WO2018107636A1 - 一种工字型硅油减震器壳体及其整体旋压成型方法 - Google Patents

一种工字型硅油减震器壳体及其整体旋压成型方法 Download PDF

Info

Publication number
WO2018107636A1
WO2018107636A1 PCT/CN2017/081570 CN2017081570W WO2018107636A1 WO 2018107636 A1 WO2018107636 A1 WO 2018107636A1 CN 2017081570 W CN2017081570 W CN 2017081570W WO 2018107636 A1 WO2018107636 A1 WO 2018107636A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel
spinning
shovel
mold
lower molds
Prior art date
Application number
PCT/CN2017/081570
Other languages
English (en)
French (fr)
Inventor
唐季平
严军
潘益芳
金小波
薛克敏
代光旭
瞿方
张建新
Original Assignee
南通福乐达汽车配件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通福乐达汽车配件有限公司 filed Critical 南通福乐达汽车配件有限公司
Publication of WO2018107636A1 publication Critical patent/WO2018107636A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details

Definitions

  • the invention relates to a processing method of a crankshaft silicone oil damper housing, in particular to an integral spinning forming method of an I-shaped silicone oil damper housing and a processing method thereof.
  • crankshaft torsional vibration damper In order to reduce the torsional vibration of the crankshaft, improve the fatigue life of the crankshaft, and reduce the vibration and noise of the entire vehicle, modern vehicles will install the crankshaft torsional vibration damper at the front end of the crankshaft with the largest torsional vibration amplitude of the engine.
  • power type damping type and composite type
  • the crankshaft silicone oil shock absorber is a kind of damping shock absorber.
  • This silicone oil damper requires a good seal and a large inertial body to ensure reliable operation and good application requirements. It is suitable for large and medium-sized marine engines and automobiles (heavy vehicles, light vehicles, racing cars, construction machinery vehicles, etc.) On the engine.
  • the spoke portion of the conventional silicone oil damper housing is located at the bottom plate position, resulting in a relatively simple installation method, and the spokes of the housing after the fixed installation are not movable.
  • the conventional processing methods are generally a method of integral casting, forging machining and tailor welding.
  • the whole casting is easy to produce shrinkage holes, shrinkage, etc., its mechanical properties can not be guaranteed, and the sealing property is also difficult to meet the requirements; forging machine processing has low material utilization rate, large machining allowance, metal flow lines are cut, and parts are resistant. Defects such as low corrosion performance.
  • the silicone oil damper housing and its manufacturing method disclosed in CN 101672340A although the welding process is adopted, its material utilization rate is not high, and at the same time, since the bottom of the cylindrical inner cylinder is directly welded to the basin In the middle of the outer cylinder, due to the defects of the welding itself, various welding defects are easily generated, and the concentricity of the inner and outer cylinders is also difficult to ensure, and the molding quality is difficult to control.
  • the object of the present invention is to overcome the deficiencies of the prior art and provide an I-shaped silicone oil damper housing whose spoke position can be adjusted up and down according to the cooperation requirements of various components of the engine, thereby making the engine structure more compact and the engine The fit meets the flexible design requirements.
  • the present invention proposes the following technical solutions:
  • An I-shaped silicone oil damper housing comprises a spoke and an annular cavity disposed at a periphery of the spoke.
  • the annular cavity has a bottom plate, an inner tube and an outer tube, wherein the cross-sectional structure of the inner tube and the spoke is I-shaped
  • the spokes may be disposed at a central or non-central position of the inner cylinder as desired, the spokes being disposed inside the inner cylinder and not in a plane with the bottom plate.
  • the overall spinning forming method of the I-shaped silicone oil damper housing comprises the following steps:
  • step b punching the hole: using a punching machine to punch the circular plate obtained in step a, punching the center hole, and obtaining a circular plate with a middle hole;
  • Shovel boss Install the upper and lower molds and two shovel wheels on the CNC spinning machine to control the speed of the upper and lower molds to 300 rpm. Use the first shovel wheel and the second shovel wheel to shovel the circular sheet at the same time. Rotating operation, forming a boss on the circular plate, controlling the feed speed of the first shovel wheel and the second shovel wheel to be 3.0-4.0 mm/s, the feed rate is 0.6-0.8 mm/r, and the shovel depth 1.5 to 2.4 mm, the cutting speed is 1.0 mm/s;
  • the upper mold and the lower mold are respectively mounted to the universal mold position of the spinning machine
  • the first spinning wheel and the second spinning wheel are mounted on the spinning roller frame of the numerical control spinning machine, wherein the first spinning wheel and the second spinning wheel are respectively arranged on both sides of the lower die, and two spinning
  • the wheel connecting line is in the same line with the central hole of the lower mold, and the wheel axis of the two spinning wheels is at an angle of 45° with the central axis of the upper and lower molds;
  • D4 adjust the spinning rollers on both sides to the outer edge of the circular sheet, start the spinning machine, mold the upper and lower molds, control the rotation speed of the upper and lower molds to 300 rpm, and the axial feed speed of the two spinning wheels is 3.0 to 4.0.
  • Mm / s feed rate of 0.60 ⁇ 0.80mm / r, so that the outer edge of the circular sheet is bent down to the upper surface of the lower mold;
  • Spinning and flanging Install the upper and lower molds and the spinning wheel on the CNC spinning machine to control the rotation speed of the upper and lower molds to 300 rpm. Use the burring wheel to turn the bending in step d, and use the rotary wheel to spin.
  • the outer cylinder is processed to control the axial feed speed of the burring wheel to be 2.0-3.0 mm/s, the feed rate is 0.40-0.60 mm/r, the radial feed rate is 1.0-1.5 mm/s, and the feed rate is The ratio is 0.20 ⁇ 0.40mm/r, the radial feed speed of the rotary wheel is 0.8 ⁇ 1.2mm/s, and the feed rate is 0.16 ⁇ 0.24mm/r;
  • step e Machining: The hole is drilled into the end face of the semi-finished product formed in step e, and the casing is partially machined on the lathe to prepare a finished product.
  • the turning wheel and the flat wheel are mounted on the spinning roller frame of the numerical control spinning machine, wherein the turning wheel and the flat wheel are symmetrically distributed on both sides of the upper and lower molds, the axis of the turning wheel and the upper and lower molds
  • the central axis is at an angle of 45°
  • the rotary wheel is axially parallel to the central axis of the upper and lower molds
  • E4 adjust the burring wheel to the starting position of the circular sheet flanging, start the spinning machine, mold the upper and lower molds, control the rotation speed of the upper and lower molds to 300 rpm, and the radial feed speed of the burring wheel is 1.0 to 1.5 mm. / s, radial feed rate is 0.20 ⁇ 0.40mm / r, axial feed rate is 2.0 ⁇ 3.0mm / s, axial feed rate is 0.40 ⁇ 0.60mm / r, through the flange wheel axial and radial The successive feedings realize the flanging operation of the slab after the step d;
  • step E5 start the rotary wheel to flatten the sheet after the flanging, control the upper and lower mold speed is 300rpm, the radial feed speed of the rotary wheel is 0.8 ⁇ 1.2mm/s, and the feed rate is 0.16 ⁇ 0.24mm. /r, the flattening treatment of the outer surface of the outer cylinder is realized by the flattening wheel, and the thickness of the upper and lower parts of the outer cylinder is uniform.
  • the lower end of the upper mold is provided with a semicircular rib with a spacing of 8 to 12 mm, the radius R of the rib is 0.3 mm, and the lower mold is an intermediate convex disc structure.
  • the first shovel shovel angle arc radius is 2 mm
  • the second shovel wheel shovel angle arc radius is 3.5 mm
  • the straight side dimension is 10-20 mm
  • the straight side upper end adopts 45° slant Edge constraint
  • the horizontal dimension of the oblique side is 2 ⁇ 4mm.
  • the first spinning wheel and the second spinning wheel have a spinning angle of 8 to 10 mm.
  • the burring angle of the burring wheel is 8-10 mm
  • the outer side wall of the slewing wheel is a smooth surface structure or a groove is provided according to the outer cylinder rib structure.
  • the silicone oil crankshaft shock absorber housing is of the I-shaped structure
  • the middle spoke and the bottom plate are not in a horizontal plane, and the spokes can be disposed at the center position of the inner cylinder or at a non-central position according to requirements, and the structure makes it possible According to the matching requirements of various components of the engine, the upper and lower position adjustment is made, so that the engine structure is more compact, and the cooperation with the engine satisfies the flexible design requirements.
  • the conventional process of processing the inner cylinder and reworking the outer cylinder cannot be performed.
  • the inner cylinder boss is formed by the shovel thickening process, and then the sheet material at the periphery of the boss is bent down to form an L-shaped bend, and the inner cylinder of the I-shaped structure is obtained.
  • the outer tube is flanged at the edge of the bent portion, and the sheet is integrally formed by one time, wherein the relative positions of the spokes can be adjusted according to the difference of the L-shaped bending depth.
  • the symmetry of the two spinning wheels is similar to the symmetrical setting of the shovel wheel.
  • the O-shaped structure is formed by the spinning and bending, and the I-shaped structure is obtained.
  • Inner cylinder Therefore, the edge of the sheet is pressed down by the pressing process.
  • the two spinning wheels are only axially fed so that the edge of the circular sheet is bent downward, and the radial feeding edge is made by the spinning wheel after bending.
  • the pressing position moves toward the boss.
  • the bent sheet gradually conforms to the lower mold structure to form an L-shape, while the spinning wheel side presses the sheet while preventing the formation of the shovel.
  • the boss collapses.
  • only one of the two spinning wheels is for radial feeding, and the other is fixed at the edge of the sheet to prevent the sheet from being lifted during the molding process. The precision of the molding.
  • the rotating tooth operation can be added after the spinning and flanging process, which can be realized by using a spinning machine with a rotating gear, or using a machined tooth instead of a spinning machine under the premise of high precision requirement. Tooth operation.
  • the present invention discloses an I-shaped silicone oil damper housing, the spoke position can be adjusted up and down according to needs, and the cooperation with the engine is better, and the processing technology has the following beneficial effects: adopting a new type
  • the processing technology realizes the processing of the I-shaped silicone oil damper housing, and the one-time molding avoids various deficiencies in the conventional processing technology, and the process size can be appropriately changed to adapt to the processing of different size requirements, and the processed outer casing
  • the dislocation of the spoke and the bottom plate not only makes the engine structure more compact, but also cooperates with the engine to meet the flexible design requirements. Therefore, the forming process of the invention has the advantages of high production efficiency, high material utilization, easy quality control, good adaptability, and the like. Good application value and development prospects.
  • Figure 1 is a cross-sectional view showing the structure of an I-shaped silicone oil damper housing of the present invention
  • Fig. 2 is a schematic view showing the structure of a circular plate blank with a middle hole obtained by a blanking process in a blanking process;
  • Figure 3 Schematic diagram of the housing boss formed by the shovel boss process
  • Figure 4 Schematic diagram of the semi-finished casing produced by the spinning and pressing process
  • Figure 5 Schematic diagram of the semi-finished casing produced by the spinning bending and bending process
  • Figure 6 is a schematic view showing the structure of the outer casing of the casing obtained by the spinning and flanging process
  • Figure 7 Schematic diagram of the structure of the I-shaped silicone oil damper housing produced by the machining process
  • Figure 8 is a schematic view showing the assembly of the mold of the shovel boss process of the present invention.
  • Figure 9 is a schematic view showing the assembly of the mold of the spinning and bending process of the present invention.
  • Figure 10 is a schematic view showing the assembly of a mold for the spinning and flanging process of the present invention.
  • an I-shaped silicone oil damper housing disclosed in the present invention comprises a spoke 24 and an annular cavity disposed at a periphery of the spoke.
  • the annular cavity has a bottom plate 25 and an inner tube 26 .
  • the spokes 24 may be located inside the inner cylinder and not in a plane with the bottom plate, and the spokes 24 are centrally provided with a middle hole 28, and the outer wall of the outer cylinder 27 is provided with a rib 29 as needed. .
  • the overall spinning forming method of the I-shaped silicone oil damper housing disclosed by the present invention specifically includes the following steps:
  • Blanking Using a hot-rolled thick steel plate with a thickness of 8 to 10 mm, the plate is cut and blanked to obtain a circular plate (see Fig. 2).
  • step b punching the hole: using a punching machine to punch the circular plate material obtained in step a, and obtain a circular plate with a middle hole (see Fig. 2).
  • the function of the middle hole facilitates the fixing and positioning of the subsequent process. .
  • the two shovel The wheel is gradually cut into the sheet to gradually peel off part of the sheet, and at the same time, local continuous plastic deformation occurs.
  • the sheet at the front end of the shovel wheel accumulates more and more, gradually moving toward the height direction. Transfer, after contacting the upper mold, form a boss under the joint action of the upper mold and the shovel.
  • the upper mold and the lower mold are respectively mounted to the universal mold position of the spinning machine
  • the first spinning wheel and the second spinning wheel are mounted on the spinning roller frame of the numerical control spinning machine, wherein the first spinning wheel and the second spinning wheel are respectively arranged on both sides of the lower die, and two spinning
  • the wheel connecting line is in the same line with the central hole of the lower mold, and the wheel axis of the two spinning wheels is at an angle of 45° with the central axis of the upper and lower molds;
  • step d The circular sheet of step d is subjected to flanging and spinning treatment on the numerically controlled spinning machine by using a burring wheel and a flattening wheel to form an outer cylinder concentric with the boss (see Fig. 6).
  • the specific steps are:
  • the turning wheel and the flat wheel are mounted on the spinning roller frame of the numerical control spinning machine, wherein the turning wheel and the flat wheel are symmetrically distributed on both sides of the upper and lower molds, the axis of the turning wheel and the upper and lower molds
  • the central axis is at an angle of 45°
  • the rotary wheel is axially parallel to the central axis of the upper and lower molds
  • the burring wheel adjusts the burring wheel to the starting position of the circular sheet flanging, start the spinning machine, mold the upper and lower molds, control the rotation speed of the upper and lower molds to 300 rpm, and the axial feed speed of the burring wheel is 2.0 to 3.0 mm. /s, the axial feed rate is 0.40 ⁇ 0.60mm/r, the radial feed rate is 1.0 ⁇ 1.5mm/s, and the radial feed rate is 0.20 ⁇ 0.40mm/r, the flanging operation of the slab after the step d is realized by the axial and radial feeding of the burring wheel;
  • step e Machining: The hole is drilled into the end face of the semi-finished product formed in step e, and the casing is partially machined on the lathe to prepare the finished product (see Figure 7).
  • the toothing operation before the machining according to whether the outer wheel of the workpiece has a rotating tooth, specifically: using the two rotating gears on the numerical control spinning machine to press the outer surface of the outer cylinder in step e to obtain the tooth shape, and control the upper and lower molds.
  • the rotation speed is 200 rpm
  • the radial feed speed of one pre-rotary gear is 1.0-1.2 mm/s
  • the feed rate is 0.30-0.36 mm/r
  • the radial feed speed of another fine-rotor gear is 0.4-0.6 mm/s.
  • the feed rate is 0.12 to 0.18 mm/r.
  • the lower end of the upper mold 2 is provided with a semicircular rib 8 with a spacing of 8 to 12 mm, the radius R of the rib is 0.3 mm, and the lower mold 4 is a disc structure with a convex shape in the middle.
  • the sheet material 3 is placed on the lower mold, and is positioned by the intermediate protrusions.
  • the upper mold ribs and the intermediate protrusions are fixed after the upper and lower molds are closed, and the sheet material can be prevented from being unstable during the shovel.
  • the radius of the shovel 10 of the shovel 1 is 2 mm
  • the radius of the shovel angle of the second shovel 5 is 3.5 mm
  • the size of the straight 9 is related to the height of the inner cylinder, which is 10 to 20 mm
  • straight edge 9 upper end adopts 45° oblique side 6 constraint
  • the horizontal dimension of oblique side is 2 ⁇ 4mm, which is adopted in the shovel process due to the shovel structure
  • the local constraint ensures the effective height and thickness of the inner cylinder, and the forming load is small compared with the fully enclosed structure.
  • the lower end of the upper mold 17 is provided with a semicircular rib 8 spaced apart by 8 to 12 mm, and the radius R of the rib is 0.3 mm, and the stepped surface 19 of the lower mold 18 has a convex limit. 20, round
  • the sheet is placed in the lower mold to be positionally restrained by the position of the protrusion.
  • the peripheral portion of the circular sheet boss is in a suspended state, and the spinning of the first spinning wheel 21 and the second spinning wheel 22 is performed.
  • the radius of the corner 23 is 8 to 10 mm, and the inner portion of the I-shaped structure is formed by partially overlapping the stepped surface of the lower mold to form an L-shaped bend with the operation of the two steps.
  • the upper mold 13 and the lower mold 14 are clamped, and the turning angle of the burring wheel 12 in the step e4 is 8 to 10 mm, and the edge of the burring wheel 12 is used during the burring operation.
  • the outer cylinder 16 is gradually subjected to the flanging operation. With the radial feed of the burring wheel 12, the straight edge of the burring wheel is appropriately applied, and finally the outer cylinder is rotated by the horizontally disposed flattening wheel 15
  • the outer side wall of the flat wheel is a smooth surface structure, and the groove can also be designed according to the outer tube convex rib structure, so that the outer tube directly forms a convex rib when it is flat.
  • the structure required for different positions is realized by adjusting the height of the step surface of the lower mold.

Abstract

一种工字型硅油减震器壳体及其整体旋压成型方法。工字型硅油减震器壳体结构包括轮辐(24)及设置在轮辐外围的环形凹腔,环形凹腔具有底板(25),内筒(26)及外筒(27),其中内筒(26)与轮辐(24)的剖面结构呈工字型,工字型结构可为对称型也可为非对称型,轮辐(24)设在内筒内部且与底板不在一个平面上。工字型硅油减震器壳体的整体旋压成型方法包括如下步骤:a、落料;b、冲中孔;c、铲旋凸台;d、旋压折弯;e、旋压翻边;f、机加工制备出成品。这种工字型硅油减震器壳体,其轮辐位置可以根据发动机各个部件的配合要求进行上下位置调节,从而使得发动机结构更加紧凑,与发动机的配合满足柔性设计要求。

Description

一种工字型硅油减震器壳体及其整体旋压成型方法 技术领域
本发明涉及一种曲轴硅油减震器壳体的加工方法,尤其涉及一种工字型硅油减震器壳体的整体旋压成型方法及其加工方法。
背景技术
为了消减曲轴的扭转振动,提高曲轴的疲劳寿命,减少整车的振动和噪音,现代的汽车都会在发动机扭振振幅最大的曲轴前端安装曲轴扭振减震器。根据降低扭振方式的不同,可分为动力式、阻尼式和复合式三种,而曲轴硅油减震器就属于阻尼减震器的一种。这种硅油减震器需要良好的密封和较大的惯性体,才能保证工作可靠,达到良好的使用要求,适用于大中型船用发动机及汽车(重型车,轻型车,赛车,工程机械车等)发动机上。
常规的硅油减震器壳体轮辐部分位于底板位置,导致安装方式比较单一,且固定安装后壳体的轮辐不可移动,此外传统的加工方法一般为整体铸造、锻造机加工及拼焊的方式。整体铸造易产生缩孔、缩松等,其机械性能无法保证,密封性也很难满足要求;锻造机加工存在材料利用率较低,机加工余量大,金属流线被切断,零件的抗腐蚀性能低等缺陷。拼焊时由于焊接区的化学成分分布不均匀,从而导致力学性能分布不均匀,产品的动平衡差,其寿命及动态特性会受到很大的影响,易出现多种质量问题。如公开号为CN 101672340A的《硅油减振器壳体及其制造方法》,虽然采用了焊接工艺,但是它的材料利用率却不高,同时由于圆筒状内筒的底部是直接焊接在盆状外筒的中部,受焊接自身缺陷的影响,容易产生各种焊接缺陷,内外筒同心度也难以保证,其成型质量难以控制。
发明内容
本发明的目的在于克服现有技术的缺陷,提供一种工字型硅油减震器壳体,其轮辐位置可以根据发动机各个部件的配合要求进行上下位置调节,从而使得发动机结构更加紧凑,与发动机的配合满足柔性设计要求。
为实现上述目的,本发明提出如下技术方案:
一种工字型硅油减震器壳体,包括轮辐及设置在轮辐外围的环形凹腔,所述环形凹腔具有底板,内筒及外筒,其中内筒与轮辐的剖面结构呈工字型,所述轮辐可以根据需求设置在内筒中心位置或非中心位置,所述轮辐设在内筒内部且与底板不在一个平面上。
一种工字型硅油减震器壳体的整体旋压成型方法,包括如下步骤:
a、落料:采用8~10mm厚的热轧厚钢板,对板材进行剪切落料获得圆形板料;
b、冲中孔:利用冲床对步骤a所获得的圆形板料进行冲中心孔,制得带中孔的圆形板料;
c、铲旋凸台:在数控旋压机上安装上下模具及两个铲旋轮,控制上下模具转速为300rpm,利用第一铲旋轮和第二铲旋轮同时对圆形板料进行铲旋操作,在圆形板料上形成凸台,控制第一铲旋轮和第二铲旋轮进给速度为3.0~4.0mm/s,进给率为0.6~0.8mm/r,铲旋深度为1.5~2.4mm,切入速度为1.0mm/s;
d、旋压折弯:在数控旋压机上安装上下模具及两个旋压轮、具体步骤为:
d1、将上模具和下模具分别安装到旋压机的通用模具位置上;
d2、将第一旋压轮及第二旋压轮安装到数控旋压机的旋压滚轮架上,其中第一旋压轮与第二旋压轮分别布置在下模具两侧,两个旋压轮连接线与下模具中心孔位于同一直线,两个旋压轮的轮轴线与上下模具的中心轴线45°夹角;
d3、将步骤c获得的壳体半成品送料到下模具上;
d4、将两侧旋压轮调整到圆形板料外边缘,启动旋压机,上下模具合模,控制上下模具转动速度为300rpm,两个旋压轮的轴向进给速度为3.0~4.0mm/s、进给率为0.60~0.80mm/r,使得圆形板料外边缘向下折弯至下模具上表面;
d5、控制第一旋压轮不进给,使其紧压在圆形板料外缘表面,压住圆形板料,启动第二旋压轮转动且做径向进给,控制第二旋压轮径向进给速度为2.0~3.0mm/s,进给率为0.40~0.60mm/r,随着第二旋压轮的径向进给,圆形板料凸台以外的边缘形成L型折弯,制得工字型结构的内筒,此处L型折弯的深度决定了中间轮辐的位置;
e、旋压翻边:在数控旋压机上安装上下模具及旋压轮,控制上下模具转速为300rpm,利用翻边轮对步骤d中折弯进行翻边处理,利用旋平轮进行旋压处理形成外筒,控制翻边轮的轴向进给速度为2.0~3.0mm/s,进给率为0.40~0.60mm/r,径向进给速度为1.0~1.5mm/s、进给率为0.20~0.40mm/r,旋平轮的径向进给速度为0.8~1.2mm/s,进给率为0.16~0.24mm/r;
f、机加工:对步骤e形成的半成品的端面钻安装孔,在车床上对壳体局部进行车加工,制备出成品。
所述步骤c中铲旋凸台的具体步骤为:
c1、将上模具和下模具分别安装到旋压机的通用模具位置上;
c2、将两个铲旋轮分别安装在旋压机的两个旋压滚轮架上,并调整好两个铲旋轮的位置,使其位于圆形板料两侧,且两个铲旋轮的连接线与圆形板料中心孔位于同一直线,同时两个铲旋轮的轮轴线与上下模具的中心轴线45°夹角;
c3、将步骤b获得的带中孔的圆形板料送料到下模具上;
c4、将第一铲旋轮及第二铲旋轮移动到距离上模具外边沿40~50mm的初始铲旋位置进行端面切入操作,启动旋压机,上下模具合模,控制上下模具转动速 度为300rmp,第一铲旋轮和第二铲旋轮的进给速度同步控制为3.0~4.0mm/s,进给率0.6~0.8mm/r,铲旋深度为1.5~2.4mm,切入速度为1.0mm/s,随着模具带动圆形板料转动,铲旋轮对圆形板料在轴向施加压力作径向进给运动,由于铲旋轮与板料产生相对转动,故而两个铲旋轮逐渐切入板料中使得部分板料逐渐剥离,同时产生局部连续的塑性变形,随着铲旋轮在径向的进给,铲旋轮前端的板料堆积越来越多,逐渐向高度方向转移,在接触到上模具后,在上模具和铲旋轮的共同作用下形成凸台。
所述步骤e中旋压翻边的具体步骤为:
e1、将上模具和下模具分别安装到旋压机的通用模具位置上;
e2、将翻边轮和旋平轮安装到数控旋压机的旋压滚轮架上,其中翻边轮与旋平轮对称分布在上下模具两侧,所述翻边轮的轴线与上下模具的中心轴线呈45°夹角,所述旋平轮轴向与上下模具的中心轴线平行;
e3、将步骤d获得的半成品送料到下模具上;
e4、将翻边轮调整到圆形板料翻边起始位置,启动旋压机,上下模具合模,控制上下模具转动速度为300rpm,翻边轮的径向进给速度为1.0~1.5mm/s、径向进给率为0.20~0.40mm/r,轴向进给速度为2.0~3.0mm/s,轴向进给率为0.40~0.60mm/r,通过翻边轮轴向及径向的先后进给实现对步骤d后的板坯的翻边操作;
e5、启动旋平轮对翻边后的板料进行旋平处理,控制上下模具转速为300rpm,旋平轮的径向进给速度为0.8~1.2mm/s,进给率为0.16~0.24mm/r,通过旋平轮实现对外筒外表面的压平处理,并保证外筒上下各部厚度均匀。所述步骤c1中上模具下端设有间隔8~12mm的半圆凸筋,该凸筋的半径R为0.3mm,下模具为中间凸起的圆盘结构。
所述步骤c4中第一铲旋轮铲旋角圆弧半径为2mm,第二铲旋轮铲旋角圆弧半径为3.5mm,直边尺寸为10~20mm,直边上端采用45°的斜边约束,斜边与直边采用R=2~4mm圆弧过渡,斜边水平尺寸为2~4mm。
所述步骤d4中第一旋压轮和第二旋压轮的旋压角弧度为8~10mm。
所述步骤e4中翻边轮的翻边角弧度为8~10mm,所述旋平轮外侧壁为光面结构或者根据外筒凸筋结构设有凹槽。
由于本发明中硅油曲轴减震器壳体为工字型结构,中间的轮辐与底板不在一个水平面,且轮辐可以根据需求设置在内筒中心位置也可以位于非中心位置,这种结构使得其可以根据发动机各个部件的配合要求进行上下位置调节,从而使得发动机结构更加紧凑,与发动机的配合满足柔性设计要求,针对这种工字型结构,得常规的先加工内筒再加工外筒的工艺无法实现工字型的加工,本发明中先利用铲旋增厚工艺形成内筒凸台,然后对凸台外围的板料下弯形成L型弯折,制得工字型结构的内筒,再对弯折的部分的边缘处进行翻边形成外筒,整体采用板料一次成型,其中轮辐相对位置可以根据L型折弯深度的不同而调节。
上述具体工艺步骤中不同的位置排布,操作顺序以及控制参数对整个产品的加工都具有关键性的作用:对于铲旋增厚工艺,两个铲旋轮对称设置在板料两侧进行铲旋,且控制两个铲旋轮的速度一样,避免了板料单侧受力造成受力不均,引起板料抖动从而造成金属流动紊乱,采用双面均匀受力使得铲旋过程中稳定性提高,避免局部加载造成金属紊乱,提高工件质量,同时控制两个铲旋轮进给速度以及进给率,确保内筒生长过程稳定,保证厚度上下均匀,且高度达到工件要求,提高工件表面精度。
对于旋压折弯工艺,将两个旋压轮对称设置其作用与铲旋轮对称设置作用相似,在此不过多解释,由于旋压折弯要形成L型结构,制得工字型结构的内筒, 故而先采用下压工艺对板料边缘进行下压操作,此时两个旋压轮只做轴向进给使得圆形板料边缘下弯,折弯后通过旋压轮做径向进给沿着下压位置向凸台方向移动,随着旋压轮的进给,下弯的板料逐渐贴合下模具结构形成L型,同时旋压轮轮边挤压板料同时防止铲旋形成的凸台出现塌陷,在这步操作中两个旋压轮只有一个是做径向进给的,另一个始终不动的压住板料边缘固定板料,避免成型过程中板料翘起,确保成型的精度。
对于旋压翻边工序,先利用翻边轮的翻边角轴向进给进行翻边,再利用翻边角的直边径向进给适当贴膜,最后利用旋平轮径向进给直接贴膜及成形凸筋,确保了翻边操作的精度。
对于外筒外部具有旋齿的结构,可以在旋压翻边工序后增加旋齿操作,其可以采用旋压机配合旋齿轮实现,也可在精度要求高的前提下,采用机加工齿代替旋齿操作。
与现有技术相比,本发明揭示的一种工字型硅油减震器壳体,轮辐位置可以根据需要进行上下调节,与发动机的配合下更好,其加工工艺具有如下有益效果:采用新型的加工工艺实现对工字型硅油减震器壳体的加工,一次性成型避免了常规加工工艺中的各种不足,工艺尺寸适度改变即可适应不同尺寸要求的加工,此外加工出来的外壳其轮辐与底板错位设置,不仅使得发动机结构更加紧凑,而且与发动机的配合满足柔性设计要求,因此本发明的成形工艺还具有生产效率高、材料利用高、质量易于控制、适应性好等优点,具有很好的应用价值和发展前景。
附图说明
图1是本发明工字型硅油减震器壳体的结构剖视图;
图2~图7是本发明所述的工字型硅油减震器壳体成型方法中,各工序制得毛 坯的结构示意图,其中:
图2:落料冲中孔工序得到的带中孔圆形板料毛坯结构示意图;
图3:铲旋凸台工序制得的壳体凸台结构示意图;
图4:旋压折弯下压工序制得的壳体半成品示意图;
图5:旋压折弯折弯工序制得的壳体半成品示意图;
图6:旋压翻边工序制得的壳体外筒结构示意图;
图7:机加工工序制得的工字型硅油减震器壳体成品的结构示意图;
图8是本发明铲旋凸台工序的模具装配示意图;
图9是本发明旋压折弯工序的模具装配示意图;
图10是本发明旋压翻边工序的模具装配示意图。
具体实施方式
下面将结合附图对本发明实施例的技术方案进行清楚、完整的描述。
如图1所示,本发明所揭示的一种工字型硅油减震器壳体,其结构包括轮辐24及设置在轮辐外围的环形凹腔,所述环形凹腔具有底板25,内筒26及外筒27,其中内筒26与轮辐24的剖面结构呈工字型,所述工字型结构可为对称型也可为非对称型(也就是说轮辐可以根据需求设置在内筒中心位置也可以位于非中心位置),所述轮辐24设在内筒内部且与底板不在一个平面上,且所述轮辐24中心设有中孔28,所述外筒27外壁根据需要设置有凸筋29。
如图2~7所示,本发明所揭示的一种工字型硅油减震器壳体的整体旋压成型方法,具体包括如下步骤:
a、落料:采用8~10mm厚的热轧厚钢板,对板材进行剪切落料获得圆形板料(参见图2)。
b、冲中孔:利用冲床对步骤a所获得的圆形板料进行冲中心孔,制得带中孔的圆形板料(参见图2),中孔的作用便于后续工序的固定和定位。
c、铲旋凸台:在数控旋压机上利用两个铲旋轮对步骤b中的圆形板料在轴向施加压力并作径向进给运动,在圆形板料上形成具有一定壁厚和高度的凸台(参见图3),具体步骤为:
c1、将上模具和下模具分别安装到旋压机的通用模具位置上;
c2、将两个铲旋轮分别安装在旋压机的两个旋压滚轮架上,并调整好两个铲旋轮的位置,使其位于圆形板料两侧,且两个铲旋轮的连接线与圆形板料中心孔位于同一直线,同时两个铲旋轮的轮轴线与上下模具的中心轴线45°夹角;
c3、将步骤b获得的带中孔的圆形板料送料到下模具上;
c4、将第一铲旋轮及第二铲旋轮移动到距离上模具外边沿40~50mm的初始铲旋位置进行端面切入操作,启动旋压机,上下模具合模,控制上下模具转动速度为300rmp,第一铲旋轮和第二铲旋轮的进给速度同步控制为3.0~4.0mm/s,进给率0.6~0.8mm/r,铲旋深度为1.5~2.4mm,切入速度为1.0mm/s,随着模具带动圆形板料转动,铲旋轮对圆形板料在轴向施加压力作径向进给运动,由于铲旋轮与板料产生相对转动,故而两个铲旋轮逐渐切入板料中使得部分板料逐渐剥离,同时产生局部连续的塑性变形,随着铲旋轮在径向的进给,铲旋轮前端的板料堆积越来越多,逐渐向高度方向转移,在接触到上模具后,在上模具和铲旋轮的共同作用下形成凸台。
d、旋压折弯:在数控旋压机上安装上下模具及两个旋压轮、具体步骤为:
d1、将上模具和下模具分别安装到旋压机的通用模具位置上;
d2、将第一旋压轮及第二旋压轮安装到数控旋压机的旋压滚轮架上,其中第一旋压轮与第二旋压轮分别布置在下模具两侧,两个旋压轮连接线与下模具中心孔位于同一直线,两个旋压轮的轮轴线与上下模具的中心轴线45°夹角;
d3、将步骤c获得的壳体半成品送料到下模具上;
d4、将两侧旋压轮调整到圆形板料外边缘,启动旋压机,上下模具合模,控制上下模具转动速度为300rpm,两个旋压轮的轴向进给速度为3.0~4.0mm/s、进给率为0.60~0.80mm/r,使得圆形板料外边缘向下折弯至下模具上表面(参见图4);
d5、控制第一旋压轮不进给,使其紧压在圆形板料外缘表面,压住圆形板料,启动第二旋压轮转动且做径向进给,控制第二旋压轮径向进给速度为2.0~3.0mm/s,进给率为0.40~0.60mm/r,随着第二旋压轮的径向进给,圆形板料凸台以外的边缘形成L型折弯(参见图5),制得工字型结构的内筒,此处L型折弯的深度决定了中间轮辐的位置。
e、旋压翻边:在数控旋压机上利用翻边轮和旋平轮对步骤d的圆形板料进行翻边旋压处理,形成与凸台同心的外筒(参见图6),具体步骤为:
e1、将上模具和下模具分别安装到旋压机的通用模具位置上;
e2、将翻边轮和旋平轮安装到数控旋压机的旋压滚轮架上,其中翻边轮与旋平轮对称分布在上下模具两侧,所述翻边轮的轴线与上下模具的中心轴线呈45°夹角,所述旋平轮轴向与上下模具的中心轴线平行;
e3、将步骤d获得的半成品送料到下模具上;
e4、将翻边轮调整到圆形板料翻边起始位置,启动旋压机,上下模具合模,控制上下模具转动速度为300rpm,翻边轮的轴向进给速度为2.0~3.0mm/s,轴向进给率为0.40~0.60mm/r,径向进给速度为1.0~1.5mm/s、径向进给率为 0.20~0.40mm/r,通过翻边轮轴向及径向的先后进给实现对步骤d后的板坯的翻边操作;;
e5、启动旋平轮对翻边后的板料进行旋平处理,控制上下模具转速为300rpm,旋平轮的径向进给速度为0.8~1.2mm/s,进给率为0.16~0.24mm/r,通过旋平轮实现对外筒外表面的压平处理,并保证外筒上下各部厚度均匀。
f、机加工:对步骤e形成的半成品的端面钻安装孔,在车床上对壳体局部进行车加工,制备出成品(参加图7)。
还可以根据工件外轮是否有旋齿要求在机加工前进行旋齿操作,具体为:在数控旋压机上利用两个旋齿轮对步骤e中外筒外表面旋压制得齿形,控制上下模具的转速为200rpm,一个预旋齿轮的径向进给速度为1.0~1.2mm/s,进给率0.30~0.36mm/r,另一个精旋齿轮径向进给速度为0.4~0.6mm/s,进给率为0.12~0.18mm/r。
如图8所示,上述步骤c1中上模具2下端设有间隔8~12mm的半圆凸筋8,该凸筋的半径R为0.3mm,下模具4为中间凸起的圆盘结构,圆形板料3放入下模具上,由中间凸起进行定位,上模凸筋及中间凸起在上下模合模后起固定作用,可以防止铲旋过程中板料的失稳,所述第一铲旋轮1的铲旋角10圆弧半径为2mm,第二铲旋轮5的铲旋角11圆弧半径为3.5mm,直边9尺寸与内筒高度有关,为10~20mm,直边9上端采用45°的斜边6约束,斜边6与上下端直边采用R=2~4mm圆弧7过渡,斜边水平尺寸为2~4mm,在铲旋过程中由于铲旋轮结构采用局部约束,从而保证了内筒的有效高度及厚度,成形载荷与全封闭结构相比较小。
如图9所示,上模具17下端设有间隔8~12mm的半圆凸筋8,该凸筋的半径R为0.3mm,下模具18中间凸起的台阶面19上还具有凸起的限位20,圆形 板料放入下模具通过凸起的限位进行位置约束,上下合模时圆形板料凸台外围部分处于悬空状态,所述第一旋压轮21及第二旋压轮22的旋压角23半径为8~10mm,随着两个步骤的操作悬空的板料部分贴合下模具凸起的台阶面形成L型折弯,从而制得工字型结构的内筒。
如图10所示,上模具13与下模具14合模,所述步骤e4中翻边轮12的翻边角弧度为8~10mm,在进行翻边操作时,随着翻边轮12的轴向进给,外筒16逐渐进行翻边操作,随着翻边轮12的径向进给,即利用翻边轮的直边适当贴膜,最后利用水平设置的旋平轮15旋压实现外筒的成型,所述旋平轮外侧壁为光面结构,也可以根据外筒凸筋结构设计凹槽,使得外筒旋平时直接形成凸筋。
由于在加工中,轮辐相对底板的位置根据要求不同而不同,针对不同位置要求的结构通过对下模具凸起台阶面高度的调节实现。
本发明的技术内容及技术特征已揭示如上,然而熟悉本领域的技术人员仍可能基于本发明的教示及揭示而作种种不背离本发明精神的替换及修饰,因此,本发明保护范围应不限于实施例所揭示的内容,而应包括各种不背离本发明的替换及修饰,并为本专利申请权利要求所涵盖。

Claims (8)

  1. 一种工字型硅油减震器壳体,其特征在于:包括轮辐及设置在轮辐外围的环形凹腔,所述环形凹腔具有底板、内筒及外筒,其中内筒与轮辐的剖面结构呈工字型,所述轮辐可以根据需求设置在内筒中心位置或非中心位置,所述轮辐设在内筒内部且与底板不在一个平面上。
  2. 一种工字型硅油减震器壳体的整体旋压成型方法,其特征在于包括如下步骤:
    a、落料:采用8~10mm厚的热轧厚钢板,对板材进行剪切落料获得圆形板料;
    b、冲中孔:利用冲床对步骤a所获得的圆形板料进行冲中心孔,制得带中孔的圆形板料;
    c、铲旋凸台:在数控旋压机上安装上下模具及两个铲旋轮,控制上下模具转速为300rpm,利用第一铲旋轮和第二铲旋轮同时对圆形板料进行铲旋操作,在圆形板料上形成凸台,控制第一铲旋轮和第二铲旋轮进给速度为3.0~4.0mm/s,进给率为0.6~0.8mm/r,铲旋深度为1.5~2.4mm,切入速度为1.0mm/s;
    d、旋压折弯:在数控旋压机上安装上下模具及两个旋压轮、具体步骤为:
    d1、将上模具和下模具分别安装到旋压机的通用模具位置上;
    d2、将第一旋压轮及第二旋压轮安装到数控旋压机的旋压滚轮架上,其中第一旋压轮与第二旋压轮分别布置在下模具两侧,两个旋压轮连接线与下模具中心孔位于同一直线,两个旋压轮的轮轴线与上下模具的中心轴线45°夹角;
    d3、将步骤c获得的壳体半成品送料到下模具上;
    d4、将两侧旋压轮调整到圆形板料外边缘,启动旋压机,上下模具合模,控制上下模具转动速度为300rpm,两个旋压轮的轴向进给速度为3.0~4.0mm/s、进给率为0.60~0.80mm/r,使得圆形板料外边缘向下折弯至下模具上表面;
    d5、控制第一旋压轮不进给,其紧压在圆形板料外缘表面,压住圆形板料,启动第二旋压轮转动且做径向进给,控制第二旋压轮径向进给速度为2.0~3.0mm/s,进给率为0.40~0.60mm/r,随着第二旋压轮的径向进给,圆形板料凸台以外的边缘形成L型折弯,制得工字型结构的内筒,此处L型折弯的深度决定了中间轮辐的位置;
    e、旋压翻边:在数控旋压机上安装上下模具及旋压轮,控制上下模具转速为300rpm,利用翻边轮对步骤d中折弯进行翻边处理,利用旋平轮进行旋压处理形成外筒,控制翻边轮的轴向进给速度为2.0~3.0mm/s,进给率为0.40~0.60mm/r,径向进给速度为1.0~1.5mm/s、进给率为0.20~0.40mm/r,旋平轮的径向进给速度为0.8~1.2mm/s,进给率为0.16~0.24mm/r;
    f、机加工:对步骤e形成的半成品的端面钻安装孔,在车床上对壳体局部进行车加工,制备出成品。
  3. 根据权利要求2所述的一种工字型硅油减震器壳体的整体旋压成型方法,其特征在于:所述步骤c中铲旋凸台的具体步骤为:
    c1、将上模具和下模具分别安装到旋压机的通用模具位置上;
    c2、将两个铲旋轮分别安装在旋压机的两个旋压滚轮架上,并调整好两个铲旋轮的位置,使其位于圆形板料两侧,且两个铲旋轮的连接线与圆形板料中心孔位于同一直线,同时两个铲旋轮的轮轴线与上下模具的中心轴线45°夹角;
    c3、将步骤b获得的带中孔的圆形板料送料到下模具上;
    c4、将第一铲旋轮及第二铲旋轮移动到距离上模具外边沿40~50mm的初始铲旋位置进行端面切入操作,启动旋压机,上下模具合模,控制上下模具转动速度为300rmp,第一铲旋轮和第二铲旋轮的进给速度同步控制为3.0~4.0mm/s,进 给率0.6~0.8mm/r,铲旋深度为1.5~2.4mm,切入速度为1.0mm/s,铲起材料堆积形成凸台。
  4. 根据权利要求2所述的一种工字型硅油减震器壳体的整体旋压成型方法,其特征在于:所述步骤e中旋压翻边的具体步骤为:
    e1、将上模具和下模具分别安装到旋压机的通用模具位置上;
    e2、将翻边轮和旋平轮安装到数控旋压机的旋压滚轮架上,其中翻边轮与旋平轮对称分布在上下模具两侧,所述翻边轮的轴线与上下模具的中心轴线呈45°夹角,所述旋平轮轴向与上下模具的中心轴线平行;
    e3、将步骤d获得的半成品送料到下模具上;
    e4、将翻边轮调整到圆形板料翻边起始位置,启动旋压机,上下模具合模,控制上下模具转动速度为300rpm,翻边轮的轴向进给速度为2.0~3.0mm/s,轴向进给率为0.40~0.60mm/r,径向进给速度为1.0~1.5mm/s、径向进给率为0.20~0.40mm/r,通过翻边轮轴向及径向的先后进给实现对步骤d后的板坯的翻边操作;
    e5、启动旋平轮对翻边后的板料进行旋平处理,控制上下模具转速为300rpm,旋平轮的径向进给速度为0.8~1.2mm/s,进给率为0.16~0.24mm/r,通过旋平轮实现对外筒外表面的压平处理,并保证外筒上下各部厚度均匀。
  5. 根据权利要求3所述的一种工字型硅油减震器壳体的整体旋压成型方法,其特征在于:所述步骤c1中上模具下端设有间隔8~12mm的半圆凸筋,该凸筋的半径R为0.3mm,下模具为中间凸起的圆盘结构。
  6. 根据权利要求3所述的一种工字型硅油减震器壳体的整体旋压成型方法,其特征在于:所述步骤c4中第一铲旋轮铲旋角圆弧半径为2mm,第二铲旋轮铲旋角圆弧半径为3.5mm,直边尺寸为10~20mm,直边上端采用45°的斜边约束, 斜边与直边采用R=2~4mm圆弧过渡,斜边水平尺寸为2~4mm。
  7. 根据权利要求2所述的一种工字型硅油减震器壳体的整体旋压成型方法,其特征在于:所述步骤d4中第一旋压轮和第二旋压轮的旋压角弧度为8~10mm。
  8. 根据权利要求4所述的一种工字型硅油减震器壳体的整体旋压成型方法,其特征在于:所述步骤e4中翻边轮的翻边角弧度为8~10mm,所述旋平轮外侧壁为光面结构或者根据外筒凸筋结构设有凹槽。
PCT/CN2017/081570 2016-12-12 2017-04-24 一种工字型硅油减震器壳体及其整体旋压成型方法 WO2018107636A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611138452.1A CN106736277B (zh) 2016-12-12 2016-12-12 一种工字型硅油减震器壳体的整体旋压成型方法
CN201611138452.1 2016-12-12

Publications (1)

Publication Number Publication Date
WO2018107636A1 true WO2018107636A1 (zh) 2018-06-21

Family

ID=58880151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/081570 WO2018107636A1 (zh) 2016-12-12 2017-04-24 一种工字型硅油减震器壳体及其整体旋压成型方法

Country Status (2)

Country Link
CN (1) CN106736277B (zh)
WO (1) WO2018107636A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109396241A (zh) * 2018-11-15 2019-03-01 浙江赛方传动部件有限公司 花键旋压机及其控制方法
CN113000703A (zh) * 2021-02-26 2021-06-22 台州博翔旋压机床有限公司 组合式缩口内翻旋压方法
CN115229437A (zh) * 2022-07-04 2022-10-25 西北稀有金属材料研究院宁夏有限公司 旋转挤压成形钢包套端盖加工方法及相应的模具和刀具

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206509381U (zh) * 2016-12-12 2017-09-22 南通福乐达汽车配件有限公司 一种工字型硅油减震器壳体旋压折弯模具组
CN108856434B (zh) * 2018-07-27 2019-05-31 浙江长兴和良智能装备有限公司 一种储液器加工方法
CN109175094B (zh) * 2018-08-27 2019-12-06 合肥工业大学 一种多楔齿结构的曲轴隔离带轮壳体的成形方法及模具组
CN109719184A (zh) * 2019-03-08 2019-05-07 芜湖西诺普汽车零部件科技有限公司 一种壳体的旋压制造方法
CN109967607B (zh) * 2019-04-04 2020-05-12 宁波忠辉模具有限公司 一种感振器壳体的加工工艺
CN110732581B (zh) * 2019-10-31 2021-09-10 河南贵族轮毂技术有限公司 一种带散热片的减震壳体整体旋压成型方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5236115A (en) * 1991-05-10 1993-08-17 Carl Hasse & Wrede Process for the manufacture of a viscous torsional vibration damper
EP0620380A1 (en) * 1993-04-14 1994-10-19 Vibratech, Inc. A torsional vibration damper and a method for manufacturing the same
CN1426516A (zh) * 2000-06-20 2003-06-25 哈瑟&弗雷德有限公司 扭转振动减振器外壳尤其粘性内摩擦扭转振动减振器用的外壳的制造方法
CN202301703U (zh) * 2011-11-03 2012-07-04 江苏宏丰奥凯机电有限公司 硅油减震器
CN202707898U (zh) * 2012-07-11 2013-01-30 湖北腾源旋压科技有限公司 汽车发动机硅油减振器外壳
CN104565175A (zh) * 2014-12-31 2015-04-29 江苏宏丰奥凯机电有限公司 一种具有注油孔堵漏封口螺栓的硅油减振器
CN106001230A (zh) * 2016-05-31 2016-10-12 安徽赛爵机械制造有限公司 一种复合减震器用带轮的成形工艺

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3433772B2 (ja) * 1994-09-21 2003-08-04 株式会社ショーワ 車両用緩衝器のボトム構造とその形成方法
CN101672340A (zh) * 2009-08-18 2010-03-17 山东光大机械制造有限公司 硅油减振器壳体及其制造方法
CN201696541U (zh) * 2010-06-25 2011-01-05 丁明贤 汽车减震器
CN102284608B (zh) * 2011-08-30 2013-09-04 扬州捷迈锻压机械有限公司 轮辐冲压加工成形工艺
CN103008976B (zh) * 2012-11-28 2015-07-01 黄熠藩 一种皮带轮旋压生产工艺
CN103056618A (zh) * 2012-12-29 2013-04-24 柳州市龙杰汽车配件有限责任公司 硅油减震器壳体的成型方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5236115A (en) * 1991-05-10 1993-08-17 Carl Hasse & Wrede Process for the manufacture of a viscous torsional vibration damper
EP0620380A1 (en) * 1993-04-14 1994-10-19 Vibratech, Inc. A torsional vibration damper and a method for manufacturing the same
CN1426516A (zh) * 2000-06-20 2003-06-25 哈瑟&弗雷德有限公司 扭转振动减振器外壳尤其粘性内摩擦扭转振动减振器用的外壳的制造方法
CN202301703U (zh) * 2011-11-03 2012-07-04 江苏宏丰奥凯机电有限公司 硅油减震器
CN202707898U (zh) * 2012-07-11 2013-01-30 湖北腾源旋压科技有限公司 汽车发动机硅油减振器外壳
CN104565175A (zh) * 2014-12-31 2015-04-29 江苏宏丰奥凯机电有限公司 一种具有注油孔堵漏封口螺栓的硅油减振器
CN106001230A (zh) * 2016-05-31 2016-10-12 安徽赛爵机械制造有限公司 一种复合减震器用带轮的成形工艺

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109396241A (zh) * 2018-11-15 2019-03-01 浙江赛方传动部件有限公司 花键旋压机及其控制方法
CN109396241B (zh) * 2018-11-15 2023-09-01 浙江赛方传动部件有限公司 花键旋压机及其控制方法
CN113000703A (zh) * 2021-02-26 2021-06-22 台州博翔旋压机床有限公司 组合式缩口内翻旋压方法
CN113000703B (zh) * 2021-02-26 2023-01-31 浙江博翔旋压机床有限公司 组合式缩口内翻旋压方法
CN115229437A (zh) * 2022-07-04 2022-10-25 西北稀有金属材料研究院宁夏有限公司 旋转挤压成形钢包套端盖加工方法及相应的模具和刀具
CN115229437B (zh) * 2022-07-04 2024-02-13 西北稀有金属材料研究院宁夏有限公司 旋转挤压成形钢包套端盖加工方法及相应的模具和刀具

Also Published As

Publication number Publication date
CN106736277A (zh) 2017-05-31
CN106736277B (zh) 2018-12-28

Similar Documents

Publication Publication Date Title
WO2018107636A1 (zh) 一种工字型硅油减震器壳体及其整体旋压成型方法
WO2018107637A1 (zh) 一种曲轴硅油减震器壳体的整体旋压成型方法
CN106425343B (zh) 一种焊接式涨紧轮加工方法
CN105889744B (zh) 一种旋压法兰环及其成形工艺
CN106001230A (zh) 一种复合减震器用带轮的成形工艺
CN105333103A (zh) 一种两级同轴多楔式高精度旋压皮带轮及其制造方法
CN205136019U (zh) 压缩机气缸和具有其的旋转式压缩机
CN105643221A (zh) 一种飞轮加工工艺
CN105081131A (zh) 一种汽车轮辐板冲压工艺
CN101456114A (zh) 轮辋强力旋压等体积成型工艺
WO2018107640A1 (zh) 一种曲轴硅油减震器壳体展旋外筒模具组
WO2018107638A1 (zh) 一种工字型硅油减震器壳体旋压折弯模具组
CN110732581B (zh) 一种带散热片的减震壳体整体旋压成型方法
CN110948189A (zh) 一种通风阀体的生产加工方法
WO2018107639A1 (zh) 一种曲轴硅油减震器壳体铲旋增厚模具组
CN109175094A (zh) 一种多楔齿结构的曲轴隔离带轮壳体的成形方法及模具组
CN205468316U (zh) 一种汽车轴管法兰盘
CN109261802A (zh) 一种轧制钢板冲压成形法兰的模具及加工方法
CN112009168B (zh) 一种热成型车轮的生产方法
CN201093053Y (zh) 复合旋压皮带轮
CN106826112B (zh) 一种用于双质量飞轮的飞轮齿盘加工工艺
CN205678093U (zh) 一种轮毂冲压结构减震皮带轮
CN210996337U (zh) 一种轴管铸造用成型模具
CN205479239U (zh) 一种塑料同步带轮
CN210686741U (zh) 传动轴圆盘突缘叉锻件新结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17880666

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17880666

Country of ref document: EP

Kind code of ref document: A1