WO2018105958A1 - Mso코일의 제조방법 및 제조장치 - Google Patents

Mso코일의 제조방법 및 제조장치 Download PDF

Info

Publication number
WO2018105958A1
WO2018105958A1 PCT/KR2017/014003 KR2017014003W WO2018105958A1 WO 2018105958 A1 WO2018105958 A1 WO 2018105958A1 KR 2017014003 W KR2017014003 W KR 2017014003W WO 2018105958 A1 WO2018105958 A1 WO 2018105958A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil layer
coil
unit coil
unit
layer
Prior art date
Application number
PCT/KR2017/014003
Other languages
English (en)
French (fr)
Inventor
이의천
권순오
이호영
이수웅
이강원
홍정표
Original Assignee
한국생산기술연구원
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원, 한양대학교 산학협력단 filed Critical 한국생산기술연구원
Priority to US16/466,530 priority Critical patent/US11404944B2/en
Priority to CN201780075568.1A priority patent/CN110073453B/zh
Publication of WO2018105958A1 publication Critical patent/WO2018105958A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/041Printed circuit coils
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/04Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of windings, prior to mounting into machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/04Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of windings, prior to mounting into machines
    • H02K15/0414Windings consisting of separate elements, e.g. bars, hairpins, segments, half coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2847Sheets; Strips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/06Coil winding
    • H01F41/061Winding flat conductive wires or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/06Coil winding
    • H01F41/077Deforming the cross section or shape of the winding material while winding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • H01F2027/2809Printed windings on stacked layers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/0025Shaping or compacting conductors or winding heads after the installation of the winding in the core or machine ; Applying fastening means on winding heads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/04Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of windings, prior to mounting into machines
    • H02K15/0407Windings manufactured by etching, printing or stamping the complete coil

Definitions

  • the present invention relates to a manufacturing method and a manufacturing apparatus of the MSO coil, and has a relatively high spot ratio compared to the same structure and has a uniform heat resistance of each coil of the coil to form a coil layer having low heat generation, high efficiency, high performance
  • the present invention relates to a method and apparatus for manufacturing an MSO coil, which is easy to assemble to a rotor and a stator, and also has excellent productivity.
  • the wire is generally used in the form of a circular vertical cross section, and when the diameter of the circular coil is increased for high efficiency and high output, it is wasted between coil layers wound due to the circular cross-sectional shape. There is a fundamental problem that the space rate of the coil is lowered because a waste space is generated.
  • the MSO (Maximum Slot Occupy) coil was developed to solve the above problems, but the MSO coil has a tapered shape to maximize the droplet ratio in the core and is discharged due to its special shape such as a wide cross section of the coil side. There was no choice but to use machining and machining.
  • the problem to be solved by the present invention has a relatively high spot ratio compared to the design of the same motor core structure, the electrical resistance per turn of the coil forming the coil layer is uniform, not only has a low heat generation and high efficiency performance, but also the rotor and It is easy to assemble to the stator to provide a production method and manufacturing apparatus excellent MSO coil.
  • one unit coil layer of the plurality of unit coil layers having the bent surface is called a first coil layer
  • another unit coil layer having the other end connected to one end of the first coil layer is a second coil layer.
  • male and female couplings are formed at one end of the first coil layer and the other end of the second coil layer so that the other ends of the second coil layer contacting one end of the first coil layer may be fitted together.
  • the method may further include a coupling structure forming step of forming a coupling structure including a groove and a protrusion, respectively.
  • the vertical cross section along the longitudinal direction of the remaining portion of the first end of the first coil layer except the portion is recessed so that a portion of one end of the first coil layer protrudes.
  • the first coil layer may be provided in a shape corresponding to each other so as to fit in the first groove of one end.
  • the coupling structure forming step when another unit coil layer having the other end connected to one end of the second coil layer is called a third coil layer, one end of the second coil layer and the third coil layer may be formed.
  • the coupling structures respectively formed at the other end may be formed to be disposed at a position apart from the same line from the coupling structures respectively formed at one end of the first coil layer and the other end of the second coil layer.
  • the electrode is pressed against the connecting portion where one end of the first coil layer and the other end of the second coil layer is male and female coupled, and a current flows to the first coil layer and the second
  • the coupling structure of the coil layers can be bonded to each other.
  • connection parts of the plurality of unit coil layers including a plurality may be pressed together to bond the connection parts of the plurality of unit coil layers connected to each other through the coupling structure.
  • the electrode presses the width direction of the connecting portion of the first coil layer and the second coil layer, and when the current flows into the connecting portion through the electrode by applying an external force to the connection
  • part can be pressurized.
  • the joining step the direction of the external force for pressing the connection portion to match the insertion direction of the groove and the projection having the coupling structure, the insertion into the groove by the external force applied to the connection portion
  • the protrusions may preferentially melt locally and join.
  • a portion corresponding to a part of the unit coil layer in which the bent surface is to be formed is recessed on one surface on which the unit coil layer is placed.
  • a press jig which is formed to form the bent surface on a portion of the unit coil layer when pressure is applied to the unit coil layer by an external force;
  • a fixing jig inserted between the plurality of unit coil layers to support the plurality of unit coil layers so that the plurality of unit coil layers having the bent surface are connected to each other at intervals of the inclination of the bent surface;
  • a welder for welding the connection parts at which one end and the other end of the plurality of unit coil layers connected and fixed to each other by the fixing jig are in contact with each other.
  • the press jig may include a first press jig in which a part including one end of both ends of the unit coil layer is placed and fixed, and a second press jig in which other parts including the other end of both ends of the unit coil layer are placed and fixed.
  • the second press jig is provided as a groove having an inclination, and when pressure by external force is applied to the unit coil layer, the surface bent at a predetermined angle to another portion including the other end of both ends of the unit coil layer. Forming slope lines; And bending the other end of the unit coil layer one more time to the bent surface when an external force is applied to the unit coil layer so that the other end of the unit coil layer has a height difference with the one end of the unit coil layer in parallel. It may include a plane line.
  • the fixing jig is provided in a pair, the fixing pins are inserted in the state spaced apart from each other inside the annular unit coil layer to fix the unit coil layer;
  • a plurality of spacers each having a thickness corresponding to a height difference between both ends of the unit coil layer by the bent surface, and inserted between the plurality of unit coil layers;
  • a second fixing jig into which the other side of the plurality of spacers is inserted and fixed.
  • the first fixing jig a face piece for facing the bent surface of the unit coil layer located at the top of the plurality of unit coil layers; And an end groove formed to be open along one side of the face piece so that one or the other end of the unit coil layer positioned at the top of the plurality of unit coil layers extending in a straight line is inserted and fixed.
  • the MSO coil manufactured by the MSO coil manufacturing method according to the present invention forms a coil block in which a plurality of unit coil layers are continuously stacked in the vertical direction, and the coil block is from the bottom to the top of the coil block.
  • the width of the vertical cross-section of the unit coil layer is increased and the thickness is decreased, so that the vertical cross-sectional areas of the plurality of unit coil layers in the vertical direction may be the same.
  • the MSO coil can be manufactured at a low production cost and a high production speed compared to the conventional discharge machining and machining methods.
  • FIG. 1 is a flowchart illustrating a method of manufacturing an MSO coil according to the present invention.
  • 2 to 3 is a view showing a pressing step according to an embodiment of the present invention.
  • FIG. 4 is a view showing a fixing step according to an embodiment of the present invention.
  • 5 to 6 is a view showing a coupling structure formed through the coupling structure forming step according to an embodiment of the present invention.
  • 7 to 8 is a view showing a bonding step according to an embodiment of the present invention.
  • FIG. 9 is a view showing a fixing step according to another embodiment of the present invention.
  • 10 to 11 is a view showing a press jig and a fixing jig of the MSO coil manufacturing apparatus according to the present invention.
  • FIG. 12 to 13 is a view showing the MSO coil manufactured by the method for producing an MSO coil according to the present invention.
  • a method of manufacturing an MSO coil according to the present embodiment may include a pressing step S1, a fixing step S2, and a bonding step S3.
  • the bent surface 110 is formed on a portion of the unit coil layer 100 having an annular shape in which both ends 102 and 104 face each other, and the unit coil layer 100 as illustrated in FIG. 3. It is possible to give the height difference (G) at both ends (102, 104) of).
  • the unit coil layer 100 may be formed through a separate process using a forging method such as pressing or a casting method such as die casting.
  • the productivity of both the productivity and the quality can be improved by using a multi-stage method such as pressing the first unit coil layer 100 cast (compression processing) to make the coil structure more compact. Can be.
  • one end 102 of both ends of the unit coil layer 100a on which the bent surface 110 is formed as shown in FIG. 4, the other end of both ends of the other unit coil layer 100b on which the bent surface 110 is formed (
  • the plurality of unit coil layers 100a to 100e having the bent surface 110 may be connected to each other and fixed to be in contact with the 104.
  • an extension 101 in which one end or the other end of the unit coil layer 100 extends in a straight line may be disposed at the bottom or the top of the plurality of unit coil layers 100a to 100e.
  • the extension portion 101 is a point where the current is connected when the MSO coil is coupled to the rotor or stator and the end winding process is performed. Like the unit coil layer 100 described above, a separate process is performed. Can be prepared.
  • connection part in which one end and the other end of each of the plurality of unit coil layers 100a to 100e fixed and connected to each other through the fixing step S2 may be bonded to each other.
  • connection parts of the plurality of unit coil layers 100a to 100e may be joined by various welding methods such as general welding and resistance welding.
  • a resistance is generated by flowing an electric current while facing an electrode to a connection portion where one end and the other end of each of the plurality of unit coil layers 100a to 100e are in contact with each other.
  • the plurality of unit coil layers 100a to 100e may be bonded to each other by using a resistance welding method in which a semi-melt state is used using heat and then bonded by applying pressure.
  • the manufacturing method of the MSO coil according to the present embodiment not only improves the fixing force between the unit coil layer 100 in the fixing step (S2), but also the bonding force between the unit coil layer 100 in the bonding step (S3).
  • a process for making it may further comprise a bonding structure forming step.
  • any one unit coil layer among the plurality of unit coil layers 100a to 100e having the bent surface 110 is referred to as a first coil layer 100a and one end of the first coil layer 100a.
  • the second coil layer 100b When the other unit coil layer having the other end connected to the second coil layer 100b is referred to as the second coil layer 100b (see FIG. 4), the second coil layer is in contact with one end 102a of the first coil layer 100a as shown in FIG. 5.
  • Grooves 124a and 124b capable of male and female coupling to one end 102a of the first coil layer 100a and the other end of the second coil layer 104b so that the other ends 104b of the 100b can be fitted together.
  • coupling structures 120 including protrusions 122a and 122b, respectively.
  • the remaining portion of the first coil layer one end 102a except the portion so that a portion of the one end 102a of the first coil layer 100a protrudes is formed.
  • the first groove 124a having a vertical cross section along the longitudinal direction of the portion may be formed.
  • the recessed second groove 124b may be formed.
  • the coupling structure 120 formed through the coupling structure forming step as described above is fitted to the second groove 124b of the other end 104b of the first protrusion 122a of the first coil layer one end 102a.
  • the second protrusion 122b of the other end 104b of the second coil layer may be formed in a shape corresponding to each other so that the second protrusion 122b may be fitted into the first groove 124a of the one end of the first coil layer 102a.
  • the coupling structure 120 may be configured in various forms as shown in FIG. 6, and if the coupling structure 120 includes a male and female coupling structure, the coupling structure 120 may be implemented in various forms due to the efficiency and design advantages of the process.
  • the grooves 124a and 124b and the protrusions 122a and 122b of the coupling structure 120 are semi-melted by using resistance heat generated when a current flows into the connection portion, and the first coil layer 100a and The connection portions of the plurality of unit coil layers including the second coil layer 100b may be collectively pressed to bond the connection portions of the plurality of unit coil layers connected to each other through the coupling structure 120.
  • connection portions of the plurality of unit coil layers may be collectively pressed by an external force, and the direction in which the electrode 410 presses the connection portions is the width of the first coil layer 100a and the second coil layer 100b. In the direction, the external force may press the connection portion along the thickness direction of the first coil layer 100a and the second coil layer b.
  • the direction of the external force that presses the connecting portion coincides with the insertion direction of the grooves 124a and 124b and the protrusions 122a and 122b having the coupling structure 120.
  • the projections 122a and 122b inserted into the grooves 124a and 124b may be locally melted and bonded first, and the material constituting the unit coil layer 100 because the resistance welding method using the local melting is used. It is possible to minimize the deformation of the mechanical properties of.
  • the coupling structure 120 in the coupling structure forming step may be formed so as to be disposed in a position shifted from each other between the plurality of coil layers.
  • the coupling structure 120 has another unit coil layer having the other end connected to one end of the second coil layer 100b and the third coil layer.
  • the coupling structure 120 formed at one end of the second coil layer (100b) and the other end of the third coil layer (100c), respectively, one end and the second coil layer ( It may be formed to be disposed in a position away from the same line from the coupling structure 120 formed on the other end of 100b).
  • stress may be uniformly applied to the joint structure 120 arranged on the same line as the welded portion, thereby preventing continuous breakage from occurring.
  • the manufactured MSO coil when the manufactured MSO coil is bonded to the rotor or stator, not only the breakage of the coupling structure 120 can be prevented from occurring due to the compressive force generated during the coupling process, but also the unit coil layer required for the post-treatment process. An advantage can also arise that sufficient workspace can be secured from the interval 100.
  • the present invention is a manufacturing apparatus used in the manufacturing method of the MSO coil as described above, may include a manufacturing apparatus of the MSO coil consisting of a press jig 200, a fixed jig 300 and a welding machine 400. have.
  • the press jig 200 has a predetermined slope in which a portion corresponding to a portion of the unit coil layer 100 in which the bent surface 110 is to be formed is formed.
  • the bent surface 110 may be formed on a portion of the unit coil layer 100.
  • the press jig 200 as described above includes a first press jig 210 and a unit coil layer in which a part including one end 102 of both ends of the unit coil layer 100 is placed and fixed as shown in FIG.
  • the other end of the other end of the other end 104 of the 100 may include a second press jig 220 is fixed and placed.
  • the second press jig 220 is bent at a predetermined angle to another portion including the other end 104 of both ends of the unit coil layer 100 (
  • the slope line 222 forming the 110 may be provided as a groove having an inclination.
  • the other end 104 of the unit coil layer 100 is applied to the unit coil layer 100 when an external force is applied to the unit coil layer 100 so that the other end 104 of the unit coil layer 100 faces the end 102 in parallel with the height difference.
  • a plane line 224 may be further provided to bend the 104 from the bent surface 110 once more.
  • the press jig 200 has one end according to an arrangement position of the unit coil layer 100 when a plurality of unit coil layers are connected to each other to manufacture an MSO coil as shown in FIG. Since the positions of the 102 and the other end 104 may vary, the bent surface 110 may be formed according to various shapes of the unit coil layer 100 according to the arrangement position of the unit coil layer 100. It may be configured in various forms and various numbers to correspond to various forms according to the arrangement position.
  • the first press jig 210 and the second press jig 220 are configured to be separated from each other, the first press jig having a shape corresponding to various shapes of the unit coil layer 100 according to the arrangement position ( Only 210 may be provided so that it can be replaced and used as needed.
  • the fixing jig 300 may include a fixing pin 310, a spacer 320, a first fixing jig 330, and a second fixing jig 340.
  • the fixing pins 310 may be provided as a pair to be inserted into the ring-shaped unit coil layer 100 spaced apart from each other to fix the plurality of unit coil layers.
  • the spacer 320 may have a thickness corresponding to the height difference between both ends of the unit coil layer 100 by the bent surface 110 and may be inserted between the plurality of unit coil layers.
  • the first fixing jig 330 and the second fixing jig 340 may be provided so that one side and the other side of the spacer 320 as described above are inserted and fixed.
  • the first fixing jig 330 is a face piece 332 and facepiece for fixing the bent surface 110 of the unit coil layer (100t) located at the top of the plurality of unit coil layers, Opening along one side of 332 may include an end groove 334 is inserted into the one end or the other end of the extension of the unit coil layer (100t) is formed in a straight line is inserted into the upper end.
  • the plurality of unit coil layers may be fixed while taking the form of coil blocks in a state in which one end and the other end are connected to each other.
  • the welding operation according to the bonding step (S3) can be performed in the state in which the extension portion 101 is connected in advance in performing the manufacturing method of the MSO coil according to the present invention, the completed form of the MSO coil without a subsequent process
  • the advantage is that it can be produced immediately.
  • extension portion 101 has already been described in the process of explaining the fixing step (S2) of the manufacturing method of the MSO coil of the present invention, a detailed description thereof will be omitted.
  • the welding machine 400 (refer to FIG. 7) is configured to weld the connecting portions of the plurality of unit coil layers connected and fixed to each other by the fixing jig 300.
  • the welding machine 400 may contact the connecting portions (coupling structure) and flow current therein. It may include an electrode 410 and a pressing means (not shown) for applying pressure to the connection portion (coupling structure).
  • the MSO coil manufactured by the manufacturing method and the manufacturing apparatus according to the present invention as described above may be composed of a coil block in which a plurality of unit coil layers are continuously stacked in the vertical direction as shown in FIG.
  • the coil block can be directly coupled to the core of the rotor and the stator, the assembly is easy and the productivity is also excellent, and it can have a relatively high spot ratio compared to the conventional circular coil.
  • waste space (WS 10 ) generated between the MSO coil according to the present invention is a conventional circular coil (OC) stator It may be relatively small compared to the waste space (WS OC ) generated when the winding (S) in the core (S100).
  • the MSO coil according to the present invention can be relatively free from the above problems because one coil forms a continuously stacked coil layer. There is an advantage.
  • the MSO coil manufactured by the manufacturing method and manufacturing apparatus according to the present invention as shown in Figure 13, the vertical section of the unit coil layer is increased in width from the bottom to the top of the coil block 10, the thickness is increased As a result, the vertical cross-sectional areas of the plurality of unit coil layers in the vertical direction may be the same.
  • the width of the second coil ( w2) may be relatively wider than the width w1 of the first coil and its thickness t2 may be formed relatively thinner than the thickness t1 of the first coil.
  • the width w3 and the thickness t3 of the third coil 11 may be the width of the second coil 11b. It can be formed thicker and thinner than w2) and thickness t2, respectively.
  • 11h may be wider (w8) but thinner (t2), and may include a second coil (11b) disposed between the first coil (11a) and the eighth coil (11h).
  • the seventh coil 11g may gradually become wider and thinner as the coil positioned on the upper portion thereof.
  • the vertical cross-sectional areas in the vertical direction of the plurality of coil layers forming the coil block 10 may be configured to be the same, and thus, MSO coils having a uniform electrical resistance applied to each coil layer may be produced. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

본 발명은 동일한 구조 대비 상대적으로 높은 점적율을 가지며 코일층을 형성하는 코일의 각 턴 당 전기저항이 균일하여 저발열 및 고효율의 성능을 가질 뿐만 아니라, 로터 및 스테이터에 조립이 용이하여 생산력 또한 우수한 MSO코일의 제조방법 및 제조장치에 관한 것으로, 양단이 서로 마주보는 고리형태의 단위 코일층의 일부분에 절곡면을 형성시켜, 상기 단위 코일층의 양단에 고저차를 주는 프레싱단계와, 상기 절곡면이 형성된 단위 코일층의 양단 중 일단이 상기 절곡면이 형성된 다른 단위 코일층의 양단 중 타단과 접촉되도록, 상기 절곡면이 형성된 복수 개의 단위 코일층을 서로 연결하여 고정시키는 고정단계 및 서로 연결되어 고정된 복수 개의 단위 코일층 각각의 일단과 타단이 접촉되어 있는 연결부위를 접합시키는 접합단계를 포함하는 MSO코일의 제조방법이 개시된다. 또한, 상기 단위 코일층이 놓여지는 일면 중 상기 절곡면이 형성될 상기 단위 코일층의 일부분에 대응되는 부분이 미리 설정된 기울기를 갖고 함몰 형성되어, 외력에 의해 상기 단위 코일층에 압력이 가해지면 상기 단위 코일층의 일부분에 상기 절곡면을 형성시키는 프레스지그와, 상기 절곡면이 형성된 복수 개의 단위 코일층이 상기 절곡면의 기울기만큼 서로 간격을 두고 연결될 수 있도록, 상기 복수 개의 단위 코일층 사이에 각각 삽입되어 상기 복수 개의 단위 코일층을 지지하는 고정지그 및 상기 고정지그에 의해 서로 연결되어 고정된 상기 복수 개의 단위 코일층의 일단과 타단이 접촉되어 있는 연결부위를 용접시키는 용접기를 포함하는 MSO코일의 제조장치가 개시된다.

Description

MSO코일의 제조방법 및 제조장치
본 발명은 MSO코일의 제조방법 및 제조장치에 관한 것으로, 동일한 구조 대비 상대적으로 높은 점적율을 가지며 코일층을 형성하는 코일의 각 턴 당 전기저항이 균일하여 저발열 및 고효율, 고성능을 가질 뿐만 아니라, 로터 및 스테이터에 조립이 용이하여 생산력 또한 우수한 MSO코일의 제조방법 및 제조장치에 관한 것이다.
전동기의 효율 증대를 위한 연구가 활발하게 진행되고 있는 오늘날, 전기자동차 및 발전설비에 사용되는 전동기 및 발전기의 효율 개선은 매우 큰 경제적 효과를 유발할 수 있기에 그 주목도가 특히 남다르다 할 수 있다.
이에 따라, 전동기 및 발전기의 효율을 향상시키기 위한 방법의 일환으로서, 로더 또는 스테이터에 감기는 코일의 점적율(占積率, coil space factor 또는 conductor occupying ratio)을 향상시키기 위한 다양한 방법들이 연구되고 있다.
종래 코일의 점적율을 향상시키기 위한 일반적인 방법으로는, 스테이터 또는 로터에 감기는 코일의 직경을 증가시키거나 감기는 횟수를 늘리는 방법이 주로 이용되어 왔다.
그러나 종래의 코일의 경우 주로 수직단면이 원형인 형태를 와이어가 통상적으로 사용되고 있으며, 고효율, 고출력화를 위해 이와 같은 원형코일의 직경을 증가시키게 되면 원형의 단면형상으로 인해 감겨진 코일층 사이에 낭비되는 공간(waste space)이 발생하게 되므로 코일의 점적율이 저하된다는 근본적인 문제점이 존재했다.
반면, 너무 작은 직경을 갖는 코일을 감을 경우에는 상대적인 전기저항의 증가로 인해 효율저하 및 발열문제가 야기될 수 있다는 문제점이 존재했다.
또한 기존의 전동기 및 발전기는 스테이터 및 로터의 코어에 코일을 일일이 감는 방식을 취하여 제작되었기 때문에, 제조시간이 오래 걸려 생산 수량이 제한될 뿐만 아니라 이에 따른 제조 난이도 및 비용이 증가한다는 문제점이 추가적으로 존재했다.
위와 같은 문제점을 해결하기 위해 개발된 것이 MSO(Maximum Slot Occupy)코일이나, 이러한 MSO코일은 코어 내의 점적율을 극대화시키기 위해 테이퍼형상을 가지며 코일측의 단면적이 넓게 형성되는 등 그 특수한 형상으로 인해 방전가공 및 기계가공을 이용할 수 밖에 없었다.
*(예컨대, 와인딩과 같은 방법을 이용해 MSO코일을 제조할 경우 단면적이 넓게 형성된 코일층의 특수한 형상으로 인해 휘어지는 코일의 내측과 외측의 조직 치밀도가 상이해져, 전류 밀도의 균일성 및 내구성에 문제가 발생할 수 있다는 문제점이 존재했다)
그러나 방전가공 및 기계가공을 이용하여 MSO코일을 제조할 경우 제조 시간이 오래 걸리고 작업단가가 높아 생산성이 떨어진다는 문제점이 있었다.
특히, 단면적이 넓게 형성된 코일을 방전가공 및 기계가공을 통해 제조함에 따라 절삭공정으로 인해 낭비되는 시간과 재료에 대한 기회비용을 무시할 수 없었다.
따라서, 종래 방전가공 등 전통적인 기계 절삭 방식 대비 높은 생산속도를 가질 수 있을 뿐만 아니라, 모터 완제품의 생산속도까지 향상 시킬 수 있는 전동기 및 발전기의 전기자 코일 제작 기술과 모터 생산 기술의 개발이 필요한 실정이다.
특히 전기자동차 분야에서 효율 및 생산성을 동시에 향상시킬 수 있는 기술이 개발될 경우 관련 산업계에 미치는 파급 효과가 클 것으로 예상된다.
본 발명이 해결하고자 하는 과제는, 동일한 전동기 코어구조 설계 대비 상대적으로 높은 점적율을 가지며 코일층을 형성하는 코일의 각 턴 당 전기저항이 균일하여 저발열 및 고효율의 성능을 가질 뿐만 아니라, 로터 및 스테이터에 조립이 용이하여 생산력 또한 우수한 MSO코일의 제조방법 및 제조장치를 제공함에 있다.
한편, 본 발명이 해결하고자 하는 기술적 과제는 전술한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기 기술적 과제를 해결하기 위한 본 발명에 따른 MSO코일의 제조방법은, 양단이 서로 마주보는 고리형태의 단위 코일층의 일부분에 절곡면을 형성시켜, 상기 단위 코일층의 양단에 고저차를 주는 프레싱단계; 상기 절곡면이 형성된 단위 코일층의 양단 중 일단이 상기 절곡면이 형성된 다른 단위 코일층의 양단 중 타단과 접촉되도록, 상기 절곡면이 형성된 복수 개의 단위 코일층을 서로 연결하여 고정시키는 고정단계; 및 서로 연결되어 고정된 복수 개의 단위 코일층 각각의 일단과 타단이 접촉되어 있는 연결부위를 접합시키는 접합단계를 포함할 수 있다.
*여기서, 상기 절곡면이 형성된 복수 개의 단위 코일층 중 어느 하나의 단위 코일층을 제1 코일층이라 하고, 상기 제1 코일층의 일단과 연결되는 타단을 갖는 다른 단위 코일층을 제2 코일층이라 할 때, 상기 제1 코일층의 일단과 접촉되는 상기 제2 코일층의 타단이 서로 끼워 맞춰져 결합될 수 있도록, 상기 제1 코일층의 일단과 상기 상기 제2 코일층의 타단에 암수 결합이 가능한 홈과 돌기를 각각 포함하는 결합구조를 형성시키는 결합구조형성단계를 더 포함할 수 있다.
이러한 상기 결합구조형성단계는, 상기 제1 코일층의 일단 중 일부분이 돌출된 제1 돌기를 형성하도록, 상기 일부분을 제외한 상기 제1 코일층 일단의 나머지부분의 길이방향에 따른 수직단면이 함몰된 제1 홈을 형성시키고, 상기 제2 코일층의 타단 중 일부분이 돌출된 제2 돌기를 형성하도록, 상기 일부분을 제외한 상기 제2 코일층 타단의 나머지부분의 길이방향에 따른 수직단면이 함몰된 제2 홈을 형성시키며, 상기 결합구조는, 상기 제1 코일층 일단의 제1 돌기는 상기 제2 코일층 타단의 제2홈에 끼워 맞춰지고, 상기 제2 코일층 타단의 제2 돌기는 상기 제1 코일층 일단의 제1 홈에 끼워 맞춰질 수 있도록, 서로 대응되는 형상으로 마련될 수 있다.
또한, 상기 결합구조형성단계는, 상기 제2 코일층의 일단과 연결되는 타단을 갖는 또 다른 단위 코일층을 제3 코일층이라 할 때, 상기 제2 코일층의 일단과 상기 제3 코일층의 타단에 각각 형성된 결합구조는 상기 제1 코일층의 일단과 상기 제2 코일층의 타단에 각각 형성된 결합구조로부터 동일선상에서 벗어난 위치에 배치되도록 형성될 수도 있다.
한편, 상기 접합단계는, 상기 제1 코일층의 일단과 상기 상기 제2 코일층의 타단이 암수 결합된 상기 연결부위에 전극을 맞대어 가압하고, 전류를 흘려 넣어 상기 제1 코일층과 상기 제2 코일층의 결합구조를 서로 접합시킬 수 있다.
이때, 상기 접합단계는, 상기 연결부위에 전류를 흘려 넣었을 때 발생하는 저항열을 이용하여 상기 결합구조의 상기 홈과 상기 돌기를 반용융상태로 만들고, 상기 제1 코일층 및 상기 제2 코일층을 포함하는 복수 개의 단위 코일층의 연결부위들을 일괄적으로 가압하여 상기 결합구조를 통해 서로 연결된 복수 개의 단위 코일층들의 연결부위들을 접합시킬 수 있다.
또한, 상기 접합단계는, 상기 전극이 상기 제1 코일층 및 상기 제2 코일층의 연결부위의 너비방향을 가압하고, 상기 전극을 통해 상기 연결부위에 전류를 흘려 넣을 때 외력을 인가하여 상기 연결부위의 두께방향을 가압할 수 있다.
아울러, 상기 접합단계는, 상기 연결부위를 가압하는 외력의 방향이 상기 결합구조를 갖는 상기 홈과 상기 돌기의 삽입 방향과 일치하도록 하며, 상기 연결부위에 인가된 외력에 의해 상기 홈에 삽입된 상기 돌기가 우선적으로 국부 용융되어 접합될 수 있다.
그리고, 본 발명에 따른 MSO코일의 제조방법에 이용되는 제조장치는, 상기 단위 코일층이 놓여지는 일면 중 상기 절곡면이 형성될 상기 단위 코일층의 일부분에 대응되는 부분이 미리 설정된 기울기를 갖고 함몰 형성되어, 외력에 의해 상기 단위 코일층에 압력이 가해지면 상기 단위 코일층의 일부분에 상기 절곡면을 형성시키는 프레스지그; 상기 절곡면이 형성된 복수 개의 단위 코일층이 상기 절곡면의 기울기만큼 서로 간격을 두고 연결될 수 있도록, 상기 복수 개의 단위 코일층 사이에 각각 삽입되어 상기 복수 개의 단위 코일층을 지지하는 고정지그; 및 상기 고정지그에 의해 서로 연결되어 고정된 상기 복수 개의 단위 코일층의 일단과 타단이 접촉되어 있는 연결부위를 용접시키는 용접기를 포함할 수 있다.
여기서, 상기 프레스지그는, 상기 단위 코일층의 양단 중 일단이 포함된 일부분이 놓여 고정되는 제1 프레스지그 및 상기 단위 코일층의 양단 중 타단이 포함된 다른 부분이 놓여 고정되는 제2 프레스지그를 포함하고, 상기 제2 프레스지그는, 경사를 갖는 홈으로 마련되어, 상기 단위 코일층에 외력에 의한 압력이 가해지면, 상기 단위 코일층의 양단 중 타단이 포함된 다른 부분에 미리 설정된 각도로 절곡면이 형성시키는 슬로프라인; 및 상기 단위 코일층의 타단이 상기 단위 코일층의 일단과 고저차를 갖되 평행을 이루도록, 상기 단위 코일층에 외력에 의한 압력이 가해지면 상기 단위 코일층의 타단을 상기 절곡면으로터 한 번 더 절곡시키는 플레인라인을 포함할 수 있다.
그리고, 상기 고정지그는, 한 쌍으로 마련되고, 상기 고리형태의 단위 코일층의 내측에 서로 이격된 상태로 삽입되어 상기 단위 코일층을 고정하는 고정핀; 상기 절곡면에 의한 상기 단위 코일층 양단의 고저차만큼의 두께를 갖고, 상기 복수 개의 단위 코일층 사이에 각각 삽입되는 복수 개의 스페이서; 상기 복수 개의 스페이서의 일측이 삽입되어 고정되는 제1 고정지그; 및 상기 복수 개의 스페이서의 타측이 삽입되어 고정되는 제2 고정지그를 포함할 수 있다.
이때, 상기 제1 고정지그는, 상기 복수 개의 단위 코일층 중 가장 상단에 위치한 단위 코일층의 절곡면을 맞대어 고정시키는 페이스피스; 및 상기 페이스피스의 일측을 따라 개방 형성되어, 상기 복수 개의 단위 코일층 중 가장 상단에 위치한 단위 코일층의 일단 또는 타단이 직선상으로 연장 형성된 연장부가 삽입되어 고정되는 엔드홈을 포함할 수 있다.
아울러, 본 발명에 따른 MSO코일 제조방법에 의해 제조된 MSO코일은, 복수 개의 단위 코일층이 상하 높이방향을 따라 연속적으로 적층된 코일블록을 형성하며, 상기 코일블록은, 하부에서 상부로 갈수록 상기 단위 코일층의 수직단면의 너비는 증가하고 두께는 감소하여, 상기 복수 개의 단위 코일층의 상하 높이방향에 따른 수직단면적이 모두 동일하게 형성될 수 있다.
전술한 구성을 가지는 본 발명의 MSO코일의 제조방법 및 제조장치에 따르면 다음과 같은 효과가 있다.
먼저, 종래 방전가공 및 기계가공 방식 대비 저렴한 생산비용과 높은 생산속도로 MSO코일을 제조할 수 있다는 이점이 있다.
한편, 본 발명의 효과는 상기 언급한 효과에 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명에 따른 MSO코일의 제조방법을 나타낸 순서도이다.
도 2 내지 도 3은 본 발명의 일 실시예에 따른 프레싱단계를 나타낸 도면이다.
도 4는 본 발명의 일 실시예에 따른 고정단계를 나타낸 도면이다.
도 5 내지 도 6은 본 발명의 일 실시예에 따른 결합구조형성단계를 통해 형성된 결합구조를 나타낸 도면이다.
도 7 내지 도 8은 본 발명의 일 실시예에 따른 접합단계를 나타낸 도면이다.
도 9는 본 발명의 다른 실시예에 따른 고정단계를 나타낸 도면이다.
도 10 내지 도 11은 본 발명에 따른 MSO코일의 제조장치 중 프레스지그 및 고정지그를 나타낸 도면이다.
도 12 내지 도 13은 본 발명에 따른 MSO코일의 제조방법에 의해 제조된 MSO코일을 나타낸 도면이다.
[규칙 제91조에 의한 정정 08.02.2018] 
도 14는 종래의 원형 코일이 코어에 권선된 모습을 도시한 도면이다.
[규칙 제91조에 의한 정정 08.02.2018] 
도 15는 본 발명에 따른 스테이터 코어에 MSO코일이 결합된 모습을 도시한 도면이다.
*부호의 설명
S1: 프레싱단계
S2: 고정단계
S3: 접합단계
100: 단위 코일층
110: 절곡면
120: 결합구조
200: 프레스지그
300: 고정지그
400: 용접기
이하 본 발명의 목적이 구체적으로 실현될 수 있는 본 발명의 일 실시예를 첨부된 도면을 참조하여 설명한다. 본 실시예를 설명함에 있어서 동일한 구성에 대해서는 동일 명칭 및 동일 부호가 사용되며 이에 따른 부가적인 설명은 생략하기로 한다.
또한 본 실시예를 설명함에 있어서 도면에 도시된 구성은 상세한 설명에 대한 이해를 돕기 위한 예시일 뿐, 이로 인해 권리범위가 제한되지 않음을 명시한다.
먼저, 도 1에 도시된 바와 같이 본 실시예에 따른 MSO(Maximum Slot Occupy)코일의 제조방법은 프레싱단계(S1), 고정단계(S2) 및 접합단계(S3)를 포함할 수 있다.
프레싱단계(S1)에서는 도 2와 같이 양단(102, 104)이 서로 마주보는 고리형태의 단위 코일층(100)의 일부분에 절곡면(110)을 형성시켜, 도 3과 같이 단위 코일층(100)의 양단(102, 104)에 고저차(G)를 줄 수 있다.
여기서 단위 코일층(100)은 프레싱과 같은 단조(forging)공법 또는 다이캐스팅과 같은 주조(casting)공법 등을 이용한 별도의 공정을 통해 성형될 수 있다.
이때 구리강판을 단조공법을 이용하여 가공할 경우, 생산속도 측면에서 매우 우수할 뿐만 아니라 낮은 생산단가로 인해 높은 생산성을 보장받을 수 있고, 각 코일 층이 프레스 공정에서 높은 압력을 받기 때문에 높은 밀도의 도체가 생산될 수 있다.
또한 주조공법을 이용할 경우에도 1차적으로 캐스팅된 단위 코일층(100)을 2차적으로 프레싱(압축가공)하여 코일의 조직을 보다 치밀하게 하는 등의 다단공법 등을 이용함으로써 생산성과 품질 모두를 높일 수 있다.
고정단계(S2)에서는 도 4와 같이 절곡면(110)이 형성된 단위 코일층(100a)의 양단 중 일단(102)이 절곡면(110)이 형성된 다른 단위 코일층(100b)의 양단 중 타단(104)과 접촉되도록, 절곡면(110)이 형성된 복수 개의 단위 코일층(100a 내지 100e)을 서로 연결하여 고정시킬 수 있다.
여기서, 복수 개의 단위 코일층(100a 내지 100e)의 가장 하단 또는 가장 상단에는 단위 코일층(100)의 일단 또는 타단이 직선상으로 연장된 연장부(101)가 배치될 수 있다.
이러한 연장부(101)는 추후 MSO코일이 로터 또는 스테이터에 결합되었을 때 전류가 연결되는 지점이자 엔드 와이딩 가공이 이루어는 부분으로서, 앞서 언급했던 단위 코일층(100)과 마찬가지로 별도의 공정을 통해 준비될 수 있다.
접합단계(S3)에서는 앞서 고정단계(S2)를 통해 서로 연결되어 고정된 복수 개의 단위 코일층(100a 내지 100e) 각각의 일단과 타단이 접촉되어 있는 연결부위를 접합시킬 수 있다.
이때 복수 개의 단위 코일층(100a 내지 100e)의 연결부위들은 일반적인 용접을 비롯하여 저항용접 등의 다양한 용접방식을 이용해 접합시킬 수 있다.
특히, 본 실시예에 따른 접합단계(S3)에서는 복수 개의 단위 코일층(100a 내지 100e) 각각의 일단과 타단이 접촉되어 있는 연결부위에 전극을 맞대고 전류를 흘려 넣고, 상기 연결부위를 발생하는 저항열을 이용하여 반용융상태로 만든 후 압력을 가해 접합시키는 저항용접방식을 이용하여 복수 개의 단위 코일층(100a 내지 100e)을 서로 접합시킬 수 있다.
한편, 본 실시예에 따른 MSO코일의 제조방법에 따르면 고정단계(S2)에서 단위 코일층(100)간의 고정력을 향상시킴은 물론, 접합단계(S3)에서 단위 코일층(100)간의 접합력을 향상시키기 위한 공정으로서 결합구조형성단계를 더 포함할 수 있다.
이러한 결합구조형성단계에서는 절곡면(110)이 형성된 복수 개의 단위 코일층(100a 내지 100e) 중 어느 하나의 단위 코일층을 제1 코일층(100a)이라 하고, 제1 코일층(100a)의 일단과 연결되는 타단을 갖는 다른 단위 코일층을 제2 코일층(100b)이라 할 때(도 4 참조), 도 5와 같이 제1 코일층(100a)의 일단(102a)과 접촉되는 제2 코일층(100b)의 타단(104b)이 서로 끼워 맞춰져 결합될 수 있도록, 제1 코일층(100a)의 일단(102a)과 제2 코일층(104b)의 타단에 암수 결합이 가능한 홈(124a, 124b)과 돌기(122a, 122b)를 각각 포함하는 결합구조(120)를 형성시킬 수 있다.
보다 구체적으로, 결합구조형성단계에서는 제1 코일층(100a)의 일단(102a) 중 일부분이 돌출된 제1 돌기(122a)를 형성하도록, 상기 일부분을 제외한 제1 코일층 일단(102a)의 나머지부분의 길이방향에 따른 수직단면이 함몰된 제1 홈(124a)를 형성시킬 수 있다.
그리고 제2 코일층(100b)의 타단(104b) 중 일부분이 돌출된 제2 돌기(122b)를 형성하도록, 상기 일부분을 제외한 제2 코일층 타단(104b)의 나머지부분의 길이방향에 따른 수직단면이 함몰된 제2 홈(124b)를 형성시킬 수 있다.
위와 같은 결합구조형성단계를 통해 형성된 결합구조(120)는 제1 코일층 일단(102a)의 제1 돌기(122a)는 제2 코일층 타단(104b)의 제2 홈(124b)에 끼워 맞춰지고, 제2 코일층 타단(104b)의 제2 돌기(122b)는 제1 코일층 일단(102a)의 제1 홈(124a)에 끼워 맞춰질 수 있도록, 서로 대응되는 형상으로 마련될 수 있다.
이러한 결합구조(120)는 도 6에 도시된 바와 같이 다양한 형태로 구성될 수 있으며, 암수 결합 구조라는 특성을 포함하고 있다면 공정의 효율 및 설계상 이점에 의해 얼마든지 다양한 형태로 구현될 수 있다.
그리고 본 실시예에 따르면 도 7과 같이 접합단계(S3)에 있어서 위와 같은 결합구조(120)를 통해 제1 코일층(100a)의 일단(102a)과 제2 코일층(100b)의 타단(104b)이 암수 결합된 연결부위에 전극(410)을 맞대어 가압하고, 전류를 흘려 넣어 복수 개의 코일층의 연결부위들의 결합구조를 서로 접합시킬 수 있다.
이처럼 연결부위에 전류를 흘려 넣었을 때 발생하는 저항열을 이용하여 결합구조(120)의 홈(124a, 124b)과 돌기(122a, 122b)를 반용융상태로 만들고, 제1 코일층(100a) 및 제2 코일층(100b)을 포함하는 복수 개의 단위 코일층의 연결부위들을 일괄적으로 가압하여 결합구조(120)를 통해 서로 연결된 복수 개의 단위 코일층들의 연결부위들을 접합시킬 수 있다.
이때 복수 개의 단위 코일층의 연결부위들은 외력에 의해 일괄적으로 가압될 수 있으며, 전극(410)이 연결부위를 가압하는 방향이 제1 코일층(100a) 및 제2 코일층(100b)의 너비방향이라하면, 상기 외력은 제1 코일층(100a) 및 제2 코일층(b)의 두께방향을 따라 상기 연결부위를 가압할 수 있다.
그리고, 전합단계(S3)에서는 도 8에 도시된 바와 같이 연결부위를 가압하는 외력의 방향이 결합구조(120)를 갖는 홈(124a, 124b)과 돌기(122a, 122b)의 삽입 방향과 일치하도록 하여, 홈(124a, 124b)에 삽입된 돌기(122a, 122b)가 우선적으로 국부 용융되어 접합되게 할 수 있으며, 국부 용융을 이용한 저항용접 방식을 이용하기 때문에 단위 코일층(100)을 구성하는 재료의 기계적 성질의 변형을 최소화시킬 수 있다.
나아가 복수 개의 코일층의 연결부위를 일괄적으로 용접할 수 있을 뿐만 아니라, 국부 용융에 따라 용접에 따른 비드의 제거 및 후처리 공정 등을 최소화할 수 있어, 공수 절감 및 생산성을 증대시킬 수 있다는 이점 또한 발생할 수 있다.
한편, 본 발명에 따른 MSO코일의 제조방법의 다른 실시예에 따르면 결합구조형성단계에서 결합구조(120)가 복수 개의 코일층 사이에서 서로 어긋난 위치에 배치되도록 형성시킬 수도 있다.
보다 구체적으로, 도 9에 도시된 바와 같이 본 발명의 다른 실시예에 따른 결합구조(120)는 제2 코일층(100b)의 일단과 연결되는 타단을 갖는 또 다른 단위 코일층을 제3 코일층(100c)이라 할 때, 제2 코일층(100b)의 일단과 제3 코일층(100c)의 타단에 각각 형성된 결합구조(120)는 제1 코일층(100a)의 일단과 제2 코일층(100b)의 타단에 각각 형성된 결합구조(120)로부터 동일선상에서 벗어난 위치에 배치되도록 형성될 수 있다.
이에 따라, 복수 개의 단위 코일층이 MSO코일로 제조되었을 경우 응력이 용접부위이자 동일선상에 배치된 결합구조(120)에 일률적으로 가해져 연속적인 파손이 발생하는 것을 방지할 수 있다.
특히, 제조된 MSO코일이 로터 또는 스테이터에 결합될 때, 결합과정에서 발생되는 압축력에 의해 결합구조(120)에 연속적인 파단이 일어나는 것을 방지할 수 있을 뿐만 아니라, 후처리 공정에 필요한 단위 코일층(100)간이 간격으로부터 충분한 작업공간을 확보할 수 있다는 이점 또한 발생할 수 있다.
다음으로, 본 발명은 전술한 바와 같은 MSO코일의 제조방법에 이용되는 제조장치로서, 프레스지그(200), 고정지그(300) 및 용접기(400)로 구성되는 MSO코일의 제조장치를 포함할 수 있다.
프레스지그(200)는 도 10에 도시된 바와 같이 단위 코일층(100)이 높여지는 일면 중 절곡면(110)이 형성될 단위 코일층(100)의 일부분에 대응되는 부분이 미리 설정된 기울기를 갖고 함몰 형성되어, 외력에 의해 단위 코일층(100)에 압력이 가해지면 단위 코일층(100)의 일부분에 절곡면(110)을 형성시킬 수 있다.
이와 같은 프레스지그(200)는 도 10의 (a)와 같이 단위 코일층(100)의 양단 중 일단(102)이 포함된 일부분이 놓여 고정되는 제1 프레스지그(210)와, 단위 코일층(100)의 양단 중 타단(104)이 포함된 다른 부분이 놓여 고정되는 제2 프레스지그(220)를 포함할 수 있다.
이때 제2 프레스지그(220)는 단위 코일층(100)에 외력에 의한 압력이 가해지면, 단위 코일층(100)의 양단 중 타단(104)이 포함된 다른 부분에 미리 설정된 각도로 절곡면(110)을 형성시키는 슬로프라인(222)이 경사를 갖는 홈으로 마련될 수 있다.
그리고 단위 코일층(100)의 타단(104)이 마주보는 일단(102)과 고저차를 갖되 평행을 이루도록, 단위 코일층(100)에 외력에 의한 압력이 가해지면 단위 코일층(100)의 타단(104)을 절곡면(110)으로부터 한 번 더 절곡시키는 플레인라인(224)이 더 마련될 수 있다.
한편, 본 발명에 따른 프레스지그(200)는 도 10의 (b)와 같이 MSO코일의 제조를 위해 복수 개의 단위 코일층이 서로 연결되었을 때, 단위 코일층(100)의 배치 위치에 따라 일단(102) 및 타단(104)의 위치가 달라 질 수 있기 때문에, 배치 위치에 따른 단위 코일층(100)의 다양한 형태에 맞춰 절곡면(110)을 형성시킬 수 있도록, 해당 단위 코일층(100)의 배치 위치에 따른 다양한 형태에 대응되도록 다양한 형태와 다양한 개수로 구성될 수 있다.
나아가, 제1 프레스지그(210)와 제2 프레스지그(220)가 서로 분리 가능한 구조로 구성되어, 배치 위치에 따른 단위 코일층(100)의 다양한 형태에 대응되는 형태를 갖는 제1 프레스지그(210)만을 필요에 따라 교체하여 사용할 수 있도록 마련될 수도 있다.
고정지그(300)는 도 11에 도시된 바와 같이 고정핀(310), 스페이서(320), 제1 고정지그(330) 및 제2 고정지그(340)으로 구성될 수 있다.
여기서 고정핀(310)은 한 쌍으로 마련되어 고리형태의 단위 코일층(100)의 내측에 서로 이격된 상태로 삽입되어 복수 개의 단위 코일층을 고정할 수 있다.
스페이서(320)는 절곡면(110)에 의한 단위 코일층(100) 양단의 고저차만큼의 두께를 갖고, 복수 개의 단위 코일층 사이에 각각 삽입될 수 있다.
그리고 제1 고정지그(330) 및 제2 고정지그(340)는 위와 같은 스페이서(320)의 일측과 타측이 각각 삽입되어 고정되도록 마련될 수 있다.
한편, 본 발명에 따른 제1 고정지그(330)는 복수 개의 단위 코일층 중 가장 상단에 위치한 단위 코일층(100t)의 절곡면(110)을 맞대어 고정시키는 페이스피스(332)와, 페이스피스(332)의 일측을 따라 개방 형성되어 최상단에 위치한 단위 코일층(100t)의 일단 또는 타단이 직선상으로 연장 형성된 연장부(101)가 삽입되어 고정되는 엔드홈(334)을 포함할 수 있다.
이에 따라, 전술한 고정단계(S2)에서 복수 개의 단위 코일층은 각각의 일단과 타단이 서로 연결된 상태로 안정적으로 코일블록의 형태를 취하며 고정될 수 있다.
또한, 본 발명에 따른 MSO코일의 제조방법을 수행함에 있어서 연장부(101)가 미리 연결된 상태에서 접합단계(S3)에 따른 용접작업을 수행할 수 있기 때문에, 후속 공정 없이 MSO코일을 완성된 형태로 즉시 제조할 수 있다는 이점이 있다.
여기서, 연장부(101)의 경우 앞서 본 발명의 MSO코일의 제조방법 중 고정단계(S2)를 설명하는 과정에서 이미 설명했기 때문에 구체적인 설명은 생략하도록 하겠다.
용접기(400, 도 7 참조)는 고정지그(300)에 의해 서로 연결되어 고정된 복수 개의 단위 코일층의 연결부위를 용접시키는 구성으로서, 상기 연결부위(결합구조)에 접촉하여 전류를 흘려 넣을 수 있는 전극(410) 및 상기 연결부위(결합구조)에 압력을 가하는 가압수단(미도시)를 포함할 수 있다.
이러한 용접기(400)는 앞서 연장부(101)와 마찬가지로 본 발명의 MSO코일의 제조방법 중 접합단계(S3)를 설명하는 과정에서 이미 설명했기 때문에 구체적인 구성에 대한 설명은 생략하도록 하겠다.
이어서, 도 12 내지 도 13을 참조하여 본 발명의 일 실시예에 따른 제조방법 및 제조장치에 의해 제조된 MSO코일에 대하여 설명하도록 하겠다.
전술한 바와 같은 본 발명에 따른 제조방법 및 제조장치에 의해 제조된 MSO코일은 도 12와 같이 복수 개의 단위 코일층이 상하 높이방향을 따라 연속적으로 적층된 코일블록으로 구성될 수 있다.
이러한 코일블록은 로터 및 스테이터의 코어에 바로 결합할 수 있기 때문에 조립이 용이하여 생산력 또한 우수할 뿐만 아니라, 종래의 원형코일에 비해 상대적으로 높은 점적율을 가질 수 있다.
[규칙 제91조에 의한 정정 08.02.2018] 
즉, 도 14 및 도 15를 통해 알 수 있듯이 동일한 구조를 갖는 스테이터(S)에 결합되었을 때, 본 발명에 따른 MSO코일 사이에서 발생되는 낭비공간(WS10)은 종래 원형코일(OC)이 스테이터(S)의 코어(S100)에 권선되었을 경우 발생되는 낭비공간(WSOC)에 비해 상대적으로 적을 수 있다.
또한, 종래 원형코일(OC)의 점적율을 높이기 위해 권선 횟수를 증가시킬 경우에는 원형코일(OC)들 사이에서 발생하는 전기저항의 증가로 인해 효율저하 및 발명의 문제가 발생될 수 있다는 문제점이 있었으나, 본 발명에 따른 MSO코일은 하부에서 상부로 갈수록 코일층을 형성하는 코일의 단면 너비가 증가하더라도, 하나의 코일이 연속적으로 적층된 코일층을 형성하기 때문에 상기와 같은 문제점으로부터 비교적 자유로울 수 있다는 이점이 있다.
아울러, 본 발명에 따른 제조방법 및 제조장치에 의해 제조된 MSO코일은 도 13에 도시된 바와 같이, 코일블록(10)의 하부에서 상부로 갈수록 단위 코일층의 수직단면의 너비는 증가하고 두께는 감소하여, 복수 개의 단위 코일층의 상하 높이방향에 따른 수직단면적이 모두 동일하게 형성될 수 있다.
보다 구체적으로 복수 개의 코일층 중 가장 하부에 위치하는 코일을 제1 코일(11a), 상기 제1 코일 바로 위에 위치하는 코일을 제2 코일(11b)라 가정하였을 때, 상기 제2 코일의 너비(w2)은 상기 제1 코일의 너비(w1)에 비해 상대적으로 더 넓고 그 두께(t2)는 상기 제1 코일의 두께(t1)에 비해 상대적으로 더 얇게 형성될 수 있다.
마찬가지로 상기 제2 코일(11b)의 바로 위에 위치하는 코일을 제3 코일(11c)라 가정하면, 상기 제3 코일의 너비(w3)와 두께(t3)는 상기 제2 코일(11b)의 너비(w2)와 두께(t2)에 비해 각각 더 두껍고 얇게 형성될 수 있다.
즉, 코일블록(10)이 8개의 코일층으로 구성되었을 시, 코일블록(10)의 가장 하부에 위치하는 제1 코일(11a)에 비해 코일블록(10)의 가장 상부에 위치하는 제8 코일(11h)은 한층 더 너비(w8)는 넓되 두께(t2)는 얇게 형성될 수 있으며, 상기 제1 코일(11a)과 상기 제8 코일(11h)의 사이에 위치하는 제2 코일(11b) 내지 제7 코일(11g)은 상부에 위치하는 코일일수록 점차적으로 그 너비는 넓어지고 두께는 얇아질 수 있다.
이처럼 코일블록(10)을 형성하는 복수 개의 코일층의 상하방향에 따른 수직단면적은 모두 동일하도록 구성될 수 있으며, 이에 따라 각 코일층에 걸리는 전기저항이 균일한 MSO코일의 생산이 가능해질 수 있다.
이는 곧 저발열 및 고효율을 갖는 전동기 및 발전기를 생산할 수 있음을 의미하며, 저속, 고(高)토크 작동 구간에서 상대적으로 우수한 효율을 갖는 전동기 및 발전기를 본 발명에 따른 MSO코일을 적용함으로써 생산할 수 있다.
특히, 모터의 실용 회전 수가 낮거나 극수가 적은 모터에 적용할 경우 더 나은 효율을 기대할 수 있을 뿐만 아니라, 저속에서 효율특성이 매우 중요한 전기 자동차용 모터 분야에 적용될 경우 종래의 코일 대비 상당한 에너지 효율의 증대를 가져올 수 있다.
이상과 같이 본 발명에 따른 실시예를 살펴보았으며, 앞서 설명된 실시예 이외에도 본 발명이 그 취지나 범주에서 벗어남이 없이 다른 특정 형태로 구체화될 수 있다는 사실은 해당 기술에 통상의 지식을 가진 이들에게는 자명한 것이다.
그러므로 상술된 실시예는 제한적인 것이 아니라 예시적인 것으로 여겨져야 하고, 이에 따라 본 발명은 상술한 설명에 한정되지 않고 첨부된 청구항의 범주 및 그 동등 범위 내에서 변경될 수도 있다.

Claims (13)

  1. 양단이 서로 마주보는 고리형태의 단위 코일층의 일부분에 절곡면을 형성시켜, 상기 단위 코일층의 양단에 고저차를 주는 프레싱단계;
    상기 절곡면이 형성된 단위 코일층의 양단 중 일단이 상기 절곡면이 형성된 다른 단위 코일층의 양단 중 타단과 접촉되도록, 상기 절곡면이 형성된 복수 개의 단위 코일층을 서로 연결하여 고정시키는 고정단계; 및
    서로 연결되어 고정된 복수 개의 단위 코일층 각각의 일단과 타단이 접촉되어 있는 연결부위를 접합시키는 접합단계를 포함하는 MSO코일의 제조방법.
  2. 제1항에 있어서,
    상기 절곡면이 형성된 복수 개의 단위 코일층 중 어느 하나의 단위 코일층을 제1 코일층이라 하고, 상기 제1 코일층의 일단과 연결되는 타단을 갖는 다른 단위 코일층을 제2 코일층이라 할 때,
    상기 제1 코일층의 일단과 상기 제2 코일층의 타단이 접촉되는 상기 연결부위가 서로 끼워 맞춰져 결합될 수 있도록, 상기 제1 코일층의 일단과 상기 제2 코일층의 타단에 암수 결합이 가능한 홈과 돌기를 각각 포함하는 결합구조를 형성시키는 결합구조형성단계를 더 포함하는 MSO코일의 제조방법.
  3. 제2항에 있어서,
    상기 결합구조형성단계는,
    상기 제1 코일층의 일단 중 일부분이 돌출된 제1 돌기를 형성하도록, 상기 일부분을 제외한 상기 제1 코일층 일단의 나머지부분의 길이방향에 따른 수직단면이 함몰된 제1 홈을 형성시키고,
    상기 제2 코일층의 타단 중 일부분이 돌출된 제2 돌기를 형성하도록, 상기 일부분을 제외한 상기 제2 코일층 타단의 나머지부분의 길이방향에 따른 수직단면이 함몰된 제2 홈을 형성시키며,
    상기 결합구조는,
    상기 제1 코일층 일단의 제1 돌기는 상기 제2 코일층 타단의 제2홈에 끼워 맞춰지고, 상기 제2 코일층 타단의 제2 돌기는 상기 제1 코일층 일단의 제1 홈에 끼워 맞춰질 수 있도록, 서로 대응되는 형상으로 마련되는 것을 특징으로 하는 MSO코일의 제조방법.
  4. 제2항에 있어서,
    상기 결합구조형성단계는,
    상기 제2 코일층의 일단과 연결되는 타단을 갖는 또 다른 단위 코일층을 제3 코일층이라 할 때,
    상기 제2 코일층의 일단과 상기 제3 코일층의 타단에 각각 형성된 결합구조는 상기 제1 코일층의 일단과 상기 제2 코일층의 타단에 각각 형성된 결합구조로부터 동일선상에서 벗어난 위치에 배치되도록 형성되는 것을 특징으로 하는 MSO코일의 제조방법.
  5. 제2항에 있어서,
    상기 접합단계는,
    상기 제1 코일층의 일단과 상기 상기 제2 코일층의 타단이 암수 결합된 상기 연결부위에 전극을 맞대어 가압하고, 전류를 흘려 넣어 상기 제1 코일층과 상기 제2 코일층의 결합구조를 서로 접합시키는 것을 특징으로 하는 MSO코일의 제조방법.
  6. 제5항에 있어서,
    상기 접합단계는,
    상기 연결부위에 전류를 흘려 넣었을 때 발생하는 저항열을 이용하여 상기 결합구조의 상기 홈과 상기 돌기를 반용융상태로 만들고, 상기 제1 코일층 및 상기 제2 코일층을 포함하는 복수 개의 단위 코일층의 연결부위들을 일괄적으로 가압하여 상기 결합구조를 통해 서로 연결된 복수 개의 단위 코일층들의 연결부위들을 접합시키는 것을 특징으로 하는 MSO코일의 제조방법.
  7. 제6항에 있어서,
    상기 접합단계는,
    상기 전극이 상기 제1 코일층 및 상기 제2 코일층의 연결부위의 너비방향을 가압하고, 상기 전극을 통해 상기 연결부위에 전류를 흘려 넣을 때 외력을 인가하여 상기 연결부위의 두께방향을 가압하는 것을 특징으로 하는 MSO코일의 제조방법.
  8. 제7항에 있어서,
    상기 접합단계는,
    상기 연결부위를 가압하는 외력의 방향이 상기 결합구조를 갖는 상기 홈과 상기 돌기의 삽입 방향과 일치하도록 하며, 상기 연결부위에 인가된 외력에 의해 상기 홈에 삽입된 상기 돌기가 우선적으로 국부 용융되어 접합되는 것을 특징으로 하는 MSO코일의 제조방법.
  9. 제1항에 따른 MSO코일의 제조방법에 이용되는 제조장치로서,
    상기 단위 코일층이 놓여지는 일면 중 상기 절곡면이 형성될 상기 단위 코일층의 일부분에 대응되는 부분이 미리 설정된 기울기를 갖고 함몰 형성되어, 외력에 의해 상기 단위 코일층에 압력이 가해지면 상기 단위 코일층의 일부분에 상기 절곡면을 형성시키는 프레스지그;
    상기 절곡면이 형성된 복수 개의 단위 코일층이 상기 절곡면의 기울기만큼 서로 간격을 두고 연결될 수 있도록, 상기 복수 개의 단위 코일층 사이에 각각 삽입되어 상기 복수 개의 단위 코일층을 지지하는 고정지그; 및
    상기 고정지그에 의해 서로 연결되어 고정된 상기 복수 개의 단위 코일층의 일단과 타단이 접촉되어 있는 연결부위를 용접시키는 용접기를 포함하는 MSO코일의 제조장치.
  10. 제9항에 있어서,
    상기 프레스지그는,
    상기 단위 코일층의 양단 중 일단이 포함된 일부분이 놓여 고정되는 제1 프레스지그 및 상기 단위 코일층의 양단 중 타단이 포함된 다른 부분이 놓여 고정되는 제2 프레스지그를 포함하고,
    상기 제2 프레스지그는,
    경사를 갖는 홈으로 마련되어, 상기 단위 코일층에 외력에 의한 압력이 가해지면, 상기 단위 코일층의 양단 중 타단이 포함된 다른 부분에 미리 설정된 각도로 절곡면이 형성시키는 슬로프라인; 및
    상기 단위 코일층의 타단이 상기 단위 코일층의 일단과 고저차를 갖되 평행을 이루도록, 상기 단위 코일층에 외력에 의한 압력이 가해지면 상기 단위 코일층의 타단을 상기 절곡면으로터 한 번 더 절곡시키는 플레인라인을 포함하는 것을 특징으로 하는 MSO코일의 제조장치.
  11. 제9항에 있어서,
    상기 고정지그는,
    한 쌍으로 마련되고, 상기 고리형태의 단위 코일층의 내측에 서로 이격된 상태로 삽입되어 상기 단위 코일층을 고정하는 고정핀;
    상기 절곡면에 의한 상기 단위 코일층 양단의 고저차만큼의 두께를 갖고, 상기 복수 개의 단위 코일층 사이에 각각 삽입되는 복수 개의 스페이서;
    상기 복수 개의 스페이서의 일측이 삽입되어 고정되는 제1 고정지그; 및
    상기 복수 개의 스페이서의 타측이 삽입되어 고정되는 제2 고정지그를 포함하는 것을 특징으로 하는 MSO코일의 제조장치.
  12. 제11항에 있어서,
    상기 제1 고정지그는,
    상기 복수 개의 단위 코일층 중 가장 상단에 위치한 단위 코일층의 절곡면을 맞대어 고정시키는 페이스피스; 및
    상기 페이스피스의 일측을 따라 개방 형성되어, 상기 복수 개의 단위 코일층 중 가장 상단에 위치한 단위 코일층의 일단 또는 타단이 직선상으로 연장 형성된 연장부가 삽입되어 고정되는 엔드홈을 포함하는 것을 특징으로 하는 MSO코일의 제조장치.
  13. 제1항에 따른 MSO코일 제조방법에 의해 제조된 MSO코일로서,
    복수 개의 단위 코일층이 상하 높이방향을 따라 연속적으로 적층된 코일블록을 형성하며,
    상기 코일블록은,
    하부에서 상부로 갈수록 상기 단위 코일층의 수직단면의 너비는 증가하고 두께는 감소하여, 상기 복수 개의 단위 코일층의 상하 높이방향에 따른 수직단면적이 모두 동일하게 형성되는 것을 특징으로 하는 MSO코일.
PCT/KR2017/014003 2016-12-05 2017-12-01 Mso코일의 제조방법 및 제조장치 WO2018105958A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/466,530 US11404944B2 (en) 2016-12-05 2017-12-01 Method for manufacturing MSO coil and device for manufacturing same
CN201780075568.1A CN110073453B (zh) 2016-12-05 2017-12-01 Mso线圈制造方法及制造装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0164319 2016-12-05
KR1020160164319A KR101849636B1 (ko) 2016-12-05 2016-12-05 Mso코일의 제조방법 및 제조장치

Publications (1)

Publication Number Publication Date
WO2018105958A1 true WO2018105958A1 (ko) 2018-06-14

Family

ID=62454194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/014003 WO2018105958A1 (ko) 2016-12-05 2017-12-01 Mso코일의 제조방법 및 제조장치

Country Status (4)

Country Link
US (1) US11404944B2 (ko)
KR (1) KR101849636B1 (ko)
CN (1) CN110073453B (ko)
WO (1) WO2018105958A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11239733B2 (en) * 2019-04-08 2022-02-01 Toyota Jidosha Kabushiki Kaisha Method of manufacturing reactor

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021137827A (ja) * 2020-03-03 2021-09-16 株式会社アスター コイルの製造方法
DE102020209434A1 (de) * 2020-07-27 2022-01-27 Robert Bosch Gesellschaft mit beschränkter Haftung Elektromotorvorrichtung, Elektromotor mit der Elektromotorvorrichtung und Verfahren zur Herstellung einer Statoreinheit einer Elektromotorvorrichtung
KR20230012816A (ko) 2021-07-16 2023-01-26 현대자동차주식회사 모터 어셈블리용 캐스팅 코일, 그것의 제조 방법 및 모터 어셈블리
KR102495886B1 (ko) 2021-08-03 2023-02-06 안주형 냉각기능 코팅부분이 형성된 금속박판코일 제작방법
KR102469734B1 (ko) 2022-03-17 2022-11-22 (주)대성하이텍 Mso 코일의 제조방법 및 이를 이용한 mso 코일 제조장치
KR20230158372A (ko) 2022-05-11 2023-11-20 강보선 자성체를 코팅한 동박코일 및 그의 제조방법
KR20230161606A (ko) 2022-05-19 2023-11-28 윤성순 냉각기능 코팅부분이 형성된 금속박판코일 제작방법
KR102463284B1 (ko) 2022-07-28 2022-11-04 (주)대성하이텍 원-척킹 방식에 의한 평각형 코일 제조장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003259610A (ja) * 2002-02-26 2003-09-12 Mitsui High Tec Inc 積層鉄心の製造方法および製造装置
JP2005130676A (ja) * 2003-10-27 2005-05-19 Fuji Heavy Ind Ltd 電気機器用コイルの製造方法
KR200387589Y1 (ko) * 2005-03-31 2005-06-20 김명득 코어철심 성형,적층용 금형
KR101325931B1 (ko) * 2012-12-17 2013-11-07 주식회사 한빛케이에스이 발전기용 코일
KR20160059527A (ko) * 2014-11-18 2016-05-27 한국생산기술연구원 마그네틱 코어 구조체 및 이를 포함하는 전기기계장치

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6269531B1 (en) * 1998-08-10 2001-08-07 Electro Componentes Mexicana S.A. De C.V. Method of making high-current coils
DE10023204A1 (de) * 2000-05-12 2001-11-15 Alstom Power Nv Isolierung von Statorwicklungen durch Schrumpfschläuche
JP4520422B2 (ja) * 2006-03-27 2010-08-04 株式会社日立製作所 通電接合装置及び通電接合方法
JP4718591B2 (ja) * 2008-08-08 2011-07-06 義純 福井 モールドコイルの製造方法
CN203092725U (zh) * 2013-01-25 2013-07-31 昆山尼赛拉电子器材有限公司 Fet型铁氧体磁芯成型上模的改良结构
CN203103087U (zh) * 2013-03-01 2013-07-31 山东达驰电气有限公司 变压器引线结构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003259610A (ja) * 2002-02-26 2003-09-12 Mitsui High Tec Inc 積層鉄心の製造方法および製造装置
JP2005130676A (ja) * 2003-10-27 2005-05-19 Fuji Heavy Ind Ltd 電気機器用コイルの製造方法
KR200387589Y1 (ko) * 2005-03-31 2005-06-20 김명득 코어철심 성형,적층용 금형
KR101325931B1 (ko) * 2012-12-17 2013-11-07 주식회사 한빛케이에스이 발전기용 코일
KR20160059527A (ko) * 2014-11-18 2016-05-27 한국생산기술연구원 마그네틱 코어 구조체 및 이를 포함하는 전기기계장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11239733B2 (en) * 2019-04-08 2022-02-01 Toyota Jidosha Kabushiki Kaisha Method of manufacturing reactor

Also Published As

Publication number Publication date
US20200099279A1 (en) 2020-03-26
KR101849636B1 (ko) 2018-05-31
CN110073453A (zh) 2019-07-30
CN110073453B (zh) 2021-09-28
US11404944B2 (en) 2022-08-02

Similar Documents

Publication Publication Date Title
WO2018105958A1 (ko) Mso코일의 제조방법 및 제조장치
JP3964116B2 (ja) 回転電機の固定子
RU2716007C1 (ru) Статор вращающейся электрической машины и способ изготовления катушки статора
JP6299723B2 (ja) ステータコイル形成方法
US8584346B2 (en) Method for producing a bar winding for the stator of an electric machine
CN101820206B (zh) 用于超声波接头中的表面预处理的方法和装置
JP2002119003A (ja) 回転電機の固定子とその製造方法
JP2004096838A (ja) 電動機の固定子及びモールド電動機及び空気調和機及び電動機の固定子の製造方法
JP6463300B2 (ja) 端子化電線製造方法
JP5173617B2 (ja) ステータ
CN107846086B (zh) 马达定子及其制造方法
US7414345B2 (en) Commutator and armature
JP3695101B2 (ja) モータ用整流子及びその製造方法
JP4705723B2 (ja) モータ用ステータの組立方法
CN111279584B (zh) 旋转电机的电枢铁芯以及旋转电机的电枢铁芯的制造方法
JP3977138B2 (ja) 回転電機
US7414344B2 (en) Commutator and an armature
WO2020250631A1 (ja) 回転電気機械
JP2006166592A (ja) セグメント式ステータ構造
WO2019188065A1 (ja) 接合体、回転電機、及び回転電機の製造方法
US7856703B2 (en) Method for making a short-circuiting member and method for making a commutator
JP2013242991A (ja) 電線の接合構造
US5272405A (en) Commutator
JP7465170B2 (ja) 電磁部品の巻線、回転電機の固定子、回転電機及びホイール
US5153979A (en) Method of manufacturing a commutator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17877910

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17877910

Country of ref document: EP

Kind code of ref document: A1