DE102018219624A1 - Getriebe für ein Kraftfahrzeug - Google Patents

Getriebe für ein Kraftfahrzeug Download PDF

Info

Publication number
DE102018219624A1
DE102018219624A1 DE102018219624.9A DE102018219624A DE102018219624A1 DE 102018219624 A1 DE102018219624 A1 DE 102018219624A1 DE 102018219624 A DE102018219624 A DE 102018219624A DE 102018219624 A1 DE102018219624 A1 DE 102018219624A1
Authority
DE
Germany
Prior art keywords
switching element
planetary gear
gear set
drive shaft
variant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102018219624.9A
Other languages
English (en)
Inventor
Stefan Beck
Johannes Kaltenbach
Matthias Horn
Thomas Martin
Fabian Kutter
Uwe Griesmeier
Michael Wechs
Jens Moraw
Gerhard Niederbrucker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZF Friedrichshafen AG
Original Assignee
ZF Friedrichshafen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZF Friedrichshafen AG filed Critical ZF Friedrichshafen AG
Priority to DE102018219624.9A priority Critical patent/DE102018219624A1/de
Priority to US17/293,948 priority patent/US11473651B2/en
Priority to PCT/EP2019/077681 priority patent/WO2020099042A1/de
Priority to CN201980075766.7A priority patent/CN113056384A/zh
Publication of DE102018219624A1 publication Critical patent/DE102018219624A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/62Gearings having three or more central gears
    • F16H3/66Gearings having three or more central gears composed of a number of gear trains without drive passing from one train to another
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K2006/381Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches characterized by driveline brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4816Electric machine connected or connectable to gearbox internal shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/0043Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising four forward speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/0073Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising eleven forward speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2002Transmissions using gears with orbital motion characterised by the number of sets of orbital gears
    • F16H2200/201Transmissions using gears with orbital motion characterised by the number of sets of orbital gears with three sets of orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/203Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes
    • F16H2200/2046Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes with six engaging means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/203Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes
    • F16H2200/2048Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes with seven engaging means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/203Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes
    • F16H2200/2064Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes using at least one positive clutch, e.g. dog clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2094Transmissions using gears with orbital motion using positive clutches, e.g. dog clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2097Transmissions using gears with orbital motion comprising an orbital gear set member permanently connected to the housing, e.g. a sun wheel permanently connected to the housing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Abstract

Die Erfindung betrifft ein Getriebe (G) für ein Kraftfahrzeug, umfassend eine Elektromaschine (EM1), eine erste Antriebswelle (GW1), eine zweite Antriebswelle (GW2), eine Abtriebswelle (GWA), drei Planetenradsätze (P1, P2, P3) sowie zumindest sechs Schaltelemente (A, B, C, D, E, F), wobei durch selektives Betätigen der zumindest sechs Schaltelemente (A, B, C, D, E, F) unterschiedliche Gänge schaltbar und zudem im Zusammenspiel mit der Elektromaschine (EM1) unterschiedliche Betriebsmodi darstellbar sind, sowie Antriebsstrang für ein Kraftfahrzeug mit einem solchen Getriebe (G) und Verfahren zum Betreiben desselbigen.

Description

  • Die Erfindung betrifft ein Getriebe für ein Kraftfahrzeug, umfassend eine Elektromaschine, eine erste Antriebswelle, eine zweite Antriebswelle, eine Abtriebswelle, sowie einen ersten Planetenradsatz, einen zweiten Planetenradsatz und einen dritten Planetenradsatz, wobei die Planetenradsätze jeweils mehrere Elemente umfassen, wobei ein erstes, ein zweites, ein drittes, ein viertes, ein fünftes und ein sechstes Schaltelement vorgesehen sind, und wobei ein Rotor der Elektromaschine mit der zweiten Antriebswelle in Verbindung steht. Des Weiteren betrifft die Erfindung einen Kraftfahrzeugantriebsstrang, in welchem ein vorgenanntes Getriebe zur Anwendung kommt, sowie ein Verfahren zum Betreiben eines Getriebes.
  • Bei Hybridfahrzeugen sind Getriebe bekannt, welche neben einem Radsatz auch eine oder mehrere Elektromaschinen aufweisen. Das Getriebe ist dabei üblicherweise mehrgängig gestaltet, d. h. es sind mehrere unterschiedliche Übersetzungsverhältnisse als Gänge zwischen einer Antriebswelle und einer Abtriebswelle durch Betätigung entsprechender Schaltelemente schaltbar, wobei dies vorzugsweise automatisch vollzogen wird. Je nach Anordnung der Schaltelemente handelt es sich bei diesen um Kupplungen oder auch um Bremsen. Das Getriebe wird dabei dazu genutzt, ein Zugkraftangebot einer Antriebsmaschine des Kraftfahrzeuges in Hinblick auf verschiedene Kriterien geeignet umzusetzen. Dabei werden die Gänge des Getriebes zumeist auch im Zusammenspiel mit der zumindest einen Elektromaschine zur Darstellung eines rein elektrischen Fahrens verwendet. Häufig kann die zumindest eine Elektromaschine außerdem im Getriebe zur Darstellung verschiedener Betriebsmodi auf unterschiedliche Weisen eingebunden werden.
  • Aus der DE 10 2014 218 610 A1 geht ein Getriebe für ein Hybridfahrzeug hervor, welches neben einer ersten Antriebswelle und einer Abtriebswelle drei Planetenradsätze sowie eine Elektromaschine umfasst. Des Weiteren sind bei einer Variante sechs Schaltelemente vorgesehen, über welche unterschiedliche Kraftflüsse von der ersten Antriebswelle zur Abtriebswelle unter Darstellung unterschiedlicher Gänge verwirklicht und zudem unterschiedliche Einbindungen der Elektromaschine gestaltet werden können. Hierbei kann auch ein rein elektrisches Fahren durch alleinigen Antrieb über die Elektromaschine dargestellt werden.
  • Es ist die Aufgabe der vorliegenden Erfindung, eine alternative Ausgestaltung zu dem aus dem Stand der Technik bekannten Getriebe für ein Kraftfahrzeug zu schaffen, mit welchem bei kompaktem Aufbau unterschiedliche Betriebsmodi auf geeignete Art und Weise dargestellt werden können.
  • Diese Aufgabe wird ausgehend vom Oberbegriff des Anspruchs 1 in Verbindung mit dessen kennzeichnenden Merkmalen gelöst. Die hierauf folgenden, abhängigen Ansprüche geben jeweils vorteilhafte Weiterbildungen der Erfindung wieder. Ein Kraftfahrzeugantriebsstrang ist zudem Gegenstand von Anspruch 10. Des Weiteren hat der Anspruch 11 ein Verfahren zum Betreiben eines Getriebes zum Gegenstand.
  • Gemäß der Erfindung umfasst ein Getriebe eine Elektromaschine, eine erste Antriebswelle, eine zweite Antriebswelle, eine Abtriebswelle sowie einen ersten Planetenradsatz, einen zweiten Planetenradsatz und einen dritten Planetenradsatz. Die Planetenradsätze umfassen dabei mehrere Elemente, wobei jedem der Planetenradsätze dabei bevorzugt jeweils ein erstes Element, jeweils ein zweites Element und jeweils ein drittes Element zugeordnet sind. Zudem sind ein erstes, ein zweites, ein drittes, ein viertes, ein fünftes und ein sechstes Schaltelement vorgesehen sind, durch deren selektive Betätigung unterschiedliche Kraftflussführungen unter Schaltung unterschiedlicher Gänge dargestellt werden können. Besonders bevorzugt können dabei vom Übersetzungsverhältnis zumindest vier unterschiedliche Gänge zwischen der ersten Antriebswelle und der Abtriebswelle gebildet werden. Ferner steht ein Rotor der Elektromaschine mit der zweiten Antriebswelle in Verbindung.
  • Unter einer „Welle“ ist im Sinne der Erfindung ein rotierbares Bauteil des Getriebes zu verstehen, über welches je zugehörige Komponenten des Getriebes drehfest miteinander verbunden sind oder über das eine derartige Verbindung bei Betätigung eines entsprechenden Schaltelements hergestellt wird. Die jeweilige Welle kann die Komponenten dabei axial oder radial oder auch sowohl axial und radial miteinander verbinden. So kann die jeweilige Welle auch als Zwischenstück vorliegen, über welches eine jeweilige Komponente zum Beispiel radial angebunden wird.
  • Mit „axial“ ist im Sinne der Erfindung eine Orientierung in Richtung einer Längsmittelachse gemeint, entlang welcher die Planetenradsätze koaxial zueinander liegend angeordnet sind. Unter „radial“ ist dann eine Orientierung in Durchmesserrichtung einer Welle zu verstehen, die auf dieser Längsmittelachse liegt.
  • Bevorzugt weist die Abtriebswelle des Getriebes eine Verzahnung auf, über welche die Abtriebswelle dann im Kraftfahrzeugantriebsstrang mit einem achsparallel zur Abtriebswelle angeordneten Differentialgetriebe in Wirkverbindung steht. Hierbei ist die Verzahnung bevorzugt an einer Anschlussstelle der Abtriebswelle vorgesehen, wobei diese Anschlussstelle der Abtriebswelle bevorzugt axial im Bereich eines Endes des Getriebes liegt, an welchem auch eine die Verbindung zur vorgeschalteten Antriebsmaschine herstellende Anschlussstelle der ersten Antriebswelle vorgesehen ist. Diese Art der Anordnung eignet sich besonders zur Anwendung in einem Kraftfahrzeug mit einem quer zur Fahrtrichtung des Kraftfahrzeuges ausgerichteten Antriebsstrang.
  • Alternativ dazu kann ein Abtrieb des Getriebes prinzipiell aber auch an einem entgegengesetzt zu einer Anschlussstelle der ersten Antriebswelle liegenden, axialen Ende des Getriebes vorgesehen sein. Dabei ist eine Anschlussstelle der Abtriebswelle dann an einem axialen Ende der Abtriebswelle koaxial zu einer Anschlussstelle der ersten Antriebswelle ausgestaltet, so dass Antrieb und Abtrieb des Getriebes an einander entgegengesetzten axialen Enden des Getriebes platziert sind. Ein derartig gestaltetes Getriebe eignet sich dabei zur Anwendung in einem Kraftfahrzeug mit einem in Fahrtrichtung des Kraftfahrzeuges ausgerichteten Antriebsstrang.
  • Die Planetenradsätze sind gemäß einer ersten Variante bevorzugt axial auf die Anschlussstelle der ersten Antriebswelle folgend in der Reihenfolge erster Planetenradsatz, zweiter Planetenradsatz und schließlich dritter Planetenradsatz angeordnet. Im Rahmen einer hierzu alternativen, zweiten Variante der Erfindung sind die Planetenradsätze hingegen axial in der Reihenfolge dritter Planetenradsatz, zweiter Planetenradsatz und schließlich erster Planetenradsatz platziert.
  • Die Erfindung umfasst nun die technische Lehre, dass die erste Antriebswelle drehfest mit dem zweiten Element des ersten Planetenradsatzes verbunden ist. Die Abtriebswelle ist drehfest mit dem zweiten Element des dritten Planetenradsatzes verbunden. Das erste Element des ersten Planetenradsatzes und das erste Element des dritten Planetenradsatzes sind an einem drehfesten Bauelement festgesetzt.
  • Beim dritten Planetenradsatz bestehen zwei Kopplungen. Eine erste Kopplung besteht zwischen dem ersten Element des zweiten Planetenradsatzes und dem drehfesten Bauelement. Eine zweite Koppelung besteht zwischen dem zweiten Element des zweiten Planetenradsatzes und dem dritten Element des dritten Planetenradsatzes. Eine dritte Koppelung besteht zwischen dem dritten Element des zweiten Planetenradsatzes und dem gehäusefesten Bauelement. Wesentlich ist dabei, dass von diesen Koppelungen zwei Koppelungen als drehfeste Verbindungen vorliegen, während bei der noch verbleibenden Koppelung eine drehfeste Verbindung mittels des ersten Schaltelements herstellbar ist.
  • Ferner ist das zweite Schaltelement ausgebildet, die Abtriebswelle drehfest mit der ersten Antriebswelle zu verbinden. Das dritte Schaltelement ist ausgebildet, die Abtriebswelle drehfest mit dem dritten Element des ersten Planetenradsatzes zu verbinden. Das vierte Schaltelement ist ausgebildet, die erste Antriebswelle drehfest mit dem dritten Element des dritten Planetenradsatzes zu verbinden. Das fünfte Schaltelement ausgebildet ist, die erste Antriebswelle drehfest mit der zweiten Antriebswelle zu verbinden.
  • Das sechste Schaltelement ist ausgebildet ist, den zweiten Planetenradsatz zu verblocken oder die zweite Antriebswelle mit dem dritten Element des dritten Planetenradsatzes zu verbinden. Ist ein Planetenradsatz verblockt so ist die Übersetzung unabhängig von der Zähnezahl stets Eins. Anders ausgedrückt läuft der Planetenradsatz als Block um.
  • Beispielsweise kann das sechste Schaltelement derart angeordnet und ausgebildet sein, dass es im betätigten Zustand das erste Element mit dem zweiten Element des zweiten Planetenradsatzes verbindet. Das sechste Schaltelement kann aber auch derart angeordnet und ausgebildet sein, dass es im betätigten Zustand das erste Element mit dem dritten Element des zweiten Planetenradsatzes verbindet. Ebenso kann das sechste Schaltelement derart angeordnet und ausgebildet sein, dass es im betätigten Zustand das zweite Element mit dem dritten Element des zweiten Planetenradsatzes verbindet.
  • Das zweite Schaltelement, das dritte Schaltelement, das vierte Schaltelement, das fünfte Schaltelement und das sechste Schaltelement liegen dabei als Kupplungen vor, die bei Betätigung jeweils die jeweils hieran unmittelbar anknüpfenden Komponenten des Getriebes gegebenenfalls in ihren Drehbewegungen angleichen und anschließend drehfest miteinander verbinden. Hingegen ist das erste Schaltelement je nach Variante als Kupplung ausgeführt oder als Bremse ausgeführt, die bei Betätigung die hieran unmittelbar anknüpfende Komponente gegebenenfalls auf Stillstand abbremst und anschließend festsetzt.
  • Eine jeweilige drehfeste Verbindung der rotierbaren Komponenten des Getriebes ist erfindungsgemäß bevorzugt über eine oder auch mehrere zwischenliegende Wellen realisiert, die dabei bei räumlich dichter Lage der Komponenten auch als kurze Zwischenstücke vorliegen können. Konkret können die Komponenten, die permanent drehfest miteinander verbunden sind, dabei jeweils entweder als drehfest miteinander verbundene Einzelkomponenten oder auch einstückig vorliegen. Im zweitgenannten Fall werden dann die jeweiligen Komponenten und die ggf. vorhandene Welle durch ein gemeinsames Bauteil gebildet, wobei dies insbesondere eben dann realisiert wird, wenn die jeweiligen Komponenten im Getriebe räumlich dicht beieinander liegen.
  • Bei Komponenten des Getriebes, die erst durch Betätigung eines jeweiligen Schaltelements drehfest miteinander verbunden werden, wird eine Verbindung ebenfalls bevorzugt über eine oder auch mehrere zwischenliegende Wellen verwirklicht.
  • Ein Festsetzen erfolgt insbesondere durch drehfestes Verbinden mit einem drehfesten Bauelement des Getriebes, bei welchem es sich vorzugsweise um eine permanent stillstehende Komponente handelt, bevorzugt um ein Gehäuse des Getriebes, einen Teil eines derartigen Gehäuses oder ein damit drehfest verbundenes Bauelement.
  • Unter der „Verbindung“ des Rotors der Elektromaschine mit der zweiten Antriebswelle des Getriebes ist im Sinne der Erfindung eine derartige Verbindung zu verstehen, dass zwischen dem Rotor der Elektromaschine und der zweiten Antriebswelle eine gleichbleibende Drehzahlabhängigkeit vorherrscht.
  • Insgesamt zeichnet sich ein erfindungsgemäßes Getriebe durch eine kompakte Bauweise, geringe Bauteilbelastungen, einen guten Verzahnungswirkungsgrad und geringe Verluste aus.
  • Entsprechend einer Ausführungsform der Erfindung ist das erste Schaltelement derart angeordnet und ausgebildet, dass es im betätigten Zustand das erste Element des zweiten Planetenradsatzes am drehfesten Bauelement festsetzt, während hingegen das zweite Element des zweiten Planetenradsatzes permanent drehfest mit dem dritten Element des dritten Planetenradsatzes verbunden ist sowie das dritte Element des zweiten Planetenradsatzes permanent drehfest mit der zweiten Antriebswelle verbunden ist.
  • Bei dieser Variante ist also die zweite Antriebswelle ständig drehfest mit dem dritten Element des zweiten Planetenradsatzes verbunden, wohingegen das dritte Element des dritten Planetenradsatzes permanent drehfest mit dem zweiten Element des zweiten Planetenradsatzes in Verbindung steht. Zudem hat ein Schließen des ersten Schaltelements eine drehfeste Verbindung zwischen dem ersten Element des zweiten Planetenradsatzes mit einem drehfesten Bauteil zur Folge.
  • Gemäß einer alternativen Ausgestaltungsmöglichkeit der Erfindung ist das erste Schaltelement derart angeordnet und ausgebildet, dass es im betätigten Zustand das dritte Element des zweiten Planetenradsatzes drehfest mit der zweiten Antriebswelle verbindet, während hingegen das erste Element des zweiten Planetenradsatzes am drehfesten Bauelement permanent festgesetzt ist sowie das zweite Element des zweiten Planetenradsatzes permanent drehfest mit dem dritten Element des dritten Planetenradsatzes verbunden ist.
  • Bei dieser sogenannten Kupplungsvariante besteht also zwischen dem ersten Element des zweiten Planetenradsatzes und dem drehfesten Bauelement eine permanent drehfeste Verbindung. Ebenso sind das zweite Element des zweiten Planetenradsatzes und das dritte Element des dritten Planetenradsatzes ständig drehfest miteinander verbunden. Das erste Schaltelement verbindet bei Betätigung das dritte Element des zweiten Planetenradsatzes und die zweite Antriebswelle drehfest miteinander.
  • In einer weiteren Kupplungsvariante ist das erste Schaltelement derart angeordnet und ausgebildet ist, dass es im betätigten Zustand das zweite Element des zweiten Planetenradsatzes drehfest mit dem dritten Element des dritten Planetenradsatzes verbindet, während hingegen das erste Element des dritten Planetenradsatzes am drehfesten Bauelement permanent festgesetzt ist. Das dritte Element des zweiten Planetenradsatzes ist dabei permanent drehfest mit der zweiten Antriebswelle verbunden.
  • Bei dieser Kupplungsvariante besteht also zwischen dem ersten Element des zweiten Planetenradsatzes und dem drehfesten Bauelement eine permanent drehfeste Verbindung. Ebenso sind das dritte Element des zweiten Planetenradsatzes und die zweite Antriebswelle ständig drehfest miteinander verbunden. Das erste Schaltelement verbindet bei Betätigung das dritte Element des dritten Planetenradsatzes und das zweite Element des zweiten Planetenradsatzes ständig drehfest miteinander.
  • Entsprechend einer Ausführungsform der Erfindung ergeben sich durch selektives Schließen der sechs Schaltelemente vier, vom Übersetzungsverhältnis her unterschiedliche Gänge zwischen der ersten Antriebswelle und der Abtriebswelle sowie ein Zusatzgang.
  • So kann ein erster Gang zwischen der ersten Antriebswelle und der Abtriebswelle durch Betätigen des ersten Schaltelements und des fünften Schaltelements dargestellt werden, in welchem ein Fahren bei gleichzeitiger Einbindung einer an der ersten Antriebswelle anknüpfenden Antriebsmaschine sowie der Elektromaschine stattfindet.
  • Des Weiteren ergibt sich ein zweiter Gang zwischen der ersten Antriebswelle und der Abtriebswelle in vier Varianten: In einer ersten Variante ergibt sich der zweite Gang durch Betätigen des ersten Schaltelements und des vierten Schaltelements. In einer zweiten Variante ergibt sich der zweite Gang durch Schließen des vierten und sechsten Schaltelements. In einer dritten Variante ergibt sich der zweite Gang durch Schließen des fünften und sechsten Schaltelements. Schließlich ergibt sich der zweite Gang in einer vierten Variante durch Schließen des vierten und fünften Schaltelements.
  • Ein dritter Gang zwischen der ersten Antriebswelle und der Abtriebswelle kann in einer ersten Variante durch Schließen des ersten und zweiten Schaltelements geschaltet werden. Darüber hinaus kann der dritte Gang in einer zweiten Variante durch Schließen des zweiten und sechsten Schaltelements dargestellt werden. in einer dritten Variante kann der dritte Gang durch Schließen des zweiten und fünften Schaltelements dargestellt werden.
  • Der dritte Gang kann zudem durch alleiniges Schließen des zweiten Schaltelements realisiert werden, da dann die erste Antriebswelle und die Abtriebswelle bei drehfester Verbindung der Abtriebswelle mit dem zweiten Element des ersten Planetenradsatzes direkt drehfest miteinander verbunden, so dass ein Fahren über die vorgeschaltete Antriebsmaschine stattfinden kann. Hierbei kann zudem die Elektromaschine abgekoppelt werden, da in diesem Fall nur das zweite Schaltelement mit Drehmoment belastet ist und außerdem die zweite Antriebswelle stillstehen kann. Hierdurch können Nulllastverluste der Elektromaschine vermieden werden. Allerdings hat ein Schalten in die vorstehend genannten Varianten des dritten Ganges den Vorteil, dass die Elektromaschine mit eingebunden ist und hierdurch ein hybridisches Fahren stattfinden kann.
  • Ein vierter Gang zwischen der ersten Antriebswelle und der Abtriebswelle kann zudem in einer ersten Variante durch Betätigen des ersten und dritten Schaltelements geschaltet werden. In einer zweiten Variante kann der vierte Gang durch Betätigen des dritten und sechsten Schaltelements geschaltet werden. Schließlich kann der vierte Gang durch Betätigen des dritten und fünften Schaltelements dargestellt werden.
  • Zudem kann der vierte Gang durch alleiniges Schließen des dritten Schaltelements über die vorgeschaltete Antriebsmaschine erfolgen, da bei geschlossenem, dritten Schaltelement die erste Antriebswelle und die Abtriebswelle bei drehfester Verbindung der Abtriebswelle mit dem dritten Element des ersten Planetenradsatzes direkt drehfest miteinander verbunden sind. Auch hierbei kann die Elektromaschine abgekoppelt werden, da bei geschlossenem dritten Schaltelement nur das dritte Schaltelement mit Drehmoment belastet wird und die zweite Antriebswelle stillstehen kann. In der Folge können im vierten Gang Nulllastverluste der Elektromaschine vermieden werden. Ein Schalten der vier vorstehend genannten Varianten des vierten Ganges hat jedoch den Vorteil, dass aufgrund der gleichzeitigen Einbindung der vorgeschalteten Antriebsmaschine und der Elektromaschine ein hybridisches Fahren stattfinden kann.
  • Bei geeigneter Wahl von Standgetriebeübersetzungen der Planetenradsätze wird hierdurch eine für die Anwendung im Bereich eines Kraftfahrzeuges geeignete Übersetzungsreihe realisiert. Dabei können Schaltungen zwischen den Gängen verwirklicht werden, bei welchen stets nur der Zustand von je zwei Schaltelementen zu variieren ist, indem eines der am vorhergehenden Gang beteiligten Schaltelemente zu öffnen und ein anderes Schaltelement zur Darstellung des nachfolgenden Ganges zu schließen ist. Dies hat dann auch zur Folge, dass ein Schalten zwischen den Gängen sehr zügig ablaufen kann.
  • Aufgrund der Verbindung der Elektromaschine mit der zweiten Antriebswelle des Getriebes lassen sich außerdem unterschiedliche Betriebsmodi auf einfache Art und Weise verwirklichen:
    • So kann ein erster Gang zwischen der zweiten Antriebswelle und der Abtriebswelle für ein rein elektrisches Fahren genutzt werden, wobei sich dieser erste Gang durch Schließen des ersten Schaltelements ergibt.
  • Durch Schließen des ersten Schaltelements ist die Elektromaschine mit einer konstanten Übersetzung (jeweils drittes Element auf zweites Element bei festem ersten Element des zweiten und dritten Planetenradsatzes) mit dem Abtrieb verbunden, d.h. rein elektrisch wird dann mit einer Übersetzung gefahren, die dem ersten Verbrennungsmotorischen Gang entspricht.
  • Außerdem kann noch ein zweiter Gang zwischen der zweiten Antriebswelle und der Abtriebswelle für ein rein elektrisches Fahren realisiert werden. Dabei ist zum Schalten dieses zweiten Ganges das sechste Schaltelement zu betätigen. Durch Schließen des sechsten Schaltelements ist die Elektromaschine mit einer konstanten Übersetzung (drittes Element auf zweites Element bei festgesetztem ersten Element des dritten Planetenradsatzes) mit dem Abtrieb verbunden, d.h. rein elektrisch wird dann mit einer Übersetzung gefahren, die dem zweiten Gang entspricht.
  • Ausgehend von einem rein elektrischen Fahren im ersten, zwischen der zweiten Antriebswelle und der Abtriebswelle wirksamen Gang kann dann die vorgeschaltete Antriebsmaschine in den ersten , zwischen der ersten Antriebswelle und der Abtriebswelle wirksamen Gang zugestartet werden. Zudem kann in die erste Variante des zweiten Ganges zugestartet werden. Schließlich kann in die erste Variante des dritten Ganges zugestartet werden. Darüber hinaus kann in die erste Variante des vierten Ganges zugestartet werden. In diesen Gängen ist jeweils das erste Schaltelement beteiligt.
  • Ebenso kann auch aus dem zweiten, zwischen der zweiten Antriebswelle und der Abtriebswelle wirksamen Gang ein Zustarten der vorgeschalteten Antriebsmaschine in die zweite Variante des zweiten Ganges, in die dritte Variante des zweiten Ganges, in die zweite Variante des dritten Ganges sowie in die zweite Variante des vierten, zwischen der ersten Antriebswelle und der Abtriebswelle wirksamen Ganges erfolgen.
  • Als weiterer Betriebsmodus kann zudem ein Ladebetrieb eines elektrischen Energiespeichers verwirklicht werden, indem lediglich das fünfte Schaltelement geschlossen und damit eine drehfeste Verbindung zwischen der ersten Antriebswelle und der zweiten Antriebswelle und damit auch eine Koppelung mit der Elektromaschine hergestellt wird. Die zweite Antriebswelle dreht in diesem Zustand insbesondere schneller als die erste Antriebswelle. Gleichzeitig ist dabei kein Kraftschluss zur Abtriebswelle hergestellt, so dass sich das Getriebe in einer Neutralstellung befindet. Abgesehen von einem Ladebetrieb kann hierdurch auch ein Starten der vorgeschalteten Antriebsmaschine über die Elektromaschine verwirklicht werden.
  • Des Weiteren können Lastschaltungen mit Zugkraftstützung dargestellt werden: beim Gangwechsel zwischen dem ersten Gang und dem zweiten Gang kann die Zugkraft bei geschlossenem, ersten Schaltelement über die Elektromaschine gestützt werden, wobei die Synchronisation des zu schließenden Schaltelements dabei über eine Drehzahlregelung der vorgeschalteten Antriebsmaschine erfolgt. Alternativ kann dies aber auch durch synchronisierte Schaltelemente oder auch durch eine andere, separate Synchronisationseinrichtung erfolgen, wie zum Beispiel eine Getriebebremse oder auch eine weitere Elektromaschine, die direkt oder indirekt mit der ersten Antriebswelle wirkverbunden sein kann. Wird antriebsseitig der Antriebswelle zudem ein weiteres Schaltelement als Trennkupplung vorgesehen, kann die Trägheitsmasse der vorgeschalteten Antriebsmaschine während der Synchronisierung abgekoppelt werden.
  • Ebenso kann auch ein Gangwechsel unter Last zwischen dem zweiten Gang und der ersten Variante des dritten Ganges bei geschlossenem, ersten Schaltelement stattfinden. Dies ist im Weiteren auch bei einem Gangwechsel zwischen der ersten Variante des dritten Ganges und der ersten Variante des vierten, zwischen der ersten Antriebswelle und der Abtriebswelle wirksamen Ganges realisierbar, da auch hier an beiden Varianten jeweils das erste Schaltelement beteiligt ist.
  • Das erfindungsgemäße Getriebe kann zudem so betrieben werden, dass beim Fahren eine Drehzahlabsenkung der Elektromaschine erreicht wird. So kann zunächst hybridisch in der ersten Variante des vierten Ganges gefahren werden, indem entweder nach einer über die Elektromaschine drehmomentgestützten Schaltung vom dritten in den vierten Gang oder nach einem Zustarten der Antriebsmaschine in den vierten Gang das erste Schaltelement zunächst geschlossen bleibt. Um nun aber eine Drehzahl der Elektromaschine im vierten Gang bei höheren Fahrgeschwindigkeiten abzusenken, kann von der ersten Variante des vierten Ganges in die zweite Variante des vierten Ganges umgeschaltet werden, da hier der Rotor der Elektromaschine eine geringere Drehzahl aufweist als in der ersten Variante des vierten Ganges. Diese Umschaltung erfolgt dabei mit Erhaltung der Zugkraft über die vorgeschaltete Antriebsmaschine bei geschlossenem, dritten Schaltelement. Zunächst wird dabei das lastfreie, erste Schaltelement ausgelegt und im Folgenden das lastfreie, sechste Schaltelement eingelegt, wobei die Drehzahlanpassung dabei durch Drehzahlregelung der Elektromaschine erfolgt.
  • Dabei ist zur Abkoppelung der vorgeschalteten Antriebsmaschine kein separates Schaltelement erforderlich, da die vorgeschaltete Antriebsmaschine in der zweiten Variante des vierten, zwischen der ersten Antriebswelle und der Abtriebswelle wirksamen Ganges durch Öffnen des dritten Schaltelements abgekoppelt werden kann. Hierdurch wird dann der zweite Gang realisiert, welcher zwischen der zweiten Antriebswelle und der Abtriebswelle wirksam ist. Darüber hinaus kann bei langsamer werdendem Fahrzeug eine Rückschaltung vom vierten, zwischen der ersten Antriebswelle und der Abtriebswelle wirksamen Gang in den dritten, zwischen der ersten Antriebswelle und der Abtriebswelle wirksamen Gang vorbereitet werden, indem zunächst von der zweiten Variante in die erste Variante des vierten Ganges gewechselt und dabei die Zugkraft bei geschlossenem dritten Schaltelement über die vorgeschaltete Antriebsmaschine erhalten wird. In der ersten Variante des vierten Ganges ist dann wiederum das erste Schaltelement geschlossen, welches benötigt wird, um im Zuge der Rückschaltung vom vierten in den dritten Gang die Zugkraft über die Elektromaschine zu stützen.
  • Alternativ dazu kann aber auch eine Rückschaltung vom vierten, zwischen der ersten Antriebswelle und Abtriebswelle wirksamen Ganges in den dritten, zwischen der ersten Antriebswelle und der Abtriebswelle wirksamen Gang bei geschlossenem, sechsten Schaltelement vollzogen werden, indem zwischen der zweiten Variante des vierten Ganges und der zweiten Variante des dritten Ganges gewechselt wird, an deren Darstellung jeweils das sechste Schaltelement beteiligt ist. Hierbei stützt die Elektromaschine dann die Zugkraft. Anschließend kann das sechste Schaltelement bedarfsweise geöffnet und daraufhin das erste Schaltelement geschlossen werden, wobei eine Synchronisation dabei über die Elektromaschine und ein Stützen der Zugkraft über die vorgeschaltete Antriebsmaschine stattfindet. Hierdurch kann auch im dritten, zwischen der ersten Antriebswelle und der Abtriebswelle wirksamen Ganges die Drehzahl der Elektromaschine variiert werden.
  • Es ist eine weitere Ausgestaltungsmöglichkeit der Erfindung, dass eine weitere Elektromaschine vorgesehen ist, deren Rotor an der ersten Antriebswelle angebunden ist. Zudem ist es eine weitere Ausgestaltungsmöglichkeit der Erfindung, dass eine weitere Elektromaschine vorgesehen ist, deren Rotor an dem dritten Element des ersten Planetenradsatzes angebunden ist.
  • Eine derartige Ausgestaltung hat dabei den Vorteil, dass hierdurch weitere Fahrzustände verwirklicht werden können. Zudem kann hierdurch ggf. unmittelbar ein Starten der vorgeschalteten Antriebsmaschine realisiert werden, wenn diese als Verbrennungskraftmaschine ausgestaltet ist. Darüber hinaus kann die zusätzliche Elektromaschine die vorgeschaltete Antriebsmaschine bei der Synchronisation von Schaltelementen unterstützen.
  • Gemäß einer weiteren Ausführungsform der Erfindung kann die erste Antriebswelle über ein siebtes Schaltelement drehfest mit einer Anschlusswelle verbunden werden, die innerhalb eines Kraftfahrzeugantriebsstranges dann wiederum bevorzugt mit der dem Getriebe vorgeschaltete Antriebsmaschine gekoppelt ist. Das siebte Schaltelement kann dabei prinzipiell als kraftschlüssiges oder auch als formschlüssiges Schaltelement ausgeführt sein, liegt aber besonders bevorzugt als Klauenkupplung vor. Über das siebte Schaltelement kann die vorgeschaltete Antriebsmaschine dementsprechend auch vollständig vom Getriebe abgekoppelt werden, so dass ein rein elektrischer Betrieb problemlos realisierbar ist.
  • In Weiterbildung der Erfindung ist ein oder sind mehrere Schaltelemente jeweils als formschlüssiges Schaltelement realisiert. Hierbei ist das jeweilige Schaltelement bevorzugt entweder als Klauenschaltelement oder als Sperrsynchronisation ausgeführt. Formschlüssige Schaltelemente haben gegenüber kraftschlüssigen Schaltelementen den Vorteil, dass im geöffneten Zustand geringere Schleppverluste auftreten, so dass sich ein besserer Wirkungsgrad des Getriebes erreichen lässt. Insbesondere sind bei dem erfindungsgemäßen Getriebe alle Schaltelemente als formschlüssige Schaltelemente verwirklicht, so dass sich möglichst geringe Schleppverluste erreichen lassen. Prinzipiell könnte aber auch ein Schaltelement oder könnten mehrere Schaltelemente als kraftschlüssige Schaltelemente, beispielsweise als Lamellenschaltelemente, gestaltet sein.
  • Die Planetenradsätze sind bevorzugt in axialer Richtung ausgehend von einem Getriebeeingang in der Reihenfolge erster Planetenradsatz, zweiter Planetenradsatz, dritter Planetenradsatz angeordnet.
  • Die Planetenradsätze können, sofern es eine Anbindung der Elemente ermöglicht, im Rahmen der Erfindung jeweils als Minus-Planetensatz vorliegen, wobei es sich bei dem ersten Element des jeweiligen Planetenradsatzes um ein Sonnenrad, bei dem zweiten Element des jeweiligen Planetenradsatzes um einen Planetensteg und bei dem dritten Element des jeweiligen Planetenradsatzes um ein Hohlrad handelt. Ein Minus-Planetensatz setzt sich auf dem Fachmann prinzipiell bekannte Art und Weise aus den Elementen Sonnenrad, Planetensteg und Hohlrad zusammen, wobei der Planetensteg mindestens ein, bevorzugt aber mehrere Planetenräder drehbar gelagert führt, die im Einzelnen jeweils sowohl mit dem Sonnenrad, als auch dem umliegenden Hohlrad kämmen.
  • Alternativ dazu könnten aber einer oder auch mehrere Planetenradsätze, sofern es die Anbindung der jeweiligen Elemente zulässt, als Plus-Planetensatz vorliegen, wobei es sich bei dem ersten Element des jeweiligen Planetenradsatzes dann um ein Sonnenrad, bei dem zweiten Element des jeweiligen Planetenradsatzes um ein Hohlrad und bei dem dritten Element des jeweiligen Planetenradsatzes um einen Planetensteg handelt. Bei einem Plus-Planetensatz sind ebenfalls die Elemente Sonnenrad, Hohlrad und Planetensteg vorhanden, wobei Letzterer mindestens ein Planetenradpaar führt, bei welchem das eine Planetenrad mit dem innenliegenden Sonnenrad und das andere Planetenrad mit dem umliegenden Hohlrad im Zahneingriff steht, sowie die Planetenräder untereinander kämmen.
  • Wo es eine Anbindung der einzelnen Elemente zulässt, kann ein Minus-Planetensatz in einen Plus-Planetensatz überführt werden, wobei dann gegenüber der Ausführung als Minus-Planetensatz die Hohlrad- und die Planetensteganbindung miteinander zu tauschen, sowie eine Getriebestandübersetzung um eins zu erhöhen ist. Umgekehrt könnte auch ein Plus-Planetensatz durch einen Minus-Planetensatz ersetzt werden, sofern die Anbindung der Elemente des Getriebes dies ermöglicht. Dabei wären dann im Vergleich zu dem Plus-Planetensatz ebenfalls die Hohlrad- und die Planetensteganbindung miteinander zu tauschen, sowie eine Getriebestandübersetzung um eins zu reduzieren. Im Rahmen der Erfindung sind die drei Planetenradsätze jedoch bevorzugt jeweils als Minus-Planetensatz ausgeführt.
  • Vorliegend kann ein jeder Planetenradsatz als ein Minus-Planetenradsatz oder als ein Planetenradsatz ausgeführt sein, da es keinen Durchtrieb am zweiten Element des zweiten Planetenradsatzes gibt.
  • Die Planetenradsätze liegen bevorzugt jeweils als Minus-Planetensatz vor, wobei es sich bei dem ersten Element des jeweiligen Planetenradsatzes um ein Sonnenrad, bei dem zweiten Element des jeweiligen Planetenradsatzes um einen Planetensteg und bei dem dritten Element des jeweiligen Planetenradsatzes um ein Hohlrad handelt. Ein Minus-Planetensatz setzt sich auf dem Fachmann prinzipiell bekannte Art und Weise aus den Elementen Sonnenrad, Planetensteg und Hohlrad zusammen, wobei der Planetensteg mindestens ein, bevorzugt aber mehrere Planetenräder drehbar gelagert führt, die im Einzelnen jeweils sowohl mit dem Sonnenrad, als auch dem umliegenden Hohlrad kämmen, d.h. in Zahneingriff stehen.
  • Entsprechend einer weiteren Ausführungsform der Erfindung sind das erste Schaltelement und das sechste Schaltelement zu einem Schaltelementpaar zusammengefasst, welchem ein Betätigungselement zugeordnet ist. Dabei kann über das Betätigungselement aus einer Neutralstellung heraus einerseits das erste Schaltelement und andererseits das sechste Schaltelement betätigt werden. Dies hat den Vorteil, dass durch dieses Zusammenfassen die Anzahl an Betätigungselementen reduziert und damit auch der Herstellungsaufwand gemindert werden kann.
  • Alternativ oder auch ergänzend zu der vorgenannten Variante sind das zweite Schaltelement und das dritte Schaltelement zu einem Schaltelementpaar zusammengefasst, welchem ein Betätigungselement zugeordnet ist. Über dieses Betätigungselement kann dabei aus einer Neutralstellung heraus einerseits das zweite Schaltelement und andererseits das dritte Schaltelement betätigt werden. Hierdurch kann der Herstellungsaufwand reduziert werden, indem durch das Zusammenfassen der beiden Schaltelemente zu einem Schaltelementpaar eine Betätigungseinrichtung für beide Schaltelemente verwendet werden kann. Alternativ dazu können aber auch das zweite Schaltelement und das vierte Schaltelement oder das zweite Schaltelement und das fünfte Schaltelement zusammengefasst sein.
  • Weiter alternativ oder auch ergänzend zu den beiden vorgenannten Varianten sind das vierte Schaltelement und das fünfte Schaltelement zu einem Schaltelementpaar zusammengefasst, welchem ein Betätigungselement zugeordnet ist. Über dieses Betätigungselement kann dabei aus einer Neutralstellung heraus einerseits das vierte Schaltelement und andererseits das fünfte Schaltelement betätigt werden. Auch hierdurch kann der Herstellungsaufwand reduziert werden, da somit ein Betätigen der beiden Schaltelemente über eine gemeinsame Betätigungseinrichtung stattfinden kann. Alternativ dazu können aber auch das dritte Schaltelement und das fünfte Schaltelement oder das dritte Schaltelement und das vierte Schaltelement zusammengefasst sein.
  • Besonders bevorzugt sind drei vorgenannte Schaltelementpaare gleichzeitig realisiert, so dass die sechs Schaltelemente des Getriebes über drei Betätigungselemente betätigt werden können. Hierdurch lässt sich ein besonders niedriger Herstellungsaufwand verwirklichen.
  • Entsprechend einer Ausführungsform der Erfindung ist der Rotor der Elektromaschine drehfest mit der zweiten Antriebswelle verbunden. Alternativ dazu ist es eine Ausgestaltungsmöglichkeit der Erfindung, dass der Rotor über mindestens eine Übersetzungsstufe mit der zweiten Antriebswelle in Verbindung steht. Die Elektromaschine kann entweder koaxial zu den Planetenradsätzen oder achsversetzt zu diesen liegend angeordnet sein. Im erstgenannten Fall kann der Rotor der Elektromaschine dabei entweder unmittelbar drehfest mit der zweiten Antriebswelle verbunden oder aber über eine oder auch mehrere zwischenliegende Übersetzungsstufen mit dieser gekoppelt sein, wobei Letzteres eine günstigere Auslegung der Elektromaschine mit höheren Drehzahlen und geringeren Drehmoment ermöglicht. Die mindestens eine Übersetzungsstufe kann dabei als Stirnradstufe und/oder als Planetenstufe ausgeführt sein. Bei einer koaxialen Anordnung der Elektromaschine können einer oder mehrere der Planetenradsätze dann zudem weiter bevorzugt axial im Bereich der Elektromaschine sowie radial innenliegend zu dieser angeordnet sein, so dass sich die axiale Baulänge des Getriebes verkürzen lässt.
  • Ist die Elektromaschine hingegen achsversetzt zu den Planetenradsätzen vorgesehen, so erfolgt eine Koppelung über eine oder mehrere zwischenliegende Übersetzungsstufen und/oder einen Zugmitteltrieb. Die eine oder die mehreren Übersetzungsstufen können hierbei auch im Einzelnen entweder als Stirnradstufe oder als Planetenstufe realisiert sein. Bei einem Zugmitteltrieb kann es sich entweder um einen Riemen- oder einen Kettentrieb handeln.
  • Ist zudem eine weitere Elektromaschine vorgesehen, so kann auch ein Rotor dieser weiteren Elektromaschine entweder unmittelbar drehfest mit der ersten Antriebswelle verbunden oder aber über zumindest eine Übersetzungsstufe mit der ersten Antriebswelle gekoppelt sein. Bei der zumindest einen Übersetzungsstufe kann es sich dabei um eine Stirnrad- oder Planetenstufe oder auch einen Zugmitteltrieb handeln.
  • Zudem kann die weitere Elektromaschine dabei koaxial oder auch achsversetzt zu der ersten Antriebswelle und damit auch den Planetenradsätzen vorgesehen sein.
  • Im Rahmen der Erfindung kann dem Getriebe ein Anfahrelement vorgeschaltet sein, beispielsweise ein hydrodynamischer Drehmomentwandler oder eine Reibkupplung. Dieses Anfahrelement kann dann auch Bestandteil des Getriebes sein und dient der Gestaltung eines Anfahrvorgangs, indem es eine Schlupfdrehzahl zwischen der insbesondere als Brennkraftmaschine gestalteten Antriebsmaschine und der ersten Antriebswelle des Getriebes ermöglicht. Hierbei kann auch eines der Schaltelemente des Getriebes oder die evtl. vorhandene Trennkupplung als ein solches Anfahrelement ausgebildet sein, indem es bzw. sie als Reibschaltelement vorliegt. Zudem kann auf jeder Welle des Getriebes prinzipiell ein Freilauf zum Getriebegehäuse oder zu einer anderen Welle angeordnet werden.
  • Das erfindungsgemäße Getriebe ist insbesondere Teil eines Kraftfahrzeugantriebsstranges für ein Hybrid- oder Elektrofahrzeug und ist dann zwischen einer als Verbrennungskraftmaschine oder als Elektromaschine gestalteten Antriebsmaschine des Kraftfahrzeuges und weiteren, in Kraftflussrichtung zu Antriebsrädern des Kraftfahrzeuges folgenden Komponenten des Antriebsstranges angeordnet. Hierbei ist die erste Antriebswelle des Getriebes entweder permanent drehfest mit einer Kurbelwelle der Verbrennungskraftmaschine bzw. der Rotorwelle der Elektromaschine gekoppelt oder über eine zwischenliegende Trennkupplung bzw. ein Anfahrelement mit dieser verbindbar, wobei zwischen einer Verbrennungskraftmaschine und dem Getriebe zudem ein Torsionsschwingungsdämpfer vorgesehen sein kann. Abtriebsseitig ist das Getriebe innerhalb des Kraftfahrzeugantriebsstranges dann bevorzugt mit einem Differentialgetriebe einer Antriebsachse des Kraftfahrzeuges gekoppelt, wobei hier allerdings auch eine Anbindung an ein Längsdifferential vorliegen kann, über welches eine Verteilung auf mehrere angetriebene Achsen des Kraftfahrzeuges stattfindet. Das Differentialgetriebe bzw. das Längsdifferential kann dabei mit dem Getriebe in einem gemeinsamen Gehäuse angeordnet sein. Ebenso kann auch ein ggf. vorhandener Torsionsschwingungsdämpfer mit in dieses Gehäuse integriert sein.
  • Dass zwei Bauelemente des Getriebes „verbunden“ bzw. „gekoppelt“ sind bzw. „miteinander in Verbindung stehen“, meint im Sinne der Erfindung eine permanente Koppelung dieser Bauelemente, so dass diese nicht unabhängig voneinander rotieren können. Insofern ist zwischen diesen Bauelementen, bei welchen es sich um Elemente der Planetenradsätze und/oder auch Wellen und/oder ein drehfestes Bauelement des Getriebes handeln kann, kein Schaltelement vorgesehen, sondern die entsprechenden Bauelemente sind mit gleichbleibender Drehzahlabhängigkeit miteinander gekoppelt.
  • Ist hingegen ein Schaltelement zwischen zwei Bauelementen vorgesehen, so sind diese Bauelemente nicht permanent miteinander gekoppelt, sondern eine Koppelung wird erst durch Betätigen des zwischenliegenden Schaltelements vorgenommen. Dabei bedeutet eine Betätigung des Schaltelements im Sinne der Erfindung, dass das betreffende Schaltelement in einen geschlossenen Zustand überführt wird und in der Folge die hieran unmittelbar angebundenen Bauelemente ggf. in ihren Drehbewegungen aneinander angleicht. Im Falle einer Ausgestaltung des betreffenden Schaltelements als formschlüssiges Schaltelement werden die hierüber unmittelbar drehfest miteinander verbundenen Bauelemente unter gleicher Drehzahl laufen, während im Falle eines kraftschlüssigen Schaltelements auch nach einem Betätigen desselbigen Drehzahlunterschiede zwischen den Bauelementen bestehen können. Dieser gewollte oder auch ungewollte Zustand wird im Rahmen der Erfindung dennoch als drehfeste Verbindung der jeweiligen Bauelemente über das Schaltelement bezeichnet.
  • Die Erfindung ist nicht auf die angegebene Kombination der Merkmale des Hauptanspruchs oder der hiervon abhängigen Ansprüche beschränkt. Es ergeben sich darüber hinaus Möglichkeiten, einzelne Merkmale, auch soweit sie aus den Ansprüchen, der nachfolgenden Beschreibung bevorzugter Ausführungsformen der Erfindung oder unmittelbar aus den Zeichnungen hervorgehen, miteinander zu kombinieren. Die Bezugnahme der Ansprüche auf die Zeichnungen durch Verwendung von Bezugszeichen soll den Schutzumfang der Ansprüche nicht beschränken.
  • Vorteilhafte Ausführungsformen der Erfindung, die nachfolgend erläutert werden, sind in den Zeichnungen dargestellt. Es zeigen
    • 1 eine schematische Ansicht eines Kraftfahrzeugantriebsstranges;
    • 2 bis 7 jeweils eine schematische Ansicht je eines Getriebes, wie es bei dem Kraftfahrzeugantriebsstrang aus 1 zur Anwendung kommen kann;
    • 8 ein beispielhaftes Schaltschema der Getriebe aus den 2 bis 7;
    • 9 und 10 jeweils eine schematische Ansicht je eines Getriebes, wie es ebenfalls bei dem Kraftfahrzeugantriebsstrang aus 1 zur Anwendung kommen kann;
    • 12 ein beispielhaftes Schaltschema des Kraftfahrzeugantriebsstranges aus 1 mit einem Getriebe nach 9 und 10; und
    • 13 bis 16 jeweils eine schematische Darstellung je einer Abwandlungsmöglichkeit der Getriebe aus den 2 bis 7 sowie 9 und 10.
  • 1 zeigt eine schematische Ansicht eines Kraftfahrzeugantriebsstranges eines Hybridfahrzeuges, wobei in dem Kraftfahrzeugantriebsstrang eine Verbrennungskraftmaschine VKM über einen zwischenliegenden Torsionsschwingungsdämpfer TS mit einem Getriebe G verbunden ist. Dem Getriebe G ist abtriebsseitig ein Differentialgetriebe AG nachgeschaltet, über welches eine Antriebsleistung auf Antriebsräder DW einer Antriebsachse des Kraftfahrzeuges verteilt wird. Das Getriebe G und der Torsionsschwingungsdämpfer TS sind dabei in einem gemeinsamen Gehäuse des Getriebes G angeordnet, in welches dann auch das Differentialgetriebe AG integriert sein kann. Wie zudem in 1 zu erkennen ist, sind die Verbrennungskraftmaschine VKM, der Torsionsschwingungsdämpfer TS, das Getriebe G und auch das Differentialgetriebe AG quer zu einer Fahrtrichtung des Kraftfahrzeuges ausgerichtet.
  • Aus 2 geht eine schematische Darstellung des Getriebes G gemäß einer ersten Ausführungsform der Erfindung hervor. Wie zu erkennen ist, setzt sich das Getriebe G aus einem Radsatz RS und einer Elektromaschine EM1 zusammen, die gemeinsam in dem Gehäuse des Getriebes G angeordnet sind. Der Radsatz RS umfasst drei Planetenradsätze P1, P2 und P3, wobei jeder der Planetenradsätze P1, P2 und P3 je ein erstes Element E11 bzw. E12 bzw. E13, je ein zweites Element E21 bzw. E22 bzw. E23 und je ein drittes Element E31 bzw. E32 bzw. E33 aufweist. Das jeweilige erste Element E11 bzw. E12 bzw. E13 ist dabei jeweils durch je ein Sonnenrad des jeweiligen Planetenradsatzes P1 bzw. P2 bzw. P3 gebildet, während das jeweilige zweite Element E21 bzw. E22 bzw. E23 des jeweiligen Planetenradsatzes P1 bzw. P2 bzw. P3 als Planetensteg und das jeweilige dritte Element E31 bzw. E32 bzw. E33 des jeweiligen Planetenradsatzes P1 bzw. P2 bzw. P3 als Hohlrad vorliegt.
  • Im vorliegenden Fall liegen also der erste Planetenradsatz P1, der zweite Planetenradsatz P2 und der dritte Planetenradsatz P3 jeweils als Minus-Planetensatz vor, dessen jeweiliger Planetensteg zumindest ein Planetenrad drehbar gelagert führt, welches sowohl mit dem jeweiligen radial innenliegenden Sonnenrad, als auch dem jeweiligen radial umliegenden Hohlrad im Zahneingriff steht. Besonders bevorzugt sind aber bei dem ersten Planetenradsatz P1, bei dem zweiten Planetenradsatz P2 und auch bei dem dritten Planetenradsatz P3 jeweils mehrere Planetenräder vorgesehen.
  • Wie in 2 zu erkennen ist, umfasst das Getriebe G insgesamt sechs Schaltelemente in Form eines ersten Schaltelements A, eines zweiten Schaltelements B, eines dritten Schaltelements C, eines vierten Schaltelements D, eines fünften Schaltelements E und eines sechsten Schaltelements F. Diese Schaltelemente sind jeweils als formschlüssige Schaltelemente ausgeführt und liegen bevorzugt als Klauenschaltelemente vor. Während das erste Schaltelement A als Bremse ausgeführt ist, liegen die übrigen Schaltelemente B, C, D, E und F als Kupplungen vor.
  • Das erste Element E11 des ersten Planetenradsatzes P1 sowie das erste Element E13 des dritten Planetenradsatzes P3 sind an einem drehfesten Bauteil GG festgesetzt und damit permanent an einer Drehbewegung gehindert. Bei dem drehfesten Bauteil GG handelt es sich insbesondere um das Getriebegehäuse des Getriebes G oder einen Teil des Getriebegehäuses. Das zweite Element E21 des ersten Planetenradsatzes P1 ist permanent drehfest mit einer ersten Antriebswelle GW1 verbunden.
  • Das zweite Element E22 des zweiten Planetenradsatzes P2 und das dritte Element E33 des dritten Planetenradsatzes P3 sind permanent drehfest miteinander verbunden. Das zweite Element E23 des dritten Planetenradsatzes P3 steht mit einer Abtriebswelle GWA des Getriebes G in Verbindung. Das erste Element E13 des zweiten Planetenradsatzes P2 kann über das erste Schaltelement A an dem drehfesten Bauelement GG festgesetzt werden.
  • Wie zudem in 2 zu erkennen ist, kann die erste Antriebswelle GW1 des Getriebes G über das zweite Schaltelement B drehfest mit der Abtriebswelle GWA verbunden werden.
  • Abgesehen davon kann das dritte Element E31 des ersten Planetenradsatzes P1 durch Schließen des dritten Schaltelements C drehfest mit der Abtriebswelle GWA in Verbindung gebracht werden.
  • Die erste Antriebswelle GW1 kann außerdem über das vierte Schaltelement D drehfest mit dem dritten Element E33 des dritten Planetenradsatzes P3 verbunden sowie mittels des fünften Schaltelements E drehfest mit der zweiten Antriebswelle GW2 in Verbindung gebracht werden. Des Weiteren kann noch das zweite Element E22 des zweiten Planetenradsatzes P2 durch Schließen des sechsten Schaltelements F drehfest mit dem ersten Element E12 des zweiten Planetenradsatzes P2 erbunden werden. Ist das sechste Schaltelement F betätigt, so ist der zweite Planetenradsatz P2 verblockt.
  • Sowohl die erste Antriebswelle GW1, als auch die Abtriebswelle GWA bilden jeweils je eine Anschlussstelle GW1-A bzw. GWA-A aus, wobei die Anschlussstelle GW1-A im Kraftfahrzeugantriebsstrang aus 1 einer Anbindung an die Verbrennungskraftmaschine VKM dient, während das Getriebe G an der Anschlussstelle GWA-A mit dem nachfolgenden Differentialgetriebe AG verbunden ist. Die Anschlussstelle GW1-A der ersten Antriebswelle GW1 ist dabei an einem axialen Ende des Getriebes G ausgestaltet, wobei die Anschlussstelle GWA-A der Abtriebswelle GWA im Bereich desselben axialen Endes liegt und hierbei quer zur Anschlussstelle GW1-A der ersten Antriebswelle GW1 ausgerichtet ist. Zudem sind die erste Antriebswelle GW1, die zweite Antriebswelle GW2 und die Abtriebswelle GWA koaxial zueinander liegend angeordnet.
  • Die Planetenradsätze P1, P2 und P3 liegen ebenfalls koaxial zu den Antriebswellen GW1 und GW2 und der Abtriebswelle GWA, wobei sie auf die Anschlussstelle GW1 - A der ersten Antriebswelle GW1 axial folgend in der Reihenfolge erster Planetenradsatz P1, zweiter Planetenradsatz P2 und dritter Planetenradsatz P3 angeordnet sind. Ebenso ist auch die Elektromaschine EM1 koaxial zu den Planetenradsätzen P1, P2 und P3 und damit auch den Antriebswellen GW1 und GW2 sowie der Abtriebswelle GWA platziert, wobei die Elektromaschine EM1 dabei axial auf Höhe des zweiten und dritten Planetenradsatzes sowie radial umliegend zu diesen angeordnet ist.
  • Das sechste Schaltelement F und das erste Schaltelement A liegen dabei axial unmittelbar nebeneinander sowie radial auf derselben Höhe und sind zu einem Schaltelementpaar SP1 zusammengefasst, indem dem ersten Schaltelement A und dem sechsten Schaltelement F ein gemeinsames Betätigungselement zugeordnet ist, über welches aus einer Neutralstellung heraus zum einen das sechste Schaltelement F und zum anderen das erste Schaltelement A betätigt werden kann.
  • Das zweite Schaltelement B und das dritte Schaltelement C sind ebenfalls axial zwischen dem ersten Planetenradsatz P1 und dem zweiten Planetenradsatz P2 platziert. Dabei sind das zweite Schaltelement B und das dritte Schaltelement C axial unmittelbar nebeneinanderliegend sowie radial auf derselben Höhe vorgesehen und weisen ein gemeinsames Betätigungselement auf, über welches aus einer Neutralstellung heraus einerseits das zweite Schaltelement B und andererseits das dritte Schaltelement C betätigt werden kann. Insofern sind das zweite Schaltelement B und das dritte Schaltelement C zu einem Schaltelementpaar SP2 zusammengefasst.
  • Schließlich liegen das vierte Schaltelement D und das fünfte Schaltelement E axial auf einer dem zweiten Planetenradsatz P2 abgewandt liegenden Seite des dritten Planetenradsatzes P3. Das vierte Schaltelement D und das fünfte Schaltelement E sind zu einem Schaltelementpaar SP3 zusammengefasst, indem sie axial unmittelbar nebeneinanderliegend sowie radial im Wesentlichen auf derselben Höhe vorgesehen sind und ein gemeinsames Betätigungselement aufweisen, über welches aus einer Neutralstellung heraus zum einen das vierte Schaltelement D sowie zum anderen das fünfte Schaltelement E betätigt werden kann.
  • Ferner geht aus 3 eine schematische Ansicht eines Getriebes G entsprechend einer zweiten Ausgestaltungsmöglichkeit der Erfindung hervor, welche ebenfalls bei dem Kraftfahrzeugantriebsstrang in 1 zur Anwendung kommen kann. Dabei entspricht diese Ausgestaltungsmöglichkeit weitestgehend der vorhergehenden Variante nach 2, mit dem Unterschied, dass das nunmehr mit F' (F-Strich) bezeichnete sechste Schaltelement im betätigten Zustand das erste Element E12 mit dem dritten Element E32 des zweiten Planetenradsatzes P2 drehfest miteinander verbindet. Insofern handelt es sich bei der Ausführung gemäß 3 um eine Verblockungsvariante. Ansonsten entspricht die Ausgestaltungsmöglichkeit nach 3 der Variante nach 2, so dass auf das hierzu Beschriebene Bezug genommen wird.
  • Ferner geht aus 4 eine schematische Ansicht eines Getriebes G entsprechend einer zweiten Ausgestaltungsmöglichkeit der Erfindung hervor, welche ebenfalls bei dem Kraftfahrzeugantriebsstrang in 1 zur Anwendung kommen kann. Dabei entspricht diese Ausgestaltungsmöglichkeit weitestgehend der vorhergehenden Variante nach 2, mit dem Unterschied, dass das nunmehr mit F" (F-Zweistrich) bezeichnete sechste Schaltelement im betätigten Zustand das dritte Element E32 mit dem zweiten Element E22 des zweiten Planetenradsatzes P3 drehfest miteinander verbindet. Insofern handelt es sich bei der Ausführung gemäß 4 um eine zweite Verblockungsvariante. Ansonsten entspricht die Ausgestaltungsmöglichkeit nach 4 der Variante nach 2 bzw. 3, so dass auf das hierzu Beschriebene Bezug genommen wird.
  • Ausgehend von der zweiten Verblockungsvariante (4) sind zwei weitere Kupplungsvarianten möglich. D.h., es sind zwei weitere Anordnungsmöglichkeiten des ersten Schaltelements A denkbar. Im betätigten Zustand ermöglicht das erste Schaltelement A eine Drehmomentübertragung mittels des dritten Planetenradsatz P3. Ist hingegen das erste Schaltelement A offen, ist eine Drehmomentübertragung mittels des dritten Planetenradsatzes P3 nicht möglich, da keine Drehmomentabstützung am ersten Element E12 erfolgen kann.
  • 5 zeigt eine schematische Darstellung eines Getriebes G gemäß einer ersten Kupplungsvariante der Erfindung, wie sie ebenfalls bei dem Kraftfahrzeugantriebsstrang aus 1 Anwendung finden kann. Anders als bei der Ausführung gemäß 4, ist das nunmehr als A' (A-Strich) bezeichnete erste Schaltelement nicht am ersten Element E12 positioniert sondern am dritten Element E32. D.h., die ehemals permanent feste Verbindung des dritten Elements E32 mit der zweiten Antriebswelle GW2 wird durch eine schaltbare Verbindung ersetzt, und die ehemals schaltbare Verbindung des ersten Elements E12 zum drehfesten Bauelement GG wird durch eine feste Gehäuseanbindung ersetzt. Ist das erste Schaltelement A' (A-Strich) betätigt, so kann Drehmoment über das festgesetzte Element E12 abgestützt werden. Ansonsten entspricht die Ausgestaltungsmöglichkeit nach 5 der Variante nach 4, so dass auf das hierzu Beschriebene Bezug genommen wird.
  • 6 zeigt eine schematische Darstellung eines Getriebes G gemäß einer zweiten Kupplungsvariante der Erfindung, wie sie ebenfalls bei dem Kraftfahrzeugantriebsstrang aus 1 Anwendung finden kann. Anders als bei der Ausführung gemäß 4, ist das nunmehr als A" (A-Zweistrich) bezeichnete erste Schaltelement nicht am ersten Element E12 positioniert sondern am zweiten Element E22. D.h., die ehemals permanent feste Verbindung des zweiten Elements E22 mit dem dritten Element E33 wird durch eine schaltbare Verbindung ersetzt, und die ehemals schaltbare Verbindung des ersten Elements E12 zum drehfesten Bauelement GG wird durch eine feste Gehäuseanbindung ersetzt. Ist das erste Schaltelement A" (A-Zweistrich) betätigt, so kann Drehmoment über das festgesetzte Element E12 abgestützt werden. Ansonsten entspricht die Ausgestaltungsmöglichkeit nach 6 der Variante nach 4, so dass auf das hierzu Beschriebene Bezug genommen wird.
  • In 7 ist ein beispielhaftes Schaltschema für die Getriebe G aus den 2 bis 8 tabellarisch dargestellt. Wie zu erkennen ist, können hierbei zwischen der ersten Antriebswelle GW1 und der Abtriebswelle GWA jeweils insgesamt vier vom Übersetzungsverhältnis her unterschiedliche Gänge 1 bis 4 realisiert werden, wobei in den Spalten des Schaltschemas mit einem X jeweils gekennzeichnet ist, welches der Schaltelemente A bis F in welchem der Gänge 1 bis 4 jeweils geschlossen ist.
  • Wie in 7 zu erkennen ist, wird ein erster Gang 1 zwischen der ersten Antriebswelle GW1 und der Abtriebswelle GWA durch Betätigen des ersten Schaltelements A und des fünften Schaltelements E geschaltet.
  • Des Weiteren ergibt sich ein zweiter Gang 2 zwischen der ersten Antriebswelle GW1 und der Abtriebswelle GWA in einer ersten Variante 2.1 durch Schließen des ersten Schaltelements A und des vierten Schaltelements D. In einer zweiten Variante 2.2 ergibt sich der zweite Gang 2 durch Schließen des vierten Schaltelements D und des sechsten Schaltelements F. In einer dritten Variante 2.3 ergibt sich der zweite Gang 2 durch Schließen des fünften Schaltelements E und des sechsten Schaltelements F. Schließlich ergibt sich der zweite Gang 2 in einer vierten Variante 2.4 durch Schließen des vierten Schaltelements D und des fünften Schaltelements E.
  • Im Weiteren kann ein dritter Gang zwischen der ersten Antriebswelle GW1 und der Abtriebswelle GWA in einer ersten Variante 3.1 durch Betätigen des ersten Schaltelements A und des zweiten Schaltelements B dargestellt werden. In einer zweiten Variante 3.2 kann der dritte Gang 3 durch Betätigen des zweiten Schaltelements B und des sechsten Schaltelements F geschaltet werden. In einer dritten Variante 3.3 kann der dritte Gang 3 durch Betätigen des zweiten Schaltelements B und des fünften Schaltelements E geschaltet werden.
  • Rein motorisch lässt sich der dritte Gang zudem durch alleiniges Schließen des zweiten Schaltelements B realisieren (V3). In der letztgenannten Variante V3 ist dabei die Elektromaschine EM 1 abgekoppelt, so dass rein über die vorgeschaltete Verbrennungskraftmaschine VKM gefahren werden kann. Dagegen wird bei den Varianten 3.1 bis 3.3 hybridisch unter gleichzeitigem Einsatz von Verbrennungskraftmaschine VKM und Elektromaschine EM 1 gefahren.
  • Zudem ergibt sich noch ein vierter Gang zwischen der ersten Antriebswelle GW1 und der Abtriebswelle GWA in einer ersten Variante 4.1 durch Betätigen des ersten Schaltelements A und des dritten Schaltelements C, wobei der vierte Gang darüber hinaus noch in einer zweiten Variante 4.2 durch Schließen des dritten Schaltelements C und des sechsten Schaltelements F sowie in einer dritten Variante 4.3 durch Schließen des dritten Schaltelements C und des fünften Schaltelements E geschaltet werden kann.
  • Rein motorisch lässt sich der vierte Gang zudem durch alleiniges Schließen des dritten Schaltelements C realisieren V4. In der letztgenannten Variante V4 ist dabei die Elektromaschine EM 1 abgekoppelt, so dass rein über die vorgeschaltete Verbrennungskraftmaschine VKM gefahren werden kann. Dagegen wird bei den Varianten 4.1 bis 4.3 hybridisch unter gleichzeitigem Einsatz von Verbrennungskraftmaschine VKM und Elektromaschine EM 1 gefahren.
  • Obwohl die Schaltelemente A bis F jeweils als formschlüssige Schaltelemente ausgeführt sind, kann ein Schalten zwischen dem ersten Gang 1 und der ersten Variante 2.1 des zweiten Gangs, zwischen der ersten Variante 2.1 des zweiten Gangs 2 und der ersten Variante 3.1 des dritten Ganges 3 sowie auch zwischen der ersten Variante 3.1 des dritten Ganges 3 und der ersten Variante 4.1 des vierten Ganges 3 jeweils unter Last realisiert werden. Grund dafür ist, dass das erste Schaltelement A an allen diesen Gängen beteiligt ist. Eine Synchronisation bei den Schaltungen kann dabei jeweils durch eine entsprechende Regelung der vorgeschalteten Verbrennungskraftmaschine VKM erfolgen, so dass das jeweils auszulegende Schaltelement lastfrei geöffnet und das im Folgenden zu schließende Schaltelement lastfrei geschlossen werden kann.
  • Die Getriebe G aus den 2 bis 6 können zudem noch in anderweitigen Betriebsmodi unter Zuhilfenahme der Elektromaschine EM1 betrieben werden: so kann ein rein elektrisches Fahren in einem ersten Gang E1 stattfinden, welcher zwischen der zweiten Antriebswelle GW2 und der Abtriebswelle GWA wirksam ist und zu dessen Darstellung das erste Schaltelement A in einen geschlossenen Zustand zu überführen ist. Dadurch wird bei geschlossenem, ersten Schaltelement A die Elektromaschine EM1 bei den Getrieben G nach den 2 bis 8 über eine konstante Übersetzung mit der Abtriebswelle GWA gekoppelt (jeweils drittes Element überträgt auf jeweils zweites Element bei jeweils festem ersten Element von P2 bzw. P3). Die Übersetzung des ersten Ganges E1 entspricht hierbei jeweils einer Übersetzung des ersten Ganges 1 zwischen der ersten Antriebswelle GW1 und der Abtriebswelle GWA.
  • Außerdem kann zwischen der zweiten Antriebswelle GW2 und der Abtriebswelle GWA noch ein zweiter Gang E2 realisiert werden, zu dessen Darstellung das sechste Schaltelement F zu schließen ist. Dadurch wird die Abtriebswelle GWA bei den Varianten des Getriebes G nach den 2 bis 8 mit der zweiten Antriebswelle GW2 und damit auch dem Rotor R1 der Elektromaschine EM1 gekoppelt (drittes Element E32 überträgt auf zweites Element E22 bei festem ersten Element E12 von drittem Planetenradsatz P3). Eine Übersetzung dieses zweiten Ganges E2 entspricht dabei einer Übersetzung des zweiten Ganges 2 zwischen der ersten Antriebswelle GW1 und der Abtriebswelle GWA.
  • Ferner geht aus 8 eine schematische Darstellung eines Getriebes G entsprechend einer weiteren Ausführungsform der Erfindung hervor, wie sie ebenfalls bei dem Kraftfahrzeugantriebsstrang in 1 Anwendung finden kann. Diese Ausführungsform entspricht dabei im Wesentlichen der Variante nach 2, wobei im Unterschied dazu nun die erste Antriebswelle GW1 an der Anschlussstelle GW1-A über ein siebtes Schaltelement K0 drehfest mit einer Anschlusswelle AN verbunden werden kann, die dann mit der vorgeschalteten Verbrennungskraftmaschine VKM im Kraftfahrzeugantriebsstrang in Verbindung steht. Das siebte Schaltelement K0 ist dabei als formschlüssiges Schaltelement gestaltet und liegt besonders bevorzugt als Klauenschaltelement vor. Des Weiteren ist noch eine weitere Elektromaschine EM2 vorgesehen, deren Rotor R2 drehfest mit der ersten Antriebswelle GW1 in Verbindung steht, während ein Stator S2 der weiteren Elektromaschine EM2 am drehfesten Bauelement GG festgesetzt ist. Im Übrigen entspricht die Variante nach 8 sonst der Ausgestaltungsmöglichkeit nach 2, so dass auf das hierzu Beschriebene Bezug genommen wird. Das siebte Schaltelement K0 und die zweite Elektromaschine EM2 stehen in keiner funktionalen Beziehung zueinander, sodass beide Merkmale unabhängig voneinander mit der Ausführungsform gemäß 2 kombiniert werden können.
  • Ferner geht aus 9 eine schematische Darstellung eines Getriebes G entsprechend einer weiteren Ausführungsform der Erfindung hervor, wie sie ebenfalls bei dem Kraftfahrzeugantriebsstrang in 1 Anwendung finden kann. Diese Ausführungsform entspricht dabei im Wesentlichen der Variante nach 8. Im Unterschied dazu ist die zweite Elektromaschine EM2 nicht an der ersten Antriebswelle GW1 sondern am dritten Element E31 des ersten Planetenradsatzes P1 vorgesehen. D.h., der zweite Rotor R2 ist mit dem dritten Element E31 des ersten Planetenradsatzes P1 drehfest verbunden. Dadurch wirkt der erste Planetenradsatz P1 als eine getriebeinterne Vorübersetzung. D.h. die EM2 dreht mit höherer Drehzahl als die erste Antriebswelle 1 und kann somit bei gleicher Leistung mit geringerem Moment ausgelegt werden, was sowohl Bauraum-, wie auch Kostenvorteile bringt. Im Übrigen entspricht die Variante nach 9 sonst der Ausgestaltungsmöglichkeit nach 8, so dass auf das hierzu Beschriebene Bezug genommen wird.
  • In 10 sind unterschiedliche Zustände des Kraftfahrzeugantriebsstranges aus 1 bei Verwendung des Getriebes G aus 8 und 9 tabellarisch dargestellt, wobei diese unterschiedlichen Zustände durch unterschiedliche Einbindungen der beiden Elektromaschinen EM1 und EM2 sowie der Verbrennungskraftmaschine VKM verwirklicht werden.
  • Rein elektrisches Fahren mittels einer einzigen Elektromaschine und offenem Schaltelement K0:
  • Im Gang E1 wird rein elektrisch über die Elektromaschine EM1 gefahren, indem im Getriebe G der erste Gang E1 auf die bereits zu 7 beschriebene Art und Weise geschaltet ist. Im Gang E2 wird ebenfalls rein elektrisch über die Elektromaschine EM1 gefahren, indem im Getriebe G der zweite Gang E2 auf die bereits zu 7 beschriebene Art und Weise geschaltet ist. Im Gang E3 wird rein elektrisch über die Elektromaschine EM2 gefahren, indem im Getriebe G der dritte Gang E3 durch Betätigen des zweiten Schaltelements B geschaltet wird. Im Gang E4 wird rein elektrisch über die Elektromaschine EM2 gefahren, indem im Getriebe G der vierte Gang E4 durch Betätigen des dritten Schaltelements C geschaltet wird.
  • Rein elektrisches Fahren mittels der beiden Elektromaschinen und offenem Schaltelement K0:
  • Es können dieselben Gangstufen geschaltet werden, wie in 7 beschrieben, wobei diese nunmehr rein elektrisch gefahren werden können.
  • Die Vorteile zweier Elektromaschinen lassen sich wie folgt zusammenfassen:
    • - rein elektrische Lastschaltung, da die zweite Elektromaschine EM2 bei offenem Schaltelement K0 die Funktionen der Verbrennungskraftmaschine übernimmt
    • - die zweite Elektromaschine kann bei offenem Schaltelement K0 zur Synchronisation verwendet werden, während die erste Elektromaschine EM1 die Zugkraft unterstützt
    • - es ist eine größere elektrische Gesamtleistung bei offenem Schaltelement K0 darstellbar
    • - bei einem Hybridbetrieb ist eine größere Reichweite möglich
    • - die Verbrennungskraftmaschine VKM kann durch die zweite Elektromaschine EM2 gestartet werden
    • - die zweite Elektromaschine EM2 kann das Schaltelement K0 synchronisieren
    • - es ist ein batterieunabhängiger serieller Fahrbetrieb möglich
    • - die zweite Elektromaschine EM2 kann als Generator, die erste Elektromaschine kann als Motor verwendet werden
  • Hinsichtlich der Schaltzustände beim hybriden/beim verbrennungsmotorischen Fahren, wobei hier die Anfahrkupplung K0 geschlossen ist, wird auf die Ausführung zu 7 verwiesen.
  • Schließlich zeigen noch die 11 bis 16 Abwandlungsmöglichkeiten der Getriebe G aus den 2 bis 6 sowie 8, 9. Diese Abwandlungsmöglichkeiten betreffen dabei anderweitige Einbindungsmöglichkeiten der Elektromaschine EM1 können aber bei den Getrieben G nach den 8, 9 in analoger Weise auch bei der weiteren Elektromaschine EM2 Anwendung finden. So ist in 11 die Elektromaschine EM1 nicht koaxial zu dem jeweiligen - vorliegend nicht weiter im Detail dargestellten - Radsatz RS des Getriebes G platziert, sondern achsversetzt angeordnet. Eine Anbindung erfolgt dabei über eine Stirnradstufe SRS, die sich aus einem ersten Stirnrad SR1 und einem zweiten Stirnrad SR2 zusammensetzt. Das erste Stirnrad SR1 ist dabei seitens des jeweiligen Radsatzes RS drehfest an der zweiten Antriebswelle GW2 angebunden. Das Stirnrad SR1 steht dann mit dem Stirnrad SR2 im Zahneingriff, welches drehfest auf einer Eingangswelle EW der Elektromaschine EM1 platziert ist, die innerhalb der Elektromaschine EM1 die Anbindung an den - vorliegend nicht weiter dargestellten - Rotor der Elektromaschine EM1 herstellt.
  • Auch bei der Abwandlungsmöglichkeit nach 12 ist die Elektromaschine EM1 achsversetzt zu dem jeweiligen Radsatz RS des jeweiligen Getriebes G platziert. Im Unterschied zu der vorhergehenden Variante nach 11 ist eine Anbindung dabei aber nicht über eine Stirnradstufe SRS, sondern über einen Zugmitteltrieb ZT vorgenommen. Dieser Zugmitteltrieb ZT kann dabei als Riemen- oder auch Kettentrieb ausgestaltet sein. Seitens des jeweiligen Radsatzes RS ist der Zugmitteltrieb ZT dann an der zweiten Antriebswelle GW2 angebunden. Über den Zugmitteltrieb ZT wird dabei dann eine Koppelung zu einer Eingangswelle EW der Elektromaschine EM1 hergestellt, die wiederum innerhalb der Elektromaschine EM1 eine Anbindung an den Rotor der Elektromaschine vornimmt.
  • Im Fall der Abwandlungsmöglichkeit nach 13 ist eine Einbindung der achsversetzt zu dem jeweiligen Radsatz RS platzierten Elektromaschine EM1 über eine Planetenstufe PS und eine Stirnradstufe SRS realisiert. Dabei ist die Planetenstufe PS dem Radsatz RS nachgeschaltet, wobei abtriebsseitig der Planetenstufe PS dann die Stirnradstufe SRS vorgesehen ist, über welche die Verbindung zu der Elektromaschine EM1 hergestellt ist. Die Planetenstufe PS setzt sich dabei aus einem Hohlrad HO, einem Planetensteg PT und einem Sonnenrad SO zusammen, wobei der Planetensteg PT mindestens ein Planetenrad PR drehbar gelagert führt, welches sowohl mit dem Sonnenrad SO als auch dem Hohlrad HO im Zahneingriff steht.
  • Vorliegend ist der Planetensteg PT seitens des Radsatzes RS aus den 2 bis 8 sowie 8, 9 drehfest an der zweiten Antriebswelle GW2 angebunden. Dagegen ist das Hohlrad HO permanent am drehfesten Bauelement GG festgesetzt, während das Sonnenrad SO drehfest mit einem ersten Stirnrad SR1 der Stirnradstufe SRS verbunden ist. Das erste Stirnrad SR1 kämmt dann mit einem zweiten Stirnrad SR2 der Stirnradstufe SRS, welches drehfest auf einer Eingangswelle EW der Elektromaschine EM1 vorgesehen ist. In diesem Fall ist die Elektromaschine EM1 also seitens des Radsatzes RS über zwei Übersetzungsstufen angebunden.
  • Auch bei der Abwandlungsmöglichkeit aus 14 ist eine Einbindung der Elektromaschine EM1 seitens des Radsatzes RS über eine Planetenstufe PS und eine Stirnradstufe SRS vorgenommen. Dabei entspricht die Abwandlungsmöglichkeit weitestgehend der Variante nach 13, mit dem Unterschied, dass bei der Planetenstufe PS nun das Sonnenrad SO am drehfesten Bauelement GG festgesetzt ist, während das Hohlrad HO drehfest mit dem ersten Stirnrad SR1 der Stirnradstufe SRS verbunden ist. Konkret sind dabei das Hohlrad HO und das erste Stirnrad SR1 bevorzugt einstückig ausgebildet, indem das Hohlrad HO an einem Außenumfang mit einer Verzahnung ausgestattet ist. Im Übrigen entspricht die Abwandlungsmöglichkeit nach 14 sonst der Variante nach 13, so dass auf das hierzu Beschriebene Bezug genommen wird.
  • Des Weiteren zeigt 15 eine weitere Abwandlungsmöglichkeit der Getriebe G aus den 2 bis 6 sowie 8, 9, wobei auch hier eine Einbindung der Elektromaschine EM1 über eine Stirnradstufe SRS und eine Planetenstufe PS vorgenommen. Im Unterschied zu der vorhergehenden Variante nach 14 folgt auf den Radsatz RS hierbei aber zunächst die Stirnradstufe SRS, während die Planetenstufe PS im Kraftfluss zwischen Stirnradstufe SRS und Elektromaschine EM1 vorgesehen ist. Die Planetenstufe PS umfasst ebenfalls wieder die Elemente Hohlrad HO, Planetensteg PT und Sonnenrad SO, wobei der Planetensteg PT mehrere Planetenräder PR1 und PR2 drehbar gelagert führt, die jeweils sowohl mit dem Sonnenrad SO als auch dem Hohlrad HO im Zahneingriff stehen.
  • Wie in 15 zu erkennen ist, ist ein erstes Stirnrad SR1 der Stirnradstufe SRS seitens des Radsatzes RS der Getriebe G aus den 2 bis 6 sowie 8, 9 drehfest angebunden, wobei diese Anbindung dabei an der zweiten Antriebswelle GW2 vollzogen ist. Das erste Stirnrad SR1 kämmt mit einem zweiten Stirnrad SR2 der Stirnradstufe SRS, welches drehfest mit dem Planetensteg PT der Planetenstufe PS verbunden ist. Das Hohlrad HO ist permanent am drehfesten Bauelement GG festgesetzt, während das Sonnenrad SO drehfest auf einer Eingangswelle EW der Elektromaschine EM1 vorgesehen ist.
  • Schließlich zeigt noch 16 eine weitere Abwandlungsmöglichkeit der Getriebe G aus den 2 bis 6 sowie 8, 9, wobei diese Abwandlungsmöglichkeit im Wesentlichen der vorhergehenden Variante nach 15 entspricht. Einziger Unterschied ist dabei, dass nun das Sonnenrad SO der Planetenstufe PS permanent am drehfesten Bauelement GG festgesetzt ist, während das Hohlrad HO der Planetenstufe PS drehfest mit der Eingangswelle EW der Elektromaschine EM1 verbunden ist. Im Übrigen entspricht die Abwandlungsmöglichkeit nach 16 sonst der Variante nach 15, so dass auf das hierzu Beschriebene Bezug genommen wird.
  • Mittels der erfindungsgemäßen Ausgestaltungen kann ein Getriebe mit kompaktem Aufbau und mit gutem Wirkungsgrad realisiert werden.
  • Die Erfindung wurde anhand der Zeichnungen und der Beschreibung umfassend beschrieben und erklärt. Die Beschreibung und Erklärung sind als Beispiel und nicht einschränkend zu verstehen. Die Erfindung ist nicht auf die offenbarten Ausführungsformen beschränkt. Andere Ausführungsformen oder Variationen ergeben sich für den Fachmann bei der Verwendung der vorliegenden Erfindung sowie bei einer genauen Analyse der Zeichnungen, der Offenbarung und der nachfolgenden Patentansprüche. So ist sind insbesondere die Verblockungsvarianten für das zweite Schaltelement mit den Verblockungsvarianten für das sechste Schaltelement beliebig kombinierbar.
  • In den Patentansprüchen schließen die Wörter „umfassen“ und „mit“ nicht das Vorhandensein weiterer Elemente oder Schritte aus. Der undefinierte Artikel „ein“ oder „eine“ schließt nicht das Vorhandensein einer Mehrzahl aus. Ein einzelnes Element oder eine einzelne Einheit kann die Funktionen mehrerer der in den Patentansprüchen genannten Einheiten ausführen. Die bloße Nennung einiger Maßnahmen in mehreren verschiedenen abhängigen Patentansprüchen ist nicht dahingehend zu verstehen, dass eine Kombination dieser Maßnahmen nicht ebenfalls vorteilhaft verwendet werden kann.
  • Bezugszeichenliste
  • G
    Getriebe
    RS
    Radsatz
    GG
    Drehfestes Bauelement
    P1
    Erster Planetenradsatz
    E11
    Erstes Element des ersten Planetenradsatzes
    E21
    Zweites Element des ersten Planetenradsatzes
    E31
    Drittes Element des ersten Planetenradsatzes
    P2
    Zweiter Planetenradsatz
    E12
    Erstes Element des zweiten Planetenradsatzes
    E22
    Zweites Element des zweiten Planetenradsatzes
    E32
    Drittes Element des zweiten Planetenradsatzes
    P3
    Dritter Planetenradsatz
    E13
    Erstes Element des dritten Planetenradsatzes
    E23
    Zweites Element des dritten Planetenradsatzes
    E33
    Drittes Element des dritten Planetenradsatzes
    A
    Erstes Schaltelement
    B
    Zweites Schaltelement
    C
    Drittes Schaltelement
    D
    Viertes Schaltelement
    E
    Fünftes Schaltelement
    F
    Sechstes Schaltelement
    K0
    Siebtes Schaltelement
    SP1
    Schaltelementpaar
    SP2
    Schaltelementpaar
    SP3
    Schaltelementpaar
    1
    Erster Gang
    2.1
    Zweiter Gang, erste Variante
    2.2
    Zweiter Gang, zweite Variante
    2.3
    Zweiter Gang, dritte Variante
    2.4
    Zweiter Gang, vierte Variante
    3.1
    Dritter Gang, erste Variante
    3.2
    Dritter Gang, zweite Variante
    3.3
    Dritter Gang, dritte Variante
    V3
    Dritter Gang, verbrennungsmotorisch
    4.1
    Vierter Gang, erste Variante
    4.2
    Vierter Gang, zweite Variante
    4.3
    Vierter Gang, dritte Variante
    V4
    Vierter Gang, verbrennungsmotorisch
    E1
    erster Gang, elektrisch
    E2
    zweiter Gang, elektrisch
    GW1
    Erste Antriebswelle
    GW1-A
    Anschlussstelle
    GW2
    Zweite Antriebswelle
    GWA
    Abtriebswelle
    GWA-A
    Anschlussstelle
    AN
    Anschlusswelle
    EM1
    Elektromaschine
    S1
    Stator
    R1
    Rotor
    EM2
    Elektromaschine
    S2
    Stator
    R2
    Rotor
    SRS
    Stirnradstufe
    SR1
    Stirnrad
    SR2
    Stirnrad
    PS
    Planetenstufe
    HO
    Hohlrad
    PT
    Planetensteg
    PR
    Planetenrad
    PR1
    Planetenrad
    PR2
    Planetenrad
    SO
    Sonnenrad
    ZT
    Zugmitteltrieb
    VKM
    Verbrennungskraftmaschine
    TS
    Torsionsschwingungsdämpfer
    AG
    Differentialgetriebe
    DW
    Antriebsräder
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • DE 102014218610 A1 [0003]

Claims (11)

  1. Getriebe (G) für ein Kraftfahrzeug, umfassend eine Elektromaschine (EM1), eine erste Antriebswelle (GW1), eine zweite Antriebswelle (GW2), eine Abtriebswelle (GWA), sowie einen ersten Planetenradsatz (P1), einen zweiten Planetenradsatz (P2) und einen dritten Planetenradsatz (P3), wobei die Planetenradsätze (P1, P2, P3) jeweils mehrere Elemente (E11, E21, E31, E12, E22, E32, E13, E23, E33) umfassen, wobei ein erstes (A), ein zweites (B), ein drittes (C), ein viertes (D), ein fünftes (E) und ein sechstes Schaltelement (F) vorgesehen sind, und wobei ein Rotor (R1) der Elektromaschine (EM1) mit der zweiten Antriebswelle (GW2) in Verbindung steht, dadurch gekennzeichnet, - dass die erste Antriebswelle (GW1) drehfest mit dem zweiten Element (E21) des ersten Planetenradsatzes (P1) verbunden ist, - dass die Abtriebswelle (GWA) drehfest mit dem zweiten Element (E23) des dritten Planetenradsatzes (P3) verbunden ist, - dass das erste Element (E11) des ersten Planetenradsatzes (P1) und das erste Element (E13) des dritten Planetenradsatzes an einem drehfesten Bauelement (GG) festgesetzt sind, - dass bei dem zweiten Planetenradsatz (P2) eine erste Koppelung des ersten Elements (E12) des zweiten Planetenradsatzes (P2) mit dem drehfesten Bauelement (GG), eine zweite Koppelung des zweiten Elements (E22) des zweiten Planetenradsatzes (P2) mit dem dritten Element (E33) des dritten Planetenradsatzes (P3), sowie eine dritte Koppelung des dritten Elements (E13) des zweiten Planetenradsatzes (P2) mit der zweiten Antriebswelle (GW2) besteht, wobei von diesen Koppelungen zwei Koppelungen als drehfeste Verbindungen vorliegen, während bei der noch verbleibenden Koppelung eine drehfeste Verbindung mittels des ersten Schaltelements (A, A', A") herstellbar ist, - wobei das zweite Schaltelement (B) ausgebildet ist, entweder ◯ die Abtriebswelle (GWA) mit der Antriebswelle (GW1) zu verbinden, oder ◯ die zweite Antriebswelle (GW2) mit dem dritten Element (E33) des dritten Planetenradsatzes (P3) zu verbinden. - wobei das dritte Schaltelement (C) ausgebildet ist, die Abtriebswelle (GWA) drehfest mit dem dritten Element (E31) des ersten Planetenradsatzes (P1) zu verbinden, - wobei das vierte Schaltelement (D) ausgebildet ist, die erste Antriebswelle (GW1) drehfest mit dem dritten Element (E33) des dritten Planetenradsatzes (P3) zu verbinden, - wobei das fünfte Schaltelement (E) ausgebildet ist, die erste Antriebswelle (GW1) drehfest mit der zweiten Antriebswelle (GW2) zu verbinden, - wobei das sechste Schaltelement (F, F', F") ausgebildet ist, den zweiten Planetenradsatz (P2) zu verblocken.
  2. Getriebe (G) nach Anspruch 1, wobei sich durch selektives Schließen der sechs Schaltelemente (A, B, C, D, E, F) - ein erster Gang (1) zwischen der ersten Antriebswelle (GW1) und der Abtriebswelle (GWA) durch Betätigen des ersten Schaltelements (A) und des fünften Schaltelements (E), - ein zweiter Gang zwischen der ersten Antriebswelle (GW1) und der Abtriebswelle (GWA) o in einer ersten Variante (2.1) durch Betätigen des ersten (A) und des vierten Schaltelements (D), o in einer zweiten Variante (2.2) durch Betätigen des vierten (D) und des sechsten Schaltelements (F), ◯ in einer dritten Variante (2.3) durch Betätigen des fünften (E) und des sechsten Schaltelements (F), ◯ in einer vierten Variante (2.4) durch Betätigen des vierten (D) und des fünften Schaltelements (E), - ein dritter Gang zwischen der ersten Antriebswelle (GW1) und der Abtriebswelle (GWA) ◯ in einer ersten Variante (3.1) durch Betätigen des ersten Schaltelements (A) und des zweiten Schaltelements (B), ◯ in einer zweiten Variante (3.2) durch Betätigen des zweiten Schaltelements (B) und des sechsten Schaltelements (F), o in einer dritten Variante (3.3) durch Betätigen des zweiten Schaltelements (B) und des fünften Schaltelements (E), - ein vierter Gang zwischen der ersten Antriebswelle (GW1) und der Abtriebswelle (GWA) ◯ in einer ersten Variante (4.1) durch Betätigen des ersten Schaltelements (A) und des dritten Schaltelements (C), ◯ in einer zweiten Variante (4.2) durch Schließen des dritten Schaltelements (C) und des sechsten Schaltelements (F), ◯ in einer dritten Variante (4.3) durch Betätigen des dritten Schaltelements (C) und des vierten Schaltelements (D) ergibt.
  3. Getriebe (G) nach Anspruch 1 oder 2, wobei - sich ein erster Gang (E1) zwischen der zweiten Antriebswelle (GW2) und der Abtriebswelle (GWA) durch Schließen des ersten Schaltelements (A), - sowie ein zweiter Gang (E2) zwischen der zweiten Antriebswelle (GW2) und der Abtriebswelle (GWA) durch Betätigen des sechsten Schaltelements (F) ergibt.
  4. Getriebe (G) nach einem der vorhergehenden Ansprüche, wobei die drei Planetenradsätze in axialer Richtung ausgehend von einem Getriebeeingang in der Reihenfolge erster Planetenradsatz (P1), zweiter Planetenradsatz (P2), dritter Planetenradsatz (P3) angeordnet sind.
  5. Getriebe (G) nach einem der vorhergehenden Ansprüche, wobei an der ersten Antriebwelle (GW1) ein Rotor (R2) einer weiteren Elektromaschine (EM2) angebunden ist.
  6. Getriebe (G) nach einem der vorhergehenden Ansprüche 1 bis 4, wobei an dem dritten Element (E13) des ersten Planetenradsatzes (P1) ein Rotor (R2) einer weiteren Elektromaschine (EM2) angebunden ist.
  7. Getriebe (G) nach einem der vorhergehenden Ansprüche, wobei die erste Antriebswelle (GW1) über ein siebtes Schaltelement (K0) drehfest mit einer Anschlusswelle (AN) verbindbar ist.
  8. Getriebe (G) nach einem der vorhergehenden Ansprüche, wobei ein oder mehrere der Schaltelemente (A, B, C, D, E, F, K0) jeweils als formschlüssiges Schaltelement realisiert sind.
  9. Getriebe (G) nach einem der vorhergehenden Ansprüche, wobei der Rotor (R1) der Elektromaschine (EM1) drehfest mit der zweiten Antriebswelle (GW2) verbunden oder über mindestens eine Übersetzungsstufe mit der zweiten Antriebswelle (GW2) in Verbindung steht.
  10. Kraftfahrzeugantriebsstrang für ein Hybrid- oder Elektrofahrzeug, umfassend ein Getriebe (G) nach einem oder auch mehreren der Ansprüche 1 bis 9.
  11. Verfahren zum Betreiben eines Getriebes (G) nach Anspruch 1, dadurch gekennzeichnet, dass zur Darstellung eines Ladebetriebes oder eines Startbetriebes lediglich das fünfte Schaltelement (E) geschlossen wird.
DE102018219624.9A 2018-11-16 2018-11-16 Getriebe für ein Kraftfahrzeug Pending DE102018219624A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE102018219624.9A DE102018219624A1 (de) 2018-11-16 2018-11-16 Getriebe für ein Kraftfahrzeug
US17/293,948 US11473651B2 (en) 2018-11-16 2019-10-14 Transmission for a motor vehicle
PCT/EP2019/077681 WO2020099042A1 (de) 2018-11-16 2019-10-14 Getriebe für ein kraftfahrzeug
CN201980075766.7A CN113056384A (zh) 2018-11-16 2019-10-14 用于机动车辆的变速器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102018219624.9A DE102018219624A1 (de) 2018-11-16 2018-11-16 Getriebe für ein Kraftfahrzeug

Publications (1)

Publication Number Publication Date
DE102018219624A1 true DE102018219624A1 (de) 2020-05-20

Family

ID=68344780

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102018219624.9A Pending DE102018219624A1 (de) 2018-11-16 2018-11-16 Getriebe für ein Kraftfahrzeug

Country Status (4)

Country Link
US (1) US11473651B2 (de)
CN (1) CN113056384A (de)
DE (1) DE102018219624A1 (de)
WO (1) WO2020099042A1 (de)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014218610A1 (de) 2014-09-17 2016-03-17 Zf Friedrichshafen Ag Lastschaltbares Mehrstufengetriebe in Planetenbauweise

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10231346A1 (de) * 2002-07-11 2004-01-29 Zf Friedrichshafen Ag Mehrstufengetriebe
US7822524B2 (en) * 2003-12-26 2010-10-26 Toyota Jidosha Kabushiki Kaisha Vehicular drive system
US7282011B2 (en) * 2004-04-28 2007-10-16 Toyota Jidosha Kabushiki Kaisha Control apparatus for controlling stepped automatic transmission of vehicle
US7261657B2 (en) * 2005-04-06 2007-08-28 Gm Global Technology Operations, Inc. Electrically variable transmission having three interconnected planetary gear sets and fixed input
US7396305B2 (en) * 2006-02-21 2008-07-08 Gm Global Technology Operations, Inc. Electrically variable transmission having three planetary gear sets, a stationary member and three fixed interconnections
DE102012016988A1 (de) * 2012-08-25 2014-05-15 Volkswagen Aktiengesellschaft Hybridantriebsstrang für ein Kraftfahrzeug, Hybridfahrzeug und dessen Verwendung
DE102013204918A1 (de) * 2013-03-20 2014-09-25 Zf Friedrichshafen Ag Fahrzeuggetriebe
DE112014000743T5 (de) * 2013-03-28 2015-10-22 Aisin Aw Co., Ltd. Automatikgetriebe
DE102014218609A1 (de) 2014-09-17 2016-03-17 Zf Friedrichshafen Ag Lastschaltbares Mehrstufengetriebe in Planetenbauweise
DE102014218618A1 (de) 2014-09-17 2016-03-17 Zf Friedrichshafen Ag Lastschaltbares Mehrstufengetriebe in Planetenbauweise
DE102014218608A1 (de) 2014-09-17 2016-03-17 Zf Friedrichshafen Ag Lastschaltbares Mehrstufengetriebe in Planetenbauweise
DE102014222152B4 (de) * 2014-10-30 2023-07-06 Zf Friedrichshafen Ag Getriebe für ein Kraftfahrzeug, Hybridantriebsstrang für ein Hybridfahrzeug sowie Verfahren zur Steuerung eines solchen Hybridantriebsstranges
DE102015213664B4 (de) * 2015-07-21 2022-04-21 Zf Friedrichshafen Ag Getriebe für ein Kraftfahrzeug
DE102015223294A1 (de) * 2015-11-25 2017-06-01 Zf Friedrichshafen Ag Getriebe für ein Kraftfahrzeug, sowie Antriebsstrang für ein Kraftfahrzeug mit einem solchen Getriebe
DE102015223297A1 (de) * 2015-11-25 2017-06-01 Zf Friedrichshafen Ag Getriebe für ein Kraftfahrzeug, sowie Antriebsstrang für ein Kraftfahrzeug mit einem solchen Getriebe
DE102016207412A1 (de) 2016-04-29 2017-11-02 Zf Friedrichshafen Ag Getriebe für ein Kraftfahrzeug, sowie Antriebsstrang für ein Kraftfahrzeug mit einem solchen Getriebe
US9933045B1 (en) * 2016-09-28 2018-04-03 Allison Transmission, Inc. Multi-speed planetary transmission

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014218610A1 (de) 2014-09-17 2016-03-17 Zf Friedrichshafen Ag Lastschaltbares Mehrstufengetriebe in Planetenbauweise

Also Published As

Publication number Publication date
WO2020099042A1 (de) 2020-05-22
US20220010863A1 (en) 2022-01-13
US11473651B2 (en) 2022-10-18
CN113056384A (zh) 2021-06-29

Similar Documents

Publication Publication Date Title
DE102017216299A1 (de) Getriebe für ein Kraftfahrzeug
DE102017216309A1 (de) Getriebe für ein Kraftfahrzeug
DE102017216305A1 (de) Getriebe für ein Kraftfahrzeug
WO2020048710A1 (de) Getriebe für ein kraftfahrzeug, kraftfahrzeuganstriebsstrang und verfahren zum betreiben eines getriebes
DE102017216317B4 (de) Getriebe für ein Kraftfahrzeug
DE102017216294B4 (de) Getriebe für ein Kraftfahrzeug
WO2020048711A1 (de) Getriebe für ein kraftfahrzeug, kraftfahrzeuganstriebsstrang und verfahren zum betreiben eines getriebes
DE102018217870A1 (de) Getriebe für ein Kraftfahrzeug
DE102018202584A1 (de) Getriebe für ein Kraftfahrzeug
DE102017222710B4 (de) Getriebe für ein Kraftfahrzeug
DE102017222717B4 (de) Getriebe für ein Kraftfahrzeug
DE102018219628A1 (de) Getriebe für ein Kraftfahrzeug
DE102018215226A1 (de) Getriebe für ein Kraftfahrzeug
DE102018200295A1 (de) Getriebe für ein Kraftfahrzeug
DE102017223159A1 (de) Getriebe für ein Kraftfahrzeug
DE102017222724A1 (de) Getriebe für ein Kraftfahrzeug
DE102017222711A1 (de) Getriebe für ein Kraftfahrzeug
DE102017223157A1 (de) Getriebe für ein Kraftfahrzeug
DE102017216310A1 (de) Getriebe für ein Kraftfahrzeug
DE102017222723B4 (de) Getriebe für ein Kraftfahrzeug
DE102017216320B4 (de) Getriebe für ein Kraftfahrzeug
DE102017222709B4 (de) Getriebe für ein Kraftfahrzeug
DE102017216304B4 (de) Getriebe für ein Kraftfahrzeug
DE102018219624A1 (de) Getriebe für ein Kraftfahrzeug
DE102018219630A1 (de) Getriebe für ein Kraftfahrzeug