WO2018105414A1 - 微生物の検査方法及びその装置 - Google Patents

微生物の検査方法及びその装置 Download PDF

Info

Publication number
WO2018105414A1
WO2018105414A1 PCT/JP2017/042274 JP2017042274W WO2018105414A1 WO 2018105414 A1 WO2018105414 A1 WO 2018105414A1 JP 2017042274 W JP2017042274 W JP 2017042274W WO 2018105414 A1 WO2018105414 A1 WO 2018105414A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
microorganisms
light source
fluorescence
sample
Prior art date
Application number
PCT/JP2017/042274
Other languages
English (en)
French (fr)
Inventor
建軍 賀
真典 松田
Original Assignee
株式会社サタケ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社サタケ filed Critical 株式会社サタケ
Priority to KR1020197018707A priority Critical patent/KR102390747B1/ko
Priority to EP17878013.6A priority patent/EP3553164B1/en
Priority to AU2017372183A priority patent/AU2017372183B2/en
Priority to CN201780076057.1A priority patent/CN110062805B/zh
Priority to DK17878013.6T priority patent/DK3553164T3/da
Priority to US16/467,671 priority patent/US20200087611A1/en
Publication of WO2018105414A1 publication Critical patent/WO2018105414A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/36Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of biomass, e.g. colony counters or by turbidity measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • C12M1/3446Photometry, spectroscopy, laser technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • C12M1/3446Photometry, spectroscopy, laser technology
    • C12M1/3476Fluorescence spectroscopy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • C12Q1/06Quantitative determination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/186Water using one or more living organisms, e.g. a fish
    • G01N33/1866Water using one or more living organisms, e.g. a fish using microorganisms

Definitions

  • the present invention relates to a microorganism testing method and apparatus, and more particularly to a microorganism testing method and apparatus suitable for detecting living microorganisms such as plankton contained in ballast water.
  • ballast water In order to stabilize the ship, the ship that is not loaded with cargo travels with ballast water and discharges the ballast water in the sea area where the luggage is loaded. Ballast water is usually discharged into a sea area different from the sea area on which it is mounted. Therefore, problems such as the destruction of ecosystems by transporting microbes such as plankton and bacteria contained in the ballast water to sea areas other than their original habitats. There is a risk of causing it.
  • the “Guidelines for Ballast Water Sampling (G2)” related to the above Ballast Water Management Convention is based on the “Ballast Water Emission Standard (D-2)”.
  • D-2 Bath Water Emission Standard
  • L size organism an organism having a minimum size of 50 ⁇ m or more
  • S size organism an organism having a minimum size of 10 ⁇ m or more and less than 50 ⁇ m
  • the seawater pumped by the pump is passed through a flow cell and image measurement is performed (for example, patent document) 1)
  • the seawater pumped up by the pump is collected as sample water after passing through a filter with a different opening, and the dyeing reagent is added to this and irradiated with excitation light while stirring.
  • Patent Literature 2 and Patent Literature 3 There are known devices (for example, Patent Literature 2 and Patent Literature 3) that calculate the amount of microorganisms contained in sample water from the number of luminescence by detecting the number of luminescence.
  • Patent Literature 1 increases the concentration of the organism while flowing a liquid specimen and staining a living organism having living cells present in the specimen, and flowing the stained specimen.
  • the living body is measured from the concentrating unit that concentrates the image, the individual measuring unit that obtains image information of the individual including the organism in the concentrated specimen, and the individual image information output from the individual measuring unit. And a control means.
  • the process of staining organisms in the liquid of the specimen, the process of concentrating organisms in the liquid, the process of acquiring information on organisms in the liquid, etc. can be performed by the flow method.
  • the waiting time until a part of a sample that has completed one process proceeds to the next process can be greatly reduced or reduced to zero, and stable organisms can be prevented in order to prevent deterioration of the staining state during the waiting time. There is an advantage that life and death information can be acquired.
  • the devices described in Patent Documents 2 and 3 are stirring and mixing means for stirring and mixing the sample solution by adding the sample and the fluorescent staining liquid to a batch-type sample container formed of a light transmitting material.
  • an excitation light source having a light source for irradiating the irradiated surface of the sample container with excitation light while stirring the sample solution by the stirring and mixing means, and detecting light emitted by the excitation light from the excitation light source
  • a control means for detecting the number of emitted light by converting the light detected by the light receiving means into an electrical signal and calculating the amount of microorganisms contained in the sample in the sample container from the number of emitted light. It is characterized by.
  • the sample container is stirred and mixed by the stirring and mixing means, and then the sample solution is stirred on the irradiated surface of the sample container. Since the excitation light is incident and the fluorescence emission of the microorganisms is received by the light receiving means, the microorganisms emit light brightly in a very short time compared to those measured by standing without stirring. The amount can be measured easily and in a short time. And since it is a batch type, it becomes possible to miniaturize an apparatus and there exists a merit that manufacturing cost also becomes cheap.
  • Patent Documents 2 and 3 have a problem that it is difficult to detect some phytoplankton.
  • some of the diatoms that have an oxyacid (glassy) shell around the cells are particularly difficult to absorb the staining agent FDA (fluorescent staining reagent FDA), so fluorescence is emitted. The amount was small and difficult to detect.
  • FDA fluorescent staining reagent FDA
  • an object of the present invention is to provide a method and apparatus for detecting microorganisms in ballast water, which can easily and quickly detect phytoplankton that is difficult to incorporate a fluorescent staining reagent.
  • a microorganism testing apparatus for measuring the amount of microorganisms in a sample solution, and the sample and fluorescent staining are placed in a batch-type sample container formed of a light transmitting material.
  • a stirring and mixing means for adding a reagent to stir and mix the sample solution; and a light source for continuously irradiating the irradiated surface of the sample container with the excitation light while stirring the sample solution by the stirring and mixing means.
  • Excitation light source light receiving means for detecting light emitted by the excitation light from the excitation light source, light detected by the light receiving means is converted into an electrical signal, the number of emitted light is detected and counted, and the light emission
  • the excitation light source includes two types of excitation light sources: a light source that emits light in a wavelength region that causes phytoplankton to emit chlorophyll fluorescence, and a light source that emits light in a wavelength region that causes fluorescence emitted from microorganisms stained with a fluorescent staining reagent. The technical means of using was taken.
  • the excitation light source includes a light source that emits light in a wavelength region that causes phytoplankton to emit chlorophyll fluorescence, and light in a wavelength region that causes the microorganisms stained with the fluorescent staining reagent to emit fluorescence. Since two types of light sources different from the light source that emits light are used, it becomes possible to detect phytoplankton that is difficult for fluorescent staining reagents to be taken in by a light source that emits light in the wavelength range that emits chlorophyll fluorescence. Both plant and animal plankton can be detected without omission in a short time.
  • the excitation light source is arranged so that excitation light orthogonal to the surface to be irradiated of the sample container is incident, while the light receiving means has its light receiving surface. Is arranged so that the fluorescence emission is received at an angle orthogonal to the excitation light of the excitation light source.
  • the excitation light source is arranged such that excitation light orthogonal to the irradiated surface of the sample container is incident, while the light receiving means
  • the surface is arranged so that the fluorescence emission is received at an angle orthogonal to the excitation light of the excitation light source, so that the excitation light from the excitation light source does not directly enter the light receiving surface of the light receiving means, and the back
  • the difference in the amount of light between the ground and the fluorescence emission of the microorganism becomes very clear, and the detection accuracy of the microorganism is improved.
  • the control means includes the number n1 of microorganisms obtained by chlorophyll fluorescence emission, the number n2 of microorganisms obtained by fluorescence emission by fluorescence staining reagents, and the fluorescence by chlorophyll fluorescence emission and fluorescence staining reagents. It is characterized in that after obtaining the number of microorganisms n3 acquired by both luminescence, a calculation unit is provided for calculating the allowable number of microorganisms N which is a discharge standard for ballast water.
  • the control means includes the number n1 of microorganisms acquired by chlorophyll fluorescence emission, the number n2 of microorganisms acquired by fluorescence emission by a fluorescence staining reagent, and the chlorophyll fluorescence emission and fluorescence staining reagents.
  • the number of microorganisms n3 is estimated as the allowable number N of the complemented number of microorganisms. This permissible number N can be applied by appropriately evaluating the number of microorganisms and strictly evaluating the ballast water drainage standard (D-2) in the same manner as in practice.
  • the method for inspecting microorganisms according to the present invention is a method for inspecting microorganisms for measuring the amount of microorganisms in a sample solution, and stirring and mixing a sample solution in which a fluorescent staining reagent is added to a sample in a batch type sample container.
  • the phytoplankton is excited by a light source that emits light in a wavelength region that emits chlorophyll fluorescence, and is also excited by a light source that emits light in a wavelength region that causes fluorescence emission of microorganisms stained with the fluorescent staining reagent.
  • the microorganism number estimation step includes the number of microorganisms n1 acquired by chlorophyll fluorescence emission, the number of microorganisms n2 acquired by fluorescence emission using a fluorescence staining reagent, and the chlorophyll fluorescence emission and fluorescence staining reagent. After obtaining the individual number n3 of the microorganisms obtained by both of the fluorescence emission by the above, the allowable number N of microorganisms serving as a ballast water drainage standard is calculated.
  • a method for detecting phytoplankton in which a fluorescent staining reagent is difficult to be taken in by a light source that emits light in a wavelength range that emits chlorophyll fluorescence is realized. Both animal plankton can be detected without omission.
  • the microorganism estimation step subtracts the number of microorganisms n2 obtained by fluorescence emission using a fluorescent staining reagent from the number of microorganisms n3 obtained by both chlorophyll fluorescence emission and fluorescence emission by a fluorescence staining reagent. And calculating the number of zooplankton individuals.
  • the microorganism estimation step the number of microorganisms n2 obtained by fluorescence emission with a fluorescent staining reagent from the number of microorganisms n3 obtained with both chlorophyll fluorescence emission and fluorescence emission with a fluorescence staining reagent. It is possible to calculate and count only the number of zooplankton individuals.
  • FIG. 1 is a perspective view showing the whole of the microorganism testing apparatus of the present invention
  • FIG. 2 is a schematic plan sectional view of the same measurement unit
  • FIG. 3 is a block diagram showing the overall configuration of the same.
  • an inspection apparatus 1 of the present invention includes a main body 2 that incorporates a control mechanism such as a CPU board and performs information processing work such as measurement results and statistical processing work,
  • a display formed by a liquid crystal touch panel that is arranged in parallel with the main body 2 and that corresponds to an operation button or the like that reacts by touching the screen with a finger and displays the measurement result and the like.
  • a batch type sample container 4 formed of a transparent material (for example, glass, quartz, acrylic resin, etc.) that transmits light, and optically counts the number of microorganisms in the sample solution S
  • the measuring unit 5 is configured as a main part.
  • Reference numeral 6 denotes a rotor for stirring the sample solution S accommodated in the sample container 4.
  • a sample, a luminescent reagent (a sample and a luminescent reagent are combined to form a sample solution S), and a rotor 6 are accommodated.
  • the rotor 6 is rotationally driven by the magnetic stirrer incorporated in the measurement part 5. Thereby, the number of microorganisms in the sample solution S can be counted while stirring and mixing the sample solution S in the sample container 4 at a predetermined temperature.
  • the microorganisms emit bright light in a very short time, and the amount of microorganisms in the ballast water can be measured easily and in a short time.
  • the dimensions of the inspection apparatus 1 shown in FIG. 1 are 300 mm in width, 350 mm in depth, 130 mm in height, and about 2 to 5 kg in weight, and are handheld trunks and rucksacks (also called “backpacks”). (Both are not shown) and can be carried anywhere. It is designed so that it can be driven by an AC power source or a battery, and can be measured inside a ship or measured outdoors.
  • the sample container 4 is formed of a transparent material that transmits light, has a bottom surface of 50 mm ⁇ 50 mm and a height of 60 mm, and has an inner volume of 100 ml when the water level is 40 mm ( Milliliters).
  • the sample container 4 is not limited to such a prismatic shape, and may be cylindrical or cubic as long as the internal volume can be secured about 100 ml (milliliter).
  • the measurement unit 5 includes a sample container storage unit 7 that stores and holds the sample container 4, and a light source unit 8 that emits excitation light toward the sample container 4. And a light receiving unit 9 for observing microorganisms floating in the sample container 4 by the excitation light emitted from the light source unit 8.
  • the light receiving unit 9 counts the number of microorganisms in the sample solution S, and is electrically connected to the CPU substrate 10 that performs information processing operations such as measurement results and statistical processing operations.
  • the sample container storage unit 7 is formed by holding plates 7a and 7b surrounding at least two surfaces of the sample container 4, and stores and holds the sample container 4 so as not to block light irradiation from the light source unit 8. It is.
  • the light source unit 8 includes an LED light source 8 disposed in the vicinity of the sample container housing unit 7 and a parallel light conversion unit 11 that is disposed in front of the LED light source 8 and converts diffused light into parallel light. Since the light is diffused and irradiated in a random direction, the sample container 4 is irradiated with excitation light composed of parallel light and a parallel light so that the light rays are uniformly irradiated at the same angle toward one surface. And an excitation light band-pass filter 12 to be used.
  • FIG. 5 is a schematic sectional view showing an embodiment of the parallel light converting means 11.
  • a threaded hole 51 having a predetermined diameter is formed in a flat plate 50 having a predetermined thickness as the parallel light converting means 11, and the thickness L of the flat plate 50 and the threaded cutting are adjusted in accordance with the optical path length.
  • the hole diameter of the hole 51 is appropriately set.
  • the scattered light with the incident angle ⁇ irradiated from the LED light source 8 is converted into parallel light when passing through the screw hole 51.
  • the optimum condition of ⁇ and L is determined by the SN ratio test. For example, if M3 (the outer diameter of the screw hole) ⁇ 0.5 (pitch), ⁇ is 9. It was optimal when the angle was 5 ° and L was 15 mm.
  • the parallel light converting means 11 shown in FIG. 5B is provided with a convex lens 53 on the front surface of the LED light source 8, and the diffused light emitted from the LED light source 8 passes through the convex lens 53 and is emitted to the outside. Is converted into parallel light.
  • the light source part 8 of this embodiment used the LED light source as a light source, if the fluorescent substance contained in microorganisms can be excited, it will not be limited to an LED light source but a parallel light LED light source which can irradiate parallel light A laser light source or a light bulb can also be used. Needless to say, the parallel light conversion means 11 described above is not necessary when a parallel light LED, a laser light source, or a light bulb capable of emitting parallel light is employed.
  • the said light-receiving part 9 is provided so that the light-receiving surface F may be arrange
  • FIG. The light receiving unit 9 is a photomultiplier tube arranged and configured so that the fluorescent light is received by the optical axis perpendicular to the parallel light irradiated with the excitation light from the LED light source 8 toward the sample container 4.
  • a fluorescent bandpass filter 13 disposed in front of the photomultiplier tube (PMT) 9
  • a condensing lens 14 disposed in front of the fluorescent bandpass filter 13, and the condensing lens
  • a slit 15 disposed on the front surface of the lens 14 and a gap between the slit 15 and the sample container 4 are used to excite a fluorescent substance contained in the microorganism, thereby condensing and imaging the emitted fluorescence.
  • a relay lens 16 16.
  • the slit 15 narrows the observation surface in a slit shape. That is, as shown in FIG. 6, the background in which the light receiving surface F is formed in a circle is monitored in the state without the slit in FIG. 6A, whereas the light receiving surface F in the state with the slit in FIG. The background formed by the vertical slits will be monitored. Accordingly, as a result of the monitoring area (monitoring range) of the observation surface F being narrowed as shown in FIG. 6B, the area of background fluorescent light emission that becomes noise is also narrowed, so that the ratio of the fluorescent light emission signal of the microorganism to the background fluorescent light emission is This improves the detection accuracy of fluorescence emission of microorganisms.
  • the light receiving unit 9 uses a photomultiplier tube (PMT) as a light receiving sensor.
  • PMT photomultiplier tube
  • the light receiving unit 9 is not limited to this, and a silicon photodiode (SiPD) or an avalanche photodiode (APD) is used.
  • SiPD silicon photodiode
  • APD avalanche photodiode
  • various photodetectors that can detect light emission of a fluorescent substance contained in a microorganism like a photomultiplier tube (PMT) can be employed.
  • the LED light source 8 is a pair of an LED light source 8a (a light source similar to the conventional light source) that emits light in the green-blue wavelength range near 490 nm and an LED light source 8b that emits light in the blue-violet wavelength range near 450 nm.
  • the LED light sources 8a and 8b are preferably provided in a pair so as to face each other with the sample container 4 interposed therebetween, and light on the LED light source 8b side is easily transmitted between the LED light sources 8a and 8b and the sample container 4.
  • excitation light band-pass filters 12A and 12A that transmit light in the wavelength range of 395 to 505 nm are interposed. These wavelength ranges are merely examples, and can be appropriately changed according to conditions.
  • a long-pass filter 17 that transmits wavelengths in the wavelength range of 510 nm or more, and a condensing lens 18 that is disposed between the front and rear of the long-pass filter 17. Is arranged.
  • an output signal converted from light to electricity by a photomultiplier tube (PMT) 9 is analyzed by receiving power from an AC power source 21 or a secondary battery 22.
  • the CPU board 10 is arranged for determining whether or not it is within an arbitrary luminance range, counting a pulse of an arbitrary luminance, performing on / off control of the LED light source 8, and the like.
  • An AC / DC converter 24 is interposed between the AC power source 21 and the CPU board 10.
  • the CPU board 10 is electrically connected to the photomultiplier tube (PMT) 9, the LED light source 8, a RAM 25 serving as a read / write storage unit, and a ROM 26 serving as a read-only storage unit. Further, it is electrically connected to a display / operation unit 3 formed by a liquid crystal touch panel or the like shown in FIG. As described later, on / off switching control is performed by pressing the power button 3a displayed on the liquid crystal touch panel, measurement is started by pressing the measurement start button 3b, and external control is performed by pressing the external output button 3c. Data is transferred to the printer or personal computer, and the type of measurement is switched by pressing the setting button 3d (L size microorganism measurement (3d1) or S size microorganism measurement (3d2)). By pressing the button 3e, it is possible to change the determination criteria setting, change the threshold setting, or change the measurement time setting.
  • PMT photomultiplier tube
  • a RAM 25 serving as a read / write storage unit
  • ROM 26 serving as a read-only storage
  • the CPU board 10 includes a magnetic stirrer 27 for rotating the rotor 6 by magnetic force, a cooling fan 28 for a control device, and an external output terminal 29 such as an RS-232C and a universal serial bus (USB) terminal. Is connected.
  • a magnetic stirrer 27 for rotating the rotor 6 by magnetic force
  • a cooling fan 28 for a control device
  • an external output terminal 29 such as an RS-232C and a universal serial bus (USB) terminal. Is connected.
  • USB universal serial bus
  • FIG. 7 is a flowchart showing a measurement flow, and the operation in the above configuration will be described with reference to FIGS.
  • the worker turns on the power button 3a in the main body 2 and prepares by pressing the setting button 3d, the menu button 3e, etc. of the display / operation unit 3 including a liquid crystal touch panel. Thereafter, the measurement start button 3b is turned on. As a result, the LED light sources 8b and 8b for chlorophyll fluorescence are turned on (see step 2 in FIGS. 4 and 7), so that the light transmitted through the excitation light bandpass filters 12A and 12A (FIG. 4) enters the sample container 4. Will be irradiated.
  • the photomultiplier tube (PMT) 9 light energy is converted into electric energy by utilizing the photoelectric effect, and a current amplification function is added to detect fluorescence emission of the chlorophyll component with high sensitivity.
  • the detected electrical signal is sent to the CPU board 10 and the received light waveform exceeding a certain threshold value is counted (step 4 in FIG. 7).
  • the CPU board 10 estimates the number of microorganisms present in 100 ml (milliliter) of water in the sample container 4 from the received light wave count value and displays it on the display / operation unit 3 (step 5 in FIG. 7).
  • Prorocentrum micans The phytoplankton, Prorocentrum micans (Prorocentrum micans), was used as a test microorganism, and it was verified whether the number of individuals could be estimated by photomultiplier tube (PMT) 9 by chlorophyll fluorescence.
  • PMT photomultiplier tube
  • a plurality of horned beetles were housed together with water in a sample container 4 (100 mL capacity), and the number of waveform counts was detected (see FIGS. 12 and 13). As a result, it was possible to count the number of individuals 102 in FIG. 12 and the number of individuals 103 in FIG.
  • the number of microorganisms can be estimated by chlorophyll fluorescence without absorbing FDA.
  • the number of microorganisms at this time is stored as n1 (step 5 in FIG. 7).
  • calcein AM As the fluorescent staining reagent, generally known calcein AM (Calcein-AM, manufactured by Promocell® GMBH®, Germany), FDA, or the like can be used. Calcein AM tends to stain phytoplankton, while FDA tends to stain zooplankton. Then, after the operator puts the rotor 6 into the sample container 4, it is accommodated in the measuring unit 5 of the inspection apparatus 1 and the lid 30 is attached to complete the preparation for measurement.
  • the operator presses the S size setting button 3d2 (or L size 3d1) of the display / operation unit 3 and turns on the measurement start button 3b. Then, the rotor 6 is rotated by driving the magnetic stirrer 27 built in the measurement unit 5, and the sample solution S is stirred (step 8 in FIG. 7).
  • the LED light sources 8a and 8a are turned on (see FIG. 4), and the light transmitted through the excitation light band-pass filters 12A and 12A is irradiated onto the sample container 4.
  • the specimen (microorganism) in the sample container 4 emits fluorescence.
  • This fluorescence passes through the fluorescence band-pass filter 15 and is detected by the photomultiplier tube (PMT) 9 (step 10 in FIG. 7).
  • the electrical signal detected by the photomultiplier tube (PMT) 9 is sent to the CPU substrate 10 and the received light waveform exceeding a certain threshold value is counted (step 11 in FIG. 7). Further, the CPU substrate 10 estimates the number of microorganisms present in 100 ml (milliliter) of water in the sample container 4 from the received light wave count value and displays it on the display / operation unit 3. In the CPU board 10, the number of microorganisms at this time is stored as n2 (step 12 in FIG. 7).
  • both the LED light sources 8a and 8a and the LED light sources 8b and 8b are simultaneously irradiated (step 13 in FIG. 7), and fluorescence is detected by the photomultiplier tube (PMT) 9, and the number of microorganisms at this time is determined.
  • PMT photomultiplier tube
  • n3 step 14 in FIG. 7
  • the number n1 of microorganisms detected by the chlorophyll fluorescence emission the number n2 of microorganisms detected by fluorescence emission using a fluorescent staining reagent, and the microorganisms when the two types of LED light sources 8a and 8b are simultaneously irradiated.
  • the relationship with the number of individuals n3 will be described with reference to FIG.
  • FIG. 8 is a Venn diagram of a set relating to the number of microorganisms n1, n2, and n3 obtained by the above process.
  • FIG. 8A is a logical sum set combining two sets of the number of individuals n1 and the number of individuals n2.
  • the number of phytoplankton individuals that were difficult to absorb the fluorescent staining reagent that could not be detected in the past May not have been taken into account.
  • the allowable number of microorganisms was evaluated to be less than actual, and the ballast water discharge standard (D-2) was to be evaluated more sweetly than actual.
  • the allowable number of microorganisms can be obtained.
  • the CPU board 10 estimates the number of microorganisms n3 when the two types of LED light sources 8a and 8b are simultaneously irradiated as the allowable number N of the supplemented number of microorganisms (step 15 in FIG. 7). Based on this, the allowable number N is displayed on the display / operation unit 3 (step 16 in FIG. 7). Since this allowable number N properly evaluates the number of microorganisms, the ballast water drainage standard (D-2) can be evaluated and applied in the same manner as in practice.
  • D-2 ballast water drainage standard
  • FIG. 8C is obtained by subtracting the number of microorganisms n2 detected with a fluorescent staining reagent from the number of microorganisms n3 when two types of LED light sources 8a and 8b are irradiated simultaneously.
  • This set n3-n2 is obtained by subtracting a set n2 of only phytoplankton from a set n3 in which zooplankton and phytoplankton are mixed, and only the number of zooplankton individuals can be obtained.
  • the number of microorganisms in the sample solution S accommodated in the main body 2, the display / operation unit 3 arranged in parallel with the main body 2, and the batch-type sample container 4 is optically calculated.
  • a microbe inspection apparatus comprising a measuring unit 5 for counting automatically,
  • the measurement unit 5 includes a sample container housing unit 7 that houses and holds the sample container 4, a light source unit 8 that emits excitation light toward the sample container 4, and excitation light emitted from the light source unit 8.
  • a light receiving unit 9 for observing microorganisms drifting in the sample container 4 Two types of LED light sources 8a and 8b having different wavelength regions (in particular, an LED light source 8a that emits light in the vicinity of a green-blue wavelength region of 490 nm (a light source similar to the conventional light source)) and a blue-violet wavelength LED light source 8b that emits light in the region of 450 nm is used as a pair.) By detecting phytoplankton that is difficult to incorporate a fluorescent staining reagent in a short time, zooplankton and Both plankton can be detected without omission.
  • FIG. 9 shows a modification 1 of the measurement unit characterized in that two kinds of LED light sources 8a and 8b are provided with dedicated bandpass filters 12A and 12B, respectively, with respect to the basic example of the measurement unit of FIG. 10 is different from the basic example of the measurement unit shown in FIG. 4 in that a dichroic mirror 31 capable of performing spectroscopy and two light receiving units 9A and 9B having sensitivity specific to the dispersed wavelength are provided. It is the modification 2 of a part.
  • a long pass filter 33 having a wavelength range of 650 nm or more is interposed between the light receiving unit 9A and the dichroic mirror 31, and a band pass filter having a wavelength range of 510 to 550 nm is provided between the light receiving unit 9A and the dichroic mirror 31.
  • FIG. 11 shows a filter wheel including a bandpass filter 32 having a wavelength range of 510 to 550 nm and a longpass filter 33 transmitting a wavelength range of 650 nm or more instead of a single longpass filter 17 in the basic example of the measurement unit of FIG. 34 is a third modification of the measurement unit characterized in that 34 is arranged.
  • symbol 35 of FIG. 11 is a step motor which drives the filter wheel 34.
  • the light source unit 8 includes two types having different wavelength regions. LED light sources 8a and 8b are provided, and a filter and a light-receiving unit specific to each light source are provided, so that phytoplankton that is difficult to incorporate a fluorescent staining reagent can be detected easily and in a short time. Both plankton and phytoplankton can be detected without omission.
  • the CPU board 10 is configured to detect the number of microorganisms n1 acquired by chlorophyll fluorescence emission, the number of microorganisms n2 acquired by fluorescence emission by staining liquid, and the fluorescence emission by chlorophyll fluorescence emission and staining liquid. The number n3 of microorganisms obtained by both is obtained.
  • the number of microorganisms n3 is obtained by complementing the number of phytoplankton individuals that are difficult to absorb the fluorescent staining reagent, and can be an appropriate number of allowed microorganisms.
  • the CPU board 10 estimates the allowable number N of the supplemented number of microorganisms. And since this allowable number N properly evaluates the number of microorganisms, the ballast water drainage standard (D-2) can be evaluated and applied in the same manner as in practice. .
  • the light receiving unit 9A mainly detects fluorescence emission of only phytoplankton, while the light reception unit 9B can detect fluorescence emission of both phytoplankton and zooplankton.
  • the light receiving unit 9B detects a signal that is not detected by the light receiving unit 9A, this is estimated as zooplankton. be able to. Then, if this signal is counted, the number of zooplankton individuals can be grasped.
  • the present invention can be applied to a microorganism testing apparatus for confirming whether or not the discharge standard is satisfied when discharging ballast water.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Sustainable Development (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Food Science & Technology (AREA)
  • Biophysics (AREA)
  • Toxicology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Dispersion Chemistry (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

蛍光染色試薬が取り込まれにくい植物性プランクトンも簡便かつ短時間で検出することができるバラスト水中の微生物検出方法及びその装置を提供する。上記の微生物検出装置は、試料溶液4の被照射面に励起光を連続的に照射させる光源を備えた励起光源8と、励起光源8からの励起光により蛍光発光された光を検知する受光手段9と、受光手段9により検知した光を電気信号に変換して発光数を検出してカウントし、発光数から試料容器中4の試料に含まれる微生物量を算出する制御手段10と、制御手段10に電気的に接続されている操作部3と、を備え、励起光源8は、植物性プランクトンをクロロフィル蛍光発光させる波長域の光を発する光源8bと、蛍光染色試薬に染色された微生物を蛍光発光させる波長域の光を発する光源8aとの異なる2種類の励起光源を用いる。

Description

微生物の検査方法及びその装置
 本発明は、微生物の検査方法及びその装置に関し、特にバラスト水等に含まれて生存しているプランクトン等の微生物を検出するのに適した微生物の検査方法及びその装置に関する。
 荷物を積載していない船舶は、当該船舶を安定させるためにバラスト水を搭載して航行し、荷物を積載する海域において前記バラスト水を排出する。
 バラスト水は、通常、搭載する海域と異なる海域に排出されるため、該バラスト水に含まれるプランクトンや細菌等の微生物を本来の生息地以外の海域に運び、生態系を破壊する等の問題を引き起こす虞がある。
 このような問題に対処するため、バラスト水の規制に関する国際的なルールが策定され、「船舶のバラスト水および沈殿物の規制および管理のための国際条約(バラスト水管理条約)」が採択されている。
 上記バラスト水管理条約に関連する「バラスト水サンプリングに関するガイドライン(G2)」は、「バラスト水排出基準(D-2)」において、船舶から排出されるバラスト水に含まれて生存している生物の許容個体数を、例えば、最小サイズが50μm以上の生物(以下、「Lサイズ生物」という。)については10個/m以下、最小サイズが10μm以上50μm未満の生物(以下、「Sサイズ生物」という。)については10個/mL以下と、前記生物の最小サイズにより区分して規定している。
 現在までに、上記バラスト水を排出する際に上記排出基準を満たしているか否かを確認するための手法として、ポンプで汲み上げた海水をフローセルに通水して画像計測するもの(例えば、特許文献1)、ポンプで汲み上げた海水を目開きの異なるフィルタに通水した後にサンプル水として採取し、これに染色試薬を添加して撹拌しながら励起光を照射し、励起光により蛍光発光された光を検知して発光数を計数し、発光数からサンプル水中に含まれる微生物量を算出する装置(例えば、特許文献2、特許文献3)などが知られている。
 特許文献1に記載の装置は、液体の検体を流しつつ該検体中に存在する生細胞を持つ生物を染色する染色部と、前記染色が施された検体を流しつつ前記生物の濃度を高めるように濃縮する濃縮部と、前記濃縮された検体中の前記生物を含む個体の画像情報を取得する個体計測部と、前記個体計測部より出力された前記個体の画像情報より前記生物の測定を行う制御手段とを備えたことを特徴とするものである。
 これにより、検体の液体中の生物の染色工程、液体中の生物の濃縮工程、液体中の生物の情報取得の工程等をフロー方式で行えるため、各方式をバッチ方式で行う手法と比べて、ひとつの工程を終えた検体の一部が次の工程に進むまでの待機時間を大幅に短縮、または0とすることができ、待機時間での染色の状態の劣化を防ぐ意味で安定した生物の生死の情報を取得することができるといったメリットがある。
 しかしながら、上記特許文献1記載の装置にあっては、ポンプで汲み上げた海水を各種工程に順次通水させるものであり、装置が大掛かりとなり、また、製造コスト高となる問題がある。そして、各種工程に順次通水させて待機時間が短縮されるものであるが、測定が完了するには少なくとも数時間かかるといった問題がある。
 また、上記特許文献2,3に記載の装置は、光を透過する材質で形成されたバッチ式の試料容器に試料と蛍光染色液とを添加して試料溶液の撹拌・混合を行う撹拌混合手段と、該撹拌混合手段により前記試料溶液を撹拌しつつ前記試料容器の被照射面に励起光を照射させる光源を備えた励起光源と、該励起光源からの励起光により蛍光発光された光を検知する受光手段と、該受光手段により検知した光を電気信号に変換して発光数を検出し、該発光数から前記試料容器中の試料に含まれる微生物量を算出する制御手段とを備えたことを特徴とするものである。
 これにより、バッチ式の試料容器に試料と蛍光染色試薬とを添加した後、撹拌混合手段により試料容器の撹拌・混合を行い、次いで、前記試料溶液を撹拌しつつ前記試料容器の被照射面に励起光を入射させ、さらに、受光手段により微生物の蛍光発光を受光するため、撹拌しないで静置して計測するものと比較すれば、極めて短時間で微生物が明るく発光し、バラスト水中の微生物の量を簡便かつ短時間で計測することが可能となる。そして、バッチ式であるために装置を小型化することが可能となり、製造コストも安価となるといったメリットがある。
 しかしながら、上記特許文献2,3記載の装置にあっては、一部の植物プランクトンの検出が困難であるという問題があった。植物性プランクトンの藻類の中でも特に細胞の周りに硅(けい)酸質(ガラス質)の殻をもつ硅藻類の一部は、染色剤FDA(蛍光染色試薬FDA)が取り込まれにくいため、蛍光発光量が少なく検出が困難となっていた。
特開2009-85898号公報 特開2014-42463号公報 特開2014-55796号公報
 本発明は上記問題点にかんがみ、蛍光染色試薬が取り込まれにくい植物性プランクトンも簡便かつ短時間で検出することができるバラスト水中の微生物検出方法及びその装置を提供することを技術的課題とする。
 上記課題を解決するため本発明による微生物の検査装置は、試料溶液中の微生物量を測定するためのものであって、光を透過する材質で形成されたバッチ式の試料容器に試料と蛍光染色試薬とを添加して試料溶液の撹拌・混合を行う撹拌混合手段と、該撹拌混合手段により前記試料溶液を撹拌しつつ前記試料容器の被照射面に励起光を連続的に照射させる光源を備えた励起光源と、該励起光源からの励起光により蛍光発光された光を検知する受光手段と、該受光手段により検知した光を電気信号に変換して発光数を検出してカウントし、該発光数から前記試料容器中の試料に含まれる微生物量を算出する制御手段と、該制御手段に電気的に接続されている操作部と、を備え、
前記励起光源は、植物性プランクトンをクロロフィル蛍光発光させる波長域の光を発する光源と、蛍光染色試薬に染色された微生物を蛍光発光させる波長域の光を発する光源との異なる2種類の励起光源を用いる、という技術的手段を講じた。
 本発明の微生物の検査装置によれば、前記励起光源に、植物性プランクトンをクロロフィル蛍光発光させる波長域の光を発する光源と、蛍光染色試薬に染色された微生物を蛍光発光させる波長域の光を発する光源との異なる2種類の光源を用いてあるので、クロロフィル蛍光発光させる波長域の光を発する光源により蛍光染色試薬が取り込まれにくい植物性プランクトンを検出することが可能となり、これにより、簡便かつ短時間で植物性及び動物性の両者のプランクトンを漏れなく検出することができるようになった。
 前記微生物の検査装置においては、前記励起光源が、前記試料容器の被照射面に対して直交した励起光が入射されるように当該励起光源を配設する一方、前記受光手段は、その受光面が前記励起光源の励起光と直交した角度で蛍光発光が受光されるように配設されていることを特徴とする。
 前記微生物の検査装置によれば、前記励起光源が、前記試料容器の被照射面に対して直交した励起光が入射されるように当該励起光源を配設する一方、前記受光手段は、その受光面が前記励起光源の励起光と直交した角度で蛍光発光が受光されるように配設されていて、励起光源からの励起光が直接受光手段の受光面に入射することがなく、また、バックグラウンドと微生物の蛍光発光との光量の差異が極めて明確になり、微生物の検出精度が向上するものとなる。
 前記微生物の検査装置において、前記制御手段が、クロロフィル蛍光発光によって取得した微生物の個体数n1と、蛍光染色試薬による蛍光発光によって取得した微生物の個体数n2と、クロロフィル蛍光発光及び蛍光染色試薬による蛍光発光の両者で取得した微生物の個体数n3とをそれぞれ求めた後に、バラスト水の排出基準となる許容微生物数Nを演算する演算部を設けたことを特徴とする。
 前記微生物の検査装置によれば、前記制御手段が、クロロフィル蛍光発光によって取得した微生物の個体数n1と、蛍光染色試薬による蛍光発光によって取得した微生物の個体数n2と、クロロフィル蛍光発光及び蛍光染色試薬による蛍光発光の両者で取得した微生物の個体数n3とをそれぞれ求めた後、微生物の個体数n3を、補完された数の微生物の許容個体数Nとして推定する。この許容個体数Nは、適正に微生物の数を評価し、バラスト水排水基準(D-2)を実際と同じように厳密に評価し、適用することができる。
 本発明による微生物の検査方法は、試料溶液中の微生物量を測定するための微生物の検査方法であって、バッチ式の試料容器内で試料に蛍光染色試薬を添加した試料溶液の撹拌・混合を行う撹拌混合工程と、前記試料溶液を撹拌しつつ前記試料容器の被照射面に励起光を連続的に照射する励起工程と、前記励起工程により蛍光発光した微生物の蛍光をカウントする受光工程と、該受光工程により検出した発光数から試料容器中の試料に含まれる微生物量を算出する微生物数推定工程とを備え、
 前記励起工程は、植物性プランクトンをクロロフィル蛍光発光させる波長域の光を発する光源により励起させるとともに、蛍光染色試薬に染色された微生物を蛍光発光させる波長域の光を発する光源により励起させることを特徴とする。
 前記微生物の検査方法は、前記微生物数推定工程が、クロロフィル蛍光発光によって取得した微生物の個体数n1と、蛍光染色試薬による蛍光発光によって取得した微生物の個体数n2と、クロロフィル蛍光発光及び蛍光染色試薬による蛍光発光の両者で取得した微生物の個体数n3とをそれぞれ求めた後に、バラスト水の排水基準となる許容微生物数Nを演算することを特徴とする。
 前記微生物の検査方法によれば、クロロフィル蛍光発光させる波長域の光を発する光源により蛍光染色試薬が取り込まれにくい植物性プランクトンを検出する方法を実現し、これにより、簡便かつ短時間で植物性及び動物性の両者のプランクトンを漏れなく検出することができる。
 前記微生物の検査方法は、前記微生物推定工程が、クロロフィル蛍光発光及び蛍光染色試薬による蛍光発光の両者で取得した微生物の個体数n3から蛍光染色試薬による蛍光発光によって取得した微生物の個体数n2を減算して動物性プランクトンの個体数を演算することを特徴とする。
前記微生物の検査方法によれば、前記微生物推定工程により、クロロフィル蛍光発光及び蛍光染色試薬による蛍光発光の両者で取得した微生物の個体数n3から蛍光染色試薬による蛍光発光によって取得した微生物の個体数n2を減算し、動物性プランクトンの個体数のみを演算し、計数することが可能となる。
本発明により、蛍光染色試薬が取り込まれにくい植物性プランクトンも簡便かつ短時間で検出することができるバラスト水中の微生物検出方法及びその装置を提供できる。
本発明の微生物の検査装置の全体を示す斜視図である。 同上の測定部の概略平断面図である。 同上の全体構成を示すブロック図である。 蛍光染色試薬が取り込まれにくい植物性プランクトンを簡便に検出できる測定部の概略平断面図である。 平行光変換手段の一実施形態を示す概略断面図である。 平行光変換手段の一実施形態の他の例を示す概略断面図である。 スリットない場合の観察面を示す図である。 スリットがある場合に観察面が狭まることを示す作用図である。 本発明の一実施形態に係る微生物の検査装置の測定フローを示すフロー図である。 微生物の個体数n1,n2に係る集合のベン図である。 2種のLED光源を同時照射したときの微生物の個体数n3に係る集合のベン図である。 2種のLED光源を同時照射したときの微生物の個体数をn3から蛍光染色試薬で検出した微生物の個体数n2を減算した集合のベン図である。 図4の測定部の変形例1を示す概略平面図である。 同上の変形例2を示す概略平面図である。 同上の変形例3を示す概略平面図である。 蛍光染色試薬が取り込まれにくい植物性プランクトンが検出できるか否かの試験を示すグラフである。 同上の2回目の試験を示すグラフである。 変形例2の受光部9A,9Bにつき、受光信号を対比したときの説明図である。
 本発明を実施するための形態を図面を参照しながら説明する。図1は本発明の微生物の検査装置の全体を示す斜視図であり、図2は同上の測定部の概略平断面図であり、図3は同上の全体構成を示すブロック図である。
 図1、図2及び図3に示すように本発明の検査装置1は、CPU基板などの制御機構を内蔵して測定結果等の情報処理作業や統計処理作業などを行う本体部2と、該本体部2に並設され、画面上を指でタッチすることで反応する操作ボタン等に相当する操作アイコンなどが配置されるとともに、前記測定結果等を表示するための液晶タッチパネルで形成される表示・操作部3と、光を透過する透明な材質(例えば、ガラスや石英やアクリル樹脂等)で形成されたバッチ式の試料容器4を収容し、試料溶液S中の微生物数を光学的に計数する測定部5とを主要部として構成されている。
 符号6は試料容器4内に収容された試料溶液Sを撹拌するための回転子である。前記試料容器4内には、試料、発光試薬(試料と発光試薬とを併せて試料溶液Sとする。)及び回転子6とを収容する。そして、該試料容器4を測定部5に収容したときに、該測定部5内に内蔵されたマグネティックスターラにより回転子6が回転駆動される構成となっている。これにより、試料容器4内の試料溶液Sを所定温度で撹拌混合しながら試料溶液S中の微生物数を計数することができる。すなわち、静置して微生物数を計測するものと比較すれば、極めて短時間で微生物が明るく発光し、バラスト水中の微生物の量を簡便かつ短時間で計測することが可能となる。
 図1に示す検査装置1の寸法は、幅が300mm、奥行が350mm、高さが130mm、重量は約2~5kgの範囲に形成されており、手持ちトランクやリュックサック(「バックパック」とも言う。いずれも、図示せず)等に収容することができ、どこにでも持ち運び可能となっている。AC電源やバッテリーでの駆動も可能に設計されていて、船舶内での測定や、屋外での測定が可能となっている。
 そして、試料容器4は、光を透過する透明な材質で形成されていて、底面が50mm×50mm、高さが60mmの角柱状に形成されており、水位が40mmのときの内容量が100ml(ミリリットル)に設定されている。試料容器4はこのような角柱状に限定されることはなく、内容量を100ml(ミリリットル)程度確保することができれば、円柱状であっても、立方体であってもよい。
 前記測定部5は、図1、図2及び図3に示すように、試料容器4を収容して保持する試料容器収容部7と、前記試料容器4に向けて励起光を照射する光源部8と、該光源部8から照射された励起光により試料容器4内で漂っている微生物を観察するための受光部9とを備えている。そして、受光部9からは、試料溶液S中の微生物数を計数し、測定結果等の情報処理作業や統計処理作業などを行うCPU基板10に電気的に連絡されている。
 前記試料容器収容部7は、前記試料容器4の少なくとも二面を取り囲む保持プレート7a,7bにより形成され、前記光源部8からの光の照射を遮断しないように前記試料容器4を収容保持するものである。
 そして、図2に示すように、試料容器4の被照射面Gに対して法線APによる励起光が入射されるよう光源部8が配置される。光源部8は、試料容器収容部7近傍に配置されたLED光源8と、該LED光源8の前面に配置され、拡散光を平行光に変換する平行光変換手段11(LED素子は素子側からランダム方向に拡散して照射される光であるために、一面に向かって同じ角度で均一に光線が当たるように平行光に変換するもの)と、平行光からなる励起光を試料容器4に照射させる励起光用バンドパスフィルタ12とを備えている。
 図5は平行光変換手段11の一実施形態を示す概略断面図である。図5Aに示す例は、平行光変換手段11として所定厚さの平板50に所定径のねじ切孔51を穿設して形成したものであり、光路長に合わせて平板50の厚さLとねじ切孔51の孔径とが適宜設定されている。これにより、LED光源8から照射される入射角度θの散乱光は、ねじ切孔51を通過する際には平行光に変換されるものとなる。図5Bに示す例では、θとLとの最適条件をSN比の試験により決定しており、例えば、M3(ネジ孔の外径)×0.5(ピッチ)とすれば、θが9.5°、Lが15mmのときが最適であった。
 図5Bに示す平行光変換手段11は、LED光源8の前面に凸レンズ53を設けたものであり、LED光源8から照射された拡散光は、凸レンズ53内を通過して外部に出射する際には平行光に変換されるものとなる。
 なお、本実施形態の光源部8は、光源としてLED光源を用いたが、微生物に含まれる蛍光物質を励起させることができれば、LED光源に限らず、平行光の照射が可能な平行光LED光源やレーザ光源や電球を採用することもできる。言うまでもないが、平行光の照射が可能な平行光LEDやレーザ光源や電球を採用するときは、前述の平行光変換手段11は不要となる。
 そして、図2に示すように、前記受光部9は、光源部8からの法線APによる励起光と直交した角度を持って受光面Fが配置されるように設けられる。また、受光部9は前記LED光源8から試料容器4に向けて励起光が照射される平行光に対し、これと直交する光軸で蛍光が受光されるように配置構成した光電子増倍管(PMT)9と、該光電子増倍管(PMT)9の前面に配置した蛍光用バンドパスフィルタ13と、該蛍光用バンドパスフィルタ13の前面に配置した集光用レンズ14と、該集光用レンズ14の前面に配置したスリット15と、該スリット15と前記試料容器4との間隙に設置され、微生物に含まれる蛍光物質を励起させ、これにより発光した蛍光を集光し結像させるためのリレーレンズ16と、を備えたものである。
 前記スリット15は、観察面をスリット状に狭めるものである。すなわち、図6に示すように、図6Aスリットなしの状態では、受光面Fが円で形成されるバックグラウンドを監視するのに対し、図6Bスリットありの状態では、受光面Fが斜線を除いた縦長スリットで形成されるバックグラウンドを監視することになる。したがって、観察面Fの監視域(監視範囲)が図6Bのように狭まる結果、ノイズとなるバックグラウンドの蛍光発光の面積も狭まるため、バックグラウンドの蛍光発光に対する微生物の蛍光発光の信号の比が向上し、微生物の蛍光発光の検出精度が向上するのである。
 なお、受光部9は、受光センサとして光電子増倍管(PMT)を用いた例を示したが、これに限定されることはなく、シリコンフォトダイオード(SiPD)や、アヴァランシェフォトダイオード(APD)など、光電子増倍管(PMT)と同様に微生物に含まれる蛍光物質の発光を検知することができる各種の光検出器を採用することができる。
 次に、図4を参照して、本発明の要部となる蛍光染色試薬が取り込まれにくい植物性プランクトンを簡便に検出できる構成を説明する。
 図4に示す光源部8は、波長領域が異なる2種類のLED光源8a,8bを用いていることに特徴がある。すなわち、LED光源8は、緑青色系の波長域490nm付近の光を発するLED光源8a(従来と同様の光源)と、青紫色系の波長域450nm付近の光を発するLED光源8bとをペアで設ける。このLED光源8a,8bは、試料容器4を挟んで対向するように一対設けるとよく、該LED光源8a,8bと試料容器4との間には、LED光源8b側の光が透過しやすくなるよう、波長域395~505nmの光を透過する励起光用バンドパスフィルタ12A,12Aがそれぞれ介装される。なお、これらの波長域はあくまでも一例であり、条件に応じて適宜変更することが可能である。
 そして、図4に示す受光部9の前面には、波長域510nm以上の波長を透過させるロングパスフィルタ17が設けてあり、さらに、該ロングパスフィルタ17の前後を挟んで配置された集光用レンズ18が配置されている。
 さらに、図3を参照して電気的な制御構成を説明する。本体部2を形成する筐体20内中央には、AC電源21や二次電池22から電源の供給を受けて、光電子増倍管(PMT)9により光から電気に変換された出力信号を解析したり、任意の輝度範囲以上にあるか否かを判定したり、任意の輝度の信号をパルスカウントしたり、前記LED光源8のオン・オフ制御などを行うCPU基板10が配置されている。前記AC電源21と前記CPU基板10との間には、AC/DC変換器24を介在させてある。
 前記CPU基板10には、前記光電子増倍管(PMT)9、前記LED光源8、読み出し書き込み用記憶部となるRAM25及び読み出し専用記憶部となるROM26がそれぞれ電気的に接続される。また、図1に示す液晶タッチパネル等で形成される表示・操作部3と電気的に接続されている。そして、後述のように、液晶タッチパネルに表示される電源ボタン3aの押下によりオン・オフの切換制御が行われ、測定開始ボタン3bの押下により測定が開始され、外部出力ボタン3cの押下により外部のプリンタやパソコンへデータの転送が行われ、設定ボタン3dの押下により、測定の種類の切換(Lサイズ微生物の測定(3d1)かSサイズ微生物の測定(3d2)かの切換)が行われ、メニューボタン3eの押下により、判定基準の設定の変更や、しきい値の設定の変更や、測定時間の設定の変更を行うことができる構成となっている。
 そのほか、前記CPU基板10には、前記回転子6を磁力により回転させるマグネティックスターラ27、制御機器の冷却用ファン28、及びRS-232C,ユニバーサル・シリアル・バス(USB)端子などの外部出力端子29が接続されている。
 図7は測定フローを示すフロー図であり、図1乃至図7を参照して上記構成における作用を説明する。
[クロロフィル蛍光の測定]
 まず、クロロフィル蛍光の測定から開始する。作業者はピペット等を使用し、バラスト水100ml(ミリリットル)を試料として採取し、試料容器4に投入する(図7のステップ1)。次に、検査装置1の測定部5に試料容器4を収容し、測定部5の蓋30を被着することで測定準備が完了する。
 作業者は本体部2にある電源ボタン3aをオンし、液晶タッチパネルからなる表示・操作部3の設定ボタン3d、メニューボタン3e等を押下して準備を行う。その後、測定開始ボタン3bをオンする。これにより、クロロフィル蛍光用のLED光源8b,8bが点灯するので(図4、図7のステップ2参照)、励起光用バンドパスフィルタ12A,12A(図4)を透過した光が試料容器4に照射されることになる。このとき、例えば、波長特性として450nmの波長の光が照射され、試料容器4内の検体(微生物)のクロロフィル成分が蛍光発光することになる。そして、このクロロフィル成分による蛍光がロングパスフィルタ17を透過して光電子増倍管(PMT)9により検知されることになる(図7のステップ3)。
 光電子増倍管(PMT)9では、光電効果の利用により光エネルギが電気エネルギに変換されるとともに、電流増幅機能が付加され、高感度にクロロフィル成分の蛍光発光を検知することができる。検知した電気信号はCPU基板10に送られ、一定しきい値以上の受光波形がカウントされることになる(図7のステップ4)。
 さらに、CPU基板10では、受光波形カウント値から試料容器4内の水100ml(ミリリットル)中に存在する微生物数を推定して、表示・操作部3に表示される(図7のステップ5)。
 植物性プランクトンの一種であるツノフタヒゲムシ(Prorocentrum micansプロロセントルム・ミカンス)を供試微生物となし、クロロフィル蛍光により光電子増倍管(PMT)9によって個体数を推定できるか否かを検証した。ツノフタヒゲムシの複数個体を、試料容器4(100mL容量)に水とともに収容し、波形のカウント数を検知した(図12,図13参照)。その結果、得られた波形のカウント数から、図12では個体数102をカウントし、図13では個体数103をカウントすることができた。つまり、バラスト水100mL中に存在する植物性プランクトン、特に、FDAなどを吸収しにくい植物性プランクトンであっても、FDAを吸収することなく、クロロフィル蛍光発光によって微生物の個体数が推定できることが分かった。CPU基板10では、このときの微生物の個体数をn1として記憶される(図7のステップ5)。
[染色液による蛍光の測定]
 次に、図7に戻り染色液による蛍光の測定を説明する。上記クロロフィル蛍光発光の測定後の試料容器4を検査装置1から取出し(図7のステップ6)、取り出した試料容器4内に蛍光染色試薬を添加する(図7のステップ7)。
 この蛍光染色試薬は一般的に知られているカルセインAM(Calcein-AM,ドイツ国Promocell GMBH 社製)や、FDAなどを使用することができる。カルセインAMは、植物性プランクトンに対して染色しやすい傾向がある一方、FDAは、動物性プランクトンに対して染色しやすい傾向がある。そして、作業者は試料容器4に回転子6を投入後、検査装置1の測定部5に収容し、蓋30を被着しておくことで測定準備が完了する。
 ここで、作業者は表示・操作部3のSサイズ設定ボタン3d2(又はLサイズ3d1)を押すとともに、測定開始ボタン3bをオンする。すると、測定部5内に内蔵されたマグネティックスターラ27の駆動により回転子6が回転し、試料溶液Sが撹拌されることになる(図7のステップ8)。
 次に、LED光源8a,8aが点灯し(図4参照)、励起光用バンドパスフィルタ12A,12Aを透過した光が試料容器4に照射されることになる。このとき、例えば、波長特性として波長域490nm付近の光が照射され、試料容器4内の検体(微生物)が蛍光発光することになる。そして、この蛍光が蛍光用バンドパスフィルタ15を透過して光電子増倍管(PMT)9により検知されることになる(図7のステップ10)。
 光電子増倍管(PMT)9により検知した電気信号はCPU基板10に送られ、一定しきい値以上の受光波形がカウントされることになる(図7のステップ11)。さらに、CPU基板10では、受光波形カウント値から試料容器4内の水100ml(ミリリットル)中に存在する微生物数を推定し、表示・操作部3に表示する。CPU基板10では、このときの微生物の個体数をn2として記憶される(図7のステップ12)。
[クロロフィル蛍光及び染色液による蛍光の両者の測定]
 そして、LED光源8a,8a及びLED光源8b,8bの両者を同時照射させ(図7のステップ13)、蛍光を光電子増倍管(PMT)9により検知して、このときの微生物の個体数をn3として記憶する(図7のステップ14)。ここで、前記クロロフィル蛍光発光により検出した微生物の個体数n1と、蛍光染色試薬を用いた蛍光発光により検出した微生物の個体数n2と、2種のLED光源8a,8bを同時照射したときの微生物の個体数n3との関係につき、図8を用いて説明する。
 図8は上記工程により取得した微生物の個体数n1,n2,n3に係る集合のベン図である。図8Aは個体数n1と個体数n2の2つの集合を合わせた論理和集合である。従前は、蛍光染色試薬を用いた蛍光発光で検出した微生物の個体数n2のみを評価していたため、従来検出できなかった蛍光染色試薬を吸収しにくい植物性プランクトンの個体数(集合n1の破線部分)を加味していなかった可能性がある。これでは、実際よりも微生物の許容個体数を少なく評価することになり、バラスト水排出基準(D-2)も実際よりも甘く評価することになっていた。
 そこで、図8Bのように、2種のLED光源8a,8bを同時照射したときの微生物の個体数をn3とすれば、蛍光染色試薬を吸収しにくい植物性プランクトンの個体数が補完され、適正な微生物の許容個体数とすることができる。CPU基板10は、2種のLED光源8a,8bを同時照射したときの微生物の個体数n3を、補完された数の微生物の許容個体数Nとして推定し(図7のステップ15)、これに基づいて表示・操作部3に対し許容個体数Nが表示される(図7のステップ16)。この許容個体数Nは、適正に微生物の数を評価しているから、バラスト水排水基準(D-2)を実際と同じように評価し、適用することができる。
 図8Cは、2種のLED光源8a,8bを同時照射したときの微生物の個体数をn3から蛍光染色試薬で検出した微生物の個体数n2を減算したものである。この集合n3-n2は、動物性プランクトン及び植物性プランクトンの混在した集合n3から植物性プランクトンのみの集合n2を減算していて、動物性プランクトンの個体数のみを求めることができるのである。
 なお、段落0042に記載した[クロロフィル蛍光の測定]と段落0047に記載した[染色液による蛍光の測定]とは、順序を入れ替えて実施してもよい。また、段落0052に記載した[クロロフィル蛍光及び染色液による蛍光の両者の測定]を一番最初に実施してもよい。
 以上のように本実施形態によれば、本体部2と、該本体部2に並設される表示・操作部3と、バッチ式の試料容器4に収容した試料溶液S中の微生物数を光学的に計数する測定部5とを備えた微生物の検査装置であって、
 前記測定部5は、試料容器4を収容して保持する試料容器収容部7と、該試料容器4に向けて励起光を照射する光源部8と、該光源部8から照射された励起光により試料容器4内で漂っている微生物を観察するための受光部9とを備えて構成され、
 前記光源部8に、波長領域が異なる2種類のLED光源8a,8b(特に、緑青色系の波長域490nm付近の光を発するLED光源8a(従来と同様の光源)と、青紫色系の波長域450nm付近の光を発するLED光源8bとをペアで設ける。)を用いているので、蛍光染色試薬が取り込まれにくい植物性プランクトンを簡便かつ短時間で検出することで、動物性プランクトン及び植物性プランクトンの両者を漏れなく検出することができるようになった。
 図9は図4の測定部の基本例に対し、2種のLED光源8a,8bにそれぞれ専用のバンドパスフィルタ12A,12Bを備えたことを特徴とする測定部の変形例1である。
 図10は図4の測定部の基本例に対し、分光可能なダイクロイックミラー31と、分光された波長に特有な感度を有する2個の受光部9A,9Bを配設したことを特徴とする測定部の変形例2である。受光部9Aとダイクロイックミラー31との間には波長域が650nm以上を透過するロングパスフィルタ33を介装し、受光部9Aとダイクロイックミラー31との間には波長域が510~550nmのバンドパスフィルタ32を介装してある。
 図11は図4の測定部の基本例に対し、単数のロングパスフィルタ17の代わりに、波長域が510~550nmのバンドパスフィルタ32及び波長域が650nm以上を透過するロングパスフィルタ33からなるフィルタホイール34を配置したことを特徴とする測定部の変形例3である。なお、図11の符号35はフィルタホイール34を駆動するステップモータである。
 図9に示す測定部の変形例1、図10に示す測定部の変形例2及び図11に示す測定部の変形例3にあっても、前記光源部8には、波長領域が異なる2種類のLED光源8a,8bが備えられ、それぞれの光源に特有なフィルタや受光部が設けられているため、蛍光染色試薬が取り込まれにくい植物性プランクトンを簡便かつ短時間で検出することで、動物性プランクトン及び植物性プランクトンの両者を漏れなく検出することができるものである。
 また、前述したように、CPU基板10は、クロロフィル蛍光発光によって取得した微生物の個体数n1と、染色液による蛍光発光によって取得した微生物の個体数n2と、クロロフィル蛍光発光及び染色液による蛍光発光の両者で取得した微生物の個体数n3とをそれぞれ求める。
 微生物の個体数n3は、蛍光染色試薬を吸収しにくい植物性プランクトンの個体数が補完されたものであり、適正な微生物の許容個体数とすることができる。
 CPU基板10は、補完された数の微生物の許容個体数Nとして推定する。そして、この許容個体数Nは、適正に微生物の数を評価しているから、バラスト水排水基準(D-2)を実際と同じように評価し、適用することができるといった作用・効果がある。
 図10の変形例2の場合、受光部9Aは主として植物性プランクトンのみの蛍光発光を検知する一方、受光部9Bは植物性プランクトン及び動物性プランクトンの両者の蛍光発光を検知することができる。そして、図14に示すように受光部9Aと受光部9Bとを対比すれば、受光部9Aでは検知されないが、受光部9Bで検知される信号があった場合、これを動物性プランクトンと推定することができる。そして、この信号を計数していけば動物性プランクトンのみの個体数を把握することができるようになる。
 本発明は、バラスト水を排出する際に排出基準を満たしているか否かを確認するための微生物の検査装置に適用することができる。
1  検査装置
2  本体部
3  表示・操作部
4  試料容器
5  測定部
6  回転子
7  試料容器収容部
8  光源部
9  受光部
10  CPU基板
11  平行光変換手段
12  励起光用バンドパスフィルタ
13  蛍光用バンドパスフィルタ
14  集光用レンズ
15  スリット
16  リレーレンズ
17  ロングパスフィルタ
18  集光用レンズ
20  筐体
21  AC電源
22  二次電池
24  AC/DC変換器
25  RAM
26  ROM
27  マグネティックスターラ
28  冷却用ファン
29  外部出力端子
30  蓋
31  ダイクロイックミラー
32  バンドパスフィルタ
33  ロングパスフィルタ
34  フィルタホイール
35  ステップモータ
50  平板
51  ねじ切孔
53  凸レンズ

Claims (6)

  1.  試料溶液中の微生物量を測定するための微生物の検査装置であって、
     光を透過する材質で形成されたバッチ式の試料容器に試料と蛍光染色試薬とを添加して試料溶液の撹拌・混合を行う撹拌混合手段と、
     該撹拌混合手段により前記試料溶液を撹拌しつつ前記試料容器の被照射面に励起光を連続的に照射させる光源を備えた励起光源と、
     該励起光源からの励起光により蛍光発光された光を検知する受光手段と、
     該受光手段により検知した光を電気信号に変換して発光数を検出してカウントし、該発光数から前記試料容器中の試料に含まれる微生物量を算出する制御手段と、
     該制御手段に電気的に接続されている操作部と、を備え、
     前記励起光源は、植物性プランクトンをクロロフィル蛍光発光させる波長域の光を発する光源と、蛍光染色試薬に染色された微生物を蛍光発光させる波長域の光を発する光源との異なる2種類の励起光源を用いることを特徴とする微生物の検査装置。
  2.   前記励起光源は、前記試料容器の被照射面に対して直交した励起光が入射されるように当該励起光源を配設する一方、前記受光手段は、その受光面が前記励起光源の励起光と直交した角度で蛍光発光が受光されるように配設したことを特徴とする請求項1記載の微生物の検査装置。
  3.   前記制御手段は、クロロフィル蛍光発光によって取得した微生物の個体数n1と、蛍光染色試薬による蛍光発光によって取得した微生物の個体数n2と、クロロフィル蛍光発光及び蛍光染色試薬による蛍光発光の両者で取得した微生物の個体数n3とをそれぞれ求めた後に、バラスト水の排出基準となる許容微生物数Nを演算する演算部を備えてなる請求項1又は2記載の微生物の検査装置。
  4.   試料溶液中の微生物量を測定するための微生物の検査方法であって、
      バッチ式の試料容器内で試料に蛍光染色試薬を添加した試料溶液の撹拌・混合を行う撹拌混合工程と、
      前記試料溶液を撹拌しつつ前記試料容器の被照射面に励起光を連続的に照射する励起工程と、
      前記励起工程により蛍光発光した微生物の蛍光をカウントする受光工程と、
      該受光工程により検出した発光数から試料容器中の試料に含まれる微生物量を算出する微生物数推定工程とを備え、
      前記励起工程は、植物性プランクトンをクロロフィル蛍光発光させる波長域の光を発する光源により励起させるとともに、蛍光染色試薬に染色された微生物を蛍光発光させる波長域の光を発する光源により励起させることを特徴とする微生物の検査方法。
  5.   前記微生物数推定工程は、クロロフィル蛍光発光によって取得した微生物の個体数n1と、蛍光染色試薬による蛍光発光によって取得した微生物の個体数n2と、クロロフィル蛍光発光及び蛍光染色試薬による蛍光発光の両者で取得した微生物の個体数n3とをそれぞれ求めた後に、バラスト水の排水基準となる許容微生物数Nを演算してなる請求項4記載の微生物の検査方法。
  6.   前記微生物推定工程は、クロロフィル蛍光発光及び蛍光染色試薬による蛍光発光の両者で取得した微生物の個体数n3から蛍光染色試薬による蛍光発光によって取得した微生物の個体数n2を減算して動物性プランクトンの個体数を演算してなる請求項5記載の微生物の検査方法。
     
PCT/JP2017/042274 2016-12-09 2017-11-24 微生物の検査方法及びその装置 WO2018105414A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020197018707A KR102390747B1 (ko) 2016-12-09 2017-11-24 미생물의 검사 방법 및 그 장치
EP17878013.6A EP3553164B1 (en) 2016-12-09 2017-11-24 Method for inspecting microorganisms, and apparatus for said method
AU2017372183A AU2017372183B2 (en) 2016-12-09 2017-11-24 Apparatus for inspecting microorganisms
CN201780076057.1A CN110062805B (zh) 2016-12-09 2017-11-24 微生物的检查方法及其装置
DK17878013.6T DK3553164T3 (da) 2016-12-09 2017-11-24 Fremgangsmåde til inspektion af mikroorganismer og apparatur til denne fremgangsmåde
US16/467,671 US20200087611A1 (en) 2016-12-09 2017-11-24 Microorganism testing method and apparatus for the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016239302A JP2018093758A (ja) 2016-12-09 2016-12-09 微生物の検査方法及びその装置
JP2016-239302 2016-12-09

Publications (1)

Publication Number Publication Date
WO2018105414A1 true WO2018105414A1 (ja) 2018-06-14

Family

ID=62491054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042274 WO2018105414A1 (ja) 2016-12-09 2017-11-24 微生物の検査方法及びその装置

Country Status (9)

Country Link
US (1) US20200087611A1 (ja)
EP (1) EP3553164B1 (ja)
JP (1) JP2018093758A (ja)
KR (1) KR102390747B1 (ja)
CN (1) CN110062805B (ja)
AU (1) AU2017372183B2 (ja)
DK (1) DK3553164T3 (ja)
TW (1) TWI746719B (ja)
WO (1) WO2018105414A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020195412A1 (ja) * 2019-03-27 2020-10-01 Jfeアドバンテック株式会社 特定種の植物プランクトンの存在量の算出方法及び算出装置、及び特定種の植物プランクトンによる赤潮発生の予兆検知方法及び予兆検知装置
WO2020239833A1 (en) * 2019-05-29 2020-12-03 Faunaphotonics Agriculture & Environmental A/S Detection of non-phytoplankton-eating zooplankton within a volume of water

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7063716B2 (ja) 2018-05-15 2022-05-09 三菱重工サーマルシステムズ株式会社 空調制御装置、空調制御システム、空調制御方法、及びプログラム
KR101974512B1 (ko) * 2018-08-30 2019-05-03 한국해양과학기술원 미세조류 검출 방법 및 장치
KR20200041079A (ko) 2018-10-11 2020-04-21 공주대학교 산학협력단 초점 심도를 이용한 플랑크톤 검사 장치 및 그 방법
USD935423S1 (en) * 2019-12-16 2021-11-09 Thermo King Corporation Human machine interface for a controller
USD954002S1 (en) * 2020-07-02 2022-06-07 Thermo Orion Inc. Controller
CN112033954A (zh) * 2020-08-19 2020-12-04 合肥华军达科技有限公司 一种可进行对比检测的便携式水质分析仪
US12106505B2 (en) * 2020-09-02 2024-10-01 International Business Machines Corporation Reflection-based distance perception
CN115389492A (zh) * 2022-08-19 2022-11-25 重庆长安新能源汽车科技有限公司 一种用于检测电解液中游离酸含量的测定方法及测定装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08242886A (ja) * 1995-03-08 1996-09-24 Dam Suigenchi Kankyo Seibi Center 植物プランクトンの濃度測定方法
WO2006103932A1 (ja) * 2005-03-29 2006-10-05 National University Corporation Tokyo University Of Marine Science And Technology 植物プランクトンの分布計測方法及びその装置
JP2009085898A (ja) 2007-10-03 2009-04-23 Hitachi Ltd 生物検査装置
JP2013050375A (ja) * 2011-08-31 2013-03-14 Satake Corp バラスト水の検査方法
JP2014042463A (ja) 2012-08-24 2014-03-13 Satake Corp 微生物の検査方法及びその装置
JP2014055796A (ja) 2012-09-11 2014-03-27 Satake Corp 微生物の検査方法及びその装置
KR20170038427A (ko) * 2015-09-30 2017-04-07 (주)제이엠이엔비 생존 플랑크톤 검사장치

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2097144A (en) * 1981-03-23 1982-10-27 Tno New method for identifying algae in water samples and apparatus for use in that method
JPH0815157A (ja) * 1994-07-01 1996-01-19 Kimoto Denshi Kogyo Kk 水中のプランクトンセンサ
JPH11318499A (ja) * 1998-05-13 1999-11-24 Japan Organo Co Ltd 細菌の検出方法及び装置
JP3842492B2 (ja) * 1999-09-13 2006-11-08 株式会社東芝 藻類濃度測定システム
US7897045B2 (en) * 2002-06-29 2011-03-01 Marenco Technology Group, Inc. Ship-side ballast water treatment systems including related apparatus and methods
JP2006284335A (ja) * 2005-03-31 2006-10-19 Univ Nagoya クロロフィル蛍光測定方法およびクロロフィル蛍光測定装置
CN100520365C (zh) * 2006-09-01 2009-07-29 中国科学院安徽光学精密机械研究所 浮游植物浓度水下原位分类检测装置
CN100396787C (zh) * 2006-09-11 2008-06-25 厦门大学 好氧不产氧光合异养细菌的流式细胞检测方法
JP2010063403A (ja) * 2008-09-10 2010-03-25 Ihi Corp 微生物の簡易計数方法
CN102073905A (zh) * 2009-11-23 2011-05-25 财团法人资讯工业策进会 水产动物的计数系统及方法
TWM456366U (zh) * 2010-03-02 2013-07-01 Blue Formosa Environmental Technology Corp 空氣中微生物活性即時偵測裝置
KR101258681B1 (ko) * 2011-06-13 2013-04-26 한국과학기술연구원 수중 식물성 플랑크톤에 포함된 엽록소-a 농도 측정용 수질 센서
CN102346146A (zh) * 2011-07-18 2012-02-08 厦门大学 海洋中含细菌叶绿素的微生物的定量方法
JP2013094064A (ja) * 2011-10-27 2013-05-20 Satake Corp 微生物の検査方法
TWI619809B (zh) * 2012-08-24 2018-04-01 佐竹股份有限公司 微生物之檢查方法及其裝置
CN103616356B (zh) * 2013-11-25 2015-12-30 大连海事大学 一种船舶压载水中微藻的分类装置和分类方法
CN103868901B (zh) * 2014-03-14 2016-04-20 中国科学院合肥物质科学研究院 基于离散三维荧光光谱的浮游植物识别测定方法与装置
CN104743711B (zh) * 2015-03-12 2016-09-07 青岛双瑞海洋环境工程股份有限公司 船舶压载水陆基试验流入水的生物参数调制方法
CN105352861B (zh) * 2015-11-25 2017-12-19 中国科学院南海海洋研究所 浮游植物粒级结构分析方法
CN105779563A (zh) * 2016-04-29 2016-07-20 大连华立金港药业有限公司 榄香烯脂质体注射液半成品中耐热微生物的检验试剂盒以及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08242886A (ja) * 1995-03-08 1996-09-24 Dam Suigenchi Kankyo Seibi Center 植物プランクトンの濃度測定方法
WO2006103932A1 (ja) * 2005-03-29 2006-10-05 National University Corporation Tokyo University Of Marine Science And Technology 植物プランクトンの分布計測方法及びその装置
JP2009085898A (ja) 2007-10-03 2009-04-23 Hitachi Ltd 生物検査装置
JP2013050375A (ja) * 2011-08-31 2013-03-14 Satake Corp バラスト水の検査方法
JP2014042463A (ja) 2012-08-24 2014-03-13 Satake Corp 微生物の検査方法及びその装置
JP2014055796A (ja) 2012-09-11 2014-03-27 Satake Corp 微生物の検査方法及びその装置
KR20170038427A (ko) * 2015-09-30 2017-04-07 (주)제이엠이엔비 생존 플랑크톤 검사장치

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BAEK, S. H. ET AL.: "Applicability of fluorescein diacetate (FDA) and calcein- AM to determine the viability of marine plankton", OCEAN AND POLAR RESEARCH, vol. 31, no. 4, 30 December 2009 (2009-12-30), pages 349 - 357, XP055491457, ISSN: 1598-141X *
PEPERZAK, L. ET AL.: "Flow cytometric applicability of fluorescent vitality probes on phytoplankton", JOURNAL OF PHYCOLOGY, vol. 47, 9 May 2011 (2011-05-09), pages 692 - 702, XP055324703, ISSN: 1529-8817 *
See also references of EP3553164A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020195412A1 (ja) * 2019-03-27 2020-10-01 Jfeアドバンテック株式会社 特定種の植物プランクトンの存在量の算出方法及び算出装置、及び特定種の植物プランクトンによる赤潮発生の予兆検知方法及び予兆検知装置
JP2020156429A (ja) * 2019-03-27 2020-10-01 Jfeアドバンテック株式会社 特定種の植物プランクトンの存在量の算出方法及び算出装置、及び特定種の植物プランクトンによる赤潮発生の予兆検知方法及び予兆検知装置
JP7181139B2 (ja) 2019-03-27 2022-11-30 Jfeアドバンテック株式会社 特定種の植物プランクトンの存在量の算出方法及び算出装置、及び特定種の植物プランクトンによる赤潮発生の予兆検知方法及び予兆検知装置
WO2020239833A1 (en) * 2019-05-29 2020-12-03 Faunaphotonics Agriculture & Environmental A/S Detection of non-phytoplankton-eating zooplankton within a volume of water

Also Published As

Publication number Publication date
CN110062805A (zh) 2019-07-26
AU2017372183B2 (en) 2020-10-08
AU2017372183A1 (en) 2019-07-04
KR102390747B1 (ko) 2022-04-25
KR20190094189A (ko) 2019-08-12
EP3553164A1 (en) 2019-10-16
DK3553164T3 (da) 2022-08-01
CN110062805B (zh) 2022-11-01
TW201821616A (zh) 2018-06-16
US20200087611A1 (en) 2020-03-19
EP3553164B1 (en) 2022-05-11
EP3553164A4 (en) 2020-07-15
TWI746719B (zh) 2021-11-21
JP2018093758A (ja) 2018-06-21

Similar Documents

Publication Publication Date Title
WO2018105414A1 (ja) 微生物の検査方法及びその装置
TWI619809B (zh) 微生物之檢查方法及其裝置
US8163241B2 (en) Optical probe
JP6238046B2 (ja) 微生物の検査方法
Shin et al. A portable fluorescent sensor for on-site detection of microalgae
JP6221210B2 (ja) 微生物の検査方法及びその装置
JP6201285B2 (ja) 微生物の検査方法及びその装置
JP2018134035A (ja) 測定装置、測定方法およびコンピュータプログラム
WO2021039208A1 (ja) 微生物の検査装置及びその方法
JP2004301561A (ja) 分光学的識別定量システム
US20210172873A1 (en) Apparatus for optical detection of contamination, radiation source, method for optical detection of contamination

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17878013

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197018707

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017372183

Country of ref document: AU

Date of ref document: 20171124

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017878013

Country of ref document: EP

Effective date: 20190709