DE102014222152B4 - Getriebe für ein Kraftfahrzeug, Hybridantriebsstrang für ein Hybridfahrzeug sowie Verfahren zur Steuerung eines solchen Hybridantriebsstranges - Google Patents

Getriebe für ein Kraftfahrzeug, Hybridantriebsstrang für ein Hybridfahrzeug sowie Verfahren zur Steuerung eines solchen Hybridantriebsstranges Download PDF

Info

Publication number
DE102014222152B4
DE102014222152B4 DE102014222152.8A DE102014222152A DE102014222152B4 DE 102014222152 B4 DE102014222152 B4 DE 102014222152B4 DE 102014222152 A DE102014222152 A DE 102014222152A DE 102014222152 B4 DE102014222152 B4 DE 102014222152B4
Authority
DE
Germany
Prior art keywords
gear set
planetary gear
transmission
shifting
motor vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
DE102014222152.8A
Other languages
English (en)
Other versions
DE102014222152A1 (de
Inventor
Stefan Beck
Christian SIBLA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZF Friedrichshafen AG
Original Assignee
ZF Friedrichshafen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZF Friedrichshafen AG filed Critical ZF Friedrichshafen AG
Priority to DE102014222152.8A priority Critical patent/DE102014222152B4/de
Publication of DE102014222152A1 publication Critical patent/DE102014222152A1/de
Application granted granted Critical
Publication of DE102014222152B4 publication Critical patent/DE102014222152B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/62Gearings having three or more central gears
    • F16H3/66Gearings having three or more central gears composed of a number of gear trains without drive passing from one train to another
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/0047Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising five forward speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2002Transmissions using gears with orbital motion characterised by the number of sets of orbital gears
    • F16H2200/201Transmissions using gears with orbital motion characterised by the number of sets of orbital gears with three sets of orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/203Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes
    • F16H2200/2041Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes with four engaging means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2097Transmissions using gears with orbital motion comprising an orbital gear set member permanently connected to the housing, e.g. a sun wheel permanently connected to the housing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Structure Of Transmissions (AREA)

Abstract

Getriebe (G) für ein Kraftfahrzeug, mit einer Eingangswelle (GW1), einer Abtriebswelle (GW2), einem ersten, zweiten und dritten Planetenradsatz (P1, P2, P3), sowie einem ersten Schaltelement (K2), einem zweiten Schaltelement (B2), einem dritten Schaltelement (K1), und einem vierten Schaltelement (B1), wobei die drei Planetenradsätze (P1, P2, P3) je ein erstes Element (E11, E12, E13) ein zweites Element (E21, E22, E23) und ein drittes Element (E31, E32, E33) aufweisen, wobei das erste Element (E11, E12, E13) durch ein Sonnenrad des jeweiligen Planetenradsatzes (P1, P2, P3) gebildet ist, wobei das zweite Element (E21, E22, E23) im Falle eines Minus-Radsatzes durch einen Steg und im Falle eines Plus-Radsatzes durch ein Hohlrad des jeweiligen Planetenradsatzes (P1, P2, P3) gebildet ist, wobei das dritte Element (E31, E32, E33) im Falle eines Minus-Radsatzes durch das Hohlrad und im Falle eines Plus-Radsatzes durch den Steg des jeweiligen Planetenradsatzes (P1, P2, P3) gebildet ist, wobei die Eingangswelle (GW1) mit dem zweiten Element (E22) des zweiten Planetenradsatzes (P2) ständig verbunden ist, wobei die Abtriebswelle (GW2) mit dem zweiten Element (E23) des dritten Planetenradsatzes (P3) ständig verbunden ist, wobei das erste Element (E11) des ersten Planetenradsatzes (P1) mit dem ersten Element (E12) des zweiten Planetenradsatzes (P2) ständig verbunden ist, wobei das zweite Element (E21) des ersten Planetenradsatzes (P1) mit dem dritten Element (E33) des dritten Planetenradsatzes (P3) ständig verbunden ist, wobei durch Schließen des vierten Schaltelements (B1) das erste Element (E11) des ersten Planetenradsatzes (P1) drehfest festsetzbar ist, dadurch gekennzeichnet, dass durch Schließen des zweiten Schaltelements (B2) das dritte Element (E32) des zweiten Planetenradsatzes (P2) mit dem ersten Element (E13) des dritten Planetenradsatzes (P3) verbindbar ist, wobei das dritte Element (E31) des ersten Planetenradsatzes (P1) ständig drehfest festgesetzt ist, wobei durch Schließen des ersten Schaltelements (K2) das dritte Element (E32) des zweiten Planetenradsatzes (P2) mit dem zweiten Element (E23) des dritten Planetenradsatzes (P3) verbindbar ist, und wobei durch Schließen des dritten Schaltelements (K1) zwei der drei Elemente (E12, E22, E32) des zweiten Planetenradsatzes (P2) miteinander verbindbar sind.

Description

  • Die Erfindung betrifft ein Getriebe für ein Kraftfahrzeug mit einer Eingangswelle, einer Abtriebswelle, drei Planetenradsätzen und zumindest vier Schaltelemente. Die Erfindung betrifft ferner einen Hybridantriebsstrang für ein Hybridfahrzeug, sowie ein Verfahren zur Steuerung eines solchen Hybridantriebsstranges.
  • Ein Getriebe bezeichnet hier insbesondere ein mehrgängiges Getriebe, bei dem eine Vielzahl von Gängen, also festen Übersetzungsverhältnisse zwischen der Eingangswelle und der Abtriebswelle, durch Schaltelemente vorzugsweise automatisch schaltbar sind. Bei den Schaltelementen handelt es sich hier beispielsweise um Kupplungen oder Bremsen. Derartige Getriebe finden vor allem in Kraftfahrzeugen Anwendung, um die Drehzahl- und Drehmomentabgabecharakteristik der Antriebseinheit den Fahrwiderständen des Fahrzeugs in geeigneter Weise anzupassen.
  • Aus der Patentanmeldung DE 10 2005 002 337 A1 der Anmelderin ist ein Mehrstufengetriebe in Planetenbauweise bekannt, bei dem insgesamt acht Vorwärtsgänge und ein Rückwärtsgang zwischen einer Antriebswelle und einer Abtriebswelle durch selektives Eingreifen von fünf Schaltelementen schaltbar sind. Dieses Mehrstufengetriebe weist vier Planetenradsätze auf, welche allesamt als Minus-Radsätze ausgebildet sind.
  • Die Patentanmeldung DE 10 2012 220 829 A1 beschreibt ein Verfahren zum Betreiben einer Antriebseinheit für ein Hybridfahrzeug. Zum Ankoppeln des Verbrennungsmotors an den Abtrieb aus rein elektrischer Fahrt heraus wird das vom Verbrennungsmotor bereitgestellte Moment über eine schlupfend betriebene Trennkupplung übertragen, um ein bei der rein elektrischen Fahrt zuvor geschlossenes Schaltelement zu entlasten und im entlasteten Zustand auszulegen.
  • Die Patentanmeldung DE 10 2005 035 328 A1 beschreibt ein Doppelkupplungsgetriebe mit integrierter Elektromaschine und dessen Anwendung. Die Elektromaschine ist so ausgebildet und angeordnet, dass diese in der Lage ist, ein Drehmoment direkt zumindest in die Eingangsseite (5) der Doppelkupplung (2) und/oder in eine der beiden Eingangswellen (8, 9) und/oder in zumindest eine Getriebevorgelegewelle und/oder in zumindest die Abtriebswelle einzuleiten oder von diesen aufzunehmen. Aufgabe der Erfindung ist es, alternative Ausführungsformen des im Stand der Technik bekannten Getriebes mit verringerter Gangzahl bereitzustellen. Eine weitere Aufgabe der Erfindung ist es, geeignete Verfahren zum Betrieb eines solchen Getriebes in einem Antriebsstrang eines Hybridfahrzeugs anzugeben.
  • Die erste Aufgabe wird gelöst durch die Merkmale des Patentanspruchs 1. Die weitere Aufgabe wird gelöst durch die Merkmale des Patentanspruchs 12. Vorteilhafte Ausgestaltungen ergeben sich aus den Unteransprüchen, der Beschreibung sowie aus den Figuren.
  • Das Getriebe weist eine Eingangswelle, eine Abtriebswelle, sowie einen ersten, einen zweiten und einen dritten Planetenradsatz auf. Darüber hinaus weist das Getriebe ein erstes Schaltelement, ein zweites Schaltelement, ein drittes Schaltelement und ein viertes Schaltelement auf.
  • Ein Planetenradsatz umfasst ein Sonnenrad, einen Steg und ein Hohlrad. An dem Steg drehbar gelagert sind Planetenräder, welche mit der Verzahnung des Sonnenrades und/oder mit der Verzahnung des Hohlrads kämmen. Ein Minus-Radsatz bezeichnet einen Planetenradsatz mit einem Steg, an dem die Planetenräder drehbar gelagert sind, mit einem Sonnenrad und mit einem Hohlrad, wobei die Verzahnung zumindest eines der Planetenräder sowohl mit der Verzahnung des Sonnenrades, als auch mit der Verzahnung des Hohlrades kämmt, wodurch das Hohlrad und das Sonnenrad in entgegengesetzte Drehrichtungen rotieren, wenn das Sonnenrad bei feststehendem Steg rotiert. Ein Plus-Radsatz unterscheidet sich zu dem gerade beschriebenen Minus-Planetenradsatz dahingehend, dass der Plus-Radsatz innere und äußere Planetenräder aufweist, welche drehbar an dem Steg gelagert sind. Die Verzahnung der inneren Planetenräder kämmt dabei einerseits mit der Verzahnung des Sonnenrads und andererseits mit der Verzahnung der äußeren Planetenräder. Die Verzahnung der äußeren Planetenräder kämmt darüber hinaus mit der Verzahnung des Hohlrades. Dies hat zur Folge, dass bei feststehendem Steg das Hohlrad und das Sonnenrad in die gleiche Drehrichtung rotieren.
  • Jeder der drei Planetenradsätze weist ein erstes, zweites und drittes Element auf. Jeder der drei Planetenradsätze kann entweder als Minus-Radsatz oder als Plus-Radsatz ausgebildet sein. Das erste Element wird stets durch das Sonnenrad des jeweiligen Planetenradsatzes gebildet. Bei einer Ausbildung als Minus-Radsatz wird das zweite Element durch den Steg des jeweiligen Planetenradsatzes gebildet, und das dritte Element durch das Hohlrad des jeweiligen Planetenradsatzes. Bei einer Ausbildung als Plus-Radsatz wird das zweite Element durch das Hohlrad des jeweiligen Planetenradsatzes gebildet, und das dritte Element durch den Steg des jeweiligen Planetenradsatzes.
  • Die Eingangswelle ist ständig mit dem zweiten Element des zweiten Planetenradsatzes verbunden. Die Abtriebswelle ist ständig mit dem zweiten Element des dritten Planetenradsatzes verbunden. Das erste Element des ersten Planetenradsatzes ist mit dem ersten Element des zweiten Planetenradsatzes ständig verbunden. Das zweite Element des ersten Planetenradsatzes ist mit dem dritten Element des dritten Planetenradsatzes ständig verbunden.
  • Durch Schließen des vierten Schaltelements wird das erste Element des ersten Planetenradsatzes drehfest festgesetzt, indem es über das vierte Schaltelement mit einem Gehäuse oder mit einem anderen drehfesten Bauelement des Getriebes verbunden wird.
  • Erfindungsgemäß ist durch Schließen des zweiten Schaltelements das dritte Element des zweiten Planetenradsatzes mit dem ersten Element des dritten Planetenradsatzes verbindbar, wobei das dritte Element des ersten Planetenradsatzes ständig drehfest festgesetzt ist. Durch Schließen des ersten Schaltelements ist das dritte Element des zweiten Planetenradsatzes mit dem zweiten Element des dritten Planetenradsatzes verbindbar. Durch Schließen des dritten Schaltelements sind zwei der drei Elemente des zweiten Planetenradsatzes miteinander verbindbar.
  • Im Vergleich zu dem im Stand der Technik bekannten Mehrstufengetriebe weist das gegenständliche Getriebe drei statt vier Planetenradsätze auf, und vier statt fünf Schaltelemente. Dabei weist das gegenständliche Getriebe weiterhin einen guten Verzahnungswirkungsgrad, einen einfachen Aufbau und eine kompakte Bauweise auf, und zeichnet sich durch eine geringe Bauteilbelastung aus. Sämtliche Schaltelemente sind auch gut mit Druck- und Schmiermittel erreichbar, wodurch die Hydraulikfluidführung des Getriebes vereinfacht wird.
  • Durch den erfindungsgemäßen Aufbau ist es zudem möglich, das erste, zweite und dritte Schaltelement in unmittelbarer Nähe zueinander anzuordnen. Dadurch wird die Hydraulikfluid-Führung des Getriebes erleichtert.
  • Durch selektives Betätigen des ersten, zweiten, dritten und vierten Schaltelements sind fünf Vorwärtsgänge zwischen der Eingangswelle und der Abtriebswelle vorzugsweise automatisiert schaltbar. Der erste Vorwärtsgang wird durch Schließen des vierten Schaltelements und des zweiten Schaltelements gebildet. Der zweite Vorwärtsgang wird durch Schließen des zweiten Schaltelements und des dritten Schaltelements gebildet. Der dritte Vorwärtsgang wird durch Schließen des zweiten Schaltelements und des ersten Schaltelements gebildet. Der vierte Vorwärtsgang wird durch Schließen des dritten Schaltelements und des ersten Schaltelements gebildet. Der fünfte Vorwärtsgang wird durch Schließen des vierten Schaltelements und des ersten Schaltelements gebildet. Dadurch wird, bei geeigneter Wahl der Standgetriebeübersetzungen der drei Planetenradsätze, eine für die Anwendung im Kraftfahrzeug gut geeignete Übersetzungsreihe erzielt. Zudem weisen zwei benachbarte Vorwärtsgänge stets ein Schaltelement auf, das in beiden diesen Gängen geschlossen ist. Bei einem Schaltvorgang in einen benachbarten Vorwärtsgang muss daher nur ein Schaltelement geöffnet und ein Schaltelement geschlossen werden. Dies vereinfacht den Schaltvorgang und verkürzt die Schaltdauer zwischen benachbarten Vorwärtsgängen.
  • Vorzugsweise sind sämtliche Planetenradsätze als Minus-Radsätze ausgebildet. Dadurch ist die Wahl der Standgetriebeübersetzung der Planetenradsätze nicht wesentlich eingeschränkt. Denn wird ein Minus-Radsatz durch einen Plus-Radsatz ersetzt, so ist der Betrag der Standgetriebeübersetzung des entsprechenden Minus-Radsatzes um den Wert Eins zu erhöhen, um mit dem Plus-Radsatz dieselbe Übersetzungswirkung zu erzielen wie mit dem Minus-Radsatz.
  • Vorzugsweise sind die drei Planetenradsätze koaxial zueinander angeordnet. In anderen Worten weisen die ersten, zweiten und dritten Elemente, also Sonnenrad, Steg und Hohlrad der drei Planetenradsätze im Wesentlichen die gleiche Drehachse auf. Ein etwaiger Achsversatz, welcher durch unvermeidliche Fertigungstoleranzen verursacht wird, bleibt dabei außer Betracht. In axialer Richtung sind die drei Planetenradsätze dabei in der folgenden Reihenfolge angeordnet: erster Planetenradsatz, zweiter Planetenradsatz, dritter Planetenradsatz.
  • Gemäß einer Ausgestaltung der Erfindung ist das zweite Schaltelement als formschlüssiges Schaltelement ausgebildet. Formschlüssige Schaltelemente stellen im geschlossenen Zustand die Verbindung durch Formschluss her, und zeichnen sich im geöffneten Zustand durch geringere Schleppverluste als kraftschlüssige Schaltelemente aus. Durch die im geöffneten Zustand geringen Schleppverluste wird der Wirkungsgrad des Getriebes verbessert. Da das zweite Schaltelement lediglich im ersten bis dritten Vorwärtsgang geschlossen ist, bleibt das zweite Schaltelement bei Schaltvorgängen in einen höheren Gang entweder geschlossen oder wird geöffnet, wird aber nicht geschlossen. Ein Öffnen eines Klauen-Schaltelements ist erheblich einfacher als der Schließ-Vorgang, da beim Schließen die Klauen erst in die dafür vorgesehen Lücken einrücken müssen, während beim Öffnen die Klauen lediglich lastfrei gestellt werden müssen. Beide Vorgänge benötigen Zeit, wobei besonders bei Schaltvorgängen von einem niedrigen Gang in einen höheren Gang die Schaltzeit aus fahrdynamischen Gründen möglichst kurz sein soll. Da das zweite Schaltelement bei Schaltvorgängen in einen höheren Gang jedoch nie geschlossen werden muss, besteht durch die Ausbildung des zweiten Schaltelements als formschlüssiges Schaltelement keine Einschränkung hinsichtlich der Schaltdauer.
  • Das vierte Schaltelement kann als Bandbremse oder Lamellenbremse ausgebildet sein. Ist die Bandbremse oder Lamellenbremse hydraulisch betätigt, so ist das vierte Schaltelement durch die gehäusenahe Anordnung gut mit Hydraulikfluid erreichbar. Dies vereinfacht die Hydraulikfluidführung des Getriebes.
  • Das Getriebe kann eine elektrische Maschine mit einem drehfesten Stator und einem drehbar gelagerten Rotor aufweisen. Der Rotor ist dabei mit der Eingangswelle wirkverbunden, wobei diese Wirkverbindung entweder durch eine unmittelbare Anbindung oder über ein geeignetes Übersetzungsgetriebe ausgebildet sein kann, beispielsweise durch einen Planetenradsatz. Ein derart ausgestaltetes Getriebe weist zudem eine Anschlusswelle und eine Trennkupplung auf. Die Anschlusswelle ist über die Trennkupplung mit der Eingangswelle verbindbar. Durch diese zusätzlichen Komponenten erhält das Getriebe zusätzliche Funktionen, und ist somit in einem Hybridantriebsstrang eines Hybridfahrzeugs verwendbar.
  • Gemäß einer Ausführungsform ist die Trennkupplung als eine trockene oder nasse Lamellenkupplung ausgebildet. Eine Lamellenkupplung besteht aus einem Innenlamellenträger und einem Außenlamellenträger, wobei eine Vielzahl von Innenlamellen mit dem Innenlamellenträger verbunden ist, und eine Vielzahl von Außenlamellen mit dem Außenlamellenträger verbunden ist. Die Innenlamellen und Außenlamellen sind alternierend angeordnet und überlappen einander. Wird normal zur Lamellenfläche der Lamellen eine Kraft auf die Lamellen aufgebracht, so wird ein Drehmoment von einem Lamellenträger zum anderen Lamellenträger durch Reibung zwischen Innenlamellen und Außenlamellen übertragen. Das von einem Lamellenträger zum anderen Lamellenträger übertragene Drehmoment hängt dabei von der aufgebrachten Kraft ab. Ist die Kraft groß genug um durch Kraftschluss eine Differenzdrehzahl zwischen Innenlamellen und Außenlamellen zu unterbinden, so wird das gesamte Drehmoment übertragen. Reicht die Kraft dazu nicht aus, so wird nur ein Teil des Drehmoments übertragen, wobei es zu einer Differenzdrehzahl zwischen Innenlamellen und Außenlamellen kommt. Dieser Zustand wird auch als Schlupfbetrieb bezeichnet. Durch Variation der auf die Lamellen aufgebrachten Kraft ist die Drehmomentübertragungsfähigkeit des ersten Schaltelements einstellbar.
  • In einer alternativen Ausführungsform ist die Trennkupplung als formschlüssiges Schaltelement ausgebildet. Dadurch kann der Wirkungsgrad des Getriebes verbessert werden, da die Trennkupplung im geöffneten Zustand wesentlich geringere Schleppverluste erzeugt als ein kraftschlüssiges Schaltelement, wie beispielsweise eine Lamellenkupplung.
  • Gemäß einer Ausgestaltung der Erfindung wird ein Rückwärtsgang des Getriebes durch Rückwärtsdrehung des Rotors der elektrischen Maschine gebildet, wobei die Trennkupplung geöffnet ist und einer der fünf Vorwärtsgänge eingelegt ist. In anderen Worten weist das Getriebe keinen durch eine selektive Betätigung des ersten, zweiten, dritten und vierten Schaltelements gebildeten Rückwärtsgang auf. Stattdessen wird die elektrische Maschine so betrieben, dass der Rotor entgegen einer Vorzugsdrehrichtung der Eingangswelle rotiert. Durch diese Ausgestaltung kann im Vergleich zum Stand der Technik ein Schaltelement eingespart werden, wodurch die Komplexität des Getriebes und auch dessen Gewicht reduziert wird.
  • Das Getriebe kann Bestandteil eines Hybridantriebsstrangs eines Hybridfahrzeugs sein. Der Hybridantriebsstrang weist neben dem Getriebe auch eine Verbrennungskraftmaschine auf, welche über einen Torsionsschwingungsdämpfer mit der Anschlusswelle des Getriebes drehelastisch verbunden ist. Die Abtriebswelle des Getriebes ist mit einem Achsgetriebe antriebswirkverbunden, welches das Drehmoment auf Räder des Hybridfahrzeugs verteilt. Der Hybridantriebsstrang ermöglicht mehrere Antriebsmodi des Hybridfahrzeugs. In einem elektrischen Fahrbetrieb wird das Hybridfahrzeug allein von der elektrischen Maschine des Getriebes angetrieben, wobei die Trennkupplung geöffnet ist. In einem verbrennungsmotorischen Betrieb wird das Hybridfahrzeug allein von der Verbrennungskraftmaschine angetrieben, wobei die Trennkupplung geschlossen ist. In einem hybridischen Betrieb wird das Hybridfahrzeug sowohl von der Verbrennungskraftmaschine als auch von der elektrischen Maschine des Getriebes angetrieben.
  • In manchen Betriebszuständen des Hybridfahrzeugs ist ein generatorischer Betrieb der elektrischen Maschine erforderlich, wobei der Rotor durch die Verbrennungskraftmaschine angetrieben wird. Dazu ist die Trennkupplung geschlossen. Sind beide oder eines der beiden Schaltelemente, durch die ein Gang gebildet wird, nicht geschlossen, so wird dabei kein Drehmoment von der Eingangswelle zur Abtriebswelle übertragen. Soll das Hybridfahrzeug in diesem Betriebszustand unmittelbar anfahren, so wird eines der im ersten Vorwärtsgang geschlossenen Schaltelemente vom geöffneten Zustand in einen Schlupfbetrieb überführt, während das andere der im ersten Vorwärtsgang geschlossenen Schaltelemente geschlossen bleibt oder geschlossen wird. Durch das im Schlupfbetrieb befindliche Schaltelement wird Drehmoment von der Eingangswelle zur Abtriebswelle übertragen, wobei die Drehzahl der Abtriebswelle durch Steuerung des Schlupfbetriebs stetig verändert werden kann. Das im Schlupfbetrieb betriebene Schaltelement ist dabei als kraftschlüssiges Schaltelement ausgebildet.
  • Soll aus dem elektrischen Fahrbetrieb in den verbrennungsmotorischen oder hybridischen Betrieb gewechselt werden, so muss die Verbrennungskraftmaschine gestartet werden. Dies wird bevorzugt durch einen Schleppstart realisiert, bei dem die Kurbelwelle der Verbrennungskraftmaschine durch die Eingangswelle angetrieben wird. Dazu wird in einem ersten Verfahrensschritt bei eingelegtem Gang und geöffneter Trennkupplung eines der ersten, zweiten, dritten oder vierten Schaltelemente, welches zu diesem Zeitpunkt geschlossen ist, in einen Schlupfbetrieb überführt. Das in den Schlupfbetrieb überführte Schaltelement ist dazu als ein kraftschlüssiges Schaltelement ausgebildet, welches mit einer variablen Drehmomentübertragungsfähigkeit ausgestattet ist. In einem zweiten Verfahrensschritt wird die Drehmomentübertragungsfähigkeit der Trennkupplung erhöht. Die Trennkupplung ist dazu ebenfalls als kraftschlüssiges Schaltelement mit einer variablen Drehmomentübertragungsfähigkeit ausgebildet. Das vom geschlossenen Zustand in den Schlupfbetrieb überführte Schaltelement dient dazu, die notwendige Startdrehzahl der Kurbelwelle im Falle einer geringen Fahrzeuggeschwindigkeit zu erreichen und etwaige aus dem Startvorgang resultierende Drehmomentstörungen von der Abtriebswelle weitgehend zu entkoppeln.
  • Durch Schaltelemente wird, je nach Betätigungszustand, eine Relativbewegung zwischen zwei Bauteilen zugelassen oder eine Verbindung zur Übertragung eines Drehmoments zwischen den zwei Bauteilen hergestellt. Unter einer Relativbewegung ist beispielsweise eine Rotation zweier Bauteile zu verstehen, wobei die Drehzahl des ersten Bauteils und die Drehzahl des zweiten Bauteils voneinander abweichen. Darüber hinaus ist auch die Rotation nur eines der beiden Bauteile denkbar, während das andere Bauteil stillsteht oder in entgegengesetzter Richtung rotiert.
  • Zwei Elemente werden als verbindbar bezeichnet, wenn zwischen diesen Elementen eine durch ein Schaltelement lösbare drehfeste Verbindung besteht. Wenn die Verbindung besteht, so drehen solche Elemente mit der gleichen Drehzahl.
  • Ein Leistungspfad ist eine Wirkverbindung zwischen zwei Elementen, über die Drehmoment und Drehzahl zwischen den zwei Elementen übertragen werden können. Die Wirkverbindung kann die zwei Elemente über mehrere Elemente verbinden, wobei Drehmoment, Drehzahl und Drehrichtung zwischen den zwei Elementen durch geeignete Übersetzungsgetriebe, beispielsweise durch einen oder mehrere Planetenradsätze oder Stirnradstufen geändert werden können. Der Leistungspfad kann über geschlossene Schaltelemente führen. Die über den Leistungspfad übertragene Leistung bleibt dabei abgesehen von Reibungs- oder Strömungsverluste des Leistungspfads erhalten.
  • Ausführungsbeispiele der Erfindung sind nachfolgend anhand der beigefügten Figuren detailliert beschrieben.
    • 1 zeigt schematisch ein Getriebe entsprechend eines ersten Ausführungsbeispiels der Erfindung.
    • 2 zeigt ein Schaltschema des Getriebes.
    • 3 zeigt schematisch ein Getriebe entsprechend eines zweiten Ausführungsbeispiels der Erfindung.
    • 4 zeigt schematisch ein Getriebe entsprechend eines dritten Ausführungsbeispiels der Erfindung.
    • 5 zeigt schematisch ein Getriebe entsprechend eines vierten Ausführungsbeispiels der Erfindung.
    • 6 zeigt schematisch einen Hybridantriebsstrang eines Kraftfahrzeugs.
  • 1 zeigt schematisch ein Getriebe G entsprechend eines ersten Ausführungsbeispiels der Erfindung. Das Getriebe G weist eine Eingangswelle GW1, eine Abtriebswelle GW2, einen ersten Planetenradsatz P1, einen zweiten Planetenradsatz P2 und einen dritten Planetenradsatz P3 auf. Sämtliche Planetenradsätze P1, P2, P3 sind als Minus-Radsätze ausgebildet, und weisen je ein erstes Element E11, E12, E13, ein zweites Element E21, E22, E23 und ein drittes Element E31, E32, E33 auf. Das erste Element E11, E12, E13 ist einem Sonnenrad des jeweiligen Planetenradsatzes P1, P2, P3 zugeordnet. Das zweite Element E21, E22, E23 ist einem Steg des jeweiligen Planetenradsatzes P1, P2, P3 zugeordnet. Das dritte Element E31, E32, E33 ist einem Hohlrad des jeweiligen Planetenradsatzes P1, P2, P3 zugeordnet.
  • Jeder der drei Planetenradsätze P1, P2, P3 kann auch als Plus-Radsatz ausgebildet sein. Der Übersichtlichkeit halber sind diese Ausführungen nicht figürlich dargestellt. Wäre beispielsweise der erste Planetenradsatz P1 als Plus-Radsatz ausgebildet, so wäre das zweite Element E21 dem Hohlrad, und das dritte Element E31 dem Steg des ersten Planetenradsatzes P1 zugeordnet. Das erste Element E11 wäre weiterhin dem Sonnenrad des ersten Planetenradsatzes P1 zugeordnet. Wird ein Minus-Radsatz durch einen Plus-Radsatz ersetzt, so muss der Betrag der Standgetriebeübersetzung dieses Planetenradsatzes um den Wert Eins erhöht werden, um die gleiche Wirkung zu erzielen.
  • Das Getriebe G weist ein erstes Schaltelement K2, ein zweites Schaltelement B2, ein drittes Schaltelement K1 und ein viertes Schaltelement B1 auf. Durch Schließen des ersten Schaltelements K2 wird eine drehfeste Verbindung zwischen dem dritten Element E32 des zweiten Planetenradsatzes P2 und dem zweiten Element E23 des dritten Planetenradsatzes P3 hergestellt. Durch Schließen des zweiten Schaltelements B2 wird eine drehfeste Verbindung zwischen dem dritten Element E32 des zweiten Planetenradsatzes P2 und dem ersten Element E13 des dritten Planetenradsatzes P3 hergestellt. Durch Schließen des dritten Schaltelements K1 wird eine drehfeste Verbindung zwischen dem zweiten Element E22 des zweiten Planetenradsatzes P2 und dem dritten Element E32 des zweiten Planetenradsatzes P2 hergestellt. Durch Schließen des vierten Schaltelements B1 wird das erste Element E11 des ersten Planetenradsatzes P1 drehfest festgesetzt, indem es über das vierte Schaltelement B1 mit einem Gehäuse GG oder mit einem anderen drehfesten Bauelement des Getriebes G verbunden wird.
  • Alternativ zu der in 1 dargestellten Ausführung könnte durch Schließen des dritten Schaltelements K1 auch das erste Element E12 mit dem dritten Element E32, oder das erste Element E12 mit dem zweiten Element E22 des zweiten Planetenradsatzes P2 verbunden werden. Der Übersichtlichkeit halber sind diese alternativen Ausführungen nicht dargestellt.
  • Die gewählte Darstellung der Schaltelemente K2, B2, K1, B1 ist lediglich schematisch anzusehen, und soll keinen Rückschluss auf die Bauart des Schaltelements geben. Beispielsweise können sämtliche Schaltelemente K2, B2, K1, B1 als kraftschlüssige Schaltelemente ausgebildet sein. Insbesondere das zweite Schaltelement B2 kann als formschlüssiges Schaltelement ausgebildet sein, beispielsweise als Klauen-Schaltelement.
  • Die Eingangswelle GW1 ist mit dem zweiten Element E22 des zweiten Planetenradsatzes P2 ständig verbunden. Die Abtriebswelle GW2 ist mit dem zweiten Element E23 des dritten Planetenradsatzes P3 ständig verbunden. Das erste Element E11 des ersten Planetenradsatzes P1 ist mit dem ersten Element E12 des zweiten Planetenradsatzes P2 ständig verbunden. Das zweite Element E21 des ersten Planetenradsatzes P1 ist mit dem dritten Element E33 des dritten Planetenradsatzes P3 ständig verbunden. Die Eingangswelle GW1 und die Abtriebswelle GW2 sind koaxial zueinander und an entgegengesetzten Enden des Getriebes G angeordnet, wodurch sich das Getriebe G besonders für die Anwendung in einem Kraftfahrzeug mit Front-Längs- oder Heck-Längs-Antriebsstrang eignet. Die Eingangswelle GW1 durchgreift den ersten und zweiten Planetenradsatz P1, P2 dazu radial innen, während die Verbindung zwischen dem zweiten Element E21 des ersten Planetenradsatzes P1 und dem dritten Element E33 des dritten Planetenradsatzes P3 den zweiten Planetenradsatz P2 radial außen umgreift. Ausgehend vom axialen Ende des Getriebes G, an dem die Eingangswelle GW1 angeordnet ist, sind die drei Planetenradsätze P1, P2, P3 in der Reihenfolge erster Planetenradsatz P1, zweiter Planetenradsatz P2, dritter Planetenradsatz P3` angeordnet.
  • 2 zeigt ein Schaltschema des Getriebes G. Das Getriebe G weist fünf Vorwärtsgänge 1 bis 5 auf, welche in den Zeilen des Schaltschemas angeführt sind. In den Spalten des Schaltschemas ist durch ein X dargestellt, welche der Schaltelemente K2, B2, K1, B1 in welchem Gang geschlossen sind. In einem ersten Vorwärtsgang 1 sind das zweite Schaltelement B2 und das vierte Schaltelement B1 geschlossen. In einem zweiten Vorwärtsgang 2 sind das zweite Schaltelement B2 und das dritte Schaltelement K1 geschlossen. In einem dritten Vorwärtsgang 3 sind das zweite Schaltelement B2 und das erste Schaltelement K2 geschlossen. In einem vierten Vorwärtsgang 4 sind das dritte Schaltelement K1 und das erste Schaltelement K2 geschlossen. In einem fünften Vorwärtsgang 5 sind das erste Schaltelement K2 und das vierte Schaltelement B1 geschlossen. Dieses Schaltschema gilt für sämtliche Ausführungsformen.
  • 3 zeigt schematisch ein Getriebe G entsprechend eines zweiten Ausführungsbeispiels der Erfindung, welches sich durch die räumliche Anordnung der Komponenten zueinander vom ersten Ausführungsbeispiel unterscheidet. Die Eingangswelle GW1 und die Abtriebswelle GW2 sind nun am selben axialen Ende des Getriebes G angeordnet. Die Abtriebswelle GW2 bildet eine Schnittstelle, an der die an der Abtriebswelle GW2 anliegende Leistung radial nach außen führbar ist. Dies wird durch einen nicht dargestellten Stirnradsatz realisiert. Dazu ist die Abtriebswelle GW2 mit einem Zahnrad des Stirnradsatzes verbunden, welches mit einem anderen Zahnrad des Stirnradsatzes kämmt, dessen Drehachse achsparallel zur Drehachse der Abtriebswelle GW2 ist. Diese Anordnung ist besonders für die Anwendung des Getriebes G in einem Front-Quer-Antriebsstrang oder einem Heck-Quer eines Kraftfahrzeugs geeignet. Die Eingangswelle GW1 durchgreift dazu den dritten Planetenradsatz P3 radial innen. Ausgehend vom axialen Ende des Getriebes G, an dem die Eingangswelle GW1 und die Abtriebswelle GW2 angeordnet sind, sind die drei Planetenradsätze P1, P2, P3 in der Reihenfolge dritter Planetenradsatz P3, zweiter Planetenradsatz P2, erster Planetenradsatz P1' angeordnet.
  • 4 zeigt schematisch ein Getriebe G entsprechend eines dritten Ausführungsbeispiels der Erfindung. Im Unterschied zu dem in 1 dargestellten ersten Ausführungsbeispiel weist das Getriebe G eine elektrische Maschine EM mit einem drehfesten Stator S und einem drehbar gelagerten Rotor R auf. Der Rotor R ist ständig mit der Eingangswelle GW1 verbunden. Darüber hinaus weist das Getriebe G eine Anschlusswelle AN und eine Trennkupplung K0 auf. Die Eingangswelle GW1 ist über die Trennkupplung K0 mit der Anschlusswelle AN verbindbar.
  • 5 zeigt schematisch ein Getriebe G entsprechend eines vierten Ausführungsbeispiels der Erfindung, welches im Wesentlichen dem in 3 dargestellten zweiten Ausführungsbeispiel entspricht, ergänzt um die elektrische Maschine EM, der Anschlusswelle AN und der Trennkupplung K0. Die Abtriebswelle GW2 ist dabei in axialer Richtung räumlich zwischen der elektrischen Maschine EM und dem dritten Planetenradsatz P3 angeordnet.
  • 6 zeigt schematisch einen Hybridantriebsstrang eines Hybridfahrzeugs. Der Hybridantriebsstrang weist eine Verbrennungskraftmaschine VKM auf, die über einen Torsionsschwingungsdämpfer TS mit der Anschlusswelle AN des Getriebes G verbunden ist. Die Abtriebswelle GW2 ist mit einem Achsgetriebe AG antriebswirkverbunden. Vom Achsgetriebe AG ausgehend wird die Leistung, die an der Abtriebswelle GW2 anliegt, auf Räder DW des Kraftfahrzeugs verteilt. Im motorischen Betrieb der elektrischen Maschine EM wird dem Stator S über einen nicht dargestellten Wechselrichter elektrische Leistung zugeführt. Im generatorischen Betrieb der elektrischen Maschine EM führt der Stator S dem Wechselrichter elektrische Leistung zu. Der Wechselrichter wandelt dabei die Gleichspannung einer nicht dargestellten Batterie in eine für die elektrische Maschine EM geeignete Wechselspannung, und umgekehrt. In 6 ist das Getriebe G entsprechend dem ersten Ausführungsbeispiel dargestellt. Dies ist lediglich beispielhaft anzusehen. Der Hybridantriebsstrang könnte mit jeder Ausführungsform des Getriebes G aufgebaut sein.
  • Bezugszeichenliste
  • G
    Getriebe
    GW1
    Eingangswelle
    GW2
    Abtriebswelle
    AN
    Anschlusswelle
    GG
    Gehäuse
    P1
    Erster Planetenradsatz
    P2
    Zweiter Planetenradsatz
    P3
    Dritter Planetenradsatz
    EM
    Elektrische Maschine
    R
    Rotor
    S
    Stator
    E11
    Erstes Element des ersten Planetenradsatzes
    E21
    Zweites Element des ersten Planetenradsatzes
    E31
    Drittes Element des ersten Planetenradsatzes
    E12
    Erstes Element des zweiten Planetenradsatzes
    E22
    Zweites Element des zweiten Planetenradsatzes
    E32
    Drittes Element des zweiten Planetenradsatzes
    E13
    Erstes Element des dritten Planetenradsatzes
    E23
    Zweites Element des dritten Planetenradsatzes
    E33
    Drittes Element des dritten Planetenradsatzes
    K2
    Erstes Schaltelement
    B2
    Zweites Schaltelement
    K1
    Drittes Schaltelement
    B1
    Viertes Schaltelement
    K0
    Trennkupplung
    1
    Erster Vorwärtsgang
    2
    Zweiter Vorwärtsgang
    3
    Dritter Vorwärtsgang
    4
    Vierter Vorwärtsgang
    5
    Fünfter Vorwärtsgang
    VKM
    Verbrennungskraftmaschine
    DW
    Räder
    AG
    Achsgetriebe
    TS
    Torsionsschwingungsdämpfer

Claims (12)

  1. Getriebe (G) für ein Kraftfahrzeug, mit einer Eingangswelle (GW1), einer Abtriebswelle (GW2), einem ersten, zweiten und dritten Planetenradsatz (P1, P2, P3), sowie einem ersten Schaltelement (K2), einem zweiten Schaltelement (B2), einem dritten Schaltelement (K1), und einem vierten Schaltelement (B1), wobei die drei Planetenradsätze (P1, P2, P3) je ein erstes Element (E11, E12, E13) ein zweites Element (E21, E22, E23) und ein drittes Element (E31, E32, E33) aufweisen, wobei das erste Element (E11, E12, E13) durch ein Sonnenrad des jeweiligen Planetenradsatzes (P1, P2, P3) gebildet ist, wobei das zweite Element (E21, E22, E23) im Falle eines Minus-Radsatzes durch einen Steg und im Falle eines Plus-Radsatzes durch ein Hohlrad des jeweiligen Planetenradsatzes (P1, P2, P3) gebildet ist, wobei das dritte Element (E31, E32, E33) im Falle eines Minus-Radsatzes durch das Hohlrad und im Falle eines Plus-Radsatzes durch den Steg des jeweiligen Planetenradsatzes (P1, P2, P3) gebildet ist, wobei die Eingangswelle (GW1) mit dem zweiten Element (E22) des zweiten Planetenradsatzes (P2) ständig verbunden ist, wobei die Abtriebswelle (GW2) mit dem zweiten Element (E23) des dritten Planetenradsatzes (P3) ständig verbunden ist, wobei das erste Element (E11) des ersten Planetenradsatzes (P1) mit dem ersten Element (E12) des zweiten Planetenradsatzes (P2) ständig verbunden ist, wobei das zweite Element (E21) des ersten Planetenradsatzes (P1) mit dem dritten Element (E33) des dritten Planetenradsatzes (P3) ständig verbunden ist, wobei durch Schließen des vierten Schaltelements (B1) das erste Element (E11) des ersten Planetenradsatzes (P1) drehfest festsetzbar ist, dadurch gekennzeichnet, dass durch Schließen des zweiten Schaltelements (B2) das dritte Element (E32) des zweiten Planetenradsatzes (P2) mit dem ersten Element (E13) des dritten Planetenradsatzes (P3) verbindbar ist, wobei das dritte Element (E31) des ersten Planetenradsatzes (P1) ständig drehfest festgesetzt ist, wobei durch Schließen des ersten Schaltelements (K2) das dritte Element (E32) des zweiten Planetenradsatzes (P2) mit dem zweiten Element (E23) des dritten Planetenradsatzes (P3) verbindbar ist, und wobei durch Schließen des dritten Schaltelements (K1) zwei der drei Elemente (E12, E22, E32) des zweiten Planetenradsatzes (P2) miteinander verbindbar sind.
  2. Getriebe (G) für ein Kraftfahrzeug nach Anspruch 1, dadurch gekennzeichnet, dass durch selektive Betätigung des ersten bis vierten Schaltelements (K2, B2, K1, B1) fünf Vorwärtsgänge (1, 2, 3, 4, 5) zwischen der Eingangswelle (GW1) und der Abtriebswelle (GW2) vorzugsweise automatisiert schaltbar sind, wobei sich - der erste Vorwärtsgang (1) durch Schließen des vierten Schaltelements (B1) und des zweiten Schaltelements (B2), - der zweite Vorwärtsgang (2) durch Schließen des zweiten Schaltelements (B2) und des dritten Schaltelements (K1), - der dritte Vorwärtsgang (3) durch Schließen des zweiten Schaltelements (B2) und des ersten Schaltelements (K2), - der vierte Vorwärtsgang (4) durch Schließen des dritten Schaltelements (K1) und des ersten Schaltelements (K2), und - der fünfte Vorwärtsgang (5) durch Schließen des vierten Schaltelements (B1) und des ersten Schaltelements (K2) ergibt.
  3. Getriebe (G) für ein Kraftfahrzeug nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass alle drei Planetenradsätze (P1, P2, P3) als Minus-Radsätze ausgebildet sind.
  4. Getriebe (G) für ein Kraftfahrzeug nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die drei Planetenradsätze koaxial zueinander und in axialer Richtung hintereinander in einer Reihenfolge erster Planetenradsatz (P1), zweiter Planetenradsatz (P2), dritter Planetenradsatz (P3)' angeordnet sind.
  5. Getriebe (G) für ein Kraftfahrzeug nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das zweite Schaltelement (B2) als formschlüssiges Schaltelement ausgebildet ist.
  6. Getriebe (G) für ein Kraftfahrzeug nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das vierte Schaltelement (B1) als Bandbremse ausgebildet ist.
  7. Getriebe (G) für ein Kraftfahrzeug nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Getriebe (G) eine elektrische Maschine (EM) mit einem drehfesten Stator (S) und einem drehbar gelagerten Rotor (R), sowie eine Anschlusswelle (AN) und eine Trennkupplung (K0) aufweist, wobei durch Schließen der Trennkupplung (K0) die Anschlusswelle (AN) mit der Eingangswelle (GW1) verbindbar ist, und wobei der Rotor (R) mit der Eingangswelle (GW1) wirkverbunden ist.
  8. Getriebe (G) für ein Kraftfahrzeug nach Anspruch 7, dadurch gekennzeichnet, dass die Trennkupplung (K0) als trockene oder nasse Lamellenkupplung ausgebildet ist.
  9. Getriebe (G) für ein Kraftfahrzeug nach Anspruch 7, dadurch gekennzeichnet, dass die Trennkupplung (K0) als formschlüssiges Schaltelement ausgebildet ist.
  10. Getriebe (G) für ein Kraftfahrzeug nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass ein Rückwärtsgang des Getriebes (G) durch Rückwärtsdrehung des Rotors (R) bei geöffneter Trennkupplung (K0) und Betrieb in einem der fünf Vorwärtsgänge (1, 2, 3, 4, 5) gebildet wird.
  11. Hybridantriebsstrang für ein Hybridfahrzeug, wobei der Hybridantriebsstrang eine Verbrennungskraftmaschine (VKM), ein Getriebe (G) nach einem der Ansprüche 7 bis 10 sowie ein mit Rädern (DW) des Hybridfahrzeugs verbundenes Achsgetriebe (AG) aufweist, wobei die Anschlusswelle (AN) des Getriebes (G) über einen Torsionsschwingungsdämpfer (TS) mit der Verbrennungskraftmaschine (VKM) drehelastisch verbunden ist und die Abtriebswelle (GW2) des Getriebes (G) mit dem Achsgetriebe (AG) antriebswirkverbunden ist, wobei das Hybridfahrzeug bei geöffneter Trennkupplung (K0) in einem elektrischen Fahrbetrieb von der elektrischen Maschine (EM) allein antreibbar ist, wobei das Hybridfahrzeug bei geschlossener Trennkupplung (K0) in einem verbrennungsmotorischen Betrieb von der Verbrennungskraftmaschine (VKM) allein antreibbar ist, und wobei das Hybridfahrzeug in einem hybridischen Betrieb von der Verbrennungskraftmaschine (VKM) und von der elektrischen Maschine (EM) antreibbar ist.
  12. Verfahren zur Steuerung eines Hybridantriebsstranges nach Anspruch 11, dadurch gekennzeichnet, dass zum Anfahren des Kraftfahrzeugs bei geschlossener Trennkupplung (K0) eines der im ersten Vorwärtsgang (1) geschlossenen Schaltelemente (B1, B2) vom geöffneten Zustand in einen Schlupfbetrieb überführt wird und das andere der im ersten Vorwärtsgang (1) geschlossenen Schaltelemente (B1, B2) geschlossen ist, wodurch bei gegebener Drehzahl der Eingangswelle (GW1) eine Drehzahl der Abtriebswelle (GW2) stetig verändert werden kann, wobei das in den Schlupfbetrieb überführte Schaltelement (B1, B2) durch ein kraftschlüssiges Schaltelement gebildet ist, welches mit einer variablen Drehmomentübertragungsfähigkeit ausgestattet ist.
DE102014222152.8A 2014-10-30 2014-10-30 Getriebe für ein Kraftfahrzeug, Hybridantriebsstrang für ein Hybridfahrzeug sowie Verfahren zur Steuerung eines solchen Hybridantriebsstranges Active DE102014222152B4 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE102014222152.8A DE102014222152B4 (de) 2014-10-30 2014-10-30 Getriebe für ein Kraftfahrzeug, Hybridantriebsstrang für ein Hybridfahrzeug sowie Verfahren zur Steuerung eines solchen Hybridantriebsstranges

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102014222152.8A DE102014222152B4 (de) 2014-10-30 2014-10-30 Getriebe für ein Kraftfahrzeug, Hybridantriebsstrang für ein Hybridfahrzeug sowie Verfahren zur Steuerung eines solchen Hybridantriebsstranges

Publications (2)

Publication Number Publication Date
DE102014222152A1 DE102014222152A1 (de) 2016-05-04
DE102014222152B4 true DE102014222152B4 (de) 2023-07-06

Family

ID=55753700

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102014222152.8A Active DE102014222152B4 (de) 2014-10-30 2014-10-30 Getriebe für ein Kraftfahrzeug, Hybridantriebsstrang für ein Hybridfahrzeug sowie Verfahren zur Steuerung eines solchen Hybridantriebsstranges

Country Status (1)

Country Link
DE (1) DE102014222152B4 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018219624A1 (de) * 2018-11-16 2020-05-20 Zf Friedrichshafen Ag Getriebe für ein Kraftfahrzeug

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005002337A1 (de) 2005-01-17 2006-08-10 Zf Friedrichshafen Ag Mehrstufengetriebe
DE102005035328A1 (de) 2005-07-28 2007-03-29 Zf Friedrichshafen Ag Doppelkupplungsgetriebe mit integrierter Elektromaschine und dessen Anwendung
DE102012220829A1 (de) 2012-11-15 2014-05-15 Zf Friedrichshafen Ag Verfahren zum Betreiben einer Antriebseinheit für ein Hybridfahrzeug

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005002337A1 (de) 2005-01-17 2006-08-10 Zf Friedrichshafen Ag Mehrstufengetriebe
DE102005035328A1 (de) 2005-07-28 2007-03-29 Zf Friedrichshafen Ag Doppelkupplungsgetriebe mit integrierter Elektromaschine und dessen Anwendung
DE102012220829A1 (de) 2012-11-15 2014-05-15 Zf Friedrichshafen Ag Verfahren zum Betreiben einer Antriebseinheit für ein Hybridfahrzeug

Also Published As

Publication number Publication date
DE102014222152A1 (de) 2016-05-04

Similar Documents

Publication Publication Date Title
DE102015213664B4 (de) Getriebe für ein Kraftfahrzeug
DE102005039461A1 (de) Hybrider Antriebsstrang eines Kraftfahrzeugs und Verfahren zum Betrieb eines hybriden Antriebsstrangs
DE102016214845A1 (de) Getriebe für ein Kraftfahrzeug
WO2017190887A1 (de) Getriebe für ein kraftfahrzeug
WO2016184628A1 (de) Getriebe für ein kraftfahrzeug und hybridantriebsstrang damit
WO2017089143A1 (de) Getriebe für ein kraftfahrzeug, sowie antriebsstrang für ein kraftfahrzeug mit einem solchen getriebe
DE102015226688A1 (de) Getriebe für ein Kraftfahrzeug
DE102015218990A1 (de) Getriebe für ein Kraftfahrzeug, sowie Antriebsstrang für ein Kraftfahrzeug
WO2017190888A1 (de) Getriebe für ein kraftfahrzeug
WO2017190886A1 (de) Getriebe für ein kraftfahrzeug
DE102017222705B4 (de) Getriebe für ein Kraftfahrzeug
DE102014222153B4 (de) Getriebe für ein Kraftfahrzeug, Hybridantriebsstrang für ein Hybridfahrzeug sowie Verfahren zur Steuerung eines solchen Hybridantriebsstranges
DE102014220967A1 (de) Getriebe für ein Kraftfahrzeug
DE102014220942A1 (de) Getriebe für ein Kraftfahrzeug
EP3298303B1 (de) Getriebe für ein kraftfahrzeug und hybridantriebsstrang damit
DE102014220971A1 (de) Getriebe für ein Hybridfahrzeug
DE102014220959A1 (de) Getriebe für ein Kraftfahrzeug
DE102014222152B4 (de) Getriebe für ein Kraftfahrzeug, Hybridantriebsstrang für ein Hybridfahrzeug sowie Verfahren zur Steuerung eines solchen Hybridantriebsstranges
DE102014222234B4 (de) Getriebe für ein Kraftfahrzeug, Hybridantriebsstrang für ein Hybridfahrzeug sowie Verfahren zur Steuerung eines Hybridantriebsstranges
WO2016030102A1 (de) Getriebe
WO2016030101A1 (de) Getriebe
DE102014220963A1 (de) Getriebe für ein Kraftfahrzeug
DE102016204132A1 (de) Getriebe für ein Kraftfahrzeug, sowie Antriebsstrang für ein Kraftfahrzeug
DE102014220941A1 (de) Getriebe für ein Kraftfahrzeug
DE102016202923A1 (de) Getriebe für ein Kraftfahrzeug

Legal Events

Date Code Title Description
R163 Identified publications notified
R012 Request for examination validly filed
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final