所述控制模块还包括姿态确定单元和调整单元,所述姿态确定单元用于在所述自移动设备运动至所述目标位置时,确定所述自移动设备的姿态,所述姿态调整单元用于调整所述自移动设备的姿态,以使所述自移动设备对接充电桩充电。
  26. 根据权利要求25所述的自移动设备,其特征在于,所述控制模块还包括第二预设单元和比较单元,其中所述预设单元用于设置与充电桩的标准距离/相对位置以及自移动设备的充电姿态,所述比较单元用于将将所述自移动设备的当前姿态与所述充电姿态相比较,并将所述自移动设备的姿态至所述充电姿态。
  27. 一种存储介质,存储有计算机可读指令,其特征在于,在所述计算机可读指令被调用时,执行如权利要求1-17所述的方法。
  28. 一种服务器,其特征在于,包括存储器和处理器,其中所述存储器存储有计算机可读指令,所述处理器用于调用所述计算机可读指令从而执行如权利要求1-16所述的方法。
PCT/CN2017/116684 2016-12-15 2017-12-15 自移动设备的回归方法、自移动设备、存储介质和服务器 WO2018108178A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21205706.1A EP4029372A1 (en) 2016-12-15 2017-12-15 Self-moving device return method, self-moving device, storage medium, and server
EP17882141.9A EP3557359A4 (en) 2016-12-15 2017-12-15 RETURN PROCESS OF SELF-PROPELLED DEVICE, SELF-PROPELLED DEVICE, STORAGE MEDIA AND SERVER
US16/442,428 US20190369620A1 (en) 2016-12-15 2019-06-14 Returning method of self-moving device, self-moving device, storage medium, and server
US17/525,154 US20220075376A1 (en) 2016-12-15 2021-11-12 Returning method of self-moving device, self-moving device, storage medium, and server

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201611157425 2016-12-15
CN201611157425.9 2016-12-15
CN201710034583.3 2017-01-18
CN201710034583.3A CN108308059B (zh) 2017-01-18 2017-01-18 宠物项圈系统及宠物项圈控制方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/442,428 Continuation US20190369620A1 (en) 2016-12-15 2019-06-14 Returning method of self-moving device, self-moving device, storage medium, and server

Publications (1)

Publication Number Publication Date
WO2018108178A1 true WO2018108178A1 (zh) 2018-06-21

Family

ID=62557994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/116684 WO2018108178A1 (zh) 2016-12-15 2017-12-15 自移动设备的回归方法、自移动设备、存储介质和服务器

Country Status (3)

Country Link
US (2) US20190369620A1 (zh)
EP (2) EP3557359A4 (zh)
WO (1) WO2018108178A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109634287A (zh) * 2019-01-22 2019-04-16 重庆润通智能装备有限公司 割草机路径规划方法及系统
CN111443693A (zh) * 2018-12-27 2020-07-24 北京奇虎科技有限公司 区块超边界处理方法、电子设备及计算机可读存储介质
CN112132934A (zh) * 2020-09-22 2020-12-25 上海米哈游天命科技有限公司 模型元素的形变处理、画面渲染方法、装置、设备及介质
US20210397765A1 (en) * 2018-11-07 2021-12-23 Honda Motor Co., Ltd. Work area zone boundary demarcation apparatus of autonomously navigating work machine
CN114115211A (zh) * 2020-08-26 2022-03-01 深圳市杉川机器人有限公司 一种自移动设备及系统及建立工作区域地图的方法
EP3506039B1 (en) 2017-12-27 2022-05-25 Kubota Corporation Work area determination system for autonomous traveling work machine, autonomous traveling work machine and work area determination program
EP3833177B1 (en) 2018-08-08 2022-07-27 The Toro Company Handle and method for training an autonomous vehicle, and methods of storing same
EP4013222A4 (en) * 2019-08-15 2023-08-09 Protect Animals with Satellites, LLC CORRECTION CUFF USING GELOCALIZATION TECHNOLOGY

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105527961A (zh) * 2014-09-30 2016-04-27 科沃斯机器人有限公司 一种自移动表面行走机器人系统及回归主充电座的方法
WO2018108178A1 (zh) * 2016-12-15 2018-06-21 苏州宝时得电动工具有限公司 自移动设备的回归方法、自移动设备、存储介质和服务器
SE1750499A1 (en) * 2017-04-25 2018-10-02 Husqvarna Ab Compensating for stray capacitances for a robotic lawnmower
EP3772881B1 (en) * 2018-03-30 2023-01-25 Positec Power Tools (Suzhou) Co., Ltd Method for calculating the area of a working region of a self-moving device, associated computer-readable medium and automatic working system
ES2887100T3 (es) * 2018-05-28 2021-12-21 Globe Jiangsu Co Ltd Transmisor de cable de límite adaptativo
US11623689B2 (en) * 2019-09-09 2023-04-11 Mtd Products Inc Real time kinematics power equipment device with auto-steering
US20230015335A1 (en) * 2019-12-13 2023-01-19 Positec Power Tools (Suzhou), Co., Ltd. Working map construction method and apparatus, robot, and storage medium
CN113128747B (zh) * 2019-12-30 2024-03-19 南京泉峰科技有限公司 智能割草系统及其自主建图方法
CN111208817B (zh) * 2020-01-02 2024-03-15 惠州拓邦电气技术有限公司 窄道通行方法、装置、移动装置以及计算机可读存介质
SE543954C2 (en) * 2020-03-18 2021-10-05 Husqvarna Ab Robotic work tool system and method comprising a base rtk unit, a mobile rtk unit and an auxiliary rtk unit
JP7235691B2 (ja) * 2020-03-23 2023-03-08 株式会社日立製作所 自動検査装置
EP3910158A1 (en) * 2020-05-13 2021-11-17 Sandvik Mining and Construction Oy Selecting a route
CN112140931A (zh) * 2020-09-30 2020-12-29 劢微机器人科技(深圳)有限公司 无人叉车自动充电方法及系统
CN112731934B (zh) * 2020-12-23 2023-10-03 南京苏美达智能技术有限公司 基于区域分割的智能割草机快速回充电站的方法
CN112799404B (zh) * 2021-01-05 2024-01-16 佛山科学技术学院 Agv的全局路径规划方法、装置及计算机可读存储介质
SE545372C2 (en) * 2021-06-11 2023-07-18 Husqvarna Ab Method of assisting a user of a robotic tool system based on the inclination of the tool at a docking station, a robotic tool and robotic tool system
CN113419529B (zh) * 2021-06-23 2023-01-13 南京苏美达智能技术有限公司 一种机器自动引导故障机器的方法和自行走设备
CN113791625A (zh) * 2021-09-30 2021-12-14 深圳市优必选科技股份有限公司 全覆盖路径生成方法、装置、终端设备及存储介质
WO2023148661A1 (en) * 2022-02-02 2023-08-10 Stiga S.P.A. In Breve Anche St. S.P.A. Mobile device, charging station, mobile support, fixing bracket, accessory, antenna module, related assemblies and associated installation methods
WO2023158606A1 (en) * 2022-02-15 2023-08-24 Exmark Manufacturing Company Incorporated System and method for defining a work region boundary for use by an autonomous grounds care vehicle
CN114980142B (zh) * 2022-06-10 2023-05-12 未岚大陆(北京)科技有限公司 基站安装位置的推荐方法、装置、存储介质及割草机
CN115167418B (zh) * 2022-07-04 2023-06-27 未岚大陆(北京)科技有限公司 转移路径生成方法、装置、电子设备和计算机存储介质
EP4343477A1 (en) * 2022-09-20 2024-03-27 Fabrizio Bernini System for cutting grass and corresponding process
US11678604B1 (en) 2022-12-21 2023-06-20 Sensori Robotics, LLC Smart lawnmower with development of mowing policy and system and method for use of same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1412828A1 (de) * 2001-08-03 2004-04-28 Siemens Aktiengesellschaft Planung einer erweiterten bahn für eine autonome mobile einheit zum späteren abfahren temporär versperrter bahnbereiche
JP2009025974A (ja) * 2007-07-18 2009-02-05 Toyota Motor Corp 経路計画装置及び方法、コスト評価装置、並びに移動体
CN102929280A (zh) * 2012-11-13 2013-02-13 朱绍明 移动式机器人分离式视觉定位导航方法及其定位导航系统
CN103324191A (zh) * 2012-03-23 2013-09-25 苏州宝时得电动工具有限公司 控制方法及执行该控制方法的控制系统
US8761987B2 (en) * 2010-10-05 2014-06-24 Checkpoint Llc Automatic guided vehicle sensor system and method of using same
CN105511456A (zh) * 2014-09-23 2016-04-20 苏州宝时得电动工具有限公司 自动行走设备控制方法及自动工作系统
EP3171133A1 (en) * 2015-11-19 2017-05-24 Sikorsky Aircraft Corporation Kinematic motion planning with regional planning constraints

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5868100A (en) * 1996-07-08 1999-02-09 Agritech Electronics L.C. Fenceless animal control system using GPS location information
US5794569A (en) * 1996-10-29 1998-08-18 Joint Techno Concepts International, Inc. Apparatus and method for electronic confinement of animals
US5949350A (en) * 1997-07-21 1999-09-07 Mobius Innovations, Inc. Location method and apparatus
US6043748A (en) * 1997-12-19 2000-03-28 Invisible Fence Company, Inc. Satellite relay collar and programmable electronic boundary system for the containment of animals
US6271757B1 (en) * 1997-12-19 2001-08-07 Invisible Fence, Inc. Satellite animal containment system with programmable Boundaries
US6067018A (en) * 1998-12-22 2000-05-23 Joan M. Skelton Lost pet notification system
US6441778B1 (en) * 1999-06-18 2002-08-27 Jennifer Durst Pet locator
US6232916B1 (en) * 1999-08-31 2001-05-15 Lucent Technologies, Inc. GPS restraint system and method for confining a subject within a defined area
US7034695B2 (en) * 2000-12-26 2006-04-25 Robert Ernest Troxler Large area position/proximity correction device with alarms using (D)GPS technology
US7409924B2 (en) * 2004-07-15 2008-08-12 Lawrence Kates Training, management, and/or entertainment system for canines, felines, or other animals
US20080276879A1 (en) * 2007-05-11 2008-11-13 Marsh Robert E System and method for fenceless animal control
US8115642B2 (en) * 2007-10-18 2012-02-14 Scott R Thompson Traveling invisible electronic containment perimeter—method and apparatus
NO332094B1 (no) * 2009-12-23 2012-06-18 Nofence As Fremgangsmate og system for inngjerding av dyr uten bruk av et fysisk gjerde
CA2841987A1 (en) * 2011-06-13 2012-12-20 Robert Jesurum Pet restraint system
US8955462B1 (en) * 2011-06-16 2015-02-17 Wolfgis, Llc System and method for remote guidance of an animal to and from a target destination
US20140020635A1 (en) * 2011-10-05 2014-01-23 Radio Systems Corporation Image-Based Animal Control Systems and Methods
US8922363B2 (en) * 2011-11-07 2014-12-30 Min Jae SO Animal training apparatus for locating collar transceiver using GPS and method of controlling the same
US8917172B2 (en) * 2012-02-15 2014-12-23 Epc4Roi Limited Partnership Wireless pet barrier using RFID
TWM451103U (zh) * 2012-10-30 2013-04-21 Agait Technology Corp 行走裝置
US9277734B1 (en) * 2013-02-21 2016-03-08 Luc J. Paradis Shock collar assembly with proximity sensors
US9226479B2 (en) * 2013-03-08 2016-01-05 Eb Partners Mobile telephone dog training tool and method
US8839744B1 (en) * 2013-03-08 2014-09-23 Eb Partners Mobile telephone dog training tool and method
US20150040840A1 (en) * 2013-08-07 2015-02-12 Zf Friedrichshafen Ag Non-battery powered animal tracking system
EP3084541B1 (en) * 2013-12-19 2019-05-08 Husqvarna AB Navigation for a robotic working tool
US10426140B2 (en) * 2014-06-26 2019-10-01 Triangulate Technologies Llc Data-acquiring and reporting animal collar
JP6193898B2 (ja) * 2015-02-10 2017-09-06 本田技研工業株式会社 自律走行作業車の制御装置
US10394250B2 (en) * 2016-04-28 2019-08-27 Komatsu Ltd. Work machine management apparatus
US9648849B1 (en) * 2016-06-23 2017-05-16 OnPoint Systems, LLC Walking error correction for a device and method for containing and tracking a subject using satellite positioning data
US9693536B1 (en) * 2016-12-14 2017-07-04 Sean P. Dana Pet training system with geofence boundary indicator and software application
WO2018108178A1 (zh) * 2016-12-15 2018-06-21 苏州宝时得电动工具有限公司 自移动设备的回归方法、自移动设备、存储介质和服务器
WO2019178222A1 (en) * 2018-03-14 2019-09-19 Protect Animals with Satellites, LLC Corrective collar utilizing geolocation technology
CA3149163A1 (en) * 2021-03-31 2022-09-30 Gordon Daniel Oke Templeton Service animal tracking evaluation system using metrics

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1412828A1 (de) * 2001-08-03 2004-04-28 Siemens Aktiengesellschaft Planung einer erweiterten bahn für eine autonome mobile einheit zum späteren abfahren temporär versperrter bahnbereiche
JP2009025974A (ja) * 2007-07-18 2009-02-05 Toyota Motor Corp 経路計画装置及び方法、コスト評価装置、並びに移動体
US8761987B2 (en) * 2010-10-05 2014-06-24 Checkpoint Llc Automatic guided vehicle sensor system and method of using same
CN103324191A (zh) * 2012-03-23 2013-09-25 苏州宝时得电动工具有限公司 控制方法及执行该控制方法的控制系统
CN102929280A (zh) * 2012-11-13 2013-02-13 朱绍明 移动式机器人分离式视觉定位导航方法及其定位导航系统
CN105511456A (zh) * 2014-09-23 2016-04-20 苏州宝时得电动工具有限公司 自动行走设备控制方法及自动工作系统
EP3171133A1 (en) * 2015-11-19 2017-05-24 Sikorsky Aircraft Corporation Kinematic motion planning with regional planning constraints

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3506039B1 (en) 2017-12-27 2022-05-25 Kubota Corporation Work area determination system for autonomous traveling work machine, autonomous traveling work machine and work area determination program
EP3833177B1 (en) 2018-08-08 2022-07-27 The Toro Company Handle and method for training an autonomous vehicle, and methods of storing same
US20210397765A1 (en) * 2018-11-07 2021-12-23 Honda Motor Co., Ltd. Work area zone boundary demarcation apparatus of autonomously navigating work machine
CN111443693A (zh) * 2018-12-27 2020-07-24 北京奇虎科技有限公司 区块超边界处理方法、电子设备及计算机可读存储介质
CN109634287A (zh) * 2019-01-22 2019-04-16 重庆润通智能装备有限公司 割草机路径规划方法及系统
EP4013222A4 (en) * 2019-08-15 2023-08-09 Protect Animals with Satellites, LLC CORRECTION CUFF USING GELOCALIZATION TECHNOLOGY
US11771061B2 (en) 2019-08-15 2023-10-03 Protect Animals with Satellites, LLC Corrective collar utilizing geolocation technology
CN114115211A (zh) * 2020-08-26 2022-03-01 深圳市杉川机器人有限公司 一种自移动设备及系统及建立工作区域地图的方法
CN112132934A (zh) * 2020-09-22 2020-12-25 上海米哈游天命科技有限公司 模型元素的形变处理、画面渲染方法、装置、设备及介质

Also Published As

Publication number Publication date
EP4029372A1 (en) 2022-07-20
US20190369620A1 (en) 2019-12-05
EP3557359A1 (en) 2019-10-23
EP3557359A4 (en) 2020-08-12
US20220075376A1 (en) 2022-03-10

Similar Documents

Publication Publication Date Title
WO2018108178A1 (zh) 自移动设备的回归方法、自移动设备、存储介质和服务器
CN108227705B (zh) 自移动设备的回归方法、自移动设备、存储介质和服务器
EP3540552B1 (en) Automatic work system and control method therefor
US11841710B2 (en) Automatic working system, self-moving device, and methods for controlling same
CN108308059B (zh) 宠物项圈系统及宠物项圈控制方法
WO2021139685A1 (zh) 一种自动工作系统
WO2021047602A1 (zh) 自移动设备及其自动工作系统
US20240069561A1 (en) Mapping objects encountered by a robotic garden tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17882141

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017882141

Country of ref document: EP

Effective date: 20190715