WO2018104043A1 - 6-gang-planetenradgetriebe - Google Patents

6-gang-planetenradgetriebe Download PDF

Info

Publication number
WO2018104043A1
WO2018104043A1 PCT/EP2017/079828 EP2017079828W WO2018104043A1 WO 2018104043 A1 WO2018104043 A1 WO 2018104043A1 EP 2017079828 W EP2017079828 W EP 2017079828W WO 2018104043 A1 WO2018104043 A1 WO 2018104043A1
Authority
WO
WIPO (PCT)
Prior art keywords
planetary gear
gear
coupled
speed
planet carrier
Prior art date
Application number
PCT/EP2017/079828
Other languages
English (en)
French (fr)
Inventor
Benjamin KLUGE
Original Assignee
Bayerische Motoren Werke Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke Aktiengesellschaft filed Critical Bayerische Motoren Werke Aktiengesellschaft
Priority to CN201780063995.8A priority Critical patent/CN109844368B/zh
Publication of WO2018104043A1 publication Critical patent/WO2018104043A1/de
Priority to US16/369,011 priority patent/US11035441B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/72Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously
    • F16H3/727Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously with at least two dynamo electric machines for creating an electric power path inside the gearing, e.g. using generator and motor for a variable power torque path
    • F16H3/728Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously with at least two dynamo electric machines for creating an electric power path inside the gearing, e.g. using generator and motor for a variable power torque path with means to change ratio in the mechanical gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/62Gearings having three or more central gears
    • F16H3/66Gearings having three or more central gears composed of a number of gear trains without drive passing from one train to another
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/62Gearings having three or more central gears
    • F16H3/66Gearings having three or more central gears composed of a number of gear trains without drive passing from one train to another
    • F16H3/666Gearings having three or more central gears composed of a number of gear trains without drive passing from one train to another with compound planetary gear units, e.g. two intermeshing orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/72Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously
    • F16H3/724Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously using external powered electric machines
    • F16H3/725Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously using external powered electric machines with means to change ratio in the mechanical gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/78Special adaptation of synchronisation mechanisms to these gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K2006/381Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches characterized by driveline brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4808Electric machine connected or connectable to gearbox output shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4816Electric machine connected or connectable to gearbox internal shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K2006/541Transmission for changing ratio without reverse ratio using instead electric reversing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H2003/445Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion without permanent connection between the input and the set of orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/0052Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising six forward speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2002Transmissions using gears with orbital motion characterised by the number of sets of orbital gears
    • F16H2200/201Transmissions using gears with orbital motion characterised by the number of sets of orbital gears with three sets of orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/203Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes
    • F16H2200/2041Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes with four engaging means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/203Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes
    • F16H2200/2043Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes with five engaging means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/203Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes
    • F16H2200/2046Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes with six engaging means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/203Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes
    • F16H2200/2048Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes with seven engaging means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/203Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes
    • F16H2200/2064Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes using at least one positive clutch, e.g. dog clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2094Transmissions using gears with orbital motion using positive clutches, e.g. dog clutches
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the invention relates to a 6-speed planetary gear for a motor vehicle.
  • Planetary gears are commonly used in automated switchable transmissions for motor vehicles.
  • the number of gears that can be shifted via the planetary gear has risen in recent years.
  • today automated shiftable transmissions with up to nine gears are available.
  • one or more electric motors are additionally integrated in such planetary gear.
  • the associated motor vehicle can then be driven either by an internal combustion engine alone, by the electric motor alone or combined by the internal combustion engine and the electric motor.
  • the planetary gear acts as a so-called summation gear and merges the torque generated by the engine and the electric motor.
  • the object of the invention is to provide an improved planetary gear for a motor vehicle.
  • the planetary gear should only require a small space, so that the integration of electric motors is easily possible.
  • the planetary gear to be created should therefore be easy hybridizable.
  • the second sun gear and the third sun wheel thus form a so-called double sun.
  • the switching elements are coupling elements and / or brake elements to understand, with which a rotationally fixed coupling and a corresponding decoupling of the relevant transmission components is possible.
  • a rotatable component with a fixed component is coupled or decoupled, one speaks of brakes.
  • All switching elements can be replaced by the same effect.
  • the third switching element may be replaced by a switching element which acts between the first sun gear and the first ring gear or between the first sun gear and the first planet carrier.
  • the 6-speed planetary gear comprises three planetary gear sets. Compared to known planetary gear, for example, comprise four planetary gear sets, it is therefore very compact. Thus, the 6-speed planetary gear has sufficient space to integrate one or more electric motors and thus hybridize the transmission.
  • the invention is based on the idea that in hybridized transmissions, the electric motors can take over transmission-related tasks and / or functions.
  • the mechanical transmission structure can be simplified.
  • this idea is based on the recognition that in hybridized transmissions, the fine gradation of the mechanical (partial) transmission, which is common in purely mechanical transmissions is not necessary, since the electric motors can also be used for translation adjustment.
  • it is sufficient to provide less gear ratios compared to purely mechanical gearboxes. Consequently, the mechanical transmission can be realized with fewer components. As a consequence, more space is available for the integration of the electric motor or motors.
  • the electric motors can, for example, maintain the tensile force during a switching operation and / or be used to synchronize elements of the mechanical (partial) transmission. It can then all or some frictional switching elements are replaced by positive. This is advantageous in terms of space and efficiency.
  • the transmission input shaft is non-rotatably connected to the third planet carrier. The transmission is thus simple.
  • the transmission output shaft can be coupled via a fifth switching element with the third ring gear.
  • the designation of the switching element as a "fifth" is selected exclusively for a clear explanation of the 6-speed planetary gear, in particular, this designation is not an indication of a number in the 6-speed planetary gear built switching elements.Therefore, all six gears are switchable.
  • the first planetary gearset comprises an outer first planetary gear and an inner first planetary gear, wherein the outer first planetary gear with the first ring gear, the inner first planetary gear with the first sun gear and the first outer planetary gear with the first inner planetary gear. It is thus given a compact 6-speed planetary gear, which is easily hybridized.
  • the second planetary gear comprises an outer second planetary gear and an inner second planetary gear, wherein the outer second planetary gear with the second ring gear, the inner second planetary gear with the second sun gear and the outer second planetary gear interacts with the inner second planetary gear.
  • the 6-speed planetary gear requires little space in this configuration. As a result, electric motors can be relatively easily arranged in the transmission.
  • the transmission output shaft is non-rotatably connected to the third ring gear. The 6-speed planetary gear thus works reliably and is simple.
  • the transmission input shaft may additionally be coupled via a sixth switching element with the third planet carrier. If the sixth switching element is used instead of the fifth switching element, an alternative 6-speed planetary gear is created.
  • the transmission input shaft is non-rotatably connected to the third ring gear.
  • the 6-speed planetary gear is thus simple.
  • the third planet carrier can be coupled to the transmission output shaft via a seventh switching element. There are thus all 6 gears switchable.
  • the 6-speed planetary gear has such a compact design.
  • the third planetary gear comprises an outer third planetary gear and an inner third planetary gear, wherein the outer third planetary gear with the third ring gear, the inner third planetary gear with the third sun gear and the outer third planetary gear with the inner third planetary gear.
  • the 6-speed planetary gear takes up so little space.
  • the integration of electric motors, the so-called hybridization, is simple.
  • at least one of the switching elements is a form-fitting switching element, preferably all switching elements are form-fitting switching elements. These usually build more compact than frictional switching elements.
  • the 6-speed planetary gear requires only a small space.
  • form-fitting switching elements usually work without slippage. So they have a high efficiency, so that the efficiency of the 6-speed planetary gear is high.
  • a first electric motor is coupled to the first sun gear.
  • the 6-speed planetary gear is thus hybridized.
  • the electric motor transmission tasks such. B. translation adjustment, synchronization, traction maintenance, take over. So it can be performed with the 6-speed planetary gear, which includes only three planetary gear, functions that would otherwise only with larger and complex planetary gear can be realized, for. B. of those with four planetary gear sets.
  • a second electric motor may be coupled to the transmission input shaft, the transmission output shaft or the third ring gear.
  • the 6-speed planetary gear is preferably used as a transverse gear.
  • the second electric motor may also be coupled to any vehicle output shaft, such as the front or rear axle.
  • the gearbox function does not change as a result.
  • a third electric motor is coupled to the second sun. It is not possible to deduce the number of electric motors from the term "third.” For example, only a single electric motor can be used in total, but this is referred to as "third" for the purpose of a clear explanation. This results in the advantages that have already been explained with respect to the first electric motor.
  • a 6-speed planetary gear is used as a transverse gear.
  • a design variant also provides that a fourth electric motor is coupled to the third ring gear. Reference is made to the explanation of the advantages with regard to the other electric motors.
  • the transmission is then preferably used as a transverse gear.
  • the 6-speed planetary gear can thus be made relatively simple. As a result, the space required for the planetary gear can be reduced.
  • one or more of the electric motors can act as synchronization elements.
  • elements of the 6-speed planetary gear can be synchronized, in particular synchronized switched. This makes it possible to form-fitting switching elements use and synchronize these switch.
  • the advantages of positive switching elements have already been explained.
  • a traction-free gear change is possible.
  • the 6-speed planetary gear is constructed of minus and / or plus planetary gear sets.
  • the planetary gear is removed exclusively from minus planetary gear sets.
  • a minus planetary gear set can be converted into a plus planetary gear by the connection of the planet carrier and the ring gear is reversed.
  • the stand ratio is adjusted, can be realized with positive planetary gear sets an effective 6-speed planetary gear.
  • the 6-speed planetary gear can be an automatic shiftable transmission.
  • the switching elements are thus automatically opened and closed in dependence on a driving situation, in particular as a function of a speed and a load, without a driver having to trigger the switching operation.
  • a manual gear change may be provided, in which a driver initiates the gear change, for example by pressing a button or a selector lever and then the switching elements are automatically actuated. If several switching elements must be changed in their switching state for a gear change, this is done in a coordinated manner.
  • the 6-speed planetary gear is derived by removing a planetary gear set of a planetary gear with four planetary gear sets.
  • the 6-speed planetary gear is therefore not developed as a gearbox with three planetary gear sets. Instead, a planetary gear set is selectively taken from a planetary gear with four planetary gear sets.
  • the 6-speed planetary gear is thus developed with little effort.
  • the planetary gear with four planetary gear sets may be, for example, a 9-speed planetary gear.
  • Such a transmission is known in particular from DE 10 2009 025 609 A1.
  • B. four, wherein the second number is greater than the first number may include the following step: Removing a planetary or more planetary gear sets from the planetary gear with the second number of planetary gear sets.
  • the step of removing may be preceded by an analysis step in which the force and moment flows in the planetary gearbox with the second number of planetary gear sets in conjunction with the gears that can be realized with this planetary gearbox are analyzed.
  • care must be taken to a good shiftability of the transmission. This means that to change adjacent aisles only one or two switching elements must be changed in their state.
  • the planetary gear can then be hybridized, ie one or more electric motors can be integrated. Then also preferably all frictional switching elements can be replaced by positive switching elements. It is thus given a method by means of which on the basis of an existing planetary gear in a simple way other planetary gear that can be hybridized, can be generated. So it can be generated with little development effort numerous transmission variants.
  • FIG. 1 shows schematically a first embodiment of a 6-speed planetary gear according to the invention
  • FIG. 2 shows schematically a second embodiment of a six-speed planetary gear according to the invention
  • FIG. 3 schematically shows a third embodiment of a 6-speed planetary gear according to the invention
  • FIG. 4 schematically shows a fourth embodiment of a six-speed planetary gear according to the invention
  • FIG. 5 schematically shows a fifth embodiment of a six-speed planetary gear according to the invention
  • FIG. 6 is a circuit diagram belonging to the six-speed planetary gearboxes shown in FIGS. 1 to 5, and FIG. 7 is a schematic representation of a known 9-speed planetary gearbox from which a six-speed planetary gearbox according to the invention can be derived.
  • FIG. 1 shows a 6-speed planetary gear 10. This includes a transmission input shaft 12 and a transmission output shaft 14th
  • the transmission input shaft 12 and the transmission output shaft 14 can be coupled via a first planetary gearset 16, a second planetary gearset 18 and a third planetary gearset 20.
  • the first planetary gearset 16 includes a first sun gear 22, a first planet carrier 24, a first ring gear 26, and a first planetary gear 28.
  • the second planetary gear set 18 includes a second sun gear 30, a second ring gear 32, a second planet carrier 34, and a second planetary gear 36.
  • the third planetary gear set 20 includes a third sun gear 40, a third planet carrier 42, a third ring gear 44, and a third planetary gear 46.
  • planetary gear sets 16, 18, 20 only a first planetary gear 28, a second planetary gear 36 or a third planetary gear 46 is shown for reasons of clarity.
  • the planetary gear sets 16, 18, 20 may also include a plurality of planetary gears.
  • the planetary gear sets 16, 18, 20 are arranged in a transmission housing 48.
  • the transmission input shaft 12 can be coupled via a first switching element 50 to the first planet carrier 24.
  • first sun gear 22 via a second switching element 52 to the transmission housing 48 can be coupled.
  • first planet carrier 24 via a third switching element 54 with the first ring gear 26 can be coupled.
  • the first ring gear 26, the second sun gear 30 and the third sun gear 40 are rotatably connected.
  • the second sun gear 30 and the third sun gear 40 form a so-called double sun.
  • the second ring gear 32 via a fourth switching element 56 to the transmission housing 48 can be coupled.
  • the transmission output shaft 14 is rotatably connected to the second planet carrier 34.
  • the aforementioned structure is common to the two embodiments of the six-speed planetary gear 10 shown in FIGS. 1 and 2.
  • the transmission input shaft 12 is additionally rotatably connected to the third planet carrier 42.
  • the transmission output shaft 14 via a fifth switching element 58 with the third ring gear 44 can be coupled.
  • the transmission output shaft 14 rotatably connected to the third ring gear 44 is connected.
  • the transmission input shaft 12 via a sixth switching element 60 with the third planet carrier 42 can be coupled.
  • the embodiment shown in Figure 3 differs from the 6-speed planetary gear 10 shown in Figure 1 in that two planetary gears 28a, 28b are arranged in the radial direction.
  • the first planetary gearset 16 thus includes an outer first planetary gear 28a and an inner first planetary gear 28b.
  • the outer first planetary gear 28a cooperates with the first ring gear 26, the inner first planetary gear 28b with the first sun gear 22 and the outer first planetary gear 28a with the inner first planetary gear 28b.
  • the first switching element 50 acts between the first ring gear 26 and the first ring gear 50 Transmission input shaft 12 instead of between the transmission input shaft 12 and the first planet carrier 24, as in the embodiments according to Figures 1 and 2.
  • the embodiment according to FIG. 4 in contrast to the embodiment shown in FIG. 1, comprises two second planet gears 36a, 36b.
  • the second planetary gearset 18 includes an outer second planetary gear 36a and an inner second planetary gear 36b, the outer second planetary gear 36a having the second ring gear 32, the inner second planetary gear 36b having the second sun gear 30 and the outer second planetary gear 36a having the inner one second planetary gear 36b cooperates.
  • the second planet carrier 24 can also be coupled to the transmission housing 48 via the fourth switching element 56 instead of the second ring gear 32.
  • Figure 5 shows another embodiment in which the transmission input shaft 12 is rotatably connected to the third ring gear 44. The differences to the embodiment shown in Figure 1 are explained again.
  • the third planetary carrier 42 is here coupled via a seventh switching element 61 to the transmission output shaft 14. Furthermore, the third planetary gear set 20 now comprises two radially juxtaposed third planet gears 46a, 46b.
  • the outer third planetary gear 46a interacts with the third ring gear 44, the inner third planetary gear 46b with the third sun gear 40 and the outer third planetary gear 46a with the inner third planetary gear 46b.
  • Those switching elements 50, 54, 58, 60, 61 which act between rotatable components of the 6-speed planetary gear 10 may be referred to as clutches.
  • the switching elements 52, 56 act between the transmission housing 48 and rotatable transmission components. They can be called brakes.
  • the switching elements 50 - 61 form-locking switching elements.
  • the 6-speed planetary gear 10 shown in Figures 1 to 5 may be hybridized.
  • a first electric motor 62 is coupled to the first sun gear 22.
  • An additional second electric motor 64a may be coupled to the transmission input shaft 12.
  • the second electric motor 64b may be operatively connected to the transmission output shaft 14.
  • Another alternative is to couple the second electric motor 64c to the third ring gear 44.
  • FIGS. 1 to 4 each show three second electric motors 64a-64c. However, these represent alternatives.
  • the 6-speed planetary gear 10 thus always includes only a single second electric motor 64a - 64c. In the embodiment according to FIG. 5, the electric motors 64a and 64c have the same effect. The electric motor 64c is therefore not shown.
  • a motor corresponding to the electric motor 64 c may be connected to the planetary carrier 42 of the third planetary gear set 20. Such a motor is not shown in the figure.
  • a third electric motor 66 may be coupled to the second sun gear 30.
  • a fourth electric motor 68 may be coupled to the third ring gear 44.
  • the fourth electric motor 68 corresponds to the second electric motor 64 c, which is also coupled to the third ring gear 44.
  • the fourth electric motor 68 thus corresponds to the electric motor 64a.
  • the electric motor 68 is therefore not shown.
  • the one or more electric motors 62 - 68 can be used to realize a reverse gear of the 6-speed planetary gear 10.
  • one or more of the electric motors 62-68 can be used as synchronization elements.
  • FIG. 6 shows a circuit diagram belonging to the 6-speed planetary gear 10.
  • the switching elements 52 - 61 are listed.
  • Six switchable gears A to F are noted in the head column.
  • In the spread-out table is then specified in which gear which switching elements are closed.
  • the switching elements 50, 54 and 56 are closed.
  • the remaining switching elements 52, 58, 60, 61 are open.
  • the switching elements 50, 52 and 56 are closed.
  • the switching elements 54, 58, 60, 61 are open.
  • the gear C provides that the switching elements 50, 56 and 58, 60 or 61 are closed.
  • the switching elements 54 and 52 are open.
  • the switching elements 50, 52 and 58, 60 or 61 are closed.
  • the switching elements 54 and 56 are open.
  • gear E the switching elements 52 and 56 are opened, but the switching elements 50, 54 and 58, 60 or 61 are closed.
  • the switching elements 50 - 61 can be switched automatically, so that the 6-speed planetary gear 10 is an automatically switchable transmission.
  • the 6-speed planetary gear 10 may be derived from a planetary gear 100 with four planetary gear sets. Such a planetary gear 100 is known for example from DE 10 2009 025 609 A1 (see Figure 4).
  • the planetary gear 100 is a 9-speed transmission and includes a first planetary gear set 102, a second planetary gear set 104, a third planetary gear set 106, and a fourth planetary gear set 108.
  • the planetary gear 100 includes a first switching element 1 10, a second switching element 1 12, a third switching element 1 14, a fourth switching element 1 16, a fifth switching element 1 18 and a sixth switching element 120.
  • these switching elements 1 10 - 120 are the nine gears switchable.
  • the second planetary gear set 104 is removed from the planetary gear 100 in the example shown.
  • the switching element 1 12 can be omitted.
  • the switching elements 1 10 and 1 16 are moved within the transmission structure or replaced by equivalent switching elements. Thus, it corresponds to the switching element 1 10 the switching element 50 and the switching element 1 16 the switching element 54.
  • the derivation of the illustrated in Figures 2 to 5 6-speed planetary gear 10 is analogous.
  • the 6-speed planetary gear 10 is constructed more compact compared to the planetary gear 100 and offers more space for the integration of electric motors 62-68.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Structure Of Transmissions (AREA)

Abstract

Es wird ein 6-Gang-Planetenradgetriebe (10) für ein Kraftfahrzeug beschrieben. Es umfasst eine Getriebeeingangswelle (12), eine Getriebeausgangswelle (14), einen ersten Planetenradsatz (16), einen zweiten Planeten radsatz (18) und einen dritten Planetenradsatz (20). Dabei ist die Getriebeeingangswelle (12) über ein erstes Schaltelement (50) mit dem ersten Planetenträger (24) oder dem ersten Hohlrad (26) koppelbar, das erste Sonnenrad (22) über ein zweites Schaltelement (52) mit einem Getriebegehäuse (48) koppelbar, der erste Planetenträger (24) über ein drittes Schaltelement (54) mit dem ersten Hohlrad (26) koppelbar und das zweite Hohlrad (32) oder der zweite Planetenträger (34) über ein viertes Schaltelement (56) mit dem Getriebegehäuse (48) koppelbar. Weiter sind das erste Hohlrad (26) oder der erste Planetenträger (24), das zweite Sonnenrad (30) und das dritte Sonnenrad (40) drehfest verbunden. Zusätzlich ist die Getriebeausgangswelle (14) drehfest mit dem zweiten Planetenträger (34) oder den zweiten Hohlrad (32) verbunden.

Description

6-Gang-Planetenradgetriebe
Die Erfindung betrifft ein 6-Gang-Planetenradgetriebe für ein Kraftfahrzeug.
Planetenradgetriebe werden üblicherweise in automatisiert schaltbaren Getrieben für Kraftfahrzeuge verwendet. Dabei ist in den letzten Jahren die Anzahl der über das Planetenradgetriebe schaltbaren Gänge gestiegen. Beispielsweise sind heute automatisiert schaltbare Getriebe mit bis zu neun Gängen verfügbar.
Ein Beispiel für ein Planetenradgetriebe mit neun Gängen kann der DE 10 2009 025 609 A1 entnommen werden.
Häufig werden zusätzlich einer oder mehrere Elektromotoren in solche Planetenradgetriebe integriert. Man spricht dann von einer Hybridisierung der Getriebe. Das zugehörige Kraftfahrzeug kann dann entweder von einem Verbrennungsmotor alleine, vom Elektromotor alleine oder kombiniert vom Verbrennungsmotor und vom Elektromotor angetrieben werden. Im letztgenannten Fall wirkt das Planetenradgetriebe als sogenanntes Summengetriebe und führt das vom Verbrennungsmotor und vom Elektromotor erzeugte Drehmoment zusammen.
Die Aufgabe der Erfindung ist, ein verbessertes Planetenradgetriebe für ein Kraftfahrzeug zu schaffen. Insbesondere soll das Planetenradgetriebe nur einen geringen Bauraum benötigen, sodass die Integration von Elektromotoren einfach möglich ist. Das zu schaffende Planetenradgetriebe soll also einfach hybridisierbar sein.
Die Aufgabe wird durch ein 6-Gang-Planetenradgetriebe der eingangs genannten Art, mit einer Getriebeeingangswelle, einer Getriebeausgangswelle, einem ersten Planetenradsatz, der ein erstes Sonnenrad, einen ersten Planetenträger, ein erstes Hohlrad und mindestens ein erstes Planetenrad umfasst, einem zweiten Planetenradsatz, der ein zweites Sonnenrad, einen zweiten Planetenträger, ein zweites Hohlrad und mindestens ein zweites Planetenrad umfasst, und einem dritten Planetenradsatz, der ein drittes Sonnenrad, einen dritten Planetenträger, ein drittes Hohlrad und mindestens ein drittes Planetenrad umfasst, gelöst, wobei die Getriebeeingangswelle über ein erstes Schaltelement mit dem ersten Planetenträger oder dem ersten Hohlrad koppelbar ist, das erste Sonnenrad über ein zweites Schaltelement mit einem Getriebegehäuse koppelbar ist, der erste Planetenträger über ein drittes Schaltelement mit dem ersten Hohlrad koppelbar ist, das erste Hohlrad oder der erste Planetenträger, das zweite Sonnenrad und das dritte Sonnenrad drehfest verbunden sind, das zweite Hohlrad oder der erste Planetenträger über ein viertes Schaltelement mit dem Getriebegehäuse koppelbar ist und die Getriebeausgangswelle drehfest mit dem zweiten Planetenträger oder dem zweiten Hohlrad verbunden ist. Das zweite Sonnenrad und das dritte Sonnenrad bilden also eine sogenannte Doppelsonne. Unter den Schaltelementen sind Kupplungselemente und/oder Bremselemente zu verstehen, mit denen eine drehfeste Kopplung sowie eine entsprechende Entkopplung der betreffenden Getriebekomponenten möglich ist. Üblicherweise spricht man bei den Schaltelementen von Kupplungen, wenn zwei drehbare Komponenten ge- oder entkoppelt werden. Für den Fall, dass eine drehbare Komponente mit einer feststehenden Komponente ge- oder entkoppelt wird, spricht man von Bremsen. Dabei können alle Schaltelemente durch wirkgleiche ersetzt sein. Insbesondere kann das dritte Schaltelement durch ein Schaltelement ersetzt sein, das zwischen dem ersten Sonnenrad und dem ersten Hohlrad oder zwischen dem ersten Sonnenrad und dem ersten Planetenträger wirkt. Das 6-Gang- Planetenradgetriebe umfasst drei Planetenradsätze. Im Vergleich zu bekannten Planetenradgetrieben, die beispielsweise vier Planetenradsätze umfassen, ist es daher sehr kompakt aufgebaut. Damit verfügt das 6-Gang-Planetenradgetriebe über ausreichend Bauraum, um einen oder mehrere Elektromotoren zu integrieren und das Getriebe somit zu hybridisieren.
Der Erfindung liegt die Idee zugrunde, dass in hybridisierten Getrieben die Elektromotoren getriebetechnische Aufgaben und/oder Funktionen übernehmen können. Somit kann die mechanische Getriebestruktur vereinfacht werden. Insbesondere basiert diese Idee auf der Erkenntnis, dass in hybridisierten Getrieben die feine Abstufung des mechanischen (Teil-) Getriebes, die bei rein mechanischen Getrieben üblich ist, nicht notwendig ist, da die Elektromotoren auch zur Übersetzungsverstellung genutzt werden können. Somit ist es ausreichend, im Vergleich zu rein mechanischen Getrieben weniger Gangstufen vorzusehen. Folglich kann das mechanische Getriebe mit weniger Bauteilen realisiert werden. In der Konsequenz steht mehr Bauraum für die Integration des oder der Elektromotoren zur Verfügung. Die Elektromotoren können beispielsweise während eines Schaltvorgangs die Zugkraft aufrecht erhalten und/oder zur Synchronisierung von Elementen des mechanischen (Teil-) Getriebes genutzt werden. Es können dann alle oder manche reibschlüssigen Schaltelemente durch formschlüssige ersetzt werden. Dies ist bezüglich Bauraum und Wirkungsgrad vorteilhaft. Gemäß einer Ausführungsform ist die Getriebeeingangswelle drehfest mit dem dritten Planetenträger verbunden. Das Getriebe ist somit einfach aufgebaut.
Dabei kann die Getriebeausgangswelle über ein fünftes Schaltelement mit dem dritten Hohlrad koppelbar sein. Die Bezeichnung des Schaltelements als„fünftes" ist dabei ausschließlich zur übersichtlichen Erläuterung des 6-Gang- Planetenradgetriebes gewählt. Insbesondere ist diese Bezeichnung kein Hinweis auf eine Anzahl im 6-Gang-Planetenradgetriebe verbauter Schaltelemente. Es sind somit alle sechs Gänge schaltbar.
In einer Variante umfasst der erste Planetenradsatz ein äußeres erstes Planetenrad und ein inneres erstes Planetenrad, wobei das äußere erste Planetenrad mit dem ersten Hohlrad, das innere erste Planetenrad mit dem ersten Sonnenrad und das erste äußere Planetenrad mit dem ersten inneren Planetenrad zusammenwirkt. Es ist somit ein kompakt bauendes 6-Gang-Planetenradgetriebe gegeben, das einfach hybridisierbar ist.
Eine Gestaltungsvariante sieht vor, dass der zweite Planetenradsatz ein äußeres zweites Planetenrad und ein inneres zweites Planetenrad umfasst, wobei das äußere zweite Planetenrad mit dem zweiten Hohlrad, das innere zweite Planetenrad mit dem zweiten Sonnenrad und das äußere zweite Planetenrad mit dem inneren zweiten Planetenrad zusammenwirkt. Das 6-Gang- Planetenradgetriebe benötigt in dieser Konfiguration nur wenig Bauraum. Dadurch können Elektromotoren verhältnismäßig einfach im Getriebe angeordnet werden. In einer Alternative ist die Getriebeausgangswelle drehfest mit dem dritten Hohlrad verbunden. Das 6-Gang-Planetenradgetriebe funktioniert somit zuverlässig und ist einfach aufgebaut.
Die Getriebeeingangswelle kann zusätzlich über ein sechstes Schaltelement mit dem dritten Planetenträger koppelbar sein. Wird anstelle des fünften Schaltelements das sechste Schaltelement verwendet, entsteht ein alternatives 6- Gang-Planetenradgetriebe.
In einer Variante ist die Getriebeeingangswelle drehfest mit dem dritten Hohlrad verbunden. Das 6-Gang-Planetenradgetriebe ist somit einfach aufgebaut. Es kann zudem der dritte Planetenträger über ein siebtes Schaltelement mit der Getriebeausgangswelle koppelbar sein. Es sind somit alle 6 Gänge schaltbar. Das 6-Gang-Planetenradgetriebe hat so einen kompakten Aufbau.
Eine Weiterbildung sieht vor, dass der dritte Planetenradsatz ein äußeres drittes Planetenrad und ein inneres drittes Planetenrad umfasst, wobei das äußere dritte Planetenrad mit dem dritten Hohlrad, das innere dritte Planetenrad mit dem dritten Sonnenrad und das äußere dritte Planetenrad mit dem inneren dritten Planetenrad zusammenwirkt. Das 6-Gang-Planetenradgetriebe beansprucht so nur wenig Bauraum. Die Integration von Elektromotoren, die sogenannte Hybridisierung, ist einfach. Vorteilhafterweise ist mindestens eines der Schaltelemente ein formschlüssiges Schaltelement, vorzugsweise sind alle Schaltelemente formschlüssige Schaltelemente. Diese bauen in der Regel kompakter als reibschlüssige Schaltelemente. Somit benötigt das 6-Gang-Planetenradgetriebe nur einen geringen Bauraum. Darüber hinaus arbeiten formschlüssige Schaltelemente üblicherweise schlupffrei. Sie verfügen also über einen hohen Wirkungsgrad, sodass auch der Wirkungsgrad des 6-Gang-Planetenradgetriebes hoch ist.
Vorteilhafterweise ist ein erster Elektromotor mit dem ersten Sonnenrad gekoppelt. Das 6-Gang-Planetenradgetriebe ist also hybridisiert. Wie oben erwähnt, kann der Elektromotor getriebetechnische Aufgaben, z. B. Übersetzungs- Verstellung, Synchronisierung, Zugkrafterhaltung, übernehmen. Es können also mit dem 6-Gang-Planetenradgetriebe, das lediglich drei Planetenradsätze umfasst, Funktionen ausgeführt werden, die sonst nur mit größeren und komplexeren Planetenradgetrieben realisiert werden könne, z. B. von solchen mit vier Planetenradsätzen.
Darüber hinaus kann ein zweiter Elektromotor mit der Getriebeeingangswelle, der Getriebeausgangswelle oder dem dritten Hohlrad gekoppelt sein. Es ergeben sich die gleichen Vorteile, die bereits bezüglich des ersten Elektromotors erläutert wurden. Für den Fall, dass der zweite Elektromotor am dritten Hohlrad angebunden ist, wird das 6-Gang-Planetenradgetriebe vorzugsweise als Quergetriebe genutzt. Anstatt den zweiten Elektromotor mit der Getriebeausgangswelle zu koppeln, kann er auch mit einer beliebigen Fahrzeugabtriebswelle, beispielsweise der Vorder- oder Hinterachse, gekoppelt werden. Die getriebetechnische Funktion ändert sich dadurch nicht.
In einer Ausführungsform ist ein dritter Elektromotor mit der zweiten Sonne gekoppelt. Aus der Bezeichnung „dritter" kann dabei nicht auf die Anzahl der Elektromotoren geschlossen werden. Beispielsweise kann insgesamt nur ein einziger Elektromotor verwendet werden, der jedoch im Sinne einer übersichtlichen Erläuterung als „dritter" bezeichnet wird. Es ergeben sich die Vorteile, die bereits bezüglich des ersten Elektromotors erläutert wurden. Vorzugsweise wird ein solches 6-Gang-Planetenradgetriebe als Quergetriebe verwendet. Eine Gestaltungsvariante sieht zudem vor, dass ein vierter Elektromotor mit dem dritten Hohlrad gekoppelt ist. Es wird auf die Erläuterung der Vorteile hinsichtlich der übrigen Elektromotoren verwiesen. Das Getriebe wird dann vorzugsweise als Quergetriebe genutzt.
Es kann dabei ein Rückwärtsgang mittels einem oder mehrerer der Elektromotoren realisiert sein. Es kann damit eine mechanische Getriebestruktur verwendet werden, mittels der kein Rückwärtsgang realisierbar ist. Das 6-Gang- Planetenradgetriebe kann somit verhältnismäßig einfach ausgeführt sein. Dadurch lässt sich der für das Planetenradgetriebe benötigte Bauraum verringern.
Ferner kann bzw. können einer oder mehrere der Elektromotoren als Synchronisierungselemente wirken. Es können also Elemente des 6-Gang- Planetenradgetriebes synchronisiert werden, insbesondere synchronisiert geschaltet werden. Damit wird es möglich, formschlüssige Schaltelemente zu verwenden und diese synchronisiert zu schalten. Die Vorteile formschlüssiger Schaltelemente wurden bereits erläutert. Es wird zudem ein zugkraftunter- brechungsfreier Gangwechsel möglich.
Das 6-Gang-Planetenradgetriebe ist aus Minus- und/oder Plus- Planetenradsätzen aufgebaut. Vorzugsweise ist das Planetenradgetriebe ausschließlich aus Minus-Planetenradsätzen ausgebaut. Ein Minus- Planeten radsatz kann dabei in einen Plus-Planetenradsatz überführt werden, indem die Anbindung des Planetenträgers und des Hohlrads vertauscht wird. Wenn zusätzlich die Standübersetzung angepasst wird, kann mit Plus- Planetenradsätzen ein wirkgleiches 6-Gang-Planetenradgetriebe realisiert werden.
Das 6-Gang-Planetenradgetriebe kann ein automatisiert schaltbares Getriebe sein. Die Schaltelemente werden also in Abhängigkeit einer Fahrsituation, insbesondere in Abhängigkeit einer Geschwindigkeit und einer Last, automatisiert geöffnet und geschlossen, ohne dass ein Fahrer den Schaltvorgang auslösen muss. Selbstverständlich kann zusätzlich oder alternativ ein manueller Gangwechsel vorgesehen sein, bei dem ein Fahrer den Gangwechsel beispielsweise durch einen Tastendruck oder einen Wählhebel initiiert und daraufhin die Schaltelemente automatisch betätigt werden. Falls für einen Gangwechsel mehrere Schaltelemente in ihrem Schaltzustand geändert werden müssen, erfolgt dies koordiniert.
Gemäß einer Weiterbildung der Erfindung ist das 6-Gang-Planetenradgetriebe durch Entfernen eines Planetenradsatzes aus einem Planetenradgetriebe mit vier Planetenradsätzen abgeleitet. Das 6-Gang-Planetenradgetriebe wird also nicht als Getriebe mit drei Planeten radsätzen entwickelt. Stattdessen wird aus einem Planetenradgetriebe mit vier Planetenradsätzen gezielt ein Planetenradsatz entnommen. Das 6-Gang-Planetenradgetriebe wird also mit geringem Aufwand entwickelt. Das Planetenradgetriebe mit vier Planetenradsätzen kann beispielsweise ein 9-Gang-Planetenradgetriebe sein. Ein solches Getriebe ist insbesondere aus der DE 10 2009 025 609 A1 bekannt. Ein Verfahren zur Ableitung eines Planetenradgetriebes mit einer ersten Anzahl an Planetenradsätzen, z. B. drei, aus einem Planetenradgetriebe mit einer zweiten Anzahl an Planetenradsätzen, z. B. vier, wobei die zweite Anzahl größer als die erste Anzahl ist, kann dabei den folgenden Schritt umfassen: Entfernen eines Planetenradsatzes oder mehrerer Planeten radsätze aus dem Planetenradgetriebe mit der zweiten Anzahl an Planetenradsätzen. Dabei wird bzw. werden vorzugsweise derjenige Planetenradsatz oder diejenigen Planetenradsätze entfernt, die für möglichst wenige Gänge genutzt werden. Dafür kann dem Schritt des Entfernens ein Analyseschritt vorgeschaltet sein, in dem die Kraft- und Momentenflüsse im Planetenradgetriebe mit der zweiten Anzahl an Planetenradsätzen in Verbindung mit den mit diesem Planetenradgetriebe realisierbaren Gängen analysiert werden. Zudem muss dabei auf eine gute Schaltbarkeit des Getriebes geachtet werden. Das bedeutet, dass zum Wechsel benachbarter Gänge nur ein oder zwei Schaltelemente in ihrem Zustand geändert werden müssen. Das Planetenradgetriebe kann anschließend hybridisiert werden, d. h. es können einer oder mehrere Elektromotoren integriert werden. Dann können auch vorzugsweise alle reibschlüssigen Schaltelemente durch formschlüssige Schaltelemente ausgetauscht werden. Es ist somit ein Verfahren gegeben, mittels dem auf der Basis eines bestehenden Planetenradgetriebes auf einfache Weise weitere Planetenradgetriebe, die hybridisiert sein können, generiert werden können. Es können also mit wenig Entwicklungsaufwand zahlreiche Getriebevarianten generiert werden.
Die Erfindung wird nachstehend anhand verschiedener Ausführungsbeispiele erläutert, die in den beigefügten Zeichnungen gezeigt sind. Es zeigen: - Figur 1 schematisch eine erste Ausführungsform eines erfindungsgemäßen 6-Gang-Planetenradgetriebes,
- Figur 2 schematisch eine zweite Ausführungsform eines erfindungsgemäßen 6-Gang-Planetenradgetriebes,
- Figur 3 schematisch eine dritte Ausführungsform eines erfindungsgemäßen 6-Gang-Planetenradgetriebes,
- Figur 4 schematisch eine vierte Ausführungsform eines erfindungsgemäßen 6-Gang-Planetenradgetriebes, - Figur 5 schematisch eine fünfte Ausführungsform eines erfindungsgemäßen 6-Gang-Planetenradgetriebes,
- Figur 6 ein zu den in Figuren 1 bis 5 gezeigten 6-Gang- Planetenradgetrieben gehörendes Schaltschema und - Figur 7 schematisch ein bekanntes 9-Gang-Planetenradgetriebe, aus dem ein erfindungsgemäßes 6-Gang-Planetenradgetriebe abgeleitet werden kann.
Figur 1 zeigt ein 6-Gang-Planetenradgetriebe 10. Dieses umfasst eine Getriebeeingangswelle 12 und eine Getriebeausgangswelle 14.
Die Getriebeeingangswelle 12 und die Getriebeausgangswelle 14 sind über einen ersten Planetenradsatz 16, einen zweiten Planetenradsatz 18 und einen dritten Planetenradsatz 20 koppelbar.
Der erste Planetenradsatz 16 umfasst ein erstes Sonnenrad 22, einen ersten Planetenträger 24, ein erstes Hohlrad 26 und ein erstes Planetenrad 28.
Der zweite Planetenradsatz 18 umfasst ein zweites Sonnenrad 30, ein zweites Hohlrad 32, einen zweiten Planetenträger 34 und ein zweites Planetenrad 36.
Der dritte Planetenradsatz 20 umfasst ein drittes Sonnenrad 40, einen dritten Planetenträger 42, ein drittes Hohlrad 44 und ein drittes Planetenrad 46.
In den Planetenradsätzen 16, 18, 20 ist aus Gründen der Übersichtlichkeit jeweils nur ein erstes Planetenrad 28, ein zweites Planetenrad 36 oder ein drittes Planetenrad 46 dargestellt. Selbstverständlich können die Planetenradsätze 16, 18, 20 auch mehrere Planetenräder umfassen.
Die Planeten radsätze 16, 18, 20 sind in einem Getriebegehäuse 48 angeordnet.
Die Getriebeeingangswelle 12 ist über ein erstes Schaltelement 50 mit dem ersten Planetenträger 24 koppelbar.
Darüber hinaus ist das erste Sonnenrad 22 über ein zweites Schaltelement 52 mit dem Getriebegehäuse 48 koppelbar.
Ferner ist der erste Planetenträger 24 über ein drittes Schaltelement 54 mit dem ersten Hohlrad 26 koppelbar. Das erste Hohlrad 26, das zweite Sonnenrad 30 und das dritte Sonnenrad 40 sind dabei drehfest verbunden. Somit bilden das zweite Sonnenrad 30 und das dritte Sonnenrad 40 eine sogenannte Doppelsonne.
Weiter ist das zweite Hohlrad 32 über ein viertes Schaltelement 56 mit dem Getriebegehäuse 48 koppelbar.
Die Getriebeausgangswelle 14 ist drehfest mit dem zweiten Planetenträger 34 verbunden.
Die vorgenannte Struktur ist den beiden in den Figuren 1 und 2 gezeigten Ausführungsformen des 6-Gang-Planetenradgetriebes 10 gemeinsam. In der in Figur 1 dargestellten Ausführungsform ist die Getriebeeingangswelle 12 zusätzlich drehfest mit dem dritten Planetenträger 42 verbunden.
Darüber hinaus ist in dieser Ausführungsform die Getriebeausgangswelle 14 über ein fünftes Schaltelement 58 mit dem dritten Hohlrad 44 koppelbar. Bei der in Figur 2 gezeigten Ausführungsform ist die Getriebeausgangswelle 14 drehfest mit dem dritten Hohlrad 44 verbunden.
Weiter ist in der in Figur 2 gezeigten Ausführungsform die Getriebeeingangswelle 12 über ein sechstes Schaltelement 60 mit dem dritten Planetenträger 42 koppelbar. Die in Figur 3 gezeigte Ausführungsform unterscheidet sich von dem in Figur 1 gezeigten 6-Gang-Planetenradgetriebe 10 dadurch, dass in radialer Richtung zwei Planetenräder 28a, 28b angeordnet sind.
Der erste Planetenradsatz 16 umfasst also ein äußeres erstes Planetenrad 28a und ein inneres erstes Planetenrad 28b. Dabei wirkt das äußere erste Planetenrad 28a mit dem ersten Hohlrad 26, das innere erste Planetenrad 28b mit dem ersten Sonnenrad 22 und das äußere erste Planetenrad 28a mit dem inneren ersten Planetenrad 28b zusammen.
Darüber hinaus wirkt in der Ausführungsform gemäß Figur 3 das erste Schaltelement 50 zwischen dem ersten Hohlrad 26 und der Getriebeeingangswelle 12 anstatt zwischen der Getriebeeingangswelle 12 und dem ersten Planetenträger 24, wie in den Ausführungsformen gemäß Figur 1 und 2.
Zusätzlich ist in der in Figur 3 gezeigten Ausführungsform anstelle des ersten Hohlrades 26 der erste Planetenträger 24 mit dem zweiten Sonnenrad 30 und dem dritten Sonnenrad 40 drehfest verbunden.
Die Ausführungsform gemäß Figur 4 umfasst im Unterschied zur in Figur 1 gezeigten Ausführungsform zwei zweite Planetenräder 36a, 36b.
Folglich umfasst der zweite Planeten radsatz 18 ein äußeres zweites Planetenrad 36a und ein inneres zweites Planetenrad 36b, wobei das äußere zweite Planetenrad 36a mit dem zweiten Hohlrad 32, das innere zweite Planetenrad 36b mit dem zweiten Sonnenrad 30 und das äußere zweite Planetenrad 36a mit dem inneren zweiten Planetenrad 36b zusammenwirkt.
Im Unterschied zur Ausführungsform gemäß Figur 1 ist zudem der zweite Planetenträger 24 anstatt des zweiten Hohlrades 32 über das vierte Schaltelement 56 mit dem Getriebegehäuse 48 koppelbar.
Auch ist nicht der zweite Planetenträger 34 mit der Getriebeausgangswelle 14 drehfest verbunden, sondern das zweite Hohlrad 32.
Figur 5 zeigt eine weitere Ausführungsform, bei der die Getriebeeingangswelle 12 drehfest mit dem dritten Hohlrad 44 verbunden ist. Es werden wieder die Unterschiede zur in Figur 1 gezeigten Ausführungsform erläutert.
Der dritte Planetenträger 42 ist hier über ein siebtes Schaltelement 61 mit der Getriebeausgangswelle 14 koppelbar. Ferner umfasst der dritte Planeten radsatz 20 nun zwei radial nebeneinander angeordnete dritte Planetenräder 46a, 46b.
Das äußere dritte Planetenrad 46a wirkt dabei mit dem dritten Hohlrad 44 zusammen, das innere dritte Planetenrad 46b mit dem dritten Sonnenrad 40 und das äußere dritte Planetenrad 46a mit dem inneren dritten Planetenrad 46b. Diejenigen Schaltelemente 50, 54, 58, 60, 61 die zwischen drehbaren Komponenten des 6-Gang-Planetenradgetriebes 10 wirken, können als Kupplungen bezeichnet werden.
Die Schaltelemente 52, 56 wirken zwischen dem Getriebegehäuse 48 und drehbaren Getriebekomponenten. Sie können als Bremsen bezeichnet werden.
In den Figuren 1 bis 5 sind die Schaltelemente 50 - 61 formschlüssige Schaltelemente.
Das in den Figuren 1 bis 5 dargestellte 6-Gang-Planetenradgetriebe 10 kann hybridisiert sein. Ein erster Elektromotor 62 ist dabei mit dem ersten Sonnenrad 22 gekoppelt.
Ein zusätzlicher, zweiter Elektromotor 64a kann mit der Getriebeeingangswelle 12 gekoppelt sein. Alternativ kann der zweite Elektromotor 64b mit der Getriebeausgangswelle 14 wirkverbunden sein. Eine weitere Alternative ist, den zweiten Elektromotor 64c mit dem dritten Hohlrad 44 zu koppeln.
In den Figuren 1 bis 4 sind jeweils drei zweite Elektromotoren 64a - 64c dargestellt. Diese stellen jedoch Alternativen dar. Das 6-Gang- Planetenradgetriebe 10 umfasst also stets nur einen einzigen zweiten Elektromotor 64a - 64c. In der Ausführungsform gemäß Figur 5 sind der Elektromotor 64a und 64c wirkungsgleich. Der Elektromotor 64c ist daher nicht dargestellt.
In der in Figur 5 gezeigten Ausführungsform kann ein dem Elektromotor 64c entsprechender Motor jedoch an den Planetenträger 42 des dritten Planetenradsatzes 20 angebunden sein. Ein solcher Motor ist in der Figur nicht dargestellt.
Alternativ zum ersten Elektromotor 62 und zum zweiten Elektromotor 64a - 64c kann ein dritter Elektromotor 66 mit dem zweiten Sonnenrad 30 gekoppelt sein.
Zusätzlich kann ein vierter Elektromotor 68 mit dem dritten Hohlrad 44 gekoppelt sein. Der vierte Elektromotor 68 entspricht dabei dem zweiten Elektromotor 64c, der auch mit dem dritten Hohlrad 44 gekoppelt ist. In der in Figur 5 gezeigten Ausführungsform entspricht somit der vierte Elektromotor 68 dem Elektromotor 64a. Der Elektromotor 68 ist daher nicht dargestellt.
Der oder die Elektromotoren 62 - 68 können dafür genutzt werden, einen Rückwärtsgang des 6-Gang-Planetenradgetriebes 10 zu realisieren.
Darüber hinaus können einer oder mehrere der Elektromotoren 62 - 68 als Synchronisierungselemente genutzt werden.
In Figur 6 ist ein zum 6-Gang-Planetenradgetriebe 10 gehörendes Schaltschema dargestellt. In der Kopfzeile sind dafür die Schaltelemente 52 - 61 aufgeführt. In der Kopfspalte sind sechs schaltbare Gänge A bis F notiert. In der so aufgespannten Tabelle wird dann angegeben, in welchem Gang welche Schaltelemente geschlossen sind.
Im Gang A sind die Schaltelemente 50, 54 und 56 geschlossen. Die übrigen Schaltelemente 52, 58, 60, 61 sind geöffnet. Im Gang B sind die Schaltelemente 50, 52 und 56 geschlossen. Die Schaltelemente 54, 58, 60, 61 sind geöffnet.
Der Gang C sieht vor, dass die Schaltelemente 50, 56 sowie 58, 60 oder 61 geschlossen sind. Die Schaltelemente 54 und 52 sind geöffnet.
Im Gang D sind die Schaltelemente 50, 52 und 58, 60 oder 61 geschlossen. Die Schaltelemente 54 und 56 sind geöffnet.
Im Gang E sind die Schaltelemente 52 und 56 geöffnet, jedoch die Schaltelemente 50, 54 sowie 58, 60 oder 61 geschlossen.
Im Gang F sind die Schaltelemente 52, 54 sowie 58, 60 oder 61 geschlossen und die Schaltelemente 50 und 56 geöffnet. Aus Figur 6 ist also ersichtlich, dass zum Wechsel zwischen benachbarten Gängen stets nur der Schaltzustand von zwei der Schaltelemente 50 - 61 geändert werden muss.
Die Schaltelemente 50 - 61 können automatisiert geschaltet werden, sodass das 6-Gang-Planetenradgetriebe 10 ein automatisiert schaltbares Getriebe ist. Das 6-Gang-Planetenradgetriebe 10 kann aus einem Planetenradgetriebe 100 mit vier Planetenradsätzen abgeleitet sein. Ein solches Planetenradgetriebe 100 ist beispielsweise aus der DE 10 2009 025 609 A1 bekannt (siehe Figur 4).
Das Planetenradgetriebe 100 ist ein 9-Gang-Getriebe und umfasst einen ersten Planetenradsatz 102, einen zweiten Planetenradsatz 104, einen dritten Planetenradsatz 106 und einen vierten Planetenradsatz 108.
Darüber hinaus umfasst das Planetenradgetriebe 100 ein erstes Schaltelement 1 10, ein zweites Schaltelement 1 12, ein drittes Schaltelement 1 14, ein viertes Schaltelement 1 16, ein fünftes Schaltelement 1 18 und ein sechstes Schaltelement 120. Durch die Betätigung dieser Schaltelemente 1 10 - 120 sind die neun Gänge schaltbar.
Um nun beispielsweise das 6-Gang-Planetenradgetriebe 10 gemäß Figur 1 aus dem Planetenradgetriebe 100 abzuleiten, wird im gezeigten Beispiel der zweite Planetenradsatz 104 aus dem Planetenradgetriebe 100 entfernt. In der Folge kann auch das Schaltelement 1 12 entfallen. Die Schaltelemente 1 10 und 1 16 werden innerhalb der Getriebestruktur verschoben oder durch wirkgleiche Schaltelemente ersetzt. Es entspricht also das Schaltelement 1 10 dem Schaltelement 50 und das Schaltelement 1 16 dem Schaltelement 54. Die Ableitung der in den Figuren 2 bis 5 dargestellten 6-Gang- Planetenradgetriebe 10 erfolgt analog.
Das 6-Gang-Planetenradgetriebe 10 ist im Vergleich zum Planetenradgetriebe 100 kompakter aufgebaut und bietet mehr Bauraum für die Integration von Elektromotoren 62 - 68.

Claims

Patentansprüche
1. 6-Gang-Planetenradgetriebe (10) für ein Kraftfahrzeug, mit einer Getriebeeingangswelle (12), einer Getriebeausgangswelle (14), einem ersten Planetenradsatz (16), der ein erstes Sonnenrad (22), einen ersten Planetenträger (24), ein erstes Hohlrad (26) und mindestens ein erstes Planetenrad (28) umfasst, einem zweiten Planetenradsatz (18), der ein zweites Sonnenrad (30), einen zweiten Planetenträger (34), ein zweites Hohlrad (32) und mindestens ein zweites Planetenrad (36) umfasst und einem dritten Planetenradsatz (20), der ein drittes Sonnenrad (40), einen dritten Planetenträger (42), ein drittes Hohlrad (44) und mindestens ein drittes Planetenrad (46) umfasst, wobei
die Getriebeeingangswelle (12) über ein erstes Schaltelement (50) mit dem ersten Planetenträger (24) oder dem ersten Hohlrad (26) koppelbar ist,
das erste Sonnenrad (22) über ein zweites Schaltelement (52) mit einem Getriebegehäuse (48) koppelbar ist,
der erste Planetenträger (24) über ein drittes Schaltelement (54) mit dem ersten Hohlrad (26) koppelbar ist,
das erste Hohlrad (26) oder der erste Planetenträger (24), das zweite Sonnenrad (30) und das dritte Sonnenrad (40) drehfest verbunden sind,
das zweite Hohlrad (32) oder der zweite Planetenträger (34) über ein viertes Schaltelement (56) mit dem Getriebegehäuse (48) koppelbar ist, und
die Getriebeausgangswelle (14) drehfest mit dem zweiten Planetenträger (34) oder dem zweiten Hohlrad (32) verbunden ist.
2. 6-Gang-Planetenradgetriebe (10) nach Anspruch 1 , dadurch gekennzeichnet, dass die Getriebeeingangswelle (12) drehfest mit dem dritten Planetenträger (42) verbunden ist.
3. 6-Gang-Planetenradgetriebe (10) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Getriebeausgangswelle (14) über ein fünftes Schaltelement (58) mit dem dritten Hohlrad (44) koppelbar ist.
4. 6-Gang-Planetenradgetriebe (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der erste Planetenradsatz (16) ein äußeres erstes Planetenrad (28a) und ein inneres erstes Planetenrad (28b) umfasst, wobei das äußere erste Planetenrad (28a) mit dem ersten Hohlrad (26), das innere erste Planetenrad (28b) mit dem ersten Sonnenrad (22) und das äußere erste Planetenrad (28a) mit dem inneren ersten Planetenrad (28b) zusammenwirkt.
5. 6-Gang-Planetenradgetriebe (10) nach einem Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der zweite Planeten radsatz (18) ein äußeres zweites Planetenrad (36a) und ein inneres zweites Planetenrad (36b) umfasst, wobei das äußere zweite Planetenrad (36a) mit dem zweiten Hohlrad (32), das innere zweite Planetenrad (36b) mit dem zweiten Sonnenrad (30) und das äußere zweite Planetenrad (36a) mit dem inneren zweiten Planetenrad (36b) zusammenwirkt.
6. 6-Gang-Planetenradgetriebe (10) nach Anspruch 1 , dadurch gekennzeichnet, dass die Getriebeausgangswelle (14) drehfest mit dem dritten Hohlrad (44) verbunden ist.
7. 6-Gang-Planetenradgetriebe (10) nach Anspruch 1 oder 6, dadurch gekennzeichnet, dass die Getriebeeingangswelle (12) über ein sechstes Schaltelement (60) mit dem dritten Planetenträger (42) koppelbar ist.
8. 6-Gang-Planetenradgetriebe (10) nach Anspruch 1 , dadurch gekennzeichnet, dass die Getriebeeingangswelle (12) drehfest mit dem dritten Hohlrad (44) verbunden ist.
9. 6-Gang-Planetenradgetriebe (10) nach Anspruch 1 oder 8, dadurch gekennzeichnet, dass der dritte Planetenträger (42) über ein siebtes Schaltelement (61 ) mit der Getriebeausgangswelle (14) koppelbar ist.
10. 6-Gang-Planetenradgetriebe (10) nach einem der Ansprüche 1 , 8 und 9, dadurch gekennzeichnet, dass der dritte Planetenradsatz (20) ein äußeres drittes Planetenrad (46a) und ein inneres drittes Planetenrad (36b) umfasst, wobei das äußere dritte Planetenrad (46a) mit dem dritten Hohlrad (44), das innere dritte Planetenrad (46b) mit dem dritten Sonnenrad (40) und das äußere dritte Planetenrad (46a) mit dem inneren dritten Planetenrad (46b) zusammenwirkt.
11. 6-Gang-Planetenradgetriebe (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mindestens eines der Schaltelemente (50 - 61 ) ein formschlüssiges Schaltelement ist, vorzugsweise dass alle Schaltelemente (50 - 61 ) formschlüssige Schaltelemente sind.
12. 6-Gang-Planetenradgetriebe (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein erster Elektromotor (62) mit dem ersten Sonnenrad (22) gekoppelt ist.
13. 6-Gang-Planetenradgetriebe (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein zweiter Elektromotor (64a, 64b, 64c) mit der Getriebeeingangswelle (12), der Getriebeausgangswelle (14) oder dem dritten Hohlrad (44) gekoppelt ist.
14. 6-Gang-Planetenradgetriebe (10) nach einem der Ansprüche 1 bis 1 1 , dadurch gekennzeichnet, dass ein dritter Elektromotor (66) mit dem zweiten Sonnenrad (30) gekoppelt ist.
15. 6-Gang-Planetenradgetriebe (10) nach einem der Ansprüche 1 bis 1 1 und 14, dadurch gekennzeichnet, dass ein vierter Elektromotor (68) mit dem dritten Hohlrad (44) gekoppelt ist.
PCT/EP2017/079828 2016-12-08 2017-11-21 6-gang-planetenradgetriebe WO2018104043A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780063995.8A CN109844368B (zh) 2016-12-08 2017-11-21 六挡位行星齿轮传动装置
US16/369,011 US11035441B2 (en) 2016-12-08 2019-03-29 6-speed planetary transmission

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016224461.2A DE102016224461A1 (de) 2016-12-08 2016-12-08 6-Gang-Planetenradgetriebe
DE102016224461.2 2016-12-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/369,011 Continuation US11035441B2 (en) 2016-12-08 2019-03-29 6-speed planetary transmission

Publications (1)

Publication Number Publication Date
WO2018104043A1 true WO2018104043A1 (de) 2018-06-14

Family

ID=60450646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/079828 WO2018104043A1 (de) 2016-12-08 2017-11-21 6-gang-planetenradgetriebe

Country Status (4)

Country Link
US (1) US11035441B2 (de)
CN (1) CN109844368B (de)
DE (1) DE102016224461A1 (de)
WO (1) WO2018104043A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110657206A (zh) * 2018-06-29 2020-01-07 比亚迪股份有限公司 变速器、动力驱动系统及车辆
CN110657208A (zh) * 2018-06-29 2020-01-07 比亚迪股份有限公司 变速器、动力驱动系统及车辆

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114321297B (zh) * 2022-01-28 2023-06-16 蜂巢传动科技河北有限公司 车辆的变速器、车辆以及变速器的控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2447581A1 (de) * 1974-10-05 1976-04-08 Zahnradfabrik Friedrichshafen Planetenrad-wechselgetriebe, insbesondere fuer kraftfahrzeuge
DE102009025609A1 (de) 2009-06-18 2010-12-23 Daimler Ag Getriebeeinheit
EP2342477A1 (de) * 2008-11-03 2011-07-13 Daimler AG Getriebeeinheit
DE102014218625A1 (de) * 2014-09-17 2016-03-17 Zf Friedrichshafen Ag Lastschaltbares Mehrstufengetriebe in Planetenbauweise

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3812739A (en) * 1969-06-04 1974-05-28 Nissan Motor Gear train arrangements
JPS562222B2 (de) * 1973-08-29 1981-01-19
JPH02107848A (ja) * 1988-10-15 1990-04-19 Toyota Motor Corp 車両用遊星歯車式変速装置
JPH0396742A (ja) * 1989-09-11 1991-04-22 Nissan Motor Co Ltd 遊星歯車変速装置
US6705967B2 (en) * 2001-02-21 2004-03-16 General Motors Corporation Six-speed transmission with three planetary gear sets and five torque transmitting mechanisms
US6589129B2 (en) * 2001-10-01 2003-07-08 General Motors Corporation Powertrain having a multi-speed transmission with three planetary gear sets
US6780138B2 (en) * 2002-10-23 2004-08-24 General Motors Corporation Family of multi-speed planetary transmission mechanisms having three planetary gearsets, three clutches, and two brakes
KR100476223B1 (ko) * 2002-12-03 2005-03-10 현대자동차주식회사 차량용 자동변속기의 6속 파워 트레인
KR100610791B1 (ko) * 2004-09-01 2006-08-09 현대자동차주식회사 자동변속기의 6속 파워트레인
US7963874B2 (en) * 2005-07-22 2011-06-21 GM Global Technology Operations LLC Dual mode EVT with input split reverse mode
US7261661B2 (en) * 2005-09-01 2007-08-28 General Motors Corporation Parallel hybrid transmission having a single motor/generator
US7354367B2 (en) * 2005-12-02 2008-04-08 Gm Global Technology Operations, Inc. Electrically variable transmission having three planetary gear sets, four fixed interconnections and clutched input
DE102006006649A1 (de) * 2006-02-14 2007-08-23 Zf Friedrichshafen Ag Mehrstufengetriebe
DE102006028789B4 (de) 2006-06-23 2012-03-29 Zf Friedrichshafen Ag Mehrstufengetriebe
US7699735B2 (en) * 2007-02-26 2010-04-20 Gm Global Technology Operations, Inc. Electrically-variable transmission having two forward low range electrically-variable modes and a reverse electrically-variable mode
DE102007022776A1 (de) 2007-05-15 2008-12-04 Zf Friedrichshafen Ag Mehrstufengetriebe
US8425371B2 (en) * 2009-08-05 2013-04-23 GM Global Technology Operations LLC Multi-speed transmission having three planetary gear sets
DE102010035209A1 (de) * 2010-08-24 2012-03-01 Volkswagen Ag Hybridantriebsordnung für ein Kraftfahrzeug
DE102010042656B4 (de) * 2010-10-20 2022-06-23 Zf Friedrichshafen Ag Lastschaltbares Getriebe
US9175747B2 (en) * 2013-07-23 2015-11-03 Ford Global Technologies, Llc Multi-speed transmission
DE102015205164A1 (de) * 2015-03-23 2016-09-29 Zf Friedrichshafen Ag Verfahren zum Steuern eines Kraftfahrzeuggetriebes, sowie Kraftfahrzeuggetriebe
DE102015213066B4 (de) * 2015-07-13 2019-11-21 Zf Friedrichshafen Ag Automatgetriebe
DE102016224458A1 (de) * 2016-12-08 2018-06-14 Bayerische Motoren Werke Aktiengesellschaft Kraftfahrzeuggetriebe mit Planetengetrieberadsätzen mit gleicher Standübersetzung
DE102018130784A1 (de) * 2018-12-04 2020-06-04 Schaeffler Technologies AG & Co. KG Getriebeeinheit für ein hybrides Kraftfahrzeug mit Planetengetriebe; Antriebsstrang sowie Verfahren zum Durchführen eines Gangwechsels

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2447581A1 (de) * 1974-10-05 1976-04-08 Zahnradfabrik Friedrichshafen Planetenrad-wechselgetriebe, insbesondere fuer kraftfahrzeuge
EP2342477A1 (de) * 2008-11-03 2011-07-13 Daimler AG Getriebeeinheit
DE102009025609A1 (de) 2009-06-18 2010-12-23 Daimler Ag Getriebeeinheit
DE102014218625A1 (de) * 2014-09-17 2016-03-17 Zf Friedrichshafen Ag Lastschaltbares Mehrstufengetriebe in Planetenbauweise

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"DAS NEUNGANG-AUTOMATIKGETRIEBE 9G-TRONIC VON MERCEDES-BENZ", 31 January 2014 (2014-01-31), XP055175590, Retrieved from the Internet <URL:http://download.springer.com/static/pdf/181/art%3A10.1007%2Fs35148-014-0012-3.pdf?auth66=1426248756_78b6cdb924a4a3cedf89e91536aaa6ee&ext=.pdf> [retrieved on 20150311] *
THOMAS BELZ: "Varianten von Mehrgang-Planetengetrieben", 8 March 2016 (2016-03-08), XP055257458, Retrieved from the Internet <URL:https://register.epo.org/application?documentId=EYPWMGE67270DSU&appnumber=EP13756488&showPdfPage=all> [retrieved on 20160311] *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110657206A (zh) * 2018-06-29 2020-01-07 比亚迪股份有限公司 变速器、动力驱动系统及车辆
CN110657208A (zh) * 2018-06-29 2020-01-07 比亚迪股份有限公司 变速器、动力驱动系统及车辆
CN110657206B (zh) * 2018-06-29 2021-10-22 比亚迪股份有限公司 变速器、动力驱动系统及车辆
CN110657208B (zh) * 2018-06-29 2021-10-22 比亚迪股份有限公司 变速器、动力驱动系统及车辆

Also Published As

Publication number Publication date
US11035441B2 (en) 2021-06-15
US20190226558A1 (en) 2019-07-25
DE102016224461A1 (de) 2018-06-14
CN109844368B (zh) 2022-08-16
CN109844368A (zh) 2019-06-04

Similar Documents

Publication Publication Date Title
EP3870879A1 (de) Lastschaltbares mehrganggetriebe
DE102008010064A1 (de) Automatgetriebe mit wenigstens einem Planetensatz
DE102017220165A1 (de) Antriebsvorrichtung für eine Fahrzeugachse eines zweispurigen Fahrzeugs
DE102016220701A1 (de) Doppelkupplungsgetriebe
DE102014200860A1 (de) Mehrstufengetriebe
WO2018104043A1 (de) 6-gang-planetenradgetriebe
DE102014224089A1 (de) Getriebe für ein Kraftfahrzeug sowie Verfahren zum Betreiben eines solchen
DE102019119954A1 (de) Antriebsvorrichtung für ein Kraftfahrzeug mit gemeinsamen starren Hohlrad und gemeinsamen starren Planetenradträger
DE112015003341T5 (de) Fahrzeuggetriebe für Fahrzeug, Fahrzeug, das ein solches Getriebe umfasst, und Verfahren zum Steuern eines Getriebes
DE102015206160A1 (de) Antriebsstrang für ein landwirtschaftliches Arbeitsfahrzeug
DE102019119952A1 (de) Antriebsvorrichtung für ein Kraftfahrzeug mit wahlweise gehäusefest schaltbarem Planetenradträger oder Hohlrad
DE102018217870A1 (de) Getriebe für ein Kraftfahrzeug
DE102017005310A1 (de) Gruppengetriebe für ein Kraftfahrzeug, insbesondere für ein Nutzfahrzeug
DE102017222723B4 (de) Getriebe für ein Kraftfahrzeug
DE102017222710B4 (de) Getriebe für ein Kraftfahrzeug
DE102015201716A1 (de) Doppelkupplungsgetriebe
DE102018219631A1 (de) Getriebe für ein Kraftfahrzeug
DE102015204600B4 (de) Getriebe für ein Kraftfahrzeug und Verfahren zum Betreiben eines solchen
DE102018219624A1 (de) Getriebe für ein Kraftfahrzeug
DE102022201484B4 (de) Getriebevorrichtung für ein Kraftfahrzeug
WO2018091235A1 (de) Getriebe, insbesondere kraftfahrzeuggetriebe, sowie antriebsstrang
DE102017222709B4 (de) Getriebe für ein Kraftfahrzeug
DE102022209062A1 (de) Kraftfahrzeuggetriebe für ein zumindest teilweise elektrisch angetriebenes Kraftfahrzeug
WO2016128156A1 (de) Doppelkupplungsgetriebe sowie verfahren zum betreiben eines doppelkupplungsgetriebes
DE102022214115A1 (de) Kraftfahrzeuggetriebe für ein zumindest teilweise elektrisch angetriebenes Kraftfahrzeug

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17803893

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17803893

Country of ref document: EP

Kind code of ref document: A1