CN115247243A - 含hf的轻质大尺寸块体非晶合金及其制备方法、应用 - Google Patents

含hf的轻质大尺寸块体非晶合金及其制备方法、应用 Download PDF

Info

Publication number
CN115247243A
CN115247243A CN202211017947.4A CN202211017947A CN115247243A CN 115247243 A CN115247243 A CN 115247243A CN 202211017947 A CN202211017947 A CN 202211017947A CN 115247243 A CN115247243 A CN 115247243A
Authority
CN
China
Prior art keywords
amorphous alloy
equal
alloy
light large
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211017947.4A
Other languages
English (en)
Other versions
CN115247243B (zh
Inventor
刘思路
张晓平
彭炜
陈云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panxing New Alloy Material Changzhou Co ltd
Original Assignee
Panxing New Alloy Material Changzhou Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panxing New Alloy Material Changzhou Co ltd filed Critical Panxing New Alloy Material Changzhou Co ltd
Priority to CN202211017947.4A priority Critical patent/CN115247243B/zh
Publication of CN115247243A publication Critical patent/CN115247243A/zh
Application granted granted Critical
Publication of CN115247243B publication Critical patent/CN115247243B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/10Amorphous alloys with molybdenum, tungsten, niobium, tantalum, titanium, or zirconium or Hf as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明属于块体非晶合金技术领域,具体涉及一种含HF的轻质大尺寸块体非晶合金及其制备方法、应用,其原子百分比表达式为:ZraCubNicAldTieBefHfg;其中40≤a≤45;10≤b≤15;8≤c≤12;8≤d≤16;5≤e≤12;8≤f≤13;0≤g≤5;本发明的含HF的轻质大尺寸块体非晶合金及其制备方法、应用通过大幅度提高Al和Ti元素的含量,使得轻质非晶合金的整体密度减轻,同时采用Hf元素作为改性材料对具有出色非晶形成能力的ZrCuNiAlTi体系进行改性,让Hf原子占据ZrCuNiAlTi稳定团簇的间隙而不至于破坏系统的整体平衡,有力保证了轻质非晶合金的稳定非晶形成能力。

Description

含HF的轻质大尺寸块体非晶合金及其制备方法、应用
技术领域
本发明属于块体非晶合金技术领域,具体涉及一种含HF的轻质大尺寸块体非晶合金及其制备方法、应用。
背景技术
结构材料,提供支撑、保护、屏蔽等作用。随着非晶成形能力的发掘,块体非晶材料成为结构材料的重要候选。随着日益严苛的要求,轻质大尺寸新型块体非晶合金的应用迫在眉睫。
块体非晶材料的形成能力是非晶材料的特有问题,决定其形成能力的物理因素包括原子结构、热力学及动力学判据。但是,目前并没有明确的非晶合金成分和性能设计方法,可以准确确定非晶合金体系的最佳形成成分区间。微量掺杂对非晶材料,特别是非晶合金的形成能力、力学、物理性能具备显著调控作用。尽管微量掺杂的调控作用的物理机制仍不清楚,该方法在新成分设计实验中占据重要地位。
而轻质非晶合金在非晶合金领域研究尚且不足,如何制备具备稳定非晶形成能力的轻质非晶合金成为业界亟需解决的问题。
发明内容
本发明提供了一种含HF的轻质大尺寸块体非晶合金及其制备方法、应用,以解决轻质非晶合金非晶形成能力不稳定的问题。
为了解决上述技术问题,本发明提供了一种含HF的轻质大尺寸块体非晶合金,其原子百分比表达式为:ZraCubNicAldTieBefHfg;其中40≤a≤45;10≤b≤15;8≤c≤12;8≤d≤16;5≤e≤12;8≤f≤13;0≤g≤5。
又一方面,本发明还提供了一种含HF的轻质大尺寸块体非晶合金的制备方法,包括如下步骤:步骤S1,将如权利要求1所述的各金属原料堆放在熔炼设备内,熔炼获得合金铸锭;步骤S2,对合金铸锭进行压铸,得到含HF的轻质大尺寸块体非晶合金。
第三方面,本发明还提供了一种含HF的轻质大尺寸块体非晶合金在结构材料中的应用。
本发明的有益效果是,本发明的含HF的轻质大尺寸块体非晶合金及其制备方法、应用通过大幅度提高Al和Ti元素的含量,使得轻质非晶合金的整体密度减轻,同时采用Hf元素作为改性材料对具有出色非晶形成能力的ZrCuNiAlTi 体系进行改性,让Hf原子占据ZrCuNiAlTi稳定团簇的间隙而不至于破坏系统的整体平衡,有力保证了轻质非晶合金的稳定非晶形成能力。
本发明的其他特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。
为使本发明的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明的含HF的轻质大尺寸块体非晶合金的XRD曲线图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
由于超急冷凝固,合金凝固时原子来不及有序排列结晶,得到的固态合金是长程无序结构,没有晶态合金的晶粒、晶界存在,称之为非晶合金,被称为是冶金材料学的一项革命。这种非晶合金具有许多独特的性能,如优异的磁性、耐蚀性、耐磨性、高的强度、硬度和韧性,高的电阻率和机电耦合性能。
本发明提供了一种含HF的轻质大尺寸块体非晶合金,其原子百分比表达式为:ZraCubNicAldTieBefHfg;其中40≤a≤45;10≤b≤15;8≤c≤12;8≤d≤16; 5≤e≤12;8≤f≤13;0≤g≤5。
在本实施例中,具体的,所述轻质大尺寸块体非晶合金的临界尺寸不小于 3mm,且随着Be元素的增加而增大。
在本实施例中,具体的,所述轻质大尺寸块体非晶合金的密度不大于 6.5g/cm3,Zr密度为6.49g/cm3,Cu密度为8.96g/cm3,Ni密度为8.88g/cm3, Al密度为2.7g/cm3,Ti密度为4.5g/cm3,Be密度为1.85g/cm3,Hf密度为 13.31g/cm3,为了降低非晶合金的密度,本申请文件虽采用的是ZrCuNiAlTi这一现有已知体系,但对各元素的占比进行了超出现有该体系非晶合金的范畴,其非晶形成能力因各元素间比例已被改变而变得不可知。
具体的,业界为了追求无毒和成本降低,在非晶合金的配方中会尽量避免 Be元素的加入,但Be元素在轻质非晶合金中有着无法替代的作用,一方面因各元素配比已改变,Be元素的非晶形成能力变得不可或缺,同时,Be的含量降低也会导致材料密度的显著提升,故而不应该一味追求无毒而不添加Be元素,而应当根据本申请文件的实施例数据寻求平衡点。
具体的,Hf的密度远大于其他金属元素,但作为改性元素其可轻易在 ZrCuNiAlTi稳定团簇中占据间隙,同时不破坏系统整体的平衡,因此Hf需控制加入量以保证非晶合金的密度与非晶形成能力的平衡。
本发明还提供了一种含HF的轻质大尺寸块体非晶合金的制备方法,包括如下步骤:步骤S1,将如权利要求1所述的各金属原料堆放在熔炼设备内,熔炼获得合金铸锭;步骤S2,对合金铸锭进行压铸,得到含HF的轻质大尺寸块体非晶合金。
可选的,所述各金属原料需进行表面氧化皮去除并用工业乙醇清洗原料的预处理后进行步骤S1。
具体的,所述步骤S1中各金属原料堆放包括:按照熔点从高到低的顺序将 Zr、Ti、Ni、Cu、Al依次堆放在真空电弧熔炼炉内;以及将Be和Hf置于五种金属堆叠中间层,依照各金属熔点可保证五种金属的充分熔炼,而Be的熔点 1278℃,Ni熔点为1453℃,Cu熔点为1083℃,故而放置于中间层位置刚合适,而Hf虽熔点远高于其他金属,但其作为微量元素添加放置于中间层可更好的保障熔炼充分。
具体的,所述步骤S1中熔炼包括:在保护气体环境下引弧熔炼,待各金属原料融化并凝固后,翻面继续引弧熔炼,重复若干次至合金铸锭均匀。
具体的,所述步骤S2中对合金铸锭进行压铸的压铸模具为水冷铜模。
本发明还提供了一种如前所述的含HF的轻质大尺寸块体非晶合金在结构材料中的应用。
实施例1
所述块体非晶合金组成为:Zr43Cu14Ni11Al12Ti10Be8Hf2,其制备方法为:
按比例称取各组分,依次将Zr、Ti、Ni、Cu、Al放入真空电弧熔炼炉内,将Be和Hf元素置于样品堆叠中间层,抽真空至0.1Pa之下,随后通入0.5Pa 氩气并引弧进行熔炼;待合金融化并凝固后,翻面继续引弧熔炼,并重复两到三次,直至合金均匀化;取出合金铸锭,在压铸机中融化后压入直径为3mm的水冷铜模中,得到块体非晶合金棒。
实施例2
所述块体非晶合金组成为:Zr45Cu12Ni8Al12Ti8Be10Hf5,其制备方法为:
按比例称取各组分,依次将Zr、Ti、Ni、Cu、Al放入真空电弧熔炼炉内,将Be和Hf元素置于样品堆叠中间层,抽真空至0.1Pa之下,随后通入0.5Pa 氩气并引弧进行熔炼;待合金融化并凝固后,翻面继续引弧熔炼,并重复两到三次,直至合金均匀化;取出合金铸锭,在压铸机中融化后压入直径为5mm的水冷铜模中,得到块体非晶合金棒。
实施例3
所述块体非晶合金组成为:Zr43Cu14Ni11Al9Ti9Be13Hf1,其制备方法为:
按比例称取各组分,依次将Zr、Ti、Ni、Cu、Al放入真空电弧熔炼炉内,将Be和Hf元素置于样品堆叠中间层,抽真空至0.1Pa之下,随后通入0.5Pa 氩气并引弧进行熔炼;待合金融化并凝固后,翻面继续引弧熔炼,并重复两到三次,直至合金均匀化;取出合金铸锭,在压铸机中融化后压入直径为7mm的水冷铜模中,得到块体非晶合金棒。
对比例1
本对比例1所制备的块体非晶合金组成为:Zr43Cu14Ni11Al12Ti10Be5Hf5,其制备方法为:
按比例称取各组分,依次将Zr、Ti、Ni、Cu、Al放入真空电弧熔炼炉内,将Be和Hf元素置于样品堆叠中间层,抽真空至0.1Pa之下,随后通入0.5Pa 氩气并引弧进行熔炼;待合金融化并凝固后,翻面继续引弧熔炼,并重复两到三次,直至合金均匀化;取出合金铸锭,在压铸机中融化后压入直径为3mm的水冷铜模中,得到块体合金棒,该棒材碎裂无强度。
对各实施例及对比例中制得的合金进行相关性能测试,并将结果汇总于表 1。
表1各实施例及对比例中制得的合金的性能数据
形成能力(mm) 密度(g/cm<sup>3</sup>)
实施例1 3 6.259
实施例2 5 6.432
实施例3 7 6.186
对比例1 3 6.573
由图1及表1中的数据可知,其中,图1中a、b、c、d曲线分别为实施例 1、2、3和对比例1中制得非晶合金的XRD曲线,本申请的各实施例中制得了具有较高非晶形成能力,更优力学性能,以及更轻密度的块体非晶合金。
其中在本发明专利成分区间内,Be元素的增加,有利于合金提升非晶棒材尺寸提升至7mm。
Al元素和Ti元素的含量相对较高,由于轻量元素作用使合金整体密度减轻,密度减轻至6.5g/cm3以下,远低于现在量产的非晶牌号。
而对比例1中的合金,由于失去适量Be元素的改性作用,使该成分的合金非晶成形能力不足,力学性能受限。
综上所述,本发明的含HF的轻质大尺寸块体非晶合金及其制备方法、应用通过大幅度提高Al和Ti元素的含量,使得轻质非晶合金的整体密度减轻,同时采用Hf元素作为改性材料对具有出色非晶形成能力的ZrCuNiAlTi体系进行改性,让Hf原子占据ZrCuNiAlTi稳定团簇的间隙而不至于破坏系统的整体平衡,有力保证了轻质非晶合金的稳定非晶形成能力。
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (8)

1.一种含HF的轻质大尺寸块体非晶合金,其特征在于,其原子百分比表达式为:
ZraCubNicAldTieBefHfg;其中
40≤a≤45;
10≤b≤15;
8≤c≤12;
8≤d≤16;
5≤e≤12;
8≤f≤13;
0≤g≤5。
2.如权利要求1所述的含HF的轻质大尺寸块体非晶合金,其特征在于,
所述轻质大尺寸块体非晶合金的临界尺寸不小于3mm。
3.如权利要求1所述的含HF的轻质大尺寸块体非晶合金,其特征在于,
所述轻质大尺寸块体非晶合金的密度不大于6.5g/cm3
4.一种含HF的轻质大尺寸块体非晶合金的制备方法,其特征在于,包括如下步骤:
步骤S1,将如权利要求1所述的各金属原料堆放在熔炼设备内,熔炼获得合金铸锭;
步骤S2,对合金铸锭进行压铸,得到含HF的轻质大尺寸块体非晶合金。
5.如权利要求4所述的制备方法,其特征在于,
所述步骤S1中各金属原料堆放包括:
按照熔点从高到低的顺序将Zr、Ti、Ni、Cu、Al依次堆放在真空电弧熔炼炉内;以及
将Be和Hf置于五种金属堆叠中间层。
6.如权利要求4所述的制备方法,其特征在于,
所述步骤S1中熔炼包括:
在保护气体环境下引弧熔炼,待各金属原料融化并凝固后,翻面继续引弧熔炼,重复若干次至合金铸锭均匀。
7.如权利要求4所述的制备方法,其特征在于,
所述步骤S2中对合金铸锭进行压铸的压铸模具为水冷铜模。
8.一种如权利要求1所述的含HF的轻质大尺寸块体非晶合金在结构材料中的应用。
CN202211017947.4A 2022-08-24 2022-08-24 含Hf的轻质大尺寸块体非晶合金及其制备方法、应用 Active CN115247243B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211017947.4A CN115247243B (zh) 2022-08-24 2022-08-24 含Hf的轻质大尺寸块体非晶合金及其制备方法、应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211017947.4A CN115247243B (zh) 2022-08-24 2022-08-24 含Hf的轻质大尺寸块体非晶合金及其制备方法、应用

Publications (2)

Publication Number Publication Date
CN115247243A true CN115247243A (zh) 2022-10-28
CN115247243B CN115247243B (zh) 2023-06-27

Family

ID=83699698

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211017947.4A Active CN115247243B (zh) 2022-08-24 2022-08-24 含Hf的轻质大尺寸块体非晶合金及其制备方法、应用

Country Status (1)

Country Link
CN (1) CN115247243B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1122148A (zh) * 1993-04-07 1996-05-08 加利福尼亚技术学院 含铍金属玻璃的形成
CN1476617A (zh) * 2000-01-05 2004-02-18 霍尼韦尔国际公司 块状非晶体金属磁元件
JP2008121215A (ja) * 2006-11-09 2008-05-29 Fuji Xerox Co Ltd 鍵、真偽判定装置、施錠装置、真偽判定プログラム、施錠プログラム
CN101787501A (zh) * 2010-02-05 2010-07-28 北京科技大学 具有拉伸塑性和加工硬化能力的块体金属玻璃复合材料
US20150345000A1 (en) * 2012-12-31 2015-12-03 Byd Company Limited Amorphous alloy and method for preparing the same
US20180044770A1 (en) * 2015-02-15 2018-02-15 Institute Of Metal Research, Chinese Academy Of Sciences (ZrM)-(CuN)-Ni-Al-RE amorphous alloy and manufacturing method and application thereof
WO2018107830A1 (zh) * 2016-12-12 2018-06-21 北京科技大学 一种无铍无镍的高塑性锆基块体非晶合金及其制备方法
CN109207872A (zh) * 2018-11-15 2019-01-15 北京科技大学 无镍无铍无铜高非晶形成能力的锆基块体非晶合金及制备
CN114214576A (zh) * 2021-12-24 2022-03-22 盘星新型合金材料(常州)有限公司 微量Ti元素改性无Be块体非晶合金及制备方法、应用
CN114515822A (zh) * 2020-11-18 2022-05-20 安泰非晶科技有限责任公司 一种非晶纳米晶合金带材及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1122148A (zh) * 1993-04-07 1996-05-08 加利福尼亚技术学院 含铍金属玻璃的形成
CN1476617A (zh) * 2000-01-05 2004-02-18 霍尼韦尔国际公司 块状非晶体金属磁元件
JP2008121215A (ja) * 2006-11-09 2008-05-29 Fuji Xerox Co Ltd 鍵、真偽判定装置、施錠装置、真偽判定プログラム、施錠プログラム
CN101787501A (zh) * 2010-02-05 2010-07-28 北京科技大学 具有拉伸塑性和加工硬化能力的块体金属玻璃复合材料
US20150345000A1 (en) * 2012-12-31 2015-12-03 Byd Company Limited Amorphous alloy and method for preparing the same
US20180044770A1 (en) * 2015-02-15 2018-02-15 Institute Of Metal Research, Chinese Academy Of Sciences (ZrM)-(CuN)-Ni-Al-RE amorphous alloy and manufacturing method and application thereof
WO2018107830A1 (zh) * 2016-12-12 2018-06-21 北京科技大学 一种无铍无镍的高塑性锆基块体非晶合金及其制备方法
CN109207872A (zh) * 2018-11-15 2019-01-15 北京科技大学 无镍无铍无铜高非晶形成能力的锆基块体非晶合金及制备
CN114515822A (zh) * 2020-11-18 2022-05-20 安泰非晶科技有限责任公司 一种非晶纳米晶合金带材及其制备方法
CN114214576A (zh) * 2021-12-24 2022-03-22 盘星新型合金材料(常州)有限公司 微量Ti元素改性无Be块体非晶合金及制备方法、应用

Also Published As

Publication number Publication date
CN115247243B (zh) 2023-06-27

Similar Documents

Publication Publication Date Title
US9616495B2 (en) Amorphous alloy and method for manufacturing the same
KR20060037420A (ko) 스퍼터링 타겟트 및 그 제조방법
EP3045557B1 (en) Zirconium-based amorphous alloy and preparation method therefor
WO2014079188A1 (zh) 一种锆基非晶合金
CN114836700B (zh) 兼具高强度和高硬度的大尺寸锆基非晶合金及其制备方法
WO2006104152A1 (ja) 銅合金およびその製造方法
JP5520533B2 (ja) 銅合金材およびその製造方法
WO2012132937A1 (ja) 電子材料用Cu-Co-Si系銅合金条及びその製造方法
CN104745973A (zh) 一种锆基非晶合金及其制备方法
CN113862585A (zh) 多组分锆基大块非晶合金及其制备方法
WO2014059769A1 (zh) 一种锆基非晶合金
JP2017101283A (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金塑性加工材、電子・電気機器用部品、端子、及び、バスバー
KR20140002001A (ko) 굽힘 가공성이 우수한 Cu-Ni-Si 계 합금조
CN115354246B (zh) 稀土改性的轻质块体非晶合金及其制备方法、应用
EP2692877B1 (en) Copper alloy and method for producing copper alloy
CN113930694B (zh) 稀土元素改性增强的块体非晶合金及其制备方法、应用
CN1733953A (zh) 一种高强高导铜合金及其制备方法
CN104919067A (zh) 电子电气设备用铜合金、电子电气设备用铜合金薄板、电子电气设备用导电元件及端子
CN115247243B (zh) 含Hf的轻质大尺寸块体非晶合金及其制备方法、应用
CN108715979B (zh) 一种氧调制相变的非晶复合材料及其制备方法
CN114214576A (zh) 微量Ti元素改性无Be块体非晶合金及制备方法、应用
CN110453105B (zh) 一种钯钼精密电阻合金及其制备方法
CN113930695B (zh) 含Al低密度块体非晶合金及其制备方法、应用
CN104498845B (zh) 一种锆基非晶合金及其制备方法
JP5607460B2 (ja) 切削加工性に優れた銅合金鋳塊と銅合金材料、およびこれを用いた銅合金部品

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant