WO2018107501A1 - 基于3d相变热管技术的高导热车用电机定子组件 - Google Patents

基于3d相变热管技术的高导热车用电机定子组件 Download PDF

Info

Publication number
WO2018107501A1
WO2018107501A1 PCT/CN2016/110549 CN2016110549W WO2018107501A1 WO 2018107501 A1 WO2018107501 A1 WO 2018107501A1 CN 2016110549 W CN2016110549 W CN 2016110549W WO 2018107501 A1 WO2018107501 A1 WO 2018107501A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat pipe
phase change
change heat
thermal conductivity
high thermal
Prior art date
Application number
PCT/CN2016/110549
Other languages
English (en)
French (fr)
Inventor
汤勇
袁伟
闫志国
吴宇璇
陆龙生
李宗涛
万珍平
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2018107501A1 publication Critical patent/WO2018107501A1/zh
Priority to US16/435,490 priority Critical patent/US10734867B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/20Stationary parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/24Windings characterised by the conductor shape, form or construction, e.g. with bar conductors with channels or ducts for cooling medium between the conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/18Casings or enclosures characterised by the shape, form or construction thereof with ribs or fins for improving heat transfer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/207Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium with openings in the casing specially adapted for ambient air
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • H02K9/225Heat pipes

Definitions

  • the invention relates to the technical field of key components of new energy vehicles, in particular to a utilization of 3D
  • the phase change heat pipe uniformly conducts heat generated by the stator windings of the main heating component of the vehicle motor to the entire casing for natural air cooling, forced air cooling or forced water cooling of the high heat conduction motor stator assembly.
  • the main heat-generating components of the new energy vehicle drive motor are the stator winding and the stator core, and the heat transfer paths of the two are mainly dependent on the contact portion between the stator core and the casing, and therefore, usually, the installation position is Limitation of the outlet method and material cost, the contact area is only one-third to one-half of the area of the inner wall surface of the motor casing, and the remaining area is not effectively utilized, resulting in the temperature of the local part of the motor casing. If the temperature is too high and the temperature gradient is too large, the heat dissipation of the motor cooling structure cannot be well utilized, which in turn affects the temperature control performance of the drive motor. This problem needs to be resolved.
  • the invention discloses a high-heat-conducting motor stator component based on 3D phase-change heat pipe technology, which accelerates heat from a local high-temperature position of the stator winding by assembling a 3D phase-change heat pipe between the motor casing and the stator winding.
  • the rapid diffusion to the low temperature position of the casing plays a role in rapidly extracting heat, thereby enhancing the overall heat exchange efficiency of the motor and improving the temperature control performance of the drive motor.
  • the object of the present invention is to overcome the heat dissipation problem existing in the prior art, and to provide a high thermal conductivity vehicle based on 3D phase change heat pipe technology with good heat absorption effect, good heat dissipation effect, simple structure, long service life, convenient installation and low cost. Motor stator assembly.
  • the invention is achieved at least by one of the following technical solutions.
  • a stator assembly for a high thermal conductivity vehicle based on 3D phase change heat pipe technology comprising a casing, a 3D phase change heat pipe, a stator core and a stator winding.
  • High-heat-conducting motor stator assembly based on 3D phase change heat pipe technology, comprising a fin assembly, a 3D phase change heat pipe, a stator core and a stator winding; the stator core and the stator winding are located in the casing shell,
  • the fin assembly includes a casing shell, a heat dissipating fin set, and a 3D phase change heat pipe assembly passage;
  • the 3D phase change heat pipe is installed between the casing assembly passage and the stator winding;
  • the 3D phase change heat pipe includes a condensation section and evaporation
  • the condensing section is assembled in the assembly passage of the casing shell, and the evaporation section is wound around the stator winding and is coupled to the stator winding; the number of the 3D phase change heat pipe assembly passages is more than one.
  • the fin group casing is formed by aluminum or steel by an integrated casting or extrusion process.
  • the 3D phase change heat pipe assembly channel is a blind hole structure, which is symmetrically arranged on both sides of the casing shell, and has a circular, rectangular and curved cross section.
  • the 3D phase change heat pipe may be a cylindrical heat pipe, a curved heat pipe, a rectangular heat pipe or the like.
  • the thin layer material having high thermal conductivity and high insulation property is interposed between the evaporation section of the 3D phase change heat pipe and the stator winding.
  • the thin layer material is a high thermal conductive insulating channel paper or a high thermal conductivity silicone mat.
  • the thermal conductivity of the thin layer material needs to be >0.5 W/(m•K), the dielectric strength is >10 kV/mm, and the thickness is 0.1-0.5 mm.
  • the 3D phase change heat pipe condensation section and the assembly channel are matched by a eutectic welding, expansion joint or glue bonding process.
  • the 3D phase change heat pipe is a copper heat pipe or an aluminum heat pipe.
  • the 3D phase change heat pipe may be a plurality of heat pipes such as a sintered wick type heat pipe, a micro groove type heat pipe, and a hybrid heat pipe.
  • the 3D phase change heat pipe is a sintered wick type heat pipe, a micro groove type heat pipe or a hybrid heat pipe.
  • the wick or groove structure in the 3D phase change heat pipe may have a plurality of shapes such as a ring shape, a pyramid shape, a zigzag shape, and a trapezoid shape.
  • a plurality of threaded holes are formed on both end faces of the casing shell to achieve connection with the flange end cap.
  • the present invention has the following advantages:
  • the invention adopts a 3D phase change heat pipe as a heat conducting and soaking component, and the phase change heat pipe has extremely high heat transfer capability, and the thermal conductivity thereof is tens of thousands times of the known metal, and can realize rapid reorganization of the heat distribution inside the driving motor.
  • the phase change heat pipe has extremely high heat transfer capability, and the thermal conductivity thereof is tens of thousands times of the known metal, and can realize rapid reorganization of the heat distribution inside the driving motor.
  • the 3D phase change heat pipe of the invention adopts the eutectic welding, expansion joint or bonding process to cooperate with the assembly channel located at the casing, and can control the contact thermal resistance to a lower level, thereby effectively improving the temperature control performance of the driving motor.
  • the invention can promote the electromagnetic performance of the motor to a higher power density direction, and can further reduce the use of the stator core silicon steel sheet and the stator winding copper coil material, thereby realizing the weight reduction and low cost of the motor component. Purpose.
  • the invention has the advantages of simple structure, simple process, convenient installation and low cost, and can be applied to all the permanent magnet synchronous motors for vehicles.
  • FIG. 1 is a perspective cross-sectional view of a stator assembly for a high thermal conductivity vehicle based on a 3D phase change heat pipe technology in an example.
  • Figure 2 is an assembly diagram of Figure 1 after removing the casing.
  • Figure 3 is a perspective view of the component of Figure 1 - a fin assembly.
  • FIG. 4 is an end perspective view of the component of FIG. 1 - a 3D phase change heat pipe.
  • a stator assembly for a high thermal conductivity vehicle based on a 3D phase change heat pipe technology the air-cooled motor in this embodiment includes a fin assembly and a 3D phase change heat pipe. 2.
  • the fin group casing 1 is formed by the aluminum material A6061 by an integrated extrusion molding process, and includes a casing shell 11, a heat dissipating fin group 12, and a 3D phase change heat pipe fitting passage 13.
  • the heat radiating fin group 12 is evenly arranged in the circumferential direction on the outer circumferential surface of the casing casing 11, and a total of 48 heat radiating fins are extruded.
  • the 3D phase change heat pipe assembly passage 13 is symmetrically arranged on both sides of the casing shell, and the total number of 3D phase change heat pipe assembly passages 13 is 16.
  • the cross-sectional shape design of the 3D phase change heat pipe assembly passage 13 is designed. It is round.
  • the 3D phase change heat pipe 2 uses a copper heat pipe having a sintered type wick, the 3D phase change heat pipe 2 has a cylindrical shape, and the inner wick 21 has a ring structure and has a circular cross section.
  • the 3D phase change heat pipe 2 is closely matched with the heat pipe assembly passage 13 by a low temperature welding process.
  • the specific molding and assembly process of the stator assembly of the high-conductivity motor is as follows: A6061 aluminum profile is integrally extruded by a die to obtain a fin assembly 1 and placed on a machining center for a 3D phase change heat pipe. The assembly channel 13 is milled, and then subjected to finishing to remove the burr burrs, and then a water flow rinsing process is performed to remove the aluminum chips and the cooling liquid on the heat dissipating fin group 12, and then the fin group casing 1 is placed in an oven for baking.
  • the shell 1 is placed in a high-temperature oven as a whole, and the temperature and holding time are set to the soldering process requirements of the low-temperature solder paste, and the 3D phase-change heat pipe 2 is fixed by welding; finally, the 3D phase-change based on the bundled and welded one is completed.
  • the high-heat-conducting motor stator assembly of the heat pipe technology is cleaned to obtain the final product.
  • the 3D phase change heat pipe 2 installed between the 3D phase change heat pipe assembly passage 13 and the stator winding of the casing can rapidly spread and diffuse a large amount of heat originally concentrated on the stator winding and the stator core to the entire casing, thereby eliminating Local temperature overheating problem, greatly reduce the temperature gradient of the motor, realize the heat distribution reorganization, and achieve better temperature control performance of the drive motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

一种基于3D相变热管技术的高导热车用电机定子组件,该电机定子组件包括机壳(1)、3D相变热管(2)、定子铁芯(3)与定子绕组(4);所述机壳(1)包括3D相变热管装配通道(13),所述3D相变热管装配通道(13)对称分列于机壳壳体(11)两侧,所述3D相变热管(2)冷凝段装配于机壳壳体(11)的装配通道(13)中,蒸发段与定子绕组(4)绑接到一起。所述3D相变热管(2)与装配通道(13)连接一端通过焊接、胀接或胶接工艺相配合。该装置克服现有水冷及风冷电机定子绕组两端发热量严重却不能及时将热量导出,同时定子铁芯传热速率有限,造成定子绕组局部温度过高,温差梯度过大,从而影响车用电机整体温控性能及电机寿命的问题,提供一种结构简单,安装方便,适用范围广,成本低廉的高导热车用电机定子组件。

Description

基于3D相变热管技术的高导热车用电机定子组件
技术领域
本发明涉及新能源汽车的关键零部件技术领域,具体涉及一种利用 3D 相变热管将车用电机主要发热部件定子绕组产生的热量均匀传导至整个机壳进行自然空冷、强制风冷或者强制水冷的高导热车用电机定子组件。
背景技术
当前,随着化石能源消耗殆尽,新能源汽车的产业转型升级成为世界各国的下一重要战略举措。驱动电机是新能源汽车的核心零部件,其性能对新能源汽车有直接且极其重要的影响。对于永磁同步电动机来说,其定子绕组是主要发热部件,温升过高会降低电机效率和绝缘寿命,引起电机局部结构变形,而且其内部的永磁材料一般温度系数较高,热稳定性差,温升过高导致的永磁体不可逆退磁,因此格外要注意控制电机的热负荷。
然而,目前新能源汽车驱动电机的主要发热部件为定子绕组和定子铁芯,而其二者的传热途径主要依靠定子铁芯与机壳的接触部位进行,因此,通常情况下,受到安装位置、出线方式以及材料成本等的限制,上述接触部位面积仅占电机机壳内壁面面积的三分之一至二分之一,其余面积则得不到有效利用,从而造成电机机壳局部部位温度过高,温差梯度过大的现象,使得电机冷却结构的散热作用无法得到良好的利用,进而影响驱动电机整机的温控性能。该问题亟待解决。
针对目前这种情况,该发明公开了基于3D相变热管技术的高导热车用电机定子组件,通过将3D相变热管装配于电机机壳与定子绕组之间,促进热量从定子绕组局部高温位置向机壳低温位置的迅速扩散,起到快速导出热量的作用,从而增强电机的整体换热效率,改善驱动电机的温控性能。
发明内容
本发明的目的在于克服现有技术存在的散热问题,提出一种均热效果佳、散热效果好、结构简单、使用寿命长、安装方便和成本低廉的基于3D相变热管技术的高导热车用电机定子组件。
本发明至少通过以下技术方案之一实现。
一种基于3D相变热管技术的高导热车用电机定子组件,包括机壳、3D相变热管、定子铁芯与定子绕组。
基于3D相变热管技术的高导热车用电机定子组件,其包括翅片组机壳、3D相变热管、定子铁芯与定子绕组;定子铁芯与定子绕组位于机壳壳体中,所述翅片组机壳包括机壳壳体、散热翅片组以及3D相变热管装配通道;3D相变热管安装于机壳装配通道与定子绕组之间;所述3D相变热管包括冷凝段和蒸发段,冷凝段装配于机壳壳体的装配通道中,蒸发段绕在定子绕组的外侧并与定子绕组绑接到一起;所述3D相变热管装配通道数量为一条以上。
进一步优化地,翅片组机壳由铝材或钢材采用一体化铸造或挤压成型工艺加工成型。
进一步优化地,所述3D相变热管装配通道为盲孔结构,对称分列于机壳壳体两侧,其横截面为圆形、矩形以及弧形。所述3D相变热管可以为圆柱形热管、弧形热管以及矩形热管等。
进一步优化地,所述3D相变热管蒸发段与所述定子绕组之间扦插具备高导热高绝缘性能的薄层材料。
进一步优化地,所述薄层材料为高导热绝缘槽纸或高导热硅胶垫。
进一步优化地,所述薄层材料热导率需>0.5W/(m•K),绝缘强度>10kV/mm,厚度为0.1~0.5mm。
进一步优化地,所述3D相变热管冷凝段与装配通道通过共晶焊接、胀接或胶接工艺相配合。
进一步优化地,所述3D相变热管为铜热管或铝热管。
进一步优化地,所述3D相变热管可为烧结式吸液芯型热管、微沟槽型热管以及混合型热管等多种热管。
所述3D相变热管为烧结式吸液芯型热管、微沟槽型热管或混合型热管。
进一步优化地,所述3D相变热管内的吸液芯或沟槽结构横截面可为环形、金字塔形、锯齿形以及梯形等多种形状。所述机壳壳体两端面加工有若干螺纹孔,以实现与法兰端盖的连接。
与现有技术相比,本发明具有如下优点:
1. 本发明采用3D相变热管作为导热、均热部件,相变热管具有极其高效的传热能力,其导热系数是已知金属的上万倍,能够实现驱动电机内部热量分布的快速重组。将其安装于机壳装配通道中,可以将原本集中于定子绕组和定子铁芯的大量热量迅速传播、扩散至整个机壳,从而消除局部温度过热问题,大幅度减小电机的整体温差梯度,实现热量分布重组,实现驱动电机更为优秀的温控性能。
2. 本发明的3D相变热管采用共晶焊接、胀接或胶接工艺与位于机壳处的装配通道配合,可将接触热阻控制在一个较低的水平,有效提升驱动电机的温控性能。
3. 本发明通过改善驱动电机的温控性能,可促使电机电磁性能往更高功率密度方向设计,同时可以进一步减少定子铁芯硅钢片和定子绕组铜线圈材料的使用,实现电机组件轻量化以及低成本化的目的。
4. 本发明结构、工艺简单,安装方便,成本低廉,可适用于市面上所有的车用永磁同步电机改装。
附图说明
图1是实例中基于3D相变热管技术的高导热车用电机定子组件的立体剖视图。
图2是图1去除机壳后的装配关系图。
图3是图1中的部件——翅片组机壳的立体视图。
图4是图1中的部件——3D相变热管的端部立体剖视图。
具体实施方式
下面结合附图和实例对本发明的具体实施方式作进一步说明,但本发明的实施和保护不限于此,需指出的是,以下若有未特别详细说明之过程或参数,均是本领域技术人员可参照现有技术实现的。
如图1~图3所示,在一个实施例中,基于3D相变热管技术的高导热车用电机定子组件,该实施例中的风冷电机包括翅片组机壳1、3D相变热管2、定子铁芯3与定子绕组4。
翅片组机壳1由铝材A6061采用一体化挤压成型工艺加工成型,包括机壳壳体11、散热翅片组12以及3D相变热管装配通道13。
散热翅片组12沿周向均匀排布于机壳壳体11的外圆面,共计挤压成型48块散热翅片。
3D相变热管装配通道13对称分列于机壳壳体两侧,共计有3D相变热管装配通道13的数量为16条,该实施例中,3D相变热管装配通道13的横截面形状设计为圆形。
如图4所示,3D相变热管2采用具有烧结式吸液芯的铜热管,3D相变热管2外形为圆柱形,内部吸液芯21采用环状结构,横截面形状为圆环形。
3D相变热管2通过低温焊接工艺与热管装配通道13实现紧密配合。
仅作为一种实例,高导热车用电机定子组件的具体成型及装配过程如下:A6061铝型材通过模具进行一体化挤压成型得到翅片组机壳1,置于加工中心上进行3D相变热管装配通道13铣削加工,接着对其进行精加工去除毛刺毛边后实施水流冲洗工序,去除散热翅片组12上的铝屑和冷却液,此后将该翅片组机壳1置于烘箱中进行烘烤去除水份并冷却至室温;将翅片组机壳1置于高频感应加热机中加热使铝型材受热膨胀,趁热将已经完成绕线工艺的定子铁芯组件(定子铁芯与定子绕组)热套于翅片组机壳1中,实现定子铁芯组件与翅片组机壳1的紧密配合;对3D相变热管2表面进行平整磨光处理,并均匀涂抹一薄层低温锡膏至3D相变热管2冷凝段表面;3D将相变热管2冷凝段匀速嵌入3D相变热管装配通道13中,必要时借助直管施压工具,3D相变热管的蒸发段绕在定子绕组的外侧并与定子绕组绑接到一起,中间接触部位通过0.2mm厚的高导热电绝缘硅胶垫隔离,然后涂刷绝缘漆,并进行热固化操作;将嵌入3D相变热管2的翅片组机壳1整体放入高温烘箱中,设定温度及保温时间至低温锡膏的焊接工艺需求即可,进行3D相变热管2的焊接固定;最后,对捆绑、焊接完毕的该种基于3D相变热管技术的高导热车用电机定子组件进行清洁处理,得到最终产品。
运行时,安装于机壳3D相变热管装配通道13与定子绕组之间的3D相变热管2可以将原本集中于定子绕组和定子铁芯的大量热量迅速传播、扩散至整个机壳,从而消除局部温度过热问题,大幅度减小电机的温差梯度,实现热量分布重组,实现驱动电机更为优秀的温控性能。
以上所述实施例仅表达了本发明的一种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 基于3D相变热管技术的高导热车用电机定子组件,其特征在于包括翅片组机壳、3D相变热管、定子铁芯与定子绕组;定子铁芯与定子绕组位于机壳壳体中,所述翅片组机壳包括机壳壳体、散热翅片组以及3D相变热管装配通道;3D相变热管安装于机壳装配通道与定子绕组之间;所述3D相变热管包括冷凝段和蒸发段,冷凝段装配于机壳壳体的装配通道中,蒸发段绕在定子绕组的外侧并与定子绕组绑接到一起;所述3D相变热管装配通道数量为一条以上。
  2. 根据权利要求1所述的基于3D相变热管技术的高导热车用电机定子组件,其特征在于,所述翅片组机壳由铝材或钢材采用一体化铸造或挤压成型工艺加工成型。
  3. 根据权利要求1所述的基于3D相变热管技术的高导热车用电机定子组件,其特征在于,所述3D相变热管装配通道为盲孔结构,对称分列于机壳壳体两侧,其横截面为圆形、矩形以及弧形。
  4. 根据权利要求1所述的基于3D相变热管技术的高导热车用电机定子组件,其特征在于,所述3D相变热管蒸发段与所述定子绕组之间扦插具备高导热高绝缘性能的薄层材料。
  5. 根据权利要求4所述的基于3D相变热管技术的高导热车用电机定子组件,其特征在于,所述薄层材料为高导热绝缘槽纸或高导热硅胶垫。
  6. 根据权利要求4所述的基于3D相变热管技术的高导热车用电机定子组件,其特征在于,所述薄层材料热导率需>0.5W/(m•K),绝缘强度>10kV/mm,厚度为0.1~0.5mm。
  7. 根据权利要求1所述的基于3D相变热管技术的高导热车用电机定子组件,其特征在于,所述3D相变热管冷凝段与装配通道通过共晶焊接、胀接或胶接工艺相配合。
  8. 根据权利要求1所述的基于3D相变热管技术的高导热车用电机定子组件,其特征在于,所述3D相变热管为铜热管或铝热管。
  9. 根据权利要求1所述的基于3D相变热管技术的高导热车用电机定子组件,其特征在于,所述3D相变热管为烧结式吸液芯型热管、微沟槽型热管或混合型热管。
  10. 根据权利要求1所述的基于3D相变热管技术的高导热车用电机定子组件,其特征在于,所述3D相变热管内的吸液芯或沟槽结构横截面为环形、金字塔形、锯齿形或梯形。
PCT/CN2016/110549 2016-12-14 2016-12-16 基于3d相变热管技术的高导热车用电机定子组件 WO2018107501A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/435,490 US10734867B2 (en) 2016-12-14 2019-06-08 High thermal conductivity stator component for vehicle motor based on 3D phase change heat pipe technology

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611156165.3A CN106532994B (zh) 2016-12-14 2016-12-14 基于3d相变热管技术的高导热车用电机定子组件
CN201611156165.3 2016-12-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/435,490 Continuation US10734867B2 (en) 2016-12-14 2019-06-08 High thermal conductivity stator component for vehicle motor based on 3D phase change heat pipe technology

Publications (1)

Publication Number Publication Date
WO2018107501A1 true WO2018107501A1 (zh) 2018-06-21

Family

ID=58340669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/110549 WO2018107501A1 (zh) 2016-12-14 2016-12-16 基于3d相变热管技术的高导热车用电机定子组件

Country Status (3)

Country Link
US (1) US10734867B2 (zh)
CN (1) CN106532994B (zh)
WO (1) WO2018107501A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11817740B2 (en) * 2017-01-20 2023-11-14 Mitsubishi Electric Corporation Electric motor, air conditioner, and method for producing electric motor

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2543790A (en) * 2015-10-28 2017-05-03 Sustainable Engine Systems Ltd Pin fin heat exchanger
CN108667219A (zh) * 2017-03-28 2018-10-16 胡英瑛 一种电机外壳的散热组件及包含其的电机外壳
CN107014235B (zh) 2017-04-18 2019-02-22 中国矿业大学 一种相变材料与发散热管耦合储能系统
CN107947437A (zh) * 2017-12-14 2018-04-20 上海电机学院 一种基于相变散热结构的新能源汽车用电机
CN108155761A (zh) * 2018-01-31 2018-06-12 华南理工大学 一种强化热管理的车用电机定子组件应用的电机
EP3562003A1 (en) * 2018-04-23 2019-10-30 Fukuta Electric & Machinery Co., Ltd. Motor device with rapid heat dissipation
CN112531977B (zh) * 2020-11-27 2023-11-03 中车大连机车研究所有限公司 一种轨道交通车辆牵引电机走行风相变散热系统
US11804754B2 (en) 2020-12-18 2023-10-31 Hamilton Sundstrand Corporation Two-phase thermal management system with active control for high density electric machine
CN115514160A (zh) * 2022-10-26 2022-12-23 广东畅能达科技发展有限公司 一种基于弧形折弯相变热管的圆线电机散热结构
CN115800640A (zh) * 2022-12-01 2023-03-14 广东畅能达科技发展有限公司 一种基于形变热管的电机散热结构及其制造方法
CN116336845A (zh) * 2023-04-25 2023-06-27 山东大学 一种花型脉动热管相变蓄热换热器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101145712A (zh) * 2006-09-15 2008-03-19 丰田自动车株式会社 电机
CN201230257Y (zh) * 2008-07-17 2009-04-29 宝元数控精密股份有限公司 马达散热结构
US7592723B2 (en) * 2005-06-13 2009-09-22 Denso Corporation Vehicular electric rotary machine
CN101958590A (zh) * 2010-08-12 2011-01-26 上海中科深江电动车辆有限公司 电动汽车永磁电机用定子铁心散热结构
CN103683676A (zh) * 2013-12-26 2014-03-26 大连熵立得传热技术有限公司 一种热管电动机
CN105515227A (zh) * 2015-12-28 2016-04-20 华南理工大学 一种强化轮毂电机散热性能的装置
CN105591499A (zh) * 2016-03-11 2016-05-18 华南理工大学 一种基于热管的分离散热式新型电机
CN206272365U (zh) * 2016-12-14 2017-06-20 华南理工大学 基于3d相变热管技术的高导热车用电机定子组件

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3681628A (en) * 1970-09-14 1972-08-01 Christoslaw Krastchew Cooling arrangement for a dynamoelectric machine
FR2855673A1 (fr) * 2003-05-26 2004-12-03 Valeo Equip Electr Moteur Machine electrique tournante, telle qu'un alternateur ou demarreur, notamment pour vehicule automobile
US7906878B2 (en) * 2007-11-06 2011-03-15 Tm4 Inc. Cooling assembly for large diameter electric machines
US9124144B2 (en) * 2008-05-21 2015-09-01 Bryan Prucher Dual radial gap motor-generator structure
JP6766666B2 (ja) * 2017-01-27 2020-10-14 株式会社豊田自動織機 電動圧縮機

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7592723B2 (en) * 2005-06-13 2009-09-22 Denso Corporation Vehicular electric rotary machine
CN101145712A (zh) * 2006-09-15 2008-03-19 丰田自动车株式会社 电机
CN201230257Y (zh) * 2008-07-17 2009-04-29 宝元数控精密股份有限公司 马达散热结构
CN101958590A (zh) * 2010-08-12 2011-01-26 上海中科深江电动车辆有限公司 电动汽车永磁电机用定子铁心散热结构
CN103683676A (zh) * 2013-12-26 2014-03-26 大连熵立得传热技术有限公司 一种热管电动机
CN105515227A (zh) * 2015-12-28 2016-04-20 华南理工大学 一种强化轮毂电机散热性能的装置
CN105591499A (zh) * 2016-03-11 2016-05-18 华南理工大学 一种基于热管的分离散热式新型电机
CN206272365U (zh) * 2016-12-14 2017-06-20 华南理工大学 基于3d相变热管技术的高导热车用电机定子组件

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11817740B2 (en) * 2017-01-20 2023-11-14 Mitsubishi Electric Corporation Electric motor, air conditioner, and method for producing electric motor

Also Published As

Publication number Publication date
CN106532994A (zh) 2017-03-22
CN106532994B (zh) 2019-01-18
US20190326797A1 (en) 2019-10-24
US10734867B2 (en) 2020-08-04

Similar Documents

Publication Publication Date Title
WO2018107501A1 (zh) 基于3d相变热管技术的高导热车用电机定子组件
JP5121833B2 (ja) 液体冷却式電気機械の固定子
CN207766072U (zh) 一种相变散热电机定子组件及其应用的风冷电机
CN106505759A (zh) 基于铁芯‑相变热管低热阻装配技术的车用电机定子组件
US10867741B2 (en) Pseudo edge-wound winding using single pattern turn
JP3692281B2 (ja) 高周波トランス
CN102097907B (zh) 蒸发冷却异步电动机定子的密封装置、冷凝装置及其制造方法
CN112152340A (zh) 高散热的无轭分块电枢轴向磁通轴向固定永磁电机定子
CN106602774A (zh) 一种基于一体化挤压成型及相变热管技术的电机风冷机壳
TWI558067B (zh) 一種電機繞線框架結構
US20140116651A1 (en) Heat sink applicable for eletromagnetic device
WO2013159478A1 (zh) 自带散热器的器件
WO2024032038A1 (zh) 一种基于齿形热管散热的电机和一种电机散热方法
CN101651376B (zh) 一种电机定子绕组散热方法及装置
CN206272365U (zh) 基于3d相变热管技术的高导热车用电机定子组件
CN103042290B (zh) 微型防热防潮焊机
CN110211773B (zh) 基于相变散热系统的电力装置
Geng et al. Design of cooling system for high torque density permanent magnet synchronous motor based on heat pipe
JP3206669U (ja) 高効率なモーターケーシング構造
CN209675076U (zh) 一种变压器
CN217935372U (zh) 一种基于齿形热管散热的电机
CN209947611U (zh) 基于相变散热系统的电力装置
CN215377145U (zh) 一种散热型变压器铁芯
CN220526688U (zh) 一种具有散热结构的磁性线圈
CN216362272U (zh) 电机散热机壳

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16923724

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/09/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16923724

Country of ref document: EP

Kind code of ref document: A1