WO2018105588A1 - 反応装置 - Google Patents

反応装置 Download PDF

Info

Publication number
WO2018105588A1
WO2018105588A1 PCT/JP2017/043579 JP2017043579W WO2018105588A1 WO 2018105588 A1 WO2018105588 A1 WO 2018105588A1 JP 2017043579 W JP2017043579 W JP 2017043579W WO 2018105588 A1 WO2018105588 A1 WO 2018105588A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
reaction
temperature
unit
flow path
Prior art date
Application number
PCT/JP2017/043579
Other languages
English (en)
French (fr)
Inventor
大雅 山本
茂樹 坂倉
明久 矢野
隆仁 秋田
俊二 宮嶋
辰哉 岡
秀志 渋谷
佑介 武内
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to EP17879121.6A priority Critical patent/EP3552696A4/en
Priority to CA3043453A priority patent/CA3043453C/en
Priority to CN201780071363.6A priority patent/CN109963647A/zh
Publication of WO2018105588A1 publication Critical patent/WO2018105588A1/ja
Priority to US16/391,445 priority patent/US10583413B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0013Controlling the temperature of the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/248Reactors comprising multiple separated flow channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/248Reactors comprising multiple separated flow channels
    • B01J19/249Plate-type reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0037Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the conduits for the other heat-exchange medium also being formed by paired plates touching each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00115Controlling the temperature by indirect heat exchange with heat exchange elements inside the bed of solid particles
    • B01J2208/00123Fingers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00115Controlling the temperature by indirect heat exchange with heat exchange elements inside the bed of solid particles
    • B01J2208/0015Plates; Cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00185Fingers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00212Plates; Jackets; Cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00054Controlling or regulating the heat exchange system
    • B01J2219/00056Controlling or regulating the heat exchange system involving measured parameters
    • B01J2219/00058Temperature measurement
    • B01J2219/0006Temperature measurement of the heat exchange medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00054Controlling or regulating the heat exchange system
    • B01J2219/00056Controlling or regulating the heat exchange system involving measured parameters
    • B01J2219/00058Temperature measurement
    • B01J2219/00063Temperature measurement of the reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00076Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements inside the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00076Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements inside the reactor
    • B01J2219/00078Fingers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00076Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements inside the reactor
    • B01J2219/00085Plates; Jackets; Cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00096Plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00164Controlling or regulating processes controlling the flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00186Controlling or regulating processes controlling the composition of the reactive mixture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2451Geometry of the reactor
    • B01J2219/2453Plates arranged in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2451Geometry of the reactor
    • B01J2219/2456Geometry of the plates
    • B01J2219/2458Flat plates, i.e. plates which are not corrugated or otherwise structured, e.g. plates with cylindrical shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2461Heat exchange aspects
    • B01J2219/2462Heat exchange aspects the reactants being in indirect heat exchange with a non reacting heat exchange medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2476Construction materials
    • B01J2219/2477Construction materials of the catalysts
    • B01J2219/2479Catalysts coated on the surface of plates or inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2476Construction materials
    • B01J2219/2477Construction materials of the catalysts
    • B01J2219/2481Catalysts in granular from between plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2476Construction materials
    • B01J2219/2483Construction materials of the plates
    • B01J2219/2485Metals or alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0022Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for chemical reactors

Definitions

  • the present disclosure relates to a heat exchange type reaction apparatus.
  • Patent Document 1 discloses a plate type in which a catalyst bed through which a reaction fluid flows is sandwiched between two thermoplates in which a flow path through which a heat medium flows is formed. The reactor is disclosed.
  • reaction apparatus including a heat transfer body having a reaction flow path for flowing a reaction fluid and a heat medium flow path for flowing a heat medium.
  • the reactor operator can obtain information from these measuring instruments at an arbitrary timing, and if a certain operating condition is outside the allowable range of the prescribed conditions, the operating condition is determined based on his / her own judgment. change. For example, when the reaction fluid is the first fluid and the heat medium is the second fluid, the change of the operating condition includes the change of the temperature and flow rate of the second fluid to be supplied.
  • an object of the present disclosure is to provide a reaction apparatus that is advantageous for quickly recovering the operating conditions even when the operating conditions deviate from the permissible range of the predetermined conditions.
  • a reaction device that uses heat exchange between a first fluid that is a reaction fluid and a second fluid, and a first flow path through which the first fluid flows, and a second fluid.
  • a reaction section including a second flow path to be circulated; a first pipe that communicates with the first flow path and distributes a third fluid containing a product generated in the reaction section; and a second fluid in the second flow path.
  • a second pipe for supplying the gas, a composition analysis unit for analyzing the composition of the product connected to the first pipe, and an adjustment unit for adjusting the flow rate and / or temperature of the second fluid connected to the second pipe And the adjustment unit so that the temperature of the third fluid is a temperature at which the composition of the product maintains a predetermined reaction rate or yield based on the composition of the product analyzed by the composition analysis unit.
  • a controller that adjusts the flow rate and / or temperature of the second fluid, and a first thermometer that is connected to the first pipe and measures the temperature of the third fluid. Has a section, the control section obtains the temperature information of the third fluid from the first temperature measuring unit.
  • FIG. 1 is a diagram illustrating a configuration of a reaction device according to an embodiment of the present disclosure.
  • FIG. 2 is a side view showing the configuration of the reaction unit.
  • FIG. 3 is a plan view showing a configuration and a shape of a portion including the first heat transfer body in the reaction unit.
  • FIG. 4 is a plan view showing a configuration and a shape of a part including the second heat transfer body in the reaction unit.
  • FIG. 5 is a cross-sectional view showing the shape and arrangement of each flow path in the reaction section.
  • the reaction device of the present disclosure uses the heat exchange between the first fluid and the second fluid, and heats or cools a gaseous or liquid reaction fluid containing a reaction raw material as a reactant to thereby react the reactant. Make it progress.
  • a reaction fluid is assumed as the first fluid
  • a heat medium is assumed as the second fluid.
  • a reaction fluid supplied to the reaction unit 101 described in detail below is a source gas M.
  • the third fluid containing the product and discharged from the reaction unit 101 after the reaction process is referred to as a reaction gas P.
  • the heat medium HC is a heating fluid.
  • the heating fluid supplied to the reaction unit 101 is referred to as a heating gas HC1.
  • the heated fluid discharged from the reaction unit 101 is referred to as heated exhaust gas HC2.
  • FIG. 1 is a schematic diagram showing a configuration of a reaction apparatus 100 according to the present embodiment.
  • the reaction apparatus 100 includes a reaction unit 101, a first gas supply unit (not shown), and a second gas supply unit 102.
  • the first gas supply unit supplies the raw material gas M to the reaction unit 101.
  • the second gas supply unit 102 supplies the heating gas HC1 to the reaction unit 101.
  • FIG. 2 is a side view showing the configuration of the reaction unit 101.
  • the reaction unit 101 performs a reaction process for generating a product from the source gas M.
  • the reaction unit 101 includes a heat exchange unit 3 as a main body unit.
  • the heat exchange unit 3 includes a plurality of first heat transfer bodies 7, a plurality of second heat transfer bodies 9, and a lid body 39.
  • the first heat transfer body 7 has a reaction channel through which a reaction fluid flows.
  • the second heat transfer body 9 has a heat medium flow path through which the heat medium flows.
  • the heat exchanging unit 3 has a counter flow type structure in which the reaction fluid and the heat medium flow in opposite directions.
  • the first heat transfer body 7, the second heat transfer body 9, and the lid body 39 are each a flat plate member formed of a heat conductive material having heat resistance.
  • FIG. 3 is a plan view showing a configuration and a shape of a portion including the first heat transfer body 7 corresponding to the AA portion in FIG.
  • the first heat transfer body 7 has a plurality of first flow paths 17 as reaction flow paths including a reaction region. An intermediate portion of the first flow path 17 is a reaction region. And the 1st flow path 17 receives the heat supplied from the heat medium which distribute
  • the first channel 17 is a groove having a rectangular channel cross section. Specifically, the first flow path 17 is open above the Z direction. The first flow path 17 is opened on one first side surface of the first heat transfer body 7.
  • the 1st flow path 17 is linearly extended from the 1st inlet 20 into which the source gas M is introduce
  • These first flow paths 17 are arranged at equal intervals in the X direction. In FIG. 1, only one first flow path 17 is shown in the heat exchange unit 3 included in the reaction unit 101.
  • the first heat transfer body 7 includes a first base 11, two first side walls 13, a plurality of first intermediate walls 15, and a first partition wall 19.
  • the first base 11 is a rectangular plate-like wall that covers the entire XY plane of the first heat transfer body 7.
  • the first side wall 13 is a wall portion provided on each of the left and right ends in the extending direction of the first flow path 17 on one side of the main surface perpendicular to the Z direction of the first base portion 11.
  • the plurality of first intermediate walls 15 are wall portions in a region sandwiched between two first side walls 13 on one side of the main surface of the first base portion 11.
  • the plurality of first intermediate walls 15 are provided in parallel with the first side wall 13 and at equal intervals, respectively.
  • the first partition wall 19 is provided on the second side surface on one side of the main surface of the first base 11 along the X direction which is perpendicular to the extending direction of the first flow path 17.
  • the first flow path 17 extends to the second side surface, the first flow path 17 abuts on a later-described second space S2 into which the heated gas HC1 is introduced. Therefore, the first partition wall 19 changes the traveling direction of the heated gas HC1 that has circulated through the plurality of first flow paths 17. Furthermore, the height of each wall part of the 1st side wall 13, the 1st intermediate
  • the first heat transfer body 7 has a first communication flow path 23 extending along the inner surface of the first partition wall 19.
  • the first communication channel 23 communicates with the first channel 17.
  • the first communication channel 23 communicates with the first outlet 21 provided at one end of the first side wall 13 for discharging the product to the outside of the first heat transfer body 7. .
  • the first communication flow path 23 is shown separately from the first flow path 17.
  • the first communication channel 23 is a type of the first channel 17 as a function of the channel for circulating the raw material gas M and the product, and there is no special difference.
  • the reaction gas P discharged from the first discharge port 21 includes a product generated in the first flow path 17.
  • the reaction gas P discharged from the first discharge port 21 may include a raw material gas M that has not been used for the reaction.
  • FIG. 4 is a plan view showing a configuration and a shape of a portion including the second heat transfer body 9 corresponding to the BB portion in FIG.
  • the second heat transfer body 9 has a plurality of second flow paths 31 as heat medium flow paths.
  • the second flow path 31 supplies the heat supplied from the heating gas HC1 toward the outside, that is, the first heat transfer body 7.
  • the second flow path 31 is a groove whose cross section is rectangular. Specifically, the second flow path 31 is opened upward in the Z direction.
  • the second flow path 31 is opened on one first side surface of the second heat transfer body 9. Further, the second flow path 31 extends linearly from the second introduction port 30 into which the heated gas HC1 is introduced to the position immediately before the other second side surface along the Y direction.
  • first side surface referred to as the second heat transfer body 9 is opposite to the first side surface referred to as the first heat transfer body 7 in the Y direction. Similar to the first flow path 17, these second flow paths 31 are also arranged at equal intervals in the X direction. In FIG. 1, only one second flow path 31 is shown in the heat exchange unit 3 included in the reaction unit 101.
  • the second heat transfer body 9 includes a second base 25, two second side walls 27, a plurality of second intermediate walls 29, and a second partition wall 33.
  • the second base 25 is a rectangular plate-like wall that covers the entire XY plane of the second heat transfer body 9.
  • the second side wall 27 is a wall portion provided on each of the left and right ends of the second flow path 31 in the extending direction on one side of the main surface perpendicular to the Z direction of the second base 25.
  • the plurality of second intermediate walls 29 are wall portions in a region sandwiched between two second side walls 27 on one surface of the main surface of the second base portion 25.
  • the plurality of second intermediate walls 29 are provided in parallel with the second side wall 27 at equal intervals.
  • the second partition wall 33 is provided along the X direction that is perpendicular to the extending direction of the second flow path 31 on the second side surface on one side of the main surface of the second base 25.
  • the second partition wall 33 changes the traveling direction of the heated gas HC1 that has circulated through the plurality of second flow paths 31.
  • the heights in the Z direction of the wall portions of the second side wall 27, the second intermediate wall 29, and the second partition wall 33 are the same.
  • the second heat transfer body 9 has a second communication channel 37 extending along the inner surface of the second partition wall 33.
  • the second communication channel 37 communicates with the second channel 31.
  • the second communication flow path 37 communicates with the second exhaust port 35 for discharging the heated exhaust gas HC2 to the outside of the second heat transfer body 9 and having one end provided on one side of the second side wall 27. To do.
  • FIG. 5 shows the shape and arrangement of the first flow path 17 of the first heat transfer body 7 and the second flow path 31 of the second heat transfer body 9 corresponding to the CC section in FIG. FIG.
  • the uppermost portion in the Z direction is a lid 39, and the second heat transfer body 9 and the first heat transfer body 7 are alternately stacked and bonded toward the lower side of the lid 39, thereby forming a bonded body or a stacked body.
  • the heat exchange part 3 is formed.
  • the first flow path 17 and the second flow path 31 are adjacent to each other in a non-contact manner via the first base portion 11 or the second base portion 25.
  • a heat resistant metal such as an iron-based alloy or a nickel alloy is suitable.
  • heat-resistant alloys such as iron alloys such as stainless steel, nickel alloys such as Inconel 625 (registered trademark), Inconel 617 (registered trademark), Haynes 230 (registered trademark), and the like can be given.
  • These heat conductive materials are preferable because they have durability or corrosion resistance to a fluid that can be used as a reaction progress or a heat medium in the first flow path 17, but are not limited thereto. Further, it may be iron-plated steel, metal coated with a heat-resistant resin such as fluororesin, or carbon graphite.
  • the heat exchanging unit 3 can be composed of a pair of at least one first heat transfer body 7 and second heat transfer body 9.
  • the number of heat transfer bodies is large as illustrated in the drawings.
  • the number of first flow paths 17 formed in one first heat transfer body 7 and the number of second flow paths 31 formed in one second heat transfer body 9 are not particularly limited.
  • the design can be changed as appropriate in consideration of the design conditions and heat transfer efficiency of the heat exchange unit 3.
  • a configuration in which the periphery of the heat exchange unit 3 is covered with a housing or a heat insulating material may be employed.
  • the first flow path 17 may be provided with a catalyst body 41 for promoting the reaction.
  • the catalyst contained in the catalyst body 41 has an active metal effective as a main component for promoting the progress of a chemical reaction as a main component, and a catalyst suitable for promoting the reaction is appropriately selected based on the synthesis reaction performed in the reaction unit 101.
  • the active metal that is a catalyst component include Ni (nickel), Co (cobalt), Fe (iron), Pt (platinum), Ru (ruthenium), Rh (rhodium), Pd (palladium), and the like. As long as it is effective for promoting one kind of reaction or reaction, a plurality of kinds may be used in combination.
  • the catalyst body 41 is prepared by, for example, supporting a catalyst on a structural material.
  • the structural material is selected from heat-resistant metals that can be molded and can carry a catalyst.
  • the shape of the structure, that is, the catalyst body 41 may be a corrugated plate shape whose cross section is curved in a wavy shape or a jagged shape in order to increase the contact area with the reaction fluid.
  • heat-resistant metals include Fe (iron), Cr (chromium), Al (aluminum), Y (yttrium), Co (cobalt), Ni (nickel), Mg (magnesium), Ti (titanium), and Mo (molybdenum). ), W (tungsten), Nb (niobium), Ta (tantalum) and the like, and there are heat-resistant alloys mainly composed of one or more kinds of metals.
  • the catalyst body 41 may be formed by molding a thin plate-like structural material made of a heat-resistant alloy such as Fecralloy (registered trademark).
  • the catalyst loading method includes a method of directly loading on a structural material by surface modification or the like, and a method of indirectly loading using a carrier. In practical terms, it is easy to carry a catalyst using a carrier. is there.
  • the support is appropriately selected from materials that do not hinder the progress of the reaction and have durability, and that can favorably support the catalyst to be used.
  • Examples include metal oxides such as Al 2 O 3 (alumina), TiO 2 (titania), ZrO 2 (zirconia), CeO 2 (ceria), SiO 2 (silica), and one or more are selected. And can be used as a carrier.
  • Examples of the supporting method using the carrier include a method of forming a mixture layer of the catalyst and the carrier on the surface of the formed structural material, and a method of supporting the catalyst by surface modification after forming the carrier layer. .
  • the second flow path 31 is provided with a heat transfer promoting body 43 for increasing the contact area with the heat medium and promoting heat transfer between the heat medium and the second heat transfer body 9. Good.
  • the heat transfer promotion body 43 can be made into a corrugated plate shape.
  • metals such as aluminum, copper, stainless steel, and iron-type plated steel, are mentioned.
  • reaction unit 101 includes a reaction fluid introduction unit 45 and a product discharge unit 49, and a heat medium introduction unit 53 and a heat medium discharge unit 57.
  • the reaction fluid introduction part 45 is a housing curved in a concave shape.
  • the reaction fluid introduction unit 45 covers the side surface of the heat exchange unit 3 in which the first introduction ports 20 of the plurality of first flow paths 17 are opened, and forms a first space S ⁇ b> 1 with the heat exchange unit 3.
  • the reaction fluid introduction unit 45 is detachably attached to the heat exchange unit 3 or can be opened and closed. With this attachment / detachment or the like, for example, the operator can insert and remove the catalyst body 41 from the first flow path 17.
  • the reaction fluid introduction part 45 has the 1st introduction piping 47 which introduces source gas M from the 1st gas supply part not shown.
  • the first introduction pipe 47 is positioned at the center, specifically, the center on the XZ plane with respect to the side surface of the heat exchange unit 3, and is connected in the same direction as the opening direction of the plurality of first introduction ports 20. With such a configuration, the raw material gas M introduced from one place is distributed to each of the plurality of first introduction ports 20.
  • the product discharge part 49 is a box-shaped housing having one open surface.
  • the product discharge part 49 is installed in the 3rd side surface of the heat exchange part 3 so that an open surface may match the 1st discharge port 21 of the 1st heat exchanger 7.
  • the product discharge part 49 has the 1st discharge piping 51 which discharges the reaction gas P containing a product to the exterior of the reaction part 101 in one place of the wall part.
  • the first discharge pipe 51 is connected to another processing device that performs post-processing or the like on the reaction gas P. With such a configuration, the reaction gas P discharged from each of the plurality of first discharge ports 21 is collected through one first discharge pipe 51.
  • the heat medium introducing portion 53 is a housing curved in a concave shape, like the reaction fluid introducing portion 45.
  • the heat medium introduction unit 53 covers the side surface of the heat exchange unit 3 in which the second introduction ports 30 of the plurality of second flow paths 31 are opened, and forms a second space S ⁇ b> 2 with the heat exchange unit 3.
  • the heat medium introduction unit 53 is installed to be detachable or openable / closable with respect to the heat exchange unit 3. By this attachment and detachment or the like, for example, an operator can insert and extract the heat transfer promoting body 43 with respect to the second flow path 31.
  • the heat medium introduction unit 53 includes a second introduction pipe 55 that introduces the heating gas HC1 from the second gas supply unit 102.
  • the second introduction pipe 55 is located at the center, specifically the center on the XZ plane, with respect to the side surface of the heat exchange unit 3, and is connected in the same direction as the opening direction of the plurality of second introduction ports 30. With such a configuration, the heated gas HC1 introduced from one place is distributed to each of the plurality of second introduction ports 30.
  • the heat medium discharge unit 57 is a box-shaped housing having one open surface, like the product discharge unit 49.
  • the heat medium discharge unit 57 is installed on the third side surface of the heat exchange unit 3 so that the open surface of the second heat transfer body 9 matches the second discharge port 35.
  • the heat medium discharge part 57 has the 2nd discharge piping 59 which discharges heating exhaust gas HC2 to the exterior of the reaction part 101 in one place of the wall part.
  • the second discharge pipe 59 is connected to another processor for reusing the heated exhaust gas HC2. With such a configuration, the heated exhaust gas HC2 discharged from each of the plurality of second discharge ports 35 is collected through one second discharge pipe 59.
  • the heat exchanging unit 3 can be used as any of a liquid-liquid type heat exchanger, a gas-gas type heat exchanger, and a gas-liquid type heat exchanger, and the reaction fluid and heat medium supplied to the reaction unit 101 are Any of gas and liquid may be used.
  • the reaction unit 101 enables chemical synthesis by various thermal reactions such as endothermic reaction and exothermic reaction. Examples of the synthesis by such a thermal reaction include an endothermic reaction such as a steam reforming reaction of methane represented by Formula (1), a dry reforming reaction of methane represented by Formula (2), and a shift represented by Formula (3). There is a synthesis by exothermic reaction such as a reaction, a methanation reaction represented by formula (4), and a Fischer-tropsch synthesis reaction represented by formula (5). Note that the reaction fluid in these reactions is gaseous.
  • the heat medium a substance that does not corrode the constituent material of the reaction unit 101 is suitable.
  • the heating medium is a heating gas as in this embodiment, a gaseous substance such as a combustion gas or heating air can be used.
  • a gaseous substance such as a combustion gas or heating air
  • liquid substances such as water and oil may be used.
  • a gaseous substance it is easier to handle than when a liquid medium is used.
  • a first gas supply unit (not shown) is connected to the first introduction pipe 47 and supplies the raw material gas M toward the first flow path 17 in the reaction unit 101.
  • Te1 the temperature of the raw material gas M that passes through the first introduction pipe 47 and before being introduced into the reaction unit 101.
  • the second gas supply unit 102 is connected to the second introduction pipe 55 and supplies the heated gas HC1 toward the second flow path 31 in the reaction unit 101.
  • the heating gas HC1 is a combustion gas.
  • the second gas supply unit 102 includes a combustor 60 for generating combustion gas, a fuel supply pipe 61 that supplies fuel to the combustor 60, and an air supply pipe 62 that supplies air to the combustor 60. Is provided.
  • the second gas supply unit 102 includes a first electromagnetic valve 63 that can adjust the flow rate of the fuel flowing through the pipe.
  • the first electromagnetic valve 63 is installed in the fuel supply pipe 61.
  • the 2nd gas supply part 102 contains the 2nd solenoid valve 64 which enables adjustment of the flow volume of the air which flows through the inside of a pipe
  • the second electromagnetic valve 64 is installed in the air supply pipe 62.
  • the temperature of the heated gas HC1 that passes through the second introduction pipe 55 and before being introduced into the reaction unit 101 is denoted as “Te3”, and the flow rate at this time is denoted as “F”.
  • the combustor 60, the first electromagnetic valve 63, and the second electromagnetic valve 64 serve as an adjustment unit for adjusting the temperature Te3 of the heating gas HC1.
  • the first electromagnetic valve 63 changes the flow rate of the fuel depending on the degree of opening thereof
  • the second electromagnetic valve 64 changes the flow rate of the air depending on the degree of opening thereof
  • the flow ratio changes.
  • the temperature Te3 of the heated gas HC1 released from the combustor 60 changes.
  • the reaction apparatus 100 includes a first temperature measurement unit 70 that measures the temperature of the reaction gas P flowing in the pipe, and a composition analysis unit 71 that analyzes the composition of the reaction gas P.
  • the first temperature measurement unit 70 and the composition analysis unit 71 are installed in the first discharge pipe 51.
  • the temperature of the reaction gas P measured by the first temperature measurement unit 70 is expressed as “Te2”, and the reaction rate at this time is expressed as “R”.
  • the composition analysis unit 71 is, for example, a gas chromatograph.
  • a gas chromatograph is an analytical instrument for identifying and quantifying compounds by a chromatographic technique. Since the gas chromatograph is applicable when the stationary phase and the mobile phase are gases, it is suitable for the composition analysis of the product contained in the reaction gas P as in this embodiment.
  • the reaction apparatus 100 includes a second temperature measuring unit 72 that measures the temperature of the heated gas HC1 flowing in the pipe.
  • the second temperature measurement unit 72 is installed in the second introduction pipe 55.
  • the second exhaust pipe 59 circulates the heated exhaust gas HC2 discharged from the reaction unit 101.
  • the temperature of the heated exhaust gas HC2 is expressed as “Te4”.
  • the reaction apparatus 100 includes a control unit 103 that controls the overall operation of the reaction apparatus 100.
  • the control unit 103 is electrically connected to the first temperature measurement unit 70, the second temperature measurement unit 72, and the composition analysis unit 71, respectively.
  • the control unit 103 is also electrically connected to the first electromagnetic valve 63 and the second electromagnetic valve 64, respectively.
  • the electrical connection here may be wired or wireless.
  • the control part 103 can adjust the flow volume or temperature of heating gas HC1 based on the composition of the product in the reaction gas P analyzed by the composition analysis part 71 especially.
  • the reaction apparatus 100 When the reaction apparatus 100 is operated, some prescribed conditions such as the temperature of each fluid during the reaction process are determined in advance.
  • the reaction apparatus 100 performs the reaction process represented by Formula (1) using the gas containing methane and water vapor as the source gas M.
  • the temperature Te3 of the heating gas HC1 can be 850 (° C.), and the flow rate F at that time can be 10,000 (Nm 3 / h).
  • the temperature Te1 of the source gas M can be set to 400 (° C).
  • the temperature Te4 of the heated exhaust gas HC2 decreases to 600 (° C.).
  • the temperature Te2 of the reaction gas P containing the product rises to 830 (° C).
  • the temperature Te3 of the heating gas HC1 during the reaction process is set to a temperature slightly higher than the temperature Te2 of the reaction gas P.
  • the reaction rate R of the reaction gas P is about 95%. This state is a normal operation state in the reactor 100.
  • the reaction rate R is the amount of the raw material used as a product in the reaction gas P, that is, the amount of the raw material used in the reaction for actually generating the product with respect to the amount of the raw material included in the raw material gas M.
  • the target reaction rate R is as high as possible. Therefore, in this embodiment, it is set to 95% as described above.
  • the reaction rate R varies depending on the type of reaction. Therefore, for example, when a plurality of reactions are performed at the same time, the reaction rate R is appropriately determined in consideration of the yield obtained based on the selectivity of these reactions.
  • the reaction rate R as the operation condition may be lower than expected due to some cause.
  • the cause the deterioration over time of the catalyst body 41 installed in the first flow path 17 of the reaction unit 101 or the heat transfer promoting body 43 installed in the second flow path 31 can be considered.
  • the temperatures Te1 and Te3 and the flow rate F which are the initial specified conditions, do not change.
  • the temperature Te4 of the heated exhaust gas HC2 becomes 605 (° C) and does not decrease to the initial 600 (° C).
  • the reaction rate R decreases to, for example, 92% that is out of the allowable range.
  • Such a state is nothing more than the waste of the raw material gas M more than expected, which is not desirable.
  • the control unit 103 makes the following adjustment. First, the controller 103 stores in advance that the target reaction rate R is 95% by the driver. Next, the control unit 103 causes the composition analysis unit 71 to always analyze the composition of the product contained in the reaction gas P during the reaction process, and the analysis result, that is, the product. Whether or not the reaction rate R is maintained at 95% is confirmed based on the composition of During this period, it is assumed that the control unit 103 determines that the reaction rate R has decreased to 92% as described above.
  • the control unit 103 changes the temperature Te3 of the heated gas HC1 to a temperature that maintains the predetermined reaction rate R of 95%.
  • the degree of opening and closing of the first electromagnetic valve 63 or the second electromagnetic valve 64 is adjusted as appropriate.
  • the timing at which the reaction rate R deviates from the allowable range is referred to as “deviation timing”.
  • the temperature Te3 of the heating gas HC1 increases from the initial 850 (° C.) to 870 (° C.). Further, the flow rate F at that time increases from the initial 10,000 (Nm 3 / h) to 10,500 (Nm 3 / h). However, the temperature Te4 of the heated exhaust gas HC2 remains 605 (° C). Accordingly, the temperature Te2 of the reaction gas P increases from the initial 830 (° C) to 850 (° C) without changing the temperature Te1 of the raw material gas M, and the reaction rate R is defined in advance. It recovers to 95%. In particular, since the control unit 103 determines the shift timing based on the composition analysis of the product that is always detected, the reaction rate R can be quickly recovered after the shift timing.
  • control unit 103 can always acquire information related to the temperature Te2 of the reaction gas P from the first temperature measurement unit 70. Therefore, the control unit 103 can refer to the change in the temperature Te2 in addition to the change in the reaction rate R when determining the deviation timing. As a result, the accuracy of determination of the deviation timing is further improved.
  • control unit 103 can always acquire information on the temperature Te3 of the heated gas HC1 from the second temperature measurement unit 72. Therefore, when the control unit 103 operates the first electromagnetic valve 63 or the second electromagnetic valve 64 to adjust the temperature Te3, whether or not the temperature Te3 is adjusted to a temperature that maintains the reaction rate R defined in advance. Can be judged. As a result, the certainty of recovering the reaction rate R is further improved.
  • the reaction apparatus 100 that uses heat exchange between the first fluid that is the reaction fluid and the second fluid, the first flow path 17 that allows the first fluid to flow, and the second flow path 31 that allows the second fluid to flow.
  • the second fluid is supplied to the second flow path 31 and the first pipe that communicates with the first flow path 17 and allows the third fluid containing the product generated in the reaction section 101 to flow.
  • a second pipe that is connected to the first pipe and analyzes the composition of the product, and an adjustment section that is connected to the second pipe and adjusts the flow rate and / or temperature of the second fluid.
  • the temperature Te2 of the third fluid is adjusted so as to be a temperature at which the product composition maintains a predetermined reaction rate R or yield.
  • a controller 103 that adjusts the flow rate F and / or the temperature Te3 of the second fluid.
  • the first fluid corresponds to the source gas M
  • the second fluid corresponds to the heating gas HC1
  • the third fluid corresponds to the reaction gas P
  • the first pipe corresponds to the first discharge pipe 51
  • the second pipe corresponds to the second introduction pipe 55.
  • the adjustment unit corresponds to the combustor 60, the first electromagnetic valve 63, and the second electromagnetic valve 64.
  • the control unit 103 constantly monitors the composition of the product contained in the reaction gas P analyzed by the composition analysis unit 71, and quickly determines the deviation timing from the change in the composition. And when the control part 103 judges that it is a shift
  • the operating condition can be quickly recovered even when the operating condition deviates from the permissible range of the condition specified in advance. As a result, the reaction apparatus 100 can reduce waste of the raw material gas M as much as possible.
  • the reaction apparatus 100 may include a first temperature measurement unit 70 that is connected to the first pipe and measures the temperature Te2 of the third fluid.
  • the control unit 103 acquires information on the temperature Te2 of the third fluid from the first temperature measurement unit 70.
  • the control unit 103 can determine the shift timing by referring to the change of the temperature Te2 in addition to the change of the reaction rate R, and the accuracy of the determination of the shift timing is determined. As a result, the rapidity of recovering the reaction rate R can be further improved.
  • the reaction apparatus 100 may include a second temperature measurement unit 72 that is connected to the second pipe and measures the temperature of the second fluid.
  • the control unit 103 based on the temperature Te3 of the second fluid measured by the second temperature measurement unit 72, the control unit 103 maintains the reaction rate R or the yield in which the adjustment unit sets the temperature Te3 of the second fluid in advance. Judge whether the temperature has been adjusted.
  • the control unit 103 determines whether the temperature Te3 is adjusted to a desired temperature when the temperature Te3 is adjusted by operating the first electromagnetic valve 63 and the like. Therefore, the certainty for recovering the reaction rate R can be further improved.
  • the reaction unit 101 may include the heat exchange unit 3 made of a heat transfer body.
  • the 1st flow path 17 and the 2nd flow path 31 may be the groove
  • the heat exchanging unit 3 includes the first heat transfer body 7 having the first flow path 17 through which the first fluid flows, and the second flow path 31 having the second flow path 31 through which the second fluid flows.
  • the heat transfer body 9 and the two types of heat transfer bodies are laminated. In the heat transfer body having such a configuration, it is desirable that the shape of each flow path is a groove from the viewpoint of ease of manufacture.
  • the present disclosure is not applied only to the heat exchanging unit 3 including the heat transfer body having such a configuration.
  • the heat transfer body constituting the heat exchange unit 3 is one rectangular parallelepiped, and the heat transfer body includes a plurality of first flow paths through which the first fluid flows, and a plurality of second flow paths through which the second fluid flows.
  • the present disclosure can also be applied to the case where both are included. In this case, each flow path becomes a through hole.
  • the heat exchanging unit 3 included in the reaction unit 101 is integrally formed by directly laminating a heat transfer body that is one rectangular parallelepiped or a plurality of heat transfer bodies.
  • a heat transfer body that is one rectangular parallelepiped or a plurality of heat transfer bodies.
  • the second fluid may be a heat medium.
  • the above-described effects can be achieved particularly in a reaction apparatus that performs a reaction process when the first fluid is a reaction fluid and the second fluid is a heat medium. Can do.
  • the second fluid may be a reaction fluid.
  • reaction apparatus 100 can be applied to a reaction apparatus that performs a reaction process when both the first fluid and the second fluid are reaction fluids as described above, and has the same effects as described above. Can do.
  • the second fluid whose temperature or flow rate is adjusted by the adjusting unit is the heating gas HC1 and the heating gas HC1 is a combustion gas
  • the adjustment unit can change the temperature of the heating gas HC1 accordingly if the flow rate of the fuel and air is appropriately adjusted to change the flow rate ratio.
  • the heated gas as the second fluid may be water vapor.
  • the adjustment unit may be a heater or the like that can adjust the preheating temperature regardless of whether the adjustment unit directly generates water vapor or is different from that.
  • the adjustment unit may be an electromagnetic valve or the like that can adjust the flow rate of the generated water vapor in addition to the heating device for generating water vapor. This is the same when the second fluid is a liquid such as heated oil.
  • the reaction apparatus 100 of the present disclosure is not limited to the exothermic reaction as illustrated, but can be applied to a reaction process by an endothermic reaction.
  • the second fluid is not limited to the heating fluid but may be a cooling fluid.
  • the adjustment unit may be an electromagnetic valve or the like that adjusts the flow rate of water.
  • the second fluid is a refrigerant
  • the adjustment unit may be a cooler or the like that can adjust the refrigerant temperature, or an electromagnetic valve or the like that adjusts the flow rate of the refrigerant.
  • the gas chromatograph is exemplified as the composition analysis unit 71 that analyzes the composition of the reaction gas P.
  • the composition analysis unit 71 is not limited to this, and for example, a specific gas analyzer such as an oxygen analyzer or a methane analyzer may be employed to analyze the concentration of a specific gas in the reaction gas. .
  • the so-called stacked reactor 100 in which the first heat transfer body 7 and the second heat transfer body 9 are stacked is illustrated.
  • the present disclosure is, for example, a plate-type reaction apparatus in which a catalyst bed through which a reaction fluid as a first fluid flows is sandwiched between two thermoplates in which a flow path through which a heat medium as a second fluid flows is formed. It is also applicable to.
  • the heat exchange part 3 is a counter-flow type in which the 1st fluid which distribute
  • it may be a parallel flow type that flows in the same direction. That is, in the present disclosure, the direction in which the first fluid and the second fluid flow is not limited at all.
  • the first heat transfer body 7 and the second heat transfer body 9 constituting the heat exchanging unit 3 are stacked in the Z direction, that is, the vertical direction. Not exclusively.
  • these heat transfer bodies constituting the heat exchange unit 3 may be used as so-called horizontal installations such that they are erected in the Z direction in a joined state.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

反応装置(100)は、反応部(101)で生成された生成物を含む第3流体(P)を流通させる第1配管(51)と、第2流路(31)に第2流体(HC1)を供給する第2配管(55)と、第1配管(51)に連設される組成分析部(71)と、第2配管(55)に連設され、第2流体(HC1)の流量(F)等を調整する調整部(60,63,64)と、組成分析部(71)で分析された生成物の組成に基づいて、第3流体(P)の温度(Te2)が、生成物の組成が予め規定された反応率(R)又は収率を維持する温度となるように、調整部(60,63,64)に第2流体(HC1)の流量(F)等を調整させる制御部(103)と、第1配管(51)に連設され、第3流体(P)の温度(Te2)を計測する第1温度計測部(70)とを有する。制御部(103)は、第1温度計測部(70)から第3流体(P)の温度(Te2)の情報を取得する。

Description

反応装置
 本開示は、熱交換型の反応装置に関する。
 従来、反応体としての反応原料を含んだ気体又は液体の反応流体を、熱媒体を用いて加熱又は冷却することで、反応体の反応を進行させる熱交換型の反応装置がある。このような反応装置として、特表2007-519508号公報(特許文献1)は、反応流体が貫流する触媒床を、熱媒体が貫流する流路が形成されている2つのサーモプレートで挟み込むプレート式の反応装置を開示している。また、反応流体を流通させる反応流路と、熱媒体を流通させる熱媒体流路とを有する伝熱体を含む反応装置もある。
特表2007-519508号公報
 反応装置の運転に際しては、反応処理時の各流体の温度など、予めいくつかの規定条件が定められる。反応装置には、運転中のこれらの条件を認識するための各種計測器が設置されている。そして、反応装置の運転者は、任意のタイミングでこれらの計測器から情報を知得し、ある運転条件が規定条件の許容範囲から外れている場合には、自身の判断に基づいて運転条件を変更する。例えば、反応流体を第1流体とし、熱媒体を第2流体とすると、運転条件の変更には、供給される第2流体の温度や流量の変更も含まれる。
 しかし、運転者にとって、各種計測器が示す値を常時監視することは困難であり、そのため、反応装置は、ある運転条件が規定条件の許容範囲から外れた時にその変化に迅速に対処する、いわゆる適時性を担保することが難しい。例えば、運転条件を回復させるために、第2流体の温度又は流量を変更しなければならない場合について考える。この場合、運転条件が規定条件の許容範囲から外れた「ずれタイミング」に対して運転者の確認タイミングが遅れると、運転条件を回復させるためには、ずれタイミング後に迅速に対処した場合に比べて、過剰に第2流体を供給しなければならない。すなわち、確認タイミングによっては、第2流体の更なる供給量を抑えることができたにもかかわらず、必要以上に多くの供給量を要し、結果的に、例えば、加熱のための燃料を必要以上に多く消費することもあり得る。
 そこで、本開示は、運転条件が予め規定された条件の許容範囲から外れた場合でも、迅速に運転条件を回復させるのに有利な反応装置を提供することを目的とする。
 本開示の一態様によれば、反応流体である第1流体と、第2流体との熱交換を利用する反応装置であって、第1流体を流通させる第1流路と、第2流体を流通させる第2流路とを含む反応部と、第1流路に連通し、反応部で生成された生成物を含む第3流体を流通させる第1配管と、第2流路に第2流体を供給する第2配管と、第1配管に連設され、生成物の組成を分析する組成分析部と、第2配管に連設され、第2流体の流量及び/又は温度を調整する調整部と、組成分析部で分析された生成物の組成に基づいて、第3流体の温度が、生成物の組成が予め規定された反応率又は収率を維持する温度となるように、調整部に第2流体の流量及び/又は温度を調整させる制御部と、第1配管に連設され、第3流体の温度を計測する第1温度計測部と、を有し、制御部は、第1温度計測部から第3流体の温度の情報を取得する。
 本開示によれば、運転条件が予め規定された条件の許容範囲から外れた場合でも、迅速に運転条件を回復させるのに有利な反応装置を提供することができる。
図1は、本開示の一実施形態に係る反応装置の構成を示す図である。 図2は、反応部の構成を示す側面図である。 図3は、反応部における第1伝熱体を含む部位の構成及び形状を示す平面図である。 図4は、反応部における第2伝熱体を含む部位の構成及び形状を示す平面図である。 図5は、反応部における各流路の形状及び配置等を示す断面図である。
 以下、本開示の実施形態について図面を参照して詳細に説明する。ここで、実施形態に示す寸法、材料、その他、具体的な数値等は、例示にすぎず、特に断る場合を除き、本開示を限定するものではない。また、明細書及び図面において、実質的に同一の機能及び構成を有する要素については、同一の符号を付することにより重複説明を省略し、本開示に直接関係のない要素については、図示を省略する。さらに、以下の各図では、鉛直方向にZ軸を取り、Z軸に垂直な平面内において、後述する第1及び第2流路の反応領域の延設方向にY軸を取り、かつ、Y軸に垂直な方向にX軸を取る。
 本開示の反応装置は、第1流体と第2流体との熱交換を利用し、反応体としての反応原料を含んだ気体又は液体の反応流体を加熱又は冷却することで、反応体の反応を進行させる。以下、本実施形態では、一例として、第1流体として反応流体を想定し、第2流体として熱媒体を想定する。より具体的には、以下で詳説する反応部101に供給される反応流体を原料ガスMとする。また、生成物を含み、反応処理後に反応部101から排出される第3流体を反応ガスPとする。一方、熱媒体HCは、加熱流体である。このうち、反応部101に供給される加熱流体を加熱ガスHC1とする。また、反応部101から排出される加熱流体を加熱排ガスHC2とする。
 図1は、本実施形態に係る反応装置100の構成を示す概略図である。反応装置100は、反応部101と、不図示の第1ガス供給部と、第2ガス供給部102とを有する。第1ガス供給部は、反応部101に原料ガスMを供給する。第2ガス供給部102は、反応部101に加熱ガスHC1を供給する。
 図2は、反応部101の構成を示す側面図である。反応部101は、原料ガスMから生成物を生成する反応処理を行う。反応部101は、本体部としての熱交換部3を備える。
 熱交換部3は、複数の第1伝熱体7と、複数の第2伝熱体9と、蓋体39とを含む。第1伝熱体7は、反応流体が流通する反応流路を有する。第2伝熱体9は、熱媒体が流通する熱媒体流路を有する。また、熱交換部3は、反応流体と熱媒体とが互いに反対方向に流れる対向流型の構造を有する。第1伝熱体7、第2伝熱体9及び蓋体39は、それぞれ、耐熱性を有する熱伝導性素材で形成された平板状部材である。
 図3は、図2におけるA-A部に対応した、第1伝熱体7を含む部位の構成及び形状を示す平面図である。第1伝熱体7は、反応領域を含む反応流路としての複数の第1流路17を有する。第1流路17の中間部分が、反応領域である。そして、第1流路17は、後述の第2伝熱体9内の第2流路を流通する熱媒体から供給された熱を受容して原料ガスMを反応させ、生成物を生成する。第1流路17は、流路断面が矩形となる溝である。具体的には、第1流路17は、Z方向の上方を開とする。第1流路17は、第1伝熱体7の一方の第1側面で開放される。また、第1流路17は、原料ガスMが導入される第1導入口20から、Y方向に沿って他方の第2側面の直前まで直線状に伸びている。これらの第1流路17は、X方向に等間隔に配設されている。なお、図1では、反応部101に含まれる熱交換部3内に第1流路17を1つのみ示している。
 第1伝熱体7は、第1基部11と、2つの第1側壁13と、複数の第1中間壁15と、第1隔壁19とを含む。第1基部11は、第1伝熱体7のXY平面全体を網羅する矩形板状の壁部である。第1側壁13は、第1基部11のZ方向に垂直な主表面の片面上で、第1流路17の延伸方向の左右端にそれぞれ設けられる壁部である。複数の第1中間壁15は、第1基部11の主表面の片面上で、2つの第1側壁13に挟まれた領域にある壁部である。複数の第1中間壁15は、それぞれ、第1側壁13と並列に、かつ、等間隔で設けられる。また、第1隔壁19は、第1基部11の主表面の片面上の第2側面側で、第1流路17の延設方向に対して垂直方向となるX方向に沿って設けられる。第1流路17が第2側面まで延伸すると、加熱ガスHC1が導入されている後述の第2空間S2に突き当たる。そこで、第1隔壁19は、複数の第1流路17を流通してきた加熱ガスHC1の進行方向を変化させる。さらに、第1側壁13、第1中間壁15及び第1隔壁19の各壁部のZ方向の高さは、同一である。
 また、第1伝熱体7は、第1隔壁19の内側面に沿って延設された第1連絡流路23を有する。第1連絡流路23は、第1流路17に連通する。また、第1連絡流路23は、一方の端部が第1側壁13の一方に設けられた、生成物を第1伝熱体7の外部に排出するための第1排出口21に連通する。なお、ここでは、流路の形状を説明するために、第1流路17とは別に、第1連絡流路23を示している。しかし、第1連絡流路23は、原料ガスM及び生成物を流通させるという流路の機能としては、第1流路17の一種であり、特別な差異はない。また、第1排出口21から排出される反応ガスPには、第1流路17内で生成された生成物が含まれる。ただし、第1排出口21から排出される反応ガスPには、反応に用いられなかった原料ガスMが含まれる場合もある。
 図4は、図2におけるB-B部に対応した、第2伝熱体9を含む部位の構成及び形状を示す平面図である。第2伝熱体9は、熱媒体流路としての複数の第2流路31を有する。第2流路31は、加熱ガスHC1から供給された熱を、外部すなわち第1伝熱体7に向けて供給する。第2流路31は、流路断面が矩形となる溝である。具体的には、第2流路31は、Z方向の上方を開とする。第2流路31は、第2伝熱体9の一方の第1側面で開放される。また、第2流路31は、加熱ガスHC1が導入される第2導入口30から、Y方向に沿って他方の第2側面の直前まで直線状に伸びている。ただし、第2伝熱体9でいう第1側面は、第1伝熱体7でいう第1側面とは、Y方向で反対となる。これらの第2流路31も、第1流路17と同様に、X方向に等間隔に配設されている。なお、図1では、反応部101に含まれる熱交換部3内に第2流路31を1つのみ示している。
 第2伝熱体9は、第2基部25と、2つの第2側壁27と、複数の第2中間壁29と、第2隔壁33とを含む。第2基部25は、第2伝熱体9のXY平面全体を網羅する矩形板状の壁部である。第2側壁27は、第2基部25のZ方向に垂直な主表面の片面上で、第2流路31の延伸方向の左右端にそれぞれ設けられる壁部である。複数の第2中間壁29は、第2基部25の主表面の片面上で、2つの第2側壁27に挟まれた領域にある壁部である。複数の第2中間壁29は、それぞれ、第2側壁27と並列に、かつ、等間隔で設けられている。また、第2隔壁33は、第2基部25の主表面の片面上の第2側面側で、第2流路31の延設方向に対して垂直方向となるX方向に沿って設けられる。第2流路31が第2側面まで延伸すると、原料ガスMが導入されている後述の第1空間S1に突き当たる。そこで、第2隔壁33は、複数の第2流路31を流通してきた加熱ガスHC1の進行方向を変化させる。さらに、第2側壁27、第2中間壁29及び第2隔壁33の各壁部のZ方向の高さは、同一である。
 また、第2伝熱体9は、第2隔壁33の内側面に沿って延設された第2連絡流路37を有する。第2連絡流路37は、第2流路31に連通する。また、第2連絡流路37は、一方の端部が第2側壁27の一方に設けられた、加熱排ガスHC2を第2伝熱体9の外部に排出するための第2排出口35に連通する。
 図5は、図2におけるC-C部に対応した、第1伝熱体7の第1流路17及び第2伝熱体9の第2流路31の形状及び配置を示す熱交換部3の断面図である。Z方向の最上部を蓋体39とし、蓋体39の下方に向かって第2伝熱体9と第1伝熱体7とを交互に積層し接合することで、接合体又は積層体としての熱交換部3が形成される。このとき、第1流路17と第2流路31とは、第1基部11又は第2基部25を介して非接触で隣り合う。熱交換部3の組み立ての際には、各部材間をTIG(Tungsten Inert Gas)溶接や拡散接合等のような接合方法を利用して固着させることで、各部材間の接触不良に起因する伝熱性の低下等が抑止される。
 熱交換部3を構成する各要素の熱伝導性素材としては、鉄系合金やニッケル合金等の耐熱性金属が好適である。具体的には、ステンレス綱等の鉄系合金、インコネル625(登録商標)、インコネル617(登録商標)、Haynes230(登録商標)等のニッケル合金のような耐熱合金が挙げられる。これらの熱伝導性素材は、第1流路17での反応進行や熱媒体として使用し得る流体に対する耐久性又は耐食性を有するので好ましいが、これらに限定されるものではない。また、鉄系メッキ鋼や、フッ素樹脂等の耐熱樹脂で被覆した金属、又は、カーボングラファイト等でもよい。
 なお、熱交換部3は、少なくとも1つの第1伝熱体7と第2伝熱体9との一対の組で構成可能である。ただし、熱交換性能を向上させる観点から、伝熱体の数は、各図に例示しているように多い方が望ましい。また、1つの第1伝熱体7に形成される第1流路17、及び、1つの第2伝熱体9に形成される第2流路31の数も、特に限定されるものではなく、熱交換部3の設計条件や伝熱効率などを考慮して適宜変更可能である。さらに、熱交換部3からの放熱を抑制して熱損失を抑えるために、ハウジング又は断熱材で熱交換部3の周囲を覆う構成としてもよい。
 また、第1流路17には、反応を促進させるための触媒体41を設置してもよい。触媒体41に含まれる触媒は、化学反応の進行促進に有効な活性金属を主成分として有し、反応部101で遂行する合成反応に基づいて、反応促進に適したものが適宜選択される。触媒成分である活性金属としては、例えば、Ni(ニッケル)、Co(コバルト)、Fe(鉄)、Pt(白金)、Ru(ルテニウム)、Rh(ロジウム)、Pd(パラジウム)等が挙げられ、1種、又は、反応促進に有効である限り、複数種を組み合わせて使用してもよい。触媒体41は、例えば、触媒を構造材に担持することにより調製される。構造材は、耐熱性の金属から、成形加工が可能で、触媒の担持が可能なものが選択される。構造体、すなわち触媒体41の形状は、反応流体との接触面積を増加させるために、断面が波状に丸く湾曲したコルゲート板状やギザギザに屈曲した形状などがあり得る。耐熱性の金属としては、Fe(鉄)、Cr(クロム)、Al(アルミニウム)、Y(イットリウム)、Co(コバルト)、Ni(ニッケル)、Mg(マグネシウム)、Ti(チタン)、Mo(モリブデン)、W(タングステン)、Nb(ニオブ)、Ta(タンタル)等の金属の1種又は複数種を主成分とする耐熱合金がある。例えば、Fecralloy(登録商標)等の耐熱合金製の薄板状構造材を成形加工して触媒体41を構成してもよい。触媒の担持方法としては、表面修飾等によって構造材上に直接担持する方法や、担体を用いて間接的に担持する方法などがあり、実用的には、担体を用いた触媒の担持が容易である。担体は、反応部101で実施する反応を考慮して、反応の進行を阻害せず耐久性を有する材料であって、使用する触媒を良好に担持し得るものが適宜選択される。例えば、Al23(アルミナ)、TiO2(チタニア)、ZrO2(ジルコニア)、CeO2(セリア)、SiO2(シリカ)等の金属酸化物が挙げられ、1種又は複数種を選択して担体として使用することができる。担体を用いた担持方法としては、例えば、成形した構造材の表面に触媒と担体との混合物層を形成する方式や、担体層を形成した後に表面修飾等によって触媒を担持させる方式などが挙げられる。
 さらに、第2流路31には、熱媒体との接触面積を増加させて熱媒体と第2伝熱体9との間の伝熱を促進するための伝熱促進体43を設置してもよい。伝熱促進体43は、第2伝熱体9との接触面積を確保するために、コルゲート板状とし得る。また、伝熱促進体43を構成する熱伝導性素材としては、アルミニウム、銅、ステンレス鋼、鉄系メッキ鋼等の金属が挙げられる。
 さらに、反応部101は、反応流体導入部45及び生成物排出部49と、熱媒体導入部53及び熱媒体排出部57とを備える。
 反応流体導入部45は、凹状に湾曲した筐体である。反応流体導入部45は、複数の第1流路17の第1導入口20が開放されている熱交換部3の側面を覆い、熱交換部3との間に第1空間S1を形成する。反応流体導入部45は、熱交換部3に対して着脱可能又は開閉可能に設置される。この着脱等により、例えば、作業者が第1流路17に対する触媒体41の挿入や抜き出しを行うことができる。また、反応流体導入部45は、不図示の第1ガス供給部から原料ガスMを導入する第1導入配管47を有する。第1導入配管47は、熱交換部3の側面に対して中心、具体的にはXZ平面上の中心に位置し、複数の第1導入口20の開口方向と同一方向に連接されている。このような構成により、1箇所から導入された原料ガスMは、複数の第1導入口20のそれぞれに分配される。
 生成物排出部49は、1つの開放面を有する箱状の筐体である。生成物排出部49は、第1伝熱体7の第1排出口21に開放面が合うように、熱交換部3の第3側面に設置される。また、生成物排出部49は、その壁部の1箇所に、生成物を含む反応ガスPを反応部101の外部へ排出する第1排出配管51を有する。第1排出配管51は、不図示であるが、反応ガスPに対して後処理等を行う別の処理器に接続されている。このような構成により、複数の第1排出口21のそれぞれから排出された反応ガスPは、1箇所の第1排出配管51を通じて回収される。
 熱媒体導入部53は、反応流体導入部45と同様に、凹状に湾曲した筐体である。熱媒体導入部53は、複数の第2流路31の第2導入口30が開放されている熱交換部3の側面を覆い、熱交換部3との間に第2空間S2を形成する。熱媒体導入部53は、熱交換部3に対して着脱可能又は開閉可能に設置される。この着脱等により、例えば、作業者が第2流路31に対する伝熱促進体43の挿入や抜き出しを行うことができる。また、熱媒体導入部53は、第2ガス供給部102から加熱ガスHC1を導入する第2導入配管55を有する。第2導入配管55は、熱交換部3の側面に対して中心、具体的にはXZ平面上の中心に位置し、複数の第2導入口30の開口方向と同一方向に連接されている。このような構成により、1箇所から導入された加熱ガスHC1は、複数の第2導入口30のそれぞれに分配される。
 熱媒体排出部57は、生成物排出部49と同様に、1つの開放面を有する箱状の筐体である。熱媒体排出部57は、第2伝熱体9の第2排出口35に開放面が合うように、熱交換部3の第3側面に設置される。また、熱媒体排出部57は、その壁部の1箇所に、加熱排ガスHC2を反応部101の外部へ排出する第2排出配管59を有する。第2排出配管59は、不図示であるが、加熱排ガスHC2を再利用するための別の処理器に接続されている。このような構成により、複数の第2排出口35のそれぞれから排出された加熱排ガスHC2は、1箇所の第2排出配管59通じて回収される。
 熱交換部3は、液-液型熱交換器、気-気型熱交換器及び気-液型熱交換器のいずれとしても使用可能であり、反応部101に供給する反応流体及び熱媒体は、気体及び液体のいずれであってもよい。また、反応部101は、吸熱反応や発熱反応など様々な熱的反応による化学合成を可能とする。そのような熱的反応による合成として、例えば、式(1)で示すメタンの水蒸気改質反応、式(2)で示すメタンのドライリフォーミング反応のような吸熱反応、式(3)で示すシフト反応、式(4)で示すメタネーション反応、式(5)で示すフィッシャー-トロプシュ(Fischer tropsch)合成反応等の発熱反応による合成がある。なお、これらの反応における反応流体は、気体状である。
 CH4 + H2O → 3H2 + CO   ・・・(1)
 CH4 + CO2 → 2H2 + 2CO  ・・・(2)
 CO + H2O → CO2 + H2    ・・・(3)
 CO + 3H2 → CH4 + H2O   ・・・(4)
 (2n+1)H2 + nCO → Cn2n+2 + nH2O ・・・(5)
 一方、熱媒体としては、反応部101の構成素材を腐食させない物質が好適であり、本実施形態のように加熱ガスである場合には、燃焼ガス、加熱空気等の気体状物質が使用できる。なお、例えば、水、油等の液状物質であってもよい。ただし、熱媒体として気体状物質を使用すると、液体媒体を使用する場合と比較して、取り扱いが容易である。
 また、反応装置100の構成要素として、不図示の第1ガス供給部は、第1導入配管47に連設され、反応部101内の第1流路17に向けて原料ガスMを供給する。以下、第1導入配管47を通過する、反応部101への導入前の原料ガスMの温度を「Te1」と表記する。
 第2ガス供給部102は、第2導入配管55に連設され、反応部101内の第2流路31に向けて加熱ガスHC1を供給する。一例として、加熱ガスHC1は燃焼ガスである。この場合、第2ガス供給部102は、燃焼ガスを生成するための燃焼器60と、燃焼器60に燃料を供給する燃料供給配管61と、燃焼器60に空気を供給する空気供給配管62とを備える。また、第2ガス供給部102は、管内を流れる燃料の流量を調整可能とする第1電磁弁63を含む。第1電磁弁63は、燃料供給配管61に設置されている。同様に、第2ガス供給部102は、管内を流れる空気の流量を調整可能とする第2電磁弁64を含む。第2電磁弁64は、空気供給配管62に設置されている。以下、第2導入配管55を通過する、反応部101への導入前の加熱ガスHC1の温度を「Te3」と表記し、このときの流量を「F」と表記する。特に本実施形態では、燃焼器60、第1電磁弁63及び第2電磁弁64が、加熱ガスHC1の温度Te3を調整するための調整部となる。具体的には、第1電磁弁63が、その開の程度により燃料の流量を変化させ、第2電磁弁64が、その開の程度により空気の流量を変化させれば、燃料と空気との流量比が変化する。このように流量比が変化すれば、燃焼器60から放出される加熱ガスHC1の温度Te3が変化する。
 また、反応装置100は、管内を流れる反応ガスPの温度を計測する第1温度計測部70と、反応ガスPの組成を分析する組成分析部71とを含む。第1温度計測部70及び組成分析部71は、第1排出配管51に設置されている。以下、第1温度計測部70が計測した反応ガスPの温度を「Te2」と表記し、このときの反応率を「R」と表記する。
 組成分析部71は、例えばガスクロマトグラフである。ガスクロマトグラフは、クロマトグラフィー手法により化合物の同定や定量を行う分析機器である。ガスクロマトグラフは、固定相と移動相とが気体である場合に適用可能であるので、本実施形態のように反応ガスPに含まれる生成物の組成分析には好適である。
 また、反応装置100は、管内を流れる加熱ガスHC1の温度を計測する第2温度計測部72を含む。第2温度計測部72は、第2導入配管55に設置されている。また、第2排出配管59は、反応部101から排出された加熱排ガスHC2を流通させる。以下、加熱排ガスHC2の温度を「Te4」と表記する。
 さらに、反応装置100は、反応装置100の全般の動作を制御する制御部103を有する。特に本実施形態では、制御部103は、第1温度計測部70と、第2温度計測部72と、組成分析部71とに、それぞれ電気的に接続されている。また、制御部103は、第1電磁弁63と、第2電磁弁64とにも、それぞれ電気的に接続されている。ただし、ここでいう電気的接続は、有線・無線を問わない。そして、制御部103は、特に組成分析部71で分析された反応ガスP中の生成物の組成に基づいて、加熱ガスHC1の流量又は温度を調整させることができる。
 次に、本実施形態による作用について説明する。
 反応装置100の運転に際しては、反応処理時の各流体の温度など、予めいくつかの規定条件が定められる。例えば、反応装置100は、メタンと水蒸気とを含む気体を原料ガスMとして、式(1)で表される反応処理を行うものとする。この場合、加熱ガスHC1の温度Te3を850(°C)とし、そのときの流量Fを10,000(Nm/h)とし得る。一方、原料ガスMの温度Te1を400(°C)とし得る。この条件により反応部101内で反応処理を行わせると、加熱排ガスHC2の温度Te4は、600(°C)まで低下する。一方、生成物が含まれる反応ガスPの温度Te2は、830(°C)まで上昇する。このように、反応処理時の加熱ガスHC1の温度Te3は、反応ガスPの温度Te2よりも少し高い温度に設定される。そして、反応ガスPの反応率Rは、95%程度となる。この状態が、反応装置100において正常な運転状態である。
 ここで、反応率Rとは、原料ガスMに含まれる原料の量に対する、反応ガスPに生成物として含まれる原料、すなわち実際に生成物を生成するための反応に用いられた原料の量をいう。一般的には、原料ガスMの無駄を減らして効率よく生成物を生成するために、目標とする反応率Rは、可能な限り高いことが望ましい。そこで、本実施形態では、上記のように95%に設定している。ただし、反応率Rは、反応の種類により異なる。そのため、反応率Rは、例えば、複数の反応が同時に行われる場合には、それら反応の選択率を踏まえて求められた収率等を考慮し、適宜決定される。
 しかし、このように予め規定された条件で運転を続けていると、なんらかの原因で、運転条件としての反応率Rが想定以上に低下する場合がある。その原因としては、反応部101の第1流路17に設置されている触媒体41、又は、第2流路31に設置されている伝熱促進体43の経時劣化などが考えられる。この場合、例えば、当初の規定条件である温度Te1及びTe3並びに流量Fは変化しない。しかし、加熱排ガスHC2の温度Te4は、605(°C)となり、当初の600(°C)まで低下しない。一方、反応ガスPの温度Te2も当初から変化していないにもかかわらず、反応率Rは、例えば、許容範囲から外れた92%にまで低下する。このような状態は、原料ガスMに想定以上の無駄が生じていることに他ならず、望ましくない。
 そこで、本実施形態では、反応率Rの変化に着目して、制御部103が以下のような調整を行わせる。まず、制御部103には、運転者により、予め目標とする反応率Rを95%とすることが記憶される。次に、制御部103は、組成分析部71に対して、反応処理が行われている間、常時、反応ガスPに含まれている生成物の組成を分析させ、その分析結果、すなわち生成物の組成に基づいて、反応率Rが95%に維持されているかどうかを確認する。この間、制御部103が、反応率Rが上記のように92%にまで低下していると判断したと仮定する。この場合、制御部103は、反応率Rが92%になったと判断したタイミングで、加熱ガスHC1の温度Te3が、予め規定された95%の反応率Rを維持する温度となるように、第1電磁弁63又は第2電磁弁64の開閉の程度を適宜調整させる。以下、反応率Rが許容範囲から外れたタイミングを「ずれタイミング」という。
 この動作により、例えば、加熱ガスHC1の温度Te3は、当初の850(°C)から870(°C)まで上昇する。また、そのときの流量Fは、当初の10,000(Nm/h)から10,500(Nm/h)まで上昇する。ただし、加熱排ガスHC2の温度Te4は、605(°C)のままである。これにより、原料ガスMの温度Te1を変更せずとも、反応ガスPの温度Te2は、当初の830(°C)から850(°C)にまで上昇し、反応率Rは、予め規定された95%にまで回復する。特に、制御部103は、常時検出されている生成物の組成分析に基づいてずれタイミングを判断しているので、ずれタイミング後、迅速に反応率Rを回復させることができる。
 また、制御部103は、第1温度計測部70から、常時、反応ガスPの温度Te2に係る情報を取得することができる。したがって、制御部103は、ずれタイミングの判断に際し、反応率Rの変化に加えて、温度Te2の変化をも参照することができる。その結果、ずれタイミングの判断の正確性が、より向上する。
 さらに、制御部103は、第2温度計測部72から、常時、加熱ガスHC1の温度Te3に係る情報を取得することができる。したがって、制御部103は、第1電磁弁63又は第2電磁弁64を作動させて温度Te3の調整を行った際、温度Te3が予め規定された反応率Rを維持する温度に調整されたかどうかを判断することができる。その結果、反応率Rを回復させる確実性が、より向上する。
 次に、本実施形態による効果について説明する。
 まず、反応流体である第1流体と、第2流体との熱交換を利用する反応装置100は、第1流体を流通させる第1流路17と、第2流体を流通させる第2流路31とを含む反応部101と、第1流路17に連通し、反応部101で生成された生成物を含む第3流体を流通させる第1配管と、第2流路31に第2流体を供給する第2配管と、第1配管に連設され、生成物の組成を分析する組成分析部71と、第2配管に連設され、第2流体の流量及び/又は温度を調整する調整部と、組成分析部71で分析された生成物の組成に基づいて、第3流体の温度Te2が、生成物の組成が予め規定された反応率R又は収率を維持する温度となるように、調整部に第2流体の流量F及び/又は温度Te3を調整させる制御部103とを有する。
 ここで、本実施形態では、第1流体は原料ガスMに、第2流体は加熱ガスHC1に、また、第3流体は反応ガスPに、それぞれ相当する。また、本実施形態では、第1配管は、第1排出配管51に相当し、第2配管は、第2導入配管55に相当する。さらに、本実施形態では、調整部は、燃焼器60、第1電磁弁63及び第2電磁弁64に相当する。
 制御部103は、常時、組成分析部71により分析された反応ガスPに含まれる生成物の組成を監視し、その組成の変化からずれタイミングを迅速に判断する。そして、制御部103は、ずれタイミングと判断した場合には、調整部に対して加熱ガスHC1の温度Te3を適宜調整させることで、迅速に反応率Rの回復を図ることができる。このように、本実施形態に係る反応装置100によれば、運転条件が予め規定された条件の許容範囲から外れた場合でも、迅速に運転条件を回復させることができる。その結果、反応装置100は、例えば、原料ガスMの無駄を極力省くことができる。
 また、本実施形態に係る反応装置100は、第1配管に連設され、第3流体の温度Te2を計測する第1温度計測部70を有してもよい。この場合、制御部103は、第1温度計測部70から第3流体の温度Te2の情報を取得する。
 本実施形態に係る反応装置100によれば、制御部103は、反応率Rの変化に加え、温度Te2の変化も参照してずれタイミングを判断し得ることになり、ずれタイミングの判断の正確性、ひいては、反応率Rを回復させる迅速性をより向上させることができる。
 また、本実施形態に係る反応装置100は、第2配管に連設され、第2流体の温度を計測する第2温度計測部72を有してもよい。この場合、制御部103は、第2温度計測部72で計測された第2流体の温度Te3に基づいて、調整部が第2流体の温度Te3を予め規定された反応率R又は収率を維持する温度に調整したかを判断する。
 本実施形態に係る反応装置100によれば、制御部103は、第1電磁弁63等を作動させて温度Te3の調整を行った際、温度Te3が所望の温度に調整されたかを判断することができるので、反応率Rを回復させる確実性をより向上させることができる。
 また、本実施形態に係る反応装置100では、反応部101は、伝熱体からなる熱交換部3を含んでもよい。また、第1流路17及び第2流路31は、伝熱体に形成されている溝又は貫通孔であってもよい。
 ここで、本実施形態では、熱交換部3は、第1流体が流通する第1流路17を有する第1伝熱体7と、第2流体が流通する第2流路31を有する第2伝熱体9との2種類の伝熱体が積層されたものである。このような構成の伝熱体では、製作の容易性の観点から、各流路の形状をそれぞれ溝とすることが望ましい。
 一方、本開示は、このような構成の伝熱体からなる熱交換部3だけに適用されるものではない。例えば、熱交換部3を構成する伝熱体が1つの直方体で、伝熱体が、第1流体が流通する複数の第1流路と、第2流体が流通する複数の第2流路との双方を有する場合にも、本開示を適用可能である。この場合、各流路は、それぞれ貫通孔となる。
 本実施形態に係る反応装置100によれば、特に、反応部101に含まれる熱交換部3が、1つの直方体である伝熱体、又は、複数の伝熱体が直接的に積層されて一体化された積層型のいずれかで構成される反応装置において、上記効果を奏することができる。
 また、本実施形態に係る反応装置100では、第2流体は、熱媒体であってもよい。
 本実施形態に係る反応装置100によれば、特に、第1流体が反応流体であるのに対して、第2流体が熱媒体である場合の反応処理を行う反応装置において、上記効果を奏することができる。
 さらに、本実施形態に係る反応装置では、第2流体は、反応流体であってもよい。
 本開示に類する従来の反応装置では、第1流体として反応流体を用いつつ、第2流体としても反応流体を用いるものもある。本実施形態に係る反応装置100は、このように第1流体及び第2流体の双方が反応流体である場合の反応処理を行う反応装置にも適用可能であり、上記と同様の効果を奏することができる。
 (他の実施形態)
 上記の実施形態では、調整部により温度又は流量が調整される第2流体が加熱ガスHC1であって、かつ、加熱ガスHC1が燃焼ガスである場合について例示した。加熱ガスHC1として燃焼ガスが採用される場合、調整部は、燃料及び空気の流量を適宜調整して流量比を変化させれば、それに伴って加熱ガスHC1の温度を変化させることができる。
 これに対して、第2流体である加熱ガスは、水蒸気であってもよい。この場合、調整部は、直接的に水蒸気を生成するものか、それとは別のものかを問わず、予熱温度を調整可能とするヒーター等であってもよい。又は、調整部は、水蒸気を生成するための加熱装置に加えて、生成された水蒸気の流量を調整可能とする電磁弁等であってもよい。なお、これは、第2流体が加熱油などの液体である場合も同様である。
 また、本開示の反応装置100は、例示のような発熱反応に限らず、吸熱反応による反応処理にも適用可能である。すなわち、第2流体は、加熱流体に限らず、冷却流体であってもよい。例えば、第2流体が冷却水の場合には、調整部は、水の流量を調整する電磁弁等であってもよい。又は、第2流体が冷媒である場合には、調整部は、冷媒温度を調整可能とするクーラー等であってもよいし、冷媒の流量を調整する電磁弁等であってもよい。
 また、上記の実施形態では、反応ガスPの組成を分析する組成分析部71として、ガスクロマトグラフを例示した。しかし、組成分析部71は、これに限らず、例えば、酸素分析計やメタン分析計など特定のガス分析計を採用して、反応ガス中の特定の気体の濃度をそれぞれ分析する構成としてもよい。
 また、上記の実施形態では、第1伝熱体7と第2伝熱体9とが積層された、いわゆる積層式の反応装置100を例示した。しかし、本開示は、例えば、第1流体としての反応流体が貫流する触媒床を、第2流体としての熱媒体が貫流する流路が形成されている2つのサーモプレートで挟み込むプレート式の反応装置にも適用可能である。
 また、上記の実施形態では、熱交換部3が、第1流路17を流通する第1流体と、第2流路31を流通する第2流体とが互いに反対方向に流れる対向流型であるものとしたが、互いに同方向に流れる並流型であってもよい。すなわち、本開示では、第1流体と第2流体とが流れる方向について、なんら限定するものではない。
 さらに、上記の実施形態では、熱交換部3を構成する第1伝熱体7と第2伝熱体9とがZ方向すなわち鉛直方向に積層されるものとしているが、本開示は、これに限らない。例えば、熱交換部3を構成するこれらの伝熱体が、それぞれ接合された状態でZ方向に立設するような、いわゆる横置きとして使用されるものであってもよい。
 このように、本開示は、ここでは記載していない様々な実施の形態などを含むことは勿論である。したがって、本開示の技術的範囲は、上述の説明から妥当な請求の範囲に係る事項によってのみ定められる。

Claims (5)

  1.  反応流体である第1流体と、第2流体との熱交換を利用する反応装置であって、
     前記第1流体を流通させる第1流路と、前記第2流体を流通させる第2流路とを含む反応部と、
     前記第1流路に連通し、前記反応部で生成された生成物を含む第3流体を流通させる第1配管と、
     前記第2流路に前記第2流体を供給する第2配管と、
     前記第1配管に連設され、前記生成物の組成を分析する組成分析部と、
     前記第2配管に連設され、前記第2流体の流量及び/又は温度を調整する調整部と、
     前記組成分析部で分析された前記生成物の組成に基づいて、前記第3流体の温度が、前記生成物の組成が予め規定された反応率又は収率を維持する温度となるように、前記調整部に前記第2流体の流量及び/又は温度を調整させる制御部と、
     前記第1配管に連設され、前記第3流体の温度を計測する第1温度計測部と、を有し、
     前記制御部は、前記第1温度計測部から前記第3流体の温度の情報を取得する、反応装置。
  2.  前記第2配管に連設され、前記第2流体の温度を計測する第2温度計測部を有し、
     前記制御部は、前記第2温度計測部で計測された前記第2流体の温度に基づいて、前記調整部が前記第2流体の温度を予め規定された反応率又は収率を維持する温度に調整したかを判断する、
    請求項1に記載の反応装置。
  3.  前記反応部は、伝熱体からなる熱交換部を含み、
     前記第1流路及び前記第2流路は、前記伝熱体に形成されている溝又は貫通孔である、
    請求項1又は2に記載の反応装置。
  4.  前記第2流体は、熱媒体である請求項1~3のいずれか1項に記載の反応装置。
  5.  前記第2流体は、反応流体である請求項1~3のいずれか1項に記載の反応装置。
PCT/JP2017/043579 2016-12-08 2017-12-05 反応装置 WO2018105588A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17879121.6A EP3552696A4 (en) 2016-12-08 2017-12-05 REACTOR
CA3043453A CA3043453C (en) 2016-12-08 2017-12-05 Reactor
CN201780071363.6A CN109963647A (zh) 2016-12-08 2017-12-05 反应装置
US16/391,445 US10583413B2 (en) 2016-12-08 2019-04-23 Reactor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016238220A JP2018094457A (ja) 2016-12-08 2016-12-08 反応装置
JP2016-238220 2016-12-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/391,445 Continuation US10583413B2 (en) 2016-12-08 2019-04-23 Reactor

Publications (1)

Publication Number Publication Date
WO2018105588A1 true WO2018105588A1 (ja) 2018-06-14

Family

ID=62491523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043579 WO2018105588A1 (ja) 2016-12-08 2017-12-05 反応装置

Country Status (6)

Country Link
US (1) US10583413B2 (ja)
EP (1) EP3552696A4 (ja)
JP (1) JP2018094457A (ja)
CN (1) CN109963647A (ja)
CA (1) CA3043453C (ja)
WO (1) WO2018105588A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022024179A1 (ja) * 2020-07-27 2022-02-03 株式会社Ihi 反応装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020040919A (ja) * 2018-09-12 2020-03-19 日立造船株式会社 メタンガス生成装置及びメタンガス生成方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06192182A (ja) * 1992-08-20 1994-07-12 Daicel Chem Ind Ltd 反応制御方法
JP2006523531A (ja) * 2003-04-14 2006-10-19 セルラー プロセス ケミストリー インコーポレイテッド 連続運転プロセスを使用して最適な反応パラメータを決定するシステムおよび方法
JP2007519508A (ja) 2003-12-23 2007-07-19 ビーエーエスエフ アクチェンゲゼルシャフト サーモプレートを使用して反応器中の流体反応混合物の反応を監視、制御および/または調節する方法
US20090234629A1 (en) * 2008-03-11 2009-09-17 Whole Energy Fuels Corporation Control and online real time monitoring of purity for fatty acid alkyl ester refinery
JP2011072937A (ja) * 2009-09-30 2011-04-14 Mitsubishi Chemicals Corp プレート式反応器を用いた反応生成物の製造方法
JP2011522787A (ja) * 2008-04-28 2011-08-04 ナンジェネックス ナノテクノロジー インコーポレイテッド 連続流モードでナノ粒子の製造を行う計装とプロセス
US20140259886A1 (en) * 2013-03-13 2014-09-18 Rockwell Automation Technologies, Inc. Advanced process control of a biodiesel plant
JP2016040217A (ja) * 2014-08-13 2016-03-24 Jx日鉱日石エネルギー株式会社 脱水素化システム及び脱水素化システムの運転方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3520803A (en) * 1968-12-24 1970-07-21 Ionics Membrane fluid separation apparatus and process
JP3114270B2 (ja) * 1991-08-12 2000-12-04 石川島播磨重工業株式会社 プレート型シフトコンバータ
KR940003917A (ko) 1992-08-20 1994-03-14 고지마 아끼로 반응 제어방법
WO2006006679A1 (ja) * 2004-07-14 2006-01-19 Ebara Corporation マイクロチャンネルチップ反応制御システム、それを含むマイクロトータルリアクションシステムおよびマイクロトータルアナリシスシステム
JP2006145516A (ja) * 2004-07-14 2006-06-08 Ebara Corp マイクロチャンネルチップ反応制御システム、それを含むマイクロトータルリアクションシステムおよびマイクロトータルアナリシスシステム
WO2006043642A1 (ja) * 2004-10-20 2006-04-27 Ebara Corporation 流体反応装置
JP4252993B2 (ja) 2005-05-12 2009-04-08 株式会社荏原製作所 混合器及び反応装置
KR100898855B1 (ko) * 2006-07-21 2009-05-21 주식회사 엘지화학 열교환기를 포함한 마이크로 채널 개질 반응기
JP2009094163A (ja) * 2007-10-04 2009-04-30 Canon Inc 温度制御装置、露光装置およびデバイス製造方法
HUE036154T2 (hu) * 2008-09-24 2018-06-28 Huntsman Petrochemical Llc Eljárás katalizátorágy hõmérsékletének szabályozására valószínûség-eloszlás felhasználásával
GB0822544D0 (en) * 2008-12-11 2009-01-14 Compactgtl Plc Chemical reactor operation
WO2013124627A1 (en) * 2012-02-22 2013-08-29 Compactgtl Limited Reactor temperature control system and method
JP2014151298A (ja) * 2013-02-13 2014-08-25 Ihi Corp リアクタおよびリアクタの流路切替方法
JP6387585B2 (ja) * 2013-02-28 2018-09-12 株式会社Ihi リアクタ
TW201510461A (zh) * 2013-06-11 2015-03-16 漢洛克半導體公司 熱交換器
EP3045222B1 (en) * 2013-09-13 2020-02-12 IHI Corporation Reactor
JP2015223581A (ja) * 2014-05-30 2015-12-14 株式会社Ihi リアクタ
GB2527847A (en) * 2014-07-04 2016-01-06 Compactgtl Ltd Catalytic reactors
JP6243810B2 (ja) 2014-07-14 2017-12-06 株式会社神戸製鋼所 反応器、反応装置及び反応生成物の生成方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06192182A (ja) * 1992-08-20 1994-07-12 Daicel Chem Ind Ltd 反応制御方法
JP2006523531A (ja) * 2003-04-14 2006-10-19 セルラー プロセス ケミストリー インコーポレイテッド 連続運転プロセスを使用して最適な反応パラメータを決定するシステムおよび方法
JP2007519508A (ja) 2003-12-23 2007-07-19 ビーエーエスエフ アクチェンゲゼルシャフト サーモプレートを使用して反応器中の流体反応混合物の反応を監視、制御および/または調節する方法
US20090234629A1 (en) * 2008-03-11 2009-09-17 Whole Energy Fuels Corporation Control and online real time monitoring of purity for fatty acid alkyl ester refinery
JP2011522787A (ja) * 2008-04-28 2011-08-04 ナンジェネックス ナノテクノロジー インコーポレイテッド 連続流モードでナノ粒子の製造を行う計装とプロセス
JP2011072937A (ja) * 2009-09-30 2011-04-14 Mitsubishi Chemicals Corp プレート式反応器を用いた反応生成物の製造方法
US20140259886A1 (en) * 2013-03-13 2014-09-18 Rockwell Automation Technologies, Inc. Advanced process control of a biodiesel plant
JP2016040217A (ja) * 2014-08-13 2016-03-24 Jx日鉱日石エネルギー株式会社 脱水素化システム及び脱水素化システムの運転方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3552696A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022024179A1 (ja) * 2020-07-27 2022-02-03 株式会社Ihi 反応装置

Also Published As

Publication number Publication date
CA3043453A1 (en) 2018-06-14
US10583413B2 (en) 2020-03-10
EP3552696A4 (en) 2020-05-27
US20190247819A1 (en) 2019-08-15
JP2018094457A (ja) 2018-06-21
CA3043453C (en) 2021-07-06
CN109963647A (zh) 2019-07-02
EP3552696A1 (en) 2019-10-16

Similar Documents

Publication Publication Date Title
US10449506B2 (en) Reactor and reaction system
CA2396191C (en) Catalytic reactor
US10286375B2 (en) Reaction apparatus
CN108698016B (zh) 反应装置
JP6408754B2 (ja) リアクタ
WO2018105588A1 (ja) 反応装置
US10421053B2 (en) Heat treatment device
JP6860102B2 (ja) 熱処理装置
US11413598B2 (en) Reactor
Schouten et al. Miniaturization of heterogeneous catalytic reactors: prospects for new developments in catalysis and process engineering
US20210268472A1 (en) Reactor
JP2017219289A (ja) 熱処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17879121

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3043453

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017879121

Country of ref document: EP

Effective date: 20190708