WO2018107830A1 - Alliage amorphe en vrac à base de zirconium hautement plastique sans béryllium ni nickel, et son procédé de préparation - Google Patents

Alliage amorphe en vrac à base de zirconium hautement plastique sans béryllium ni nickel, et son procédé de préparation Download PDF

Info

Publication number
WO2018107830A1
WO2018107830A1 PCT/CN2017/101424 CN2017101424W WO2018107830A1 WO 2018107830 A1 WO2018107830 A1 WO 2018107830A1 CN 2017101424 W CN2017101424 W CN 2017101424W WO 2018107830 A1 WO2018107830 A1 WO 2018107830A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
less
amorphous alloy
bulk amorphous
zirconium
Prior art date
Application number
PCT/CN2017/101424
Other languages
English (en)
Chinese (zh)
Inventor
吕昭平
曹迪
王辉
吴渊
刘雄军
Original Assignee
北京科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京科技大学 filed Critical 北京科技大学
Publication of WO2018107830A1 publication Critical patent/WO2018107830A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/10Amorphous alloys with molybdenum, tungsten, niobium, tantalum, titanium, or zirconium or Hf as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/11Making amorphous alloys

Definitions

  • the invention belongs to a bulk amorphous alloy, in particular to a high plasticity Zr-based bulk amorphous alloy which does not contain metal elements Be and Ni, and has a critical dimension of not less than 5 mm and a plastic deformation capacity of not less than 3%.
  • Amorphous alloys are metal materials that have emerged in recent years as a new generation of structural and functional applications. Different from the long-range ordered arrangement of atoms in traditional metal materials, the atoms of amorphous alloys are randomly arranged, do not have long-range order, and do not have defects such as grain boundaries and dislocations in their microstructure. Amorphous alloys exhibit excellent properties such as high strength, high hardness, high elastic limit, low modulus, and corrosion resistance that cannot be achieved by conventional crystalline alloys. In addition, the amorphous alloy exhibits a high viscous flow in the supercooled liquid region, exhibiting superplastic deformation characteristics. This property of the amorphous alloy enables it to be accurately press molded in the supercooled liquid region. These superior properties make amorphous alloys have broad application prospects in many fields.
  • the invention develops a high-plastic zirconium-based bulk amorphous alloy without nickel and nickel, and aims to remove not only the Be and Ni elements which have toxic side effects on the human body, but also has good biocompatibility and strong amorphous forming ability and The plastic deformation ability is good to obtain a good comprehensive effect of the amorphous alloy in terms of safety, processability and economy.
  • L is one or more of J or K
  • J is at least one of Mn, Co, Zn, Au, Ag, Pd, Pt, Cd, Ru, Re, Os, Ir
  • K is V, At least one of Ta, Nb, Cr, W, Mo, and Y.
  • the critical dimension of Zr 40 Hf 14 Cu 26 Fe 8 Al 12 alloy capable of forming bulk amorphous is not less than 5 mm, and Vickers hardness is not Below 551 Hv, the plastic strain is not less than 5%, and the width of the supercooled liquid region is not less than 91K.
  • Another object of the present invention is to provide a method for preparing the above alloy, which specifically comprises the following steps:
  • Step 1 The metal Zr, Hf, Cu, Fe, Al, Ag, Nb, Co having a purity of 99.0 wt% to 99.99 wt% is converted into mass according to the atomic percentage of the above expression;
  • Step 2 The surface of the raw material in the step 1 is removed, and the raw materials are washed with industrial ethanol and weighed according to the respective required qualities;
  • Step 3 The raw materials processed in the step 2 are stacked in a non-consumable vacuum electric arc furnace or a cold heading suspension furnace in the order of melting point for melting. After the mother alloy is sufficiently smelted uniformly, the alloy is suction-cast into water-cooled copper molds of different sizes using a vacuum suction casting apparatus to obtain an amorphous alloy material.
  • the alloy does not contain Be and Ni elements harmful to living organisms, and is excellent in biocompatibility.
  • the alloy has a strong amorphous forming ability, and the amorphous alloy prepared by the copper mold suction casting method has a critical dimension of not less than 5 mm, and can satisfy the dimensional requirements in the field of amorphous alloy processing.
  • the alloy has good plastic deformation ability, and the plastic strain at break is more than 3%, and the maximum is up to 18%.
  • the alloy has high hardness and its Vickers hardness is higher than 540 Hv.
  • the alloy has a wide temperature range of supercooled liquid phase, not less than 53K, and up to 92K, which is advantageous for superplastic forming.
  • Figure 1 is an XRD pattern of a Zr-Hf-Cu-Fe-Al bulk amorphous alloy prepared in Example 1 of the present invention
  • Figure 2 is a graph showing the compressive stress-strain curve of a Zr-Hf-Cu-Fe-Al bulk amorphous alloy prepared in Example 1 of the present invention.
  • Figure 3 is an XRD pattern of Zr-Hf-Cu-Fe-Al-L1 and Zr-Hf-Cu-Fe-Al-L2 bulk amorphous alloys prepared in Examples 2 and 3 of the present invention.
  • Figure 4 is a Vickers hardness of a Zr-Hf-Cu-Fe-Al-L1 bulk amorphous alloy prepared in Example 2 of the present invention.
  • Example 1 Preparation and properties of Zr-Hf-Cu-Fe-Al bulk amorphous alloy
  • An alloy of Zr 46 Hf 8 Cu 26 Fe 8 Al 12 , Zr 44 Hf 10 Cu 26 Fe 8 Al 12 , Zr 42 Hf 12 Cu 26 Fe 8 Al 12 and Zr 40 Hf 14 Cu 26 Fe 8 Al 12 was obtained.
  • the compressive stress-strain curve of the alloy is shown in Figure 2. It can be seen that the alloy does not immediately undergo catastrophic fracture after reaching the yield strength, but undergoes a plastic deformation (> 5%), wherein the Zr 40 Hf 14 Cu 26 Fe 8 Al 12 alloy has the largest plastic deformation ability. The plastic deformation before fracture reached 18%, indicating that the bulk amorphous alloy of the alloy system has good plastic deformation ability. See Table 1 for the relevant plastic deformation capability data.
  • Figure 3 shows the XRD pattern of a 5 mm sample of Zr a Hf b Cu 26 Fe 8 Al 12 L1 g alloy.
  • the XRD pattern of the 5 mm sample has only a typical diffuse scattering peak, indicating that the 5 mm alloy is amorphous.
  • the alloy has a strong amorphous forming ability.
  • the alloy composition was prepared as Zr 46 Cu 26 Fe 8 Al 12 Hf 6 Nb 1 Co 1 and Zr 38 Cu 26 Fe 8 Al 12 Hf 14 Nb 1 Ag 1 .
  • the XRD pattern of the 5 mm sample of Zr a Hf b Cu 26 Fe 8 Al 12 L2 g alloy in Example 3 is shown in Fig. 3, in which only the amorphous diffuse scattering peak is typical, indicating that the 5 mm alloy is amorphous phase, the alloy Has a strong amorphous forming ability.
  • Table 1 Composition, mechanical properties and thermodynamic parameters of a non-Be non-Ni high plasticity Zr-based bulk amorphous alloy of the present invention

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials For Medical Uses (AREA)

Abstract

L'invention concerne un alliage amorphe en vrac à base de zirconium hautement plastique sans béryllium ni nickel, et son procédé de préparation. L'alliage comprend les composants suivants (en pourcentage atomique) : Zr : 38-50 %, Hf : 2-15 %, Cu : 20-30 %, Fe : 5-10 %, Al : 10-15 %, Co : 0-5 %, Ag : 0-5 % et Nb : 0-5 % ; et l'alliage est préparé par moulage par aspiration dans un moule en cuivre/fusion à l'arc. L'alliage amorphe ne contient pas d'éléments métalliques tels que Be et Ni, améliorant ainsi la biocompatibilité de l'alliage à base de Zr ; l'alliage présente une capacité de formation amorphe élevée, ce qui permet la préparation d'un alliage amorphe en vrac à base de Zr ayant une taille critique non inférieure à 5 mm par un procédé de moulage par aspiration dans un moule en cuivre ; l'alliage présente une dureté élevée, sa dureté Vickers étant toujours supérieure à 540 Hv ; l'alliage présente une capacité de déformation plastique supérieure à 3 % ; et l'alliage présente une large plage de région liquide super-refroidie, le maximum étant de 92 K. Cet alliage présente de nombreuses possibilités d'application dans le domaine des pièces et des dispositifs médicaux complexes et précis, des articulations et des os artificiels, ainsi que dans d'autres matériaux biomédicaux.
PCT/CN2017/101424 2016-12-12 2017-09-12 Alliage amorphe en vrac à base de zirconium hautement plastique sans béryllium ni nickel, et son procédé de préparation WO2018107830A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611141148.2A CN106756647B (zh) 2016-12-12 2016-12-12 一种无铍无镍的高塑性锆基块体非晶合金及其制备方法
CN201611141148.2 2016-12-12

Publications (1)

Publication Number Publication Date
WO2018107830A1 true WO2018107830A1 (fr) 2018-06-21

Family

ID=58881118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/101424 WO2018107830A1 (fr) 2016-12-12 2017-09-12 Alliage amorphe en vrac à base de zirconium hautement plastique sans béryllium ni nickel, et son procédé de préparation

Country Status (2)

Country Link
CN (1) CN106756647B (fr)
WO (1) WO2018107830A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115247243A (zh) * 2022-08-24 2022-10-28 盘星新型合金材料(常州)有限公司 含hf的轻质大尺寸块体非晶合金及其制备方法、应用
CN115637395A (zh) * 2022-09-19 2023-01-24 盘星新型合金材料(常州)有限公司 具有塑性变形的高硬度大尺寸锆基非晶合金及其制备方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106756647B (zh) * 2016-12-12 2019-06-11 北京科技大学 一种无铍无镍的高塑性锆基块体非晶合金及其制备方法
CN106702292B (zh) * 2016-12-12 2020-01-07 北京科技大学 含N的无Be无Ni高硬Zr基块体非晶合金及制备方法
CN107779790B (zh) * 2017-09-25 2019-04-19 北京科技大学 一种含锗无镍无磷大尺寸钯基非晶合金及其制备方法
CN108707844A (zh) * 2018-05-22 2018-10-26 大连理工大学 一种低成本Zr基块体金属玻璃及其制备方法
CN109182876B (zh) * 2018-10-19 2019-08-30 华中科技大学 一种晶态含铍高熵合金材料及其制备方法
CN109207872B (zh) * 2018-11-15 2020-12-29 北京科技大学 无镍无铍无铜高非晶形成能力的锆基块体非晶合金及制备
CN109355602B (zh) * 2018-11-15 2020-12-29 北京科技大学 具有高玻璃形成能力无镍无铍锆基非晶合金及制备和应用
CN109338252B (zh) * 2018-11-30 2020-11-06 昆明理工大学 一种锆基多孔非晶合金及制备方法
CN111363987B (zh) * 2020-03-26 2021-06-25 西安工业大学 一种超高初始晶化温度非晶合金及其制备方法
CN111996470A (zh) * 2020-08-26 2020-11-27 燕山大学 一种锆基大块非晶合金及其制备方法
CN113862585A (zh) * 2021-09-29 2021-12-31 盘星新型合金材料(常州)有限公司 多组分锆基大块非晶合金及其制备方法
CN114015953A (zh) * 2021-11-11 2022-02-08 盘星新型合金材料(常州)有限公司 无毒无镍的Zr基非晶合金及其制备方法
CN114606452B (zh) * 2022-02-25 2022-12-06 中国科学院宁波材料技术与工程研究所 一种高塑性Hf基双相非晶合金及其制备方法
CN114657480B (zh) * 2022-03-28 2023-04-28 北京科技大学 一种高塑性相分离Zr基非晶合金及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5896642A (en) * 1996-07-17 1999-04-27 Amorphous Technologies International Die-formed amorphous metallic articles and their fabrication
CN1958831A (zh) * 2005-11-01 2007-05-09 中国科学院物理研究所 一种铜锆基非晶合金及其制备方法
CN102383067A (zh) * 2010-08-27 2012-03-21 比亚迪股份有限公司 一种非晶合金粉体及其制备方法、以及一种非晶合金涂层及其制备方法
CN103911564A (zh) * 2012-12-31 2014-07-09 比亚迪股份有限公司 锆基非晶合金及其制备方法
CN106399871A (zh) * 2015-08-03 2017-02-15 斯沃奇集团研究和开发有限公司 无镍的锆和/或铪基块体非晶合金
CN106756647A (zh) * 2016-12-12 2017-05-31 北京科技大学 一种无铍无镍的高塑性锆基块体非晶合金及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101787501B (zh) * 2010-02-05 2012-08-29 北京科技大学 具有拉伸塑性和加工硬化能力的块体金属玻璃复合材料
CN101886234B (zh) * 2010-07-14 2011-08-10 北京科技大学 一种Zr-Cu-Al-Be系大块非晶合金及其制备方法
CN102534437A (zh) * 2011-12-15 2012-07-04 比亚迪股份有限公司 一种非晶合金及其制备方法
EP2881488B1 (fr) * 2013-12-06 2017-04-19 The Swatch Group Research and Development Ltd. Alliage amorphe massif à base de zirconium sans béryllium
CN104745973A (zh) * 2013-12-26 2015-07-01 比亚迪股份有限公司 一种锆基非晶合金及其制备方法
CN105220083B (zh) * 2015-10-21 2017-05-31 东莞宜安科技股份有限公司 一种耐磨耐蚀的非晶合金及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5896642A (en) * 1996-07-17 1999-04-27 Amorphous Technologies International Die-formed amorphous metallic articles and their fabrication
CN1958831A (zh) * 2005-11-01 2007-05-09 中国科学院物理研究所 一种铜锆基非晶合金及其制备方法
CN102383067A (zh) * 2010-08-27 2012-03-21 比亚迪股份有限公司 一种非晶合金粉体及其制备方法、以及一种非晶合金涂层及其制备方法
CN103911564A (zh) * 2012-12-31 2014-07-09 比亚迪股份有限公司 锆基非晶合金及其制备方法
CN106399871A (zh) * 2015-08-03 2017-02-15 斯沃奇集团研究和开发有限公司 无镍的锆和/或铪基块体非晶合金
CN106756647A (zh) * 2016-12-12 2017-05-31 北京科技大学 一种无铍无镍的高塑性锆基块体非晶合金及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115247243A (zh) * 2022-08-24 2022-10-28 盘星新型合金材料(常州)有限公司 含hf的轻质大尺寸块体非晶合金及其制备方法、应用
CN115247243B (zh) * 2022-08-24 2023-06-27 盘星新型合金材料(常州)有限公司 含Hf的轻质大尺寸块体非晶合金及其制备方法、应用
CN115637395A (zh) * 2022-09-19 2023-01-24 盘星新型合金材料(常州)有限公司 具有塑性变形的高硬度大尺寸锆基非晶合金及其制备方法

Also Published As

Publication number Publication date
CN106756647A (zh) 2017-05-31
CN106756647B (zh) 2019-06-11

Similar Documents

Publication Publication Date Title
WO2018107830A1 (fr) Alliage amorphe en vrac à base de zirconium hautement plastique sans béryllium ni nickel, et son procédé de préparation
CN108220742B (zh) 一种微合金化Ti-Zr-Hf-V-Nb-Ta难熔高熵合金及其制备方法
CN107419154B (zh) 一种具有超弹性的TiZrHfNbAl高熵合金及其制备方法
Zhang et al. Effect of Nb addition on microstructure, mechanical properties and castability of β-type Ti–Mo alloys
WO2018107829A1 (fr) Alliage amorphe massif à base de zirconium ultra-dur contenant de l'azote et exempt de béryllium et de nickel, et son procédé de préparation
Abdi et al. Effect of Nb addition on microstructure evolution and nanomechanical properties of a glass-forming Ti–Zr–Si alloy
Zhang et al. Effects of Nb additions on the precipitate morphology and hardening behavior of Ni-rich Ni55Ti45 alloys
RU2730348C2 (ru) Интерметаллический сплав на основе титана
Han et al. Microstructure, phase stability and mechanical properties of Nb–Ni–Ti–Co–Zr and Nb–Ni–Ti–Co–Zr–Hf high entropy alloys
CN109207872B (zh) 无镍无铍无铜高非晶形成能力的锆基块体非晶合金及制备
CN107488803A (zh) 一种生物医用前过渡族金属高熵合金
WO2016015588A1 (fr) Alliage et son procédé de préparation
Huang et al. A TiAl based alloy with excellent mechanical performance prepared by gas atomization and spark plasma sintering
CN109252112B (zh) 一种具有超大非晶形成能力的Ti基非晶合金及其制备方法
EP3045557A1 (fr) Alliage amorphe à base de zircone et son procédé de préparation
CN107523719B (zh) 一种新型高硬度镍钛基合金
Lin et al. Designing a toxic-element-free Ti-based amorphous alloy with remarkable supercooled liquid region for biomedical application
Li et al. Zr–Si biomaterials with high strength and low elastic modulus
CN102534439B (zh) 一种无镍低铜锆基块体非晶合金及其制备方法
CN109355602B (zh) 具有高玻璃形成能力无镍无铍锆基非晶合金及制备和应用
Moshokoa et al. Effects of Mo content on the microstructural and mechanical properties of as-cast Ti-Mo alloys
Eckert et al. Ti-base bulk nanostructure-dendrite composites: Microstructure and deformation
Cossú et al. Mechanical and microstructural characterization of as-cast Ti-12Mo-xNb alloys for orthopedic application
Zhang et al. Study of Ag precipitation and mechanical properties of Ti–Ta–Ag ternary alloy
KR20100021666A (ko) 열간 가공성이 우수한 고강도 고도전성 구리 합금

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17881620

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17881620

Country of ref document: EP

Kind code of ref document: A1