WO2018103621A1 - 一种使用不溶性阳极的酸性电镀铜工艺及其设备 - Google Patents

一种使用不溶性阳极的酸性电镀铜工艺及其设备 Download PDF

Info

Publication number
WO2018103621A1
WO2018103621A1 PCT/CN2017/114562 CN2017114562W WO2018103621A1 WO 2018103621 A1 WO2018103621 A1 WO 2018103621A1 CN 2017114562 W CN2017114562 W CN 2017114562W WO 2018103621 A1 WO2018103621 A1 WO 2018103621A1
Authority
WO
WIPO (PCT)
Prior art keywords
cathode
plating solution
copper
regeneration tank
plating
Prior art date
Application number
PCT/CN2017/114562
Other languages
English (en)
French (fr)
Inventor
叶旖婷
Original Assignee
叶旖婷
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 叶旖婷 filed Critical 叶旖婷
Publication of WO2018103621A1 publication Critical patent/WO2018103621A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/627Electroplating characterised by the visual appearance of the layers, e.g. colour, brightness or mat appearance
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/16Regeneration of process solutions
    • C25D21/18Regeneration of process solutions of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • C25D5/611Smooth layers

Definitions

  • the invention relates to a process for acid electroplating copper and an apparatus thereof, in particular to an acid electroplating copper process using an insoluble anode and an apparatus therefor.
  • soluble anodes Existing acid copper plating processes are divided into the use of soluble anodes and the use of insoluble anodes.
  • the soluble anode used in the acid copper plating process is typically phosphor bronze.
  • An insoluble anode refers to an anode that does not occur or rarely undergoes an anodic dissolution reaction during an electrochemical reaction.
  • an insoluble anode is usually selected from titanium, graphite, platinum, and a lead alloy coated with a noble metal oxide.
  • the treatment cost of the electroplating waste liquid needs to be increased in order to meet the wastewater discharge index; In the process of the process, anodic polarization and poor current distribution are likely to result in unstable coating quality, so the practice of selecting an insoluble anode process is becoming more and more common.
  • a common acid copper plating process using an insoluble anode uses an aqueous solution of copper sulfate and sulfuric acid as a plating solution, and water is decomposed and decomposed on the anode to form hydrogen ions and oxygen, and copper ions in the plating solution are reduced to metal copper at the cathode. .
  • the concentration of sulfuric acid in the plating solution becomes higher and higher, and copper oxide is added thereto to react to supplement the copper ions lost in the plating solution and consume equivalent amounts of sulfuric acid accordingly.
  • the shortcoming of this method is the quality problem caused by the adhesion of oxygen to the plating plate: due to the water on the anode, the oxygen is dissolved in the plating solution, and the oxygen in the plating solution is attached to the cathode plating member, causing the coating to be black and loose, thereby affecting the plating layer. Quality also increases the consumption of organic brighteners and increases costs.
  • Another common acid copper plating process using an insoluble anode is to add iron ions to a plating solution having a main component of copper sulfate and an aqueous sulfuric acid solution, and the electrochemical reaction on the anode is oxidation of divalent iron ions to ferric ions. Copper ions are reduced to metallic copper at the cathode. This process reduces the amount of oxygen dissolved in the plating solution and avoids the quality caused by oxygen. The problem, but the presence of ferric ions in the plating solution may cause back-etching of the metallic copper on the cathode, affecting the plating rate.
  • the first object of the present invention is to provide an acid electroplating copper process using an insoluble anode, which can effectively solve the quality problem caused by oxygen in the acid copper plating process of the existing insoluble anode, and does not attack and corrode the plating layer, and can not only Improve plating quality and save on plating production costs.
  • the first object of the present invention can be achieved by the following technical solutions: an acid electroplating copper process using an insoluble anode, including using an insoluble anode, a cathode, a plating bath, and a copper sulfate plating solution, which is hereinafter referred to as electroplating.
  • the liquid is characterized in that it comprises the following steps:
  • Step 1 Preparing a process apparatus: dividing the plating tank into an anode region and a cathode region using a separator, the separator allowing electrons to pass freely, and adding a copper sulfate plating solution regeneration configuration tank, hereinafter referred to as a regeneration tank, to make the cathode region
  • the overflow port is connected to the regeneration tank by a pipe so that the cathode plating solution overflows into the regeneration tank when overflowing; the regeneration tank is connected to a pump, and the pump is connected to the cathode region through a return pipe.
  • Step 2 preparing a plating solution: preparing an anodizing solution and a cathode plating solution, and pouring the anodizing solution into the anode region, and pouring the cathode plating solution into the cathode region and the regeneration tank while Adding metallic copper to the regeneration tank; after the beginning of the circulation regeneration preparation work of the copper sulfate plating solution, the solution in the regeneration tank is referred to as a regenerated copper sulfate plating solution, referred to as a regenerated plating solution;
  • Step 3 initiate an electroplating operation: connect the insoluble anode to the positive electrode of the power source, and immerse the anode in the anodizing solution. Connecting the cathode plating member to the negative electrode of the power source and immersing in the cathode plating solution, turning on the pumping in step 1, turning on the power of the electrode to perform electroplating operation and circulating regeneration of the copper sulfate plating solution;
  • Step 4 Control Cathodic Plating Solution Regeneration: Acidity and/or colorimetric and/or redox potential/or specific gravity parameters are applied to the plating solution in the cathode region and/or the regenerated plating solution in the regeneration tank using an automatic detection dosing controller.
  • Detecting and controlling the activation and shutdown of the oxygen source addition system respectively: when the acidity of the cathode plating solution and/or the regenerated plating solution is higher than a set value, or a colorimetric or redox potential/or specific gravity When the value is lower than the set value, the oxygen source feeding system is turned on to supplement oxygen in the plating solution of the regeneration tank, accelerate the regeneration reaction of the copper sulfate plating solution in which sulfuric acid, metal copper and oxygen participate, and regenerate the sulfuric acid into sulfuric acid.
  • Copper is used as a regenerated plating solution; when the acidity of the cathode plating solution and/or the regenerated plating solution is detected, or the colorimetric or redox potential/or specific gravity reaches a set value, the oxygen source addition and investment system is turned off. , stop supplementing oxygen;
  • Step 5 Cathodic plating solution regeneration cycle: the regenerated plating solution in the regeneration tank in step 4 is infused into the cathode region by the pump, and the cathode plating solution overflows from the cathode region when the cathode region overflows
  • the port flows into the regeneration tank through a pipe to form a circulating flow of the cathode plating solution, thereby continuously supplementing the cathode plating solution with copper ions and adjusting the sulfuric acid concentration to achieve stabilization of various parameters in the plating process.
  • the working principle of the present invention although the bipolar electrochemical reaction of the present invention is the same as the electrochemical reaction of the first common acid copper plating process using an insoluble anode mentioned in the background art, the latter uses copper oxide. Reacting with sulfuric acid to supplement the lost copper ions in the plating solution and correspondingly consuming the equivalent amount of sulfuric acid.
  • a regeneration tank is separately provided for reconstituting the plating solution, and metal copper and oxygen are used as oxidants to react with sulfuric acid, and the cathode is consumed.
  • the regenerated chemical reaction equation of the present invention is as follows: The copper sulfate is regenerated at the same time as the sulfuric acid in the electroplating solution is increased in concentration:
  • the process of the present invention can directly supplement the copper ions in the plating solution by using metal copper which is cheaper than copper oxide and phosphor bronze to achieve process stability.
  • metal copper which is cheaper than copper oxide and phosphor bronze
  • the present invention uses a separator to separate the plating tank into the anode region and the cathode region, so that The design also blocks the oxygen generated by the anode region from approaching the cathode region, thereby preventing the cathode plating metal from being etched back and affecting the quality of the coating.
  • the metallic copper of the present invention may be a copper powder, a copper block or a copper rod.
  • the oxygen source addition and investment system of the present invention is mainly composed of an oxygen source and a feeding control device.
  • the oxygen source of the present invention may be formed by generating oxygen on the anode, oxygen in the air, and pressurized oxygen in the bottle. One or more of the oxygen is emitted.
  • the feeding control device is a control valve or a jet vacuum aerator; when the oxygen source uses the generated oxygen on the anode, the feeding control device is an exhaust fan, An exhaust fan fan system is disposed directly above the anode region, and an exhaust pipe outlet of the exhaust fan fan is disposed in the regeneration tank; when the oxygen source uses oxygen in the air, the feeding control device may The jet vacuum aeration device is adopted.
  • the suction region is connected to the air, and the liquid inlet is connected to an aeration pump, and the other end of the aeration pump is connected to the bottom of the regeneration tank through a pipe.
  • the liquid outlet of the jet vacuum aerator is placed in the regeneration tank; a control valve can also be configured using a compressed air machine or a zeolite molecular sieve oxygen generator.
  • the invention can be optimized by the following technical measures:
  • the anodizing solution of the present invention is a sulfuric acid aqueous solution having a concentration of 0.001 to 700 g/L; and the cathode plating solution is a copper sulfate aqueous solution having a concentration of 35 to 240 g/L.
  • the present invention it is also possible to additionally add copper oxide to the regeneration tank, and the copper oxide reacts with the sulfuric acid to rapidly obtain copper sulfate, which contributes to shortening the time required to increase the concentration of copper sulfate in the regenerated plating solution.
  • the present invention may further comprise copper sulfate in the anodizing solution at a concentration of 0.001 to 240 g/L.
  • copper sulfate By adding copper sulfate, the electrical conductivity of the anodizing solution can be increased, the allowable current density can be increased, and the scorch phenomenon in the high current region can be effectively avoided.
  • the cathode plating solution may further contain sulfuric acid, and the concentration is controlled within a range of 0.001 to 400 g/L, so as to effectively prevent hydrolysis of copper sulfate into cuprous sulfate and further into cuprous oxide (Cu 2 O), thereby Avoid loosening in the coating due to the inclusion of cuprous oxide.
  • the present invention may further comprise 10 to 10000 mg/L of chloride ions in the cathode plating solution, and the source of the chloride ions may be hydrochloric acid and/or sodium chloride. Because a small amount of monovalent cuprous ions may be present in the cathode plating solution during the electroplating process, the flatness of the copper on the cathode plated part may be affected, resulting in a rough surface of the plated part. In order to avoid this problem, it is preferred to add an appropriate amount of chloride ions to the cathode plating solution, which can react with monovalent cuprous ions to form copper chloride which is slightly soluble in water, so as to reduce the influence of cuprous ions on the plated parts. .
  • the invention can further add a jet vacuum aeration device, wherein the suction region is connected to the air outlet of the feeding control device, and the liquid inlet is connected to an oxygen pump, and the other end of the oxygen pump is passed.
  • a pipe is connected to the bottom of the regeneration tank, and a liquid outlet of the jet vacuum aerator is placed in the regeneration tank.
  • the jet vacuum aeration device is used to pass oxygen into the regenerated plating solution in the regeneration tank, and the oxygen can be compressed and mixed with the regenerated plating solution by the pressure formed in the jet vacuum aeration device, thereby accelerating the regeneration of the regenerated plating solution. chemical reaction.
  • the oxygen is controlled when the acidity and/or colorimetric and/or redox potential/or specific gravity parameters of the cathodic plating solution and/or the regenerated plating solution are detected using an automatic detection dosing control machine.
  • the opening and closing of the jet vacuum aerator is separately controlled: when the acidity of the cathode plating solution and/or the regenerated plating solution is higher than a set value or an oxidation-reduction potential or When the colorimetric/or specific gravity is lower than the set value, the jet vacuum aeration device is turned on to accelerate the regeneration reaction of the copper sulfate plating solution in the regeneration tank to stabilize the composition of the cathode plating solution.
  • the invention may further provide a filter between the regeneration tank and the pump, the filter being capable of effectively blocking copper mud in the regeneration tank from entering the cathode region, thereby avoiding the cathode plating Copper mud appears nearby and affects the quality of the coating.
  • the membrane used in step 1 employs an anion membrane, and when the cathode plating solution is reduced to metallic copper on the cathode plating member with copper ions, the remaining sulfate ions pass through the cathode region under the action of an electric field.
  • the anion membrane enters the anode region and combines with hydrogen ions generated after electrolysis of the anode water to form sulfuric acid, so that the concentration of sulfuric acid in the anode plating solution is higher and higher.
  • the overflow port of the anode region is connected to the regeneration tank through a pipeline, and an automatic inspection feeding control machine comprising one or more detectors including a hydrometer, a liquid level meter, a pH meter, and an ORP meter is used.
  • the specific gravity and/or liquid level and/or acidity and/or redox potential parameters of the anodizing solution are detected.
  • the automatic detection and feeding control machine controls the feeding of clean water into the anode region by the feeding pump to keep the concentration of the anode plating solution constant.
  • the increased sulfuric acid in the anode plating solution participates in the regeneration reaction of the copper sulfate plating solution in the regeneration tank, and further A stable electroplating process system that achieves a plating fluid regeneration cycle.
  • the membrane used in the step 1 uses a cation membrane, and when hydrogen ions generated after water electrolysis on the anode enter the cathode region through the cation membrane under the action of an electric field, the cathode plating solution is accompanied by copper ions.
  • the cathode plating member is reduced to metal copper and the remaining sulfate ions are combined into sulfuric acid, so that the concentration of sulfuric acid in the cathode plating solution is higher and higher, and the hydrometer, the liquid level meter, the acidity meter, the ORP can be further used.
  • the automatic detection and feeding control machine controls the feeding of the clean water into the anode region by the feeding pump, so that the anode plating solution is lost due to water electrolysis and pumping loss. Some water is replenished.
  • the invention can also provide a diaphragm in the pipeline connecting the overflow port of the cathode region and the top of the regeneration tank.
  • the diaphragm can effectively prevent the passage of organic matter. Since the acidic copper sulfate plating solution is usually added with an electroplating brightener whose main component is organic to obtain a brighter copper surface, the electroplating brightener is easily consumed by reacting with oxygen and/or an oxidizing agent, thereby increasing plating during the electroplating process. The amount of brightener used. Therefore, the separator is provided, and the inorganic component having a small molecule in the solution can be effectively passed through the pressure difference to reduce the plating brightener from entering the regeneration tank, thereby achieving the purpose of reducing cost and improving environmental protection.
  • a second object of the present invention is to provide an apparatus for the aforementioned acid electroplating copper process using an insoluble anode.
  • the second object of the present invention can be achieved by the following technical solution: an acid electroplating copper device using an insoluble anode, comprising using an insoluble anode, a cathode, a plating bath, and a copper sulfate plating solution, characterized in that the separator is used
  • the electroplating tank is divided into an anode region and a cathode region, and the diaphragm allows electrons to pass freely, and a regeneration tank is additionally provided, so that the overflow port of the cathode region is connected to the regeneration tank by a pipeline so that the cathode plating solution overflows when overflowing Into the regeneration tank;
  • the regeneration tank is connected to a pump, and the pump is connected to the cathode region through a return pipe to form a circuit, so that the cathode plating solution circulates between the cathode region and the regeneration tank;
  • the regeneration tank is further connected to an oxygen source addition and investment system for controlling the addition of oxygen; and an automatic
  • the acidity and/or colorimetric and/or redox potential parameters of the regenerated plating solution in the tank are used to control the start and stop of the oxygen source addition and investment system, respectively;
  • the raw plating solution is infused into the cathode region by the pump, and when the cathode plating solution overflows, flowing into the regeneration tank through the pipeline from the cathode region overflow port to form a circulating flow, thereby plating the cathode
  • the liquid continuously replenishes the copper ions and adjusts the sulfuric acid concentration to achieve stability of various parameters in the electroplating process.
  • the oxygen source addition and investment system of the present invention is mainly composed of an oxygen source and a feeding control device.
  • the additional control device may be a control valve, or a vacuum jet aeration device, or an exhaust fan system, or a zeolite molecular sieve oxygen generator configuration.
  • the separator for separating the plating bath into the anode region and the cathode region according to the present invention may be an anion membrane or an anode separator.
  • the present invention utilizes a separator to separate the plating solution in the anode and cathode regions, thereby avoiding the phenomenon that the cathode plating portion of the cathode region is back-etched, so that the current efficiency is high and the plating quality is good. Quality requirements for acid copper plating;
  • the present invention separately provides a regeneration tank for the preparation of the regenerated plating solution, and can use copper metal which is cheaper than copper oxide and phosphorous copper, and uses oxygen as an oxidant to realize the cycle regeneration of the cathode electroplating solution to prepare copper sulfate.
  • the energy-saving and environmentally-friendly process creates better economic effects than the existing technology of using copper oxide and phosphor bronze. At the same time, it can prevent the oxygen added by the regeneration from causing back erosion of the coating and affecting the quality of copper plating;
  • Embodiment 1 is a schematic view of an acid copper plating apparatus according to Embodiment 1 and Embodiments 5 to 8 of the present invention
  • FIG. 2 is a schematic view of an acid copper plating apparatus according to Embodiment 2 and Embodiments 10 to 12 of the present invention
  • FIG. 3 is a schematic view of an acid copper plating apparatus according to Embodiment 3 of the present invention.
  • FIG. 4 is a schematic view of an acid copper plating apparatus according to Embodiment 4 of the present invention.
  • FIG. 5 is a schematic view of an acid copper plating apparatus according to Embodiment 9 of the present invention.
  • Figure 6 is a schematic view of the apparatus of the jet vacuum aerator according to Embodiment 2-4 of the present invention and Embodiments 10-12.
  • the reference numerals are as follows: 1-cathode zone, 2-anode zone, 3-exhaust hood fan; 4-regeneration tank, 5-filter, 6-pump, 7-inlet port, 8-outlet port, 9 - suction zone, 10-separator, 11-jet vacuum aerator, 12-oxygen pump, 13-return tube, 14-cathode overflow, 15-anode overflow, 16-zeolite molecular sieve Oxygen machine.
  • the copper sulfate used is preferably copper sulfate produced by Changzhou Hairun Chemical
  • the sulfuric acid used is preferably sulfuric acid produced by Guangzhou Chemical Reagent Factory
  • the metal copper used is preferably produced by Changsha Tianjiu Metal Materials Co., Ltd.
  • the anode used is preferably a titanium anode plate coated with noble metal oxide produced by Yanxin Titanium Co., Ltd.
  • the zeolite molecular sieve oxygen generator used is preferably Qingdao Zeolite molecular sieve oxygen generator produced by Sankai Medical Technology Co., Ltd.
  • the bottled compressed oxygen used is preferably compressed oxygen produced by Guangzhou Guangqi Gas Co., Ltd.
  • the diaphragm used is preferably a diaphragm produced by Membrane International, USA
  • the microscope used is preferably a computer microscope produced by Guangzhou Optical Instrument Factory
  • the automatic detection feeder used is preferably an automatic inspection feeder produced by Guangzhou Shigao Chemical Co., Ltd.
  • those skilled in the art can achieve the object of the present invention by selecting other products having similar properties to those of the above-listed products according to the conventional selection.
  • the current efficiency calculation formula-1 is as follows:
  • the cathodic plating solution regeneration cycle system shown in Fig. 1 is the apparatus used in the first embodiment and the examples 5-8 of the present invention, including an insoluble anode (not labeled), a cathode plated member (not labeled), a plating bath, and a copper sulfate plating.
  • the liquid, the regeneration tank 4, the metal copper (not shown), the pump 6, the oxygen source feeding system and the automatic detection feeding control machine (not shown), and the acid electroplating copper process using the insoluble anode specifically comprises the following steps:
  • Step 1 Prepare the process equipment: the electroplating tank is divided into an anode zone 2 and a cathode zone 1 by using an anion membrane, and the overflow ports of the anode zone and the cathode zone are simultaneously connected to the top of the regeneration tank 4 by a pipe; the regeneration tank is connected a pump 6, the pump is connected to the cathode region through a return pipe 13 to form a loop; the regeneration tank is also connected to an oxygen source addition system, and the oxygen source in the oxygen source addition system is an anode Forming the evolved oxygen, the addition control device is an air hood fan 3 disposed directly above the anode region 2, and the air outlet of the exhaust pipe of the air hood fan 3 is placed in the plating solution in the regeneration tank; Providing an automatic detection and feeding control machine for the anode region 2 and the cathode region 1 respectively for detecting technical parameters of the plating solution in the two electrode regions;
  • Step 2 Prepare the plating solution: Under normal temperature and pressure, according to Table-1, prepare an anode plating solution and a cathode plating solution, wherein the anode plating solution: 300 g/L sulfuric acid aqueous solution; the cathode plating solution: 150 g/L copper sulfate aqueous solution And pouring the anode plating solution into the anode region, pouring the cathode plating solution into the cathode region and the regeneration tank containing metal copper, and weighing the initial weight of the cathode plating member ;
  • the amount of metal copper is calculated according to the amount of copper to be plated, that is, X grams of copper is plated on the cathode plated member, and the total copper content of the metal copper in the regeneration tank should be greater than or equal to X grams.
  • Step 3 starts the plating operation: connecting the insoluble anode to the positive electrode of the power source and immersing in the anodizing solution,
  • the cathode plating member is connected to the negative electrode of the power source and immersed in the cathode plating solution;
  • the pumping step 1 is turned on, the electrode power source is turned on for electroplating operation, and the copper sulfate plating solution is recycled and prepared;
  • Step 4 controlling the regeneration of the cathode plating solution: detecting the acidity of the cathode plating solution and the specific gravity parameter of the anode plating solution using an automatic detection feeding controller and separately controlling the shutdown of the suction fan and the anode region 2, the water is added, according to the acidity of the initial cathode plating solution, the acidity setting value is set, and the specific gravity setting value is set according to the specific gravity of the initial anodizing solution; when the acidity of the cathode plating solution is higher than the set value, the pumping is started.
  • a hood fan 3 for supplementing oxygen in the plating solution of the regeneration tank, accelerating the regeneration reaction of the copper sulfate plating solution in which sulfuric acid, metallic copper and oxygen participate, and regenerating the sulfuric acid into copper sulfate to become a regenerated plating solution;
  • the air blower fan 3 is turned off to stop the supplemental oxygen;
  • the automatic checker control machine controls the feed pump through the feed pump. The clear water is placed in the anode region 2;
  • Step 5 Cathodic plating solution regeneration cycle: after the plating solution is regenerated in step 4, the pump 6 is infused into the cathode region 1 while the plating solution in the two electrode regions flows from the overflow port through the pipeline A circulation flow is formed in the regeneration tank 4, thereby continuously supplementing the cathode plating solution with copper ions and adjusting the sulfuric acid concentration to achieve stabilization of various parameters in the plating process.
  • the plating test time was set to 15 hours, the cathode current density was 3 A/dm 2 , and the cathode plating member was taken out after the plating time was set; the cathode plating member was washed with water and dried using hot air, and then weighed.
  • the current efficiency was calculated according to Formula-1, and the surface of the plating was observed using a computer microscope, and the results of the observation were recorded in Table-1.
  • the cathodic plating solution regeneration cycle system shown in Fig. 2 is the apparatus used in the embodiment 2 and the embodiment 10-12 of the present invention, including an insoluble anode (not labeled), a cathode plated member (not labeled), a plating bath, and a copper sulfate plating.
  • the acid electroplating copper process specifically includes the following steps:
  • Step 1 Prepare the process equipment: use a cationic membrane to separate the electroplating tank into an anode zone 2 and a cathode zone 1, the overflow port of the cathode zone 1 being connected to the top of the regeneration tank 4 by a pipe; the regeneration tank 4 is connected in series to filter a pump 5 and a pump 6, the pump 6 is connected to the cathode region 1 through a return pipe 13 to form a circuit; the regeneration tank 4 is also connected to an oxygen source charging system, which is added to the oxygen source
  • the oxygen source is a generated oxygen on the anode
  • the addition control device is an air hood fan 3 disposed directly above the anode region, and an air outlet of the exhaust pipe of the air hood fan 3 and a jet vacuum aeration device
  • the suction zone 9 of 11 is connected, and the liquid inlet 7 of the jet vacuum aerator is sequentially added
  • the oxygen pump 12 and the bottom of the regeneration tank 4 are connected by a pipe, and the liquid outlet 8 of the jet vacuum a
  • Step 2 Preparing a plating solution: at normal temperature and pressure, according to Table-1, preparing an anodizing solution and a cathode plating solution, wherein the anodizing solution: a mixed aqueous solution of 200 g/L copper sulfate and 100 g/L sulfuric acid; Liquid: a mixed aqueous solution of 200 g/L copper sulfate and 100 g/L sulfuric acid; the anode plating solution is poured into the anode region 2, and the cathode plating solution is poured into the cathode region 1 and filled with 1: 1 in the regeneration tank 4 of a mixture of metallic copper and copper oxide, and weighing the initial weight of the cathode plated part;
  • the anodizing solution a mixed aqueous solution of 200 g/L copper sulfate and 100 g/L sulfuric acid
  • Liquid a mixed aqueous solution of 200 g/L copper sulfate and 100
  • the amount of metal copper and copper oxide mixture is determined by plating X grams of copper on the cathode plating, and the total copper content of the metal copper and copper oxide mixture in the regeneration tank should be greater than or equal to X grams.
  • Step 3 Initiating a plating operation: connecting an insoluble anode to a positive electrode of the power source and immersing it in the anodizing solution, connecting the cathode plating member to a negative electrode of the power source, and immersing in the cathode plating solution; and turning on the pump 6 in step 1, Turn on the electrode power supply for electroplating operation and cycle regeneration of copper sulfate plating solution;
  • Step 4 controlling the regeneration of the cathode plating solution: detecting the colorimetric color of the regenerated plating solution in the cathode plating solution and the regeneration tank 4 and the liquid level parameter of the anode plating solution by using an automatic detection feeding controller, and using the The parameters respectively control the start and stop of the jet vacuum aerator 11 and the extraction hood fan 3 and the clean water addition of the anode zone 2, and set the colorimetric setting according to the color depth of the initial cathode plating solution, according to the initial The liquid level setting of the anode plating solution sets a liquid level setting value; when the color ratio of the cathode plating solution or the regenerated plating solution is lower than a set value, the jet vacuum aerator 11 and the extraction hood fan 3 are turned on, so that Adding oxygen to the plating solution of the regeneration tank 4, accelerating the regeneration reaction of the copper sulfate plating solution in which sulfuric acid, metallic copper and oxygen participate, and regenerating the sulfuric acid into copper s
  • Step 5 Cathodic plating solution regeneration cycle: after the reconstituted plating solution in the regeneration tank 4 is configured in step 4, the pump 6 is infused into the cathode region 1 while the cathode plating solution overflows from the cathode region 1
  • the flow port flows into the regeneration tank 4 through a pipe to form a circulating flow, thereby continuously supplementing the cathode plating solution with copper ions and adjusting the sulfuric acid concentration to achieve stabilization of various parameters in the plating process.
  • the plating test time was set to 15 hours, the cathode current density was 3 A/dm 2 , and the cathode plating member was taken out after the plating time was set; the cathode plating member was washed with water and dried using hot air, and then weighed.
  • the current efficiency was calculated according to Formula-1, and the surface of the plating was observed using a computer microscope, and the results of the observation were recorded in Table-1.
  • the cathode plating solution regeneration cycle system shown in FIG. 3 is the apparatus used in the third embodiment of the present invention, and includes an insoluble anode (not labeled), a cathode plating member (not labeled), a plating tank, a copper sulfate plating solution, and a regeneration tank 4.
  • Metal copper not shown
  • pump 6 filter 5
  • oxygen source addition system not shown
  • jet vacuum aeration device 11 which uses an acid-plated copper process of insoluble anode Including the following steps:
  • Step 1 preparing a process equipment: using a cation membrane to separate the electroplating tank into an anode zone 2 and a cathode zone 1, the overflow port of the cathode zone 1 is connected to the top of the regeneration tank 4 by a pipe, and the pipe is provided with a diaphragm;
  • the regeneration tank 4 is sequentially connected to the filter 5 and the pump 6, and the pump 6 is connected to the cathode region 1 through a return pipe 13 to form a circuit; the regeneration tank 4 is also connected to the oxygen source addition and investment system.
  • the oxygen source in the oxygen source addition and investment system is bottled compressed oxygen
  • the addition control device is a jet vacuum aeration device 11, and the jet vacuum aeration device 11 is connected to the bottled compressed air, the jet vacuum aeration device
  • the liquid inlet 7 of the 11 is connected to the bottom of the regeneration tank 4 through a pipe, and the liquid outlet 8 of the jet vacuum aerator is placed in the regeneration tank 4; the cathode zone 1, the anode zone 2, and
  • the regeneration tank 4 is provided with an automatic detection feeding control machine for respectively detecting technical parameters of the plating liquid in the two electrode regions;
  • Step 2 Preparing a plating solution: at normal temperature and pressure, according to Table-1, preparing an anodizing solution and a cathode plating solution, wherein the anode plating solution: a mixed aqueous solution of 240 g/L copper sulfate and 50 g/L sulfuric acid; cathodic plating Liquid: a mixed aqueous solution of 240 g/L copper sulfate, 50 g/L sulfuric acid, and 10 mg/L hydrochloric acid; pouring the anodizing solution into the anode region 2, and pouring the cathode plating solution into the cathode region 1 And the regeneration tank 4 containing a mixture of 1:1 metal copper and copper oxide, and weighing the initial weight of the cathode plated member;
  • the anode plating solution a mixed aqueous solution of 240 g/L copper sulfate and 50 g/L sulfuric acid
  • cathodic plating Liquid a
  • Step 3 Initiating a plating operation: connecting an insoluble anode to a positive electrode of the power source and immersing it in the anodizing solution, connecting the cathode plating member to a negative electrode of the power source, and immersing in the cathode plating solution; and turning on the pump 6 in step 1, Turn on the electrode power supply for electroplating operation and cycle regeneration of copper sulfate plating solution;
  • Step 4 controlling the regeneration of the cathode plating solution: respectively detecting the oxidation-reduction potential of the regenerated plating solution, the specific gravity of the anode plating solution, and the oxidation-reduction potential parameter using an automatic detection feeding controller, and respectively controlling the said parameter by using the parameter
  • the oxidation-reduction potential setting of the cathode plating solution is set according to the oxidation-reduction potential of the initial cathode plating solution, according to the specific gravity of the initial anodizing solution and
  • the oxidation-reduction potential is respectively set to a specific gravity of the anodizing solution and a redox potential setting value; when the redox potential of the regenerated plating solution is lower than a set value, the jet vacuum aerator 11 is turned on for the regeneration
  • the plating solution of the tank 4 is supplemented with oxygen, accelerates the regeneration reaction of the copper sulfate plating solution
  • Step 5 Cathodic plating solution regeneration cycle: after the reconstituted plating solution in the regeneration tank 4 is configured in step 4, the pump 6 is infused into the cathode region 1 while the cathode plating solution overflows from the cathode region 1
  • the flow port flows into the regeneration tank 4 through a pipe to form a circulating flow, thereby continuously supplementing the cathode plating solution with copper ions and adjusting the sulfuric acid concentration to achieve stabilization of various parameters in the plating process.
  • the plating test time is set to 15 hours, the cathode current density is 3 A/dm 2 , and the cathode plating member is taken out after the plating time is set; the cathode plating member is cleaned with water and dried by hot air, and then weighed. Equation-1 was used to calculate the current efficiency, and the surface of the plating was observed using a computer microscope, and the results of the observation were recorded in Table-1.
  • the cathode electroplating solution regeneration cycle system shown in FIG. 4 is the apparatus used in the fourth embodiment of the present invention, and includes an insoluble anode (not labeled), a cathode plating member (not labeled), a plating tank, a copper sulfate plating solution, a regeneration tank 4, Metal copper (not shown), pump 6, filter 5, oxygen source addition system, automatic detection feeding control machine (not shown) and jet vacuum aeration device 11, which uses an acid-plated copper process of insoluble anode Including the following steps:
  • Step 1 Prepare the process equipment: use a cationic membrane to separate the electroplating tank into an anode zone 2 and a cathode zone 1, the overflow port of the cathode zone 1 being connected to the top of the regeneration tank 4 by a pipe, and the pipe is provided with a membrane
  • the regeneration tank 4 is sequentially connected to the filter 5, and the pump 6, and the pump 6 is connected to the cathode region 1 through another conduit 13 to form a loop; the regeneration tank 4 is also coupled with an oxygen source injection system.
  • the oxygen source in the oxygen source feeding system is oxygen formed in the anode and oxygen in the air
  • the feeding control device is an air hood fan 3 disposed above the anode region and oxygen in the zeolite molecular sieve.
  • the air outlet of the exhaust pipe of the air blower fan 3 is connected to the air suction zone 9 of the jet vacuum aerator 11 , and the liquid inlet 7 of the jet vacuum aerator is sequentially and the oxygen pump 12
  • the bottom of the regeneration tank 4 is connected by a pipe, and the liquid outlet 8 of the jet vacuum aerator 11 is placed in the regeneration tank 4; automatic setting is performed for the cathode zone 1, the anode zone 2 and the regeneration tank 4, respectively. Detecting a feeding control machine for respectively detecting electricity in the two electrode regions Technical parameters of the plating solution;
  • Step 2 Preparing a plating solution: at normal temperature and pressure, according to Table-1, preparing an anodizing solution and a cathode plating solution, wherein the anodizing solution: a mixed aqueous solution of 200 g/L copper sulfate and 90 g/L sulfuric acid; Liquid: a mixed aqueous solution of 150 g/L copper sulfate, 150 g/L sulfuric acid, and 205.6 mg/L hydrochloric acid; the anode plating solution is poured into the anode In the region 2, the cathode plating solution is poured into the cathode region 1 and the regeneration tank 4 containing a mixture of 1:1 metal copper and copper oxide, and the initial weight of the cathode plating member is weighed;
  • the anodizing solution a mixed aqueous solution of 200 g/L copper sulfate and 90 g/L sulfuric acid
  • Liquid a mixed aqueous solution of 150 g/
  • Step 3 start the electroplating operation: connect the anode to the positive electrode of the power source and immerse into the anodizing solution, connect the cathode plating member to the negative electrode of the power source, and immerse the cathode plating solution; turn on the pump 6 in step 1, and connect The electrode power supply is subjected to an electroplating operation and a copper sulfate electroplating solution is recycled and formulated;
  • Step 4 controlling the regeneration of the cathode plating solution: detecting the oxidation-reduction potential of the regenerated plating solution in the regeneration tank and the acidity parameter of the anode plating solution by using an automatic detection feeding controller, and separately controlling the vacuum aeration of the jet
  • the specific gravity setting value is set according to the specific gravity of the initial cathode plating solution
  • the acidity setting value is set according to the acidity of the initial anode plating solution
  • the jet vacuum aerator 11 and the blower fan 13 are turned on to supplement oxygen in the plating solution of the regeneration tank 4 to accelerate sulfuric acid,
  • the copper copper and oxygen participate in the regeneration reaction of the copper sulfate plating solution to regenerate the sulfuric acid into copper sulfate to become a regenerated plating solution
  • the specific gravity of the plating solution when the specific gravity of the plat
  • Step 5 Cathodic plating solution regeneration cycle: after the reconstituted plating solution in the regeneration tank 4 is configured in step 4, the pump 6 is infused into the cathode region 1 while the cathode plating solution overflows from the cathode region 1
  • the flow port flows into the regeneration tank 4 through a pipe to form a circulating flow, thereby continuously supplementing the cathode plating solution with copper ions and adjusting the sulfuric acid concentration to achieve stabilization of various parameters in the plating process.
  • the plating test time was set to 15 hours, the cathode current density was 3 A/dm 2 , and the cathode plating member was taken out after the plating time was set; the cathode plating member was washed with water and dried using hot air, and then weighed.
  • the current efficiency was calculated according to Formula-1, and the surface of the plating was observed using a computer microscope, and the results of the observation were recorded in Table-1.
  • anode plating solution and the cathode plating solution are prepared according to Table-1 under normal temperature and normal pressure, wherein the anode plating solution: 50 g/L copper sulfate, 150 g/L sulfuric acid.
  • anode plating solution and the cathode plating solution are prepared according to Table-1 under normal temperature and normal pressure, wherein the anode plating solution: 150 g/L copper sulfate, 90 g/L sulfuric acid.
  • anode plating solution and the cathode plating solution are prepared according to Table-1 under normal temperature and normal pressure, wherein the anode plating solution: 100 g/L copper sulfate, 60 g/L sulfuric acid.
  • anode plating solution and the cathode plating solution are prepared according to Table-1 under normal temperature and normal pressure, wherein the anode plating solution: 35 g/L copper sulfate, 250 g/L sulfuric acid.
  • the cathodic plating solution regeneration cycle system shown in Fig. 1 is the apparatus used in the first embodiment and the examples 5-8 of the present invention, including an insoluble anode (not labeled), a cathode plated member (not labeled), a plating bath, and a copper sulfate plating.
  • the liquid, the regeneration tank 4, the metal copper (not shown), the pump 6, the oxygen source feeding system and the automatic detection feeding control machine (not shown), and the acid electroplating copper process using the insoluble anode specifically comprises the following steps:
  • Step 1 Preparing the process equipment: separating the plating tank into the anode region 2 and the cathode region 1 using a common electroplating membrane, the overflow port of the cathode region 1 is connected to the top of the regeneration tank 4 by a pipe; the regeneration tank is connected to the pump 6.
  • the pump 6 is connected to the cathode region 1 through a return pipe 13 to form a circuit; the regeneration tank 4 is also connected to an oxygen source addition system, and the oxygen source in the oxygen source addition system is an anode.
  • the generated oxygen is generated, and the feeding control device is an air hood fan 3 disposed directly above the anode region, and an air outlet of the exhaust pipe of the air vent fan 3 is connected to a bottom of the regeneration tank 4 through a pipeline; Providing an automatic detection and feeding control machine for the cathode region 1, the anode region 2 and the regeneration tank, respectively, for respectively detecting technical parameters of the plating solution in the two electrode regions;
  • Step 2 Prepare the plating solution: Under normal temperature and normal pressure, prepare an anode plating solution and a cathode plating solution according to Table-1, wherein the anode plating solution: 50 g/L copper sulfate, a mixed aqueous solution of 0.001 g/L sulfuric acid; a plating solution: a mixed aqueous solution of 50 g/L of copper sulfate and 0.001 g/L of sulfuric acid; the anodizing solution is poured into the anode region 2, and the cathode plating solution is poured into the cathode region 1 and loaded separately In the metal copper regeneration tank 4, and weigh the initial weight of the cathode plated part;
  • Step 3 Initiating a plating operation: connecting an insoluble anode to a positive electrode of the power source and immersing it in the anodizing solution, connecting the cathode plating member to a negative electrode of the power source, and immersing in the cathode plating solution; and turning on the pump 6 in step 1, Turn on the electrode power supply for electroplating operation and cycle regeneration of copper sulfate plating solution;
  • Step 4 controlling the regeneration of the cathode plating solution: detecting the acidity of the cathode plating solution by using an automatic detection feeding control machine and controlling the starting and shutting down of the extraction hood fan 3, and setting the acidity according to the acidity of the initial cathode plating solution. a set value, when the acidity of the cathode plating solution is higher than a set value, the blower fan 3 is turned on; in order to supplement oxygen in the plating solution of the regeneration tank 4, accelerate the participation of sulfuric acid, metal copper and oxygen.
  • the copper sulfate electroplating solution regenerates the reaction, and the sulfuric acid is regenerated into copper sulfate to become a regenerated plating solution; when the acidity of the cathodic plating solution reaches a set value, the extraction hood fan 3 is turned off to stop the supplementation of oxygen;
  • Step 5 Cathodic plating solution regeneration cycle: after the reconstituted plating solution in the regeneration tank 4 is configured in step 4, the pump 6 is infused into the cathode region 1 while the cathode plating solution overflows from the cathode region 1
  • the flow port flows into the regeneration tank 4 through a pipe to form a circulating flow, thereby continuously supplementing the cathode plating solution with copper ions and adjusting the sulfuric acid concentration to achieve stabilization of various parameters in the plating process.
  • the plating test time was set to 15 hours, the cathode current density was 3 A/dm 2 , and the cathode plating member was taken out after the plating time was set; the cathode plating member was washed with water and dried using hot air, and then weighed.
  • the current efficiency was calculated according to Formula-1, and the surface of the plating was observed using a computer microscope, and the results of the observation were recorded in Table-1.
  • anode plating solution and the cathode plating solution are prepared according to Table-1 under normal temperature and normal pressure, wherein the anode plating solution: 0.001 g/L copper sulfate, 400 g/L sulfuric acid.
  • anode plating solution and the cathode plating solution are prepared according to Table-1 under normal temperature and normal pressure, wherein the anode plating solution: 550 g/L sulfuric acid; the cathode plating solution: 200 g/ A mixed aqueous solution of L copper sulfate and 350 g/L sulfuric acid.
  • anode plating solution and the cathode plating solution are prepared according to Table-1 under normal temperature and normal pressure, wherein the anode plating solution: 700 g/L sulfuric acid; the cathode plating solution: 240 g/ A mixed aqueous solution of L copper sulfate and 400 g/L sulfuric acid.
  • composition of the plating solution used in this comparative example is shown in Table-1, which is a mixed aqueous solution of 130 g/L of copper sulfate, 70 g/L of sulfuric acid, and 70 mg/L of hydrochloric acid.
  • Step 1 Dissolve the components specified in Table 1 in water according to the ratio to prepare a plating solution
  • Step 2 Pour the plating solution obtained in the step 1 into a plating tank, and weigh the initial weight of the cathode plating member;
  • Step 3 using an insoluble anode, immersing the anode and cathode plating parts in the plating solution, and respectively connecting the positive and negative electrodes of the power source;
  • Step 4 Conduct electroplating operation, set the plating test time to 15 hours, and the cathode current density to 3A/dm 2 .
  • the electroplating process add copper oxide to the electrolytic cell to supplement the copper ion content of the electrolyte.
  • the cathode will be The plated parts are taken out. After the plated parts were cleaned with clean water and dried with hot air, the weight of the plated parts was weighed. The current efficiency was calculated according to Equation 1, and the surface of the plating was observed using a computer microscope, and the results of the observation were recorded in Table 1.
  • Comparative Example 2 The difference between Comparative Example 2 and Comparative Example 1 is that the plating solution components used in this comparative example are shown in Table-1, wherein 130 g/L of copper sulfate, 70 g/L of sulfuric acid, 60 g/L of iron sulfate, and 70 mg/L of hydrochloric acid were used. Mix the aqueous solution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

一种使用不溶性阳极的酸性电镀铜工艺及其设备,利用隔膜(10)分隔阴(1)、阳极区(2)的电镀液,避免出现阴极区(1)电镀液返蚀阴极镀件的现象,使其电流效率高、电镀质量好,满足酸性镀铜的品质要求;另行设置了再生槽(4)用于再生电镀液的配制,可使用比氧化铜和磷铜更为便宜的铜金属,利用氧气作氧化剂实现阴极电镀液循环再生配制硫酸铜的节能环保工艺,比使用氧化铜和磷铜的现有技术创造更好的经济效果,同时也能避免再生所添加的氧气不会对镀层产生返蚀,影响镀铜的质量。

Description

一种使用不溶性阳极的酸性电镀铜工艺及其设备 技术领域
本发明涉及一种酸性电镀铜的工艺及其设备,尤其涉及一种使用不溶性阳极的酸性电镀铜工艺及其设备。
背景技术
现有的酸性镀铜工艺分为使用可溶性阳极和使用不溶性阳极。酸性镀铜工艺中使用的可溶性阳极通常为磷铜。不溶性阳极则是指在电化学反应过程中不发生或极少发生阳极溶解反应的阳极,在酸性镀铜工艺中不溶性阳极通常选取表面涂覆贵金属氧化物的钛材、石墨、铂金和铅合金。由于可溶性阳极使用的磷铜价格高,且其制作和使用过程中会产生有毒的含磷废水、进入人体对肝脏等器官危害极大,为达到废水排放指标需要增加电镀废液的处理成本;且其工艺过程中容易出现阳极极化、电流分布不良导致镀层质量不稳定,故选用不溶性阳极工艺的做法越来越普遍。
一种常见的使用不溶性阳极的酸性镀铜工艺以主成分为硫酸铜和硫酸的水溶液作为电镀液,水在阳极上反应分解生成氢离子和氧气,电镀液中的铜离子在阴极还原成金属铜。随着铜的电镀,电镀液中的硫酸浓度越来越高,加入氧化铜与其反应来补充电镀液中失去的铜离子并相应地消耗当量的硫酸。此方法的不足之处是因氧气附着镀件造成质量问题:由于阳极上发生水的分解析出氧气,溶于电镀液中的氧气附在阴极镀件上,造成镀层发黑、疏松从而影响镀层质量,也会增加有机光亮剂的消耗使成本增高。
具体的反应式如下:
阳极上的电化学反应:2H2O-4e-→O2↑+4H+
阴极上的电化学反应:Cu2++2e-→Cu↓
2H++2e-→H2
硫酸铜电镀液再生的反应:CuO+H2SO4→CuSO4+H2O
另一种常见的使用不溶性阳极的酸性镀铜工艺是在主成分为硫酸铜和硫酸水溶液的电镀液基础上加入铁离子,阳极上的电化学反应为二价铁离子氧化成为三价铁离子,铜离子在阴极还原成金属铜。此工艺可减少氧气溶于电镀液中的量,避免氧气造成的质 量问题,但电镀液中存在的三价铁离子有可能对阴极上的金属铜进行返蚀,影响电镀速率的问题。
具体反应式如下:
阳极上的电化学反应:Fe2+-e-→Fe3+
阴极上的电化学反应:Cu2++2e-→Cu↓
三价铁离子对金属铜返蚀的反应:Cu+2Fe3+→Cu2++2Fe2+
发明内容
本发明的第一目的在于提供一种使用不溶性阳极的酸性电镀铜工艺,其能有效解决现有不溶性阳极的酸性镀铜工艺中氧气造成的质量问题,又不会对镀层有攻击腐蚀,不但能提高电镀品质,而且还能节省电镀生产成本。
本发明的第一发明目的可以通过以下技术方案来实现:一种使用不溶性阳极的酸性电镀铜工艺,包括使用不溶性阳极、阴极、电镀槽和硫酸铜电镀液,所述硫酸铜电镀液下文简称电镀液,其特征在于具体包括如下步骤:
步骤1准备工艺设备:使用隔膜将所述电镀槽分为阳极区和阴极区,所述隔膜允许电子自由通过,同时增设硫酸铜电镀液再生配置槽,下文简称再生槽,使所述阴极区的溢流口与所述再生槽以管道相连,以便阴极电镀液满溢时溢流到再生槽中;所述再生槽连接一泵浦,所述泵浦通过回流管与所述阴极区接通形成回路,以便阴极电镀液在所述阴极区与所述再生槽之间作循环流动;所述再生槽还与一氧气源加投系统相连,所述氧气源加投系统用于控制氧气的添加;增设自动检测投料控制机,用于检测所述阴极区中的电镀液和/或再生槽中的再生电镀液的酸度和/或比色和/或氧化还原电位参数/或比重参数;
步骤2准备电镀液:配制阳极电镀液和阴极电镀液,并将所述阳极电镀液倒入所述阳极区中,将所述阴极电镀液倒入所述阴极区和所述再生槽中,同时,在再生槽中添加金属铜;当硫酸铜电镀液循环再生配制工作开始后,所述再生槽中的溶液称为再生硫酸铜电镀液,简称再生电镀液;
步骤3启动电镀作业:将不溶性阳极与电源正极连接,并浸入所述阳极电镀液中, 将阴极镀件与电源负极连接并浸入所述阴极电镀液中,开启步骤1所述泵浦,接通所述电极的电源进行电镀作业和硫酸铜电镀液循环再生配制;
步骤4控制阴极电镀液再生:使用自动检测投料控制机对所述阴极区中的电镀液和/或再生槽中的再生电镀液进行酸度和/或比色和/或氧化还原电位/或比重参数的检测并分别用于控制氧气源加投系统的启动与关停:当所述阴极电镀液和/或所述再生电镀液的酸度高于设定值、或比色或氧化还原电位/或比重低于设定值时,开启所述氧气源加投系统,以便在所述再生槽的电镀液中补充氧气,加速硫酸、金属铜和氧气参与的硫酸铜电镀液再生反应,使硫酸再生为硫酸铜,成为再生电镀液;在检测到所述阴极电镀液和/或所述再生电镀液的酸度、或比色或氧化还原电位/或比重达到设定值时,关闭所述氧气源加投系统,停止补充氧气;
步骤5阴极电镀液再生循环:在步骤4再生槽中的再生电镀液通过所述泵浦灌输到所述阴极区中,所述阴极电镀液在阴极区满溢时则从所述阴极区溢流口通过管道流入所述再生槽中,形成阴极电镀液的循环流动,从而对所述阴极电镀液不断地补充铜离子和调整硫酸浓度,实现电镀工艺中各参数的稳定。
本发明的工作原理:虽然本发明的两极电化学反应与背景技术中提及的第一种常见的使用不溶性阳极的酸性镀铜工艺的电化学反应是相同的,但后者采用的是氧化铜与硫酸反应来补充电镀液中失去的铜离子并相应地消耗当量的硫酸,本发明则是另行设置再生槽用于再生电镀液的配制,采用金属铜和氧气作氧化剂与硫酸反应,在消耗阴极电镀液中浓度越来越高的硫酸的同时再生硫酸铜,本发明的再生化学反应方程式如下:
Figure PCTCN2017114562-appb-000001
因此,本发明的工艺可以直接使用比氧化铜和磷铜更为便宜的金属铜来补充电镀液中的铜离子,实现工艺的稳定性。同时,由于再生反应不在所述阴极区进行,再生所添加的氧气并不会进入阴极区,对镀层产生返蚀;另外,本发明采用隔膜将电镀槽分隔为所述阳极区和阴极区,这样的设计也阻挡了所述阳极区所生成的氧气靠近所述阴极区,从而能够避免所述阴极镀件金属被返蚀而影响镀层质量。
本发明所述的金属铜可以是铜粉、铜块或铜棒。
本发明所述的氧气源加投系统主要由氧气源和加投控制装置组成。
本发明所述氧气源可以为阳极上生成析出的氧气、空气中的氧气、瓶装压缩氧气所 发出氧气中的一种或多种。
当氧气源采用瓶装压缩氧气时,所述加投控制装置为控制阀或射流真空增氧装置;当氧气源采用阳极上生成析出的氧气时,所述加投控制装置为抽气罩风机,在所述阳极区正上方设置抽气罩风机系统,所述抽气罩风机的排气管出气口置于所述再生槽中;当氧气源采用空气中的氧气时,所述加投控制装置可以采用射流真空增氧装置,当采用前者时,其吸气区与空气相连,其入液口则连接一增氧泵浦,所述增氧泵浦另一端通过管道与所述再生槽底部相连,所述射流真空增氧装置的出液口置于所述再生槽中;也可以采用压缩空气机或沸石分子筛制氧机配置控制阀。
本发明可以通过以下技术措施进行优化:
本发明所述阳极电镀液为浓度0.001~700g/L的硫酸水溶液;所述阴极电镀液为浓度35~240g/L的硫酸铜水溶液。
本发明也可以在所述再生槽中另外添加氧化铜,氧化铜与硫酸反应可迅速获得硫酸铜,这有助于缩短提升所述再生电镀液中硫酸铜浓度所需要时间。
本发明在所述阳极电镀液中可进一步包含硫酸铜,浓度为0.001~240g/L。通过加入硫酸铜,可增加阳极电镀液的电导率,提高允许电流密度,有效避免高电流区出现烧焦现象。
优选地,所述阴极电镀液中可进一步含有硫酸,浓度控制在0.001~400g/L的范围内,以便有效地防止硫酸铜水解成为硫酸亚铜并进而成为氧化亚铜(Cu2O),从而避免因氧化亚铜夹杂在镀层中发生疏松现象。
本发明还可以在所述阴极电镀液中进一步包含10~10000mg/L的氯离子,所述氯离子的来源可为盐酸和/或氯化钠。因为在电镀过程中,所述阴极电镀液中可能存在少量一价的亚铜离子,会对所述阴极镀件上铜的平整度造成影响,导致镀件表面粗糙。为避免此问题,优选地在所述阴极电镀液中加入适量的氯离子,其能与一价亚铜离子反应生成微溶于水的氯化亚铜,以便降低亚铜离子对镀件的影响。
本发明还可以进一步增设一个射流真空增氧装置,其吸气区与所述加投控制装置的出气口相连,其入液口则连接一加氧泵浦,所述加氧泵浦另一端通过管道与所述再生槽底部相连,所述射流真空增氧装置的出液口置于所述再生槽中。采用射流真空增氧装置将氧气通入所述再生槽内的再生电镀液中,能通过射流真空增氧装置中形成的压力将氧气与再生电镀液压缩混合,从而加速所述再生电镀液的再生化学反应。
更优选地,使用自动检测投料控制机对所述阴极电镀液和/或所述再生电镀液的酸度和/或比色和/或氧化还原电位/或比重参数进行检测时,在控制所述氧气源加投系统启闭的同时,还分别控制所述射流真空增氧装置的启闭:当所述阴极电镀液和/或所述再生电镀液的酸度高于设定值、或氧化还原电位或比色/或比重低于设定值时,开启所述射流真空增氧装置以加速氧气于所述再生槽中的硫酸铜电镀液再生反应,使所述阴极电镀液成分保持稳定。
本发明还可以进一步在所述再生槽和所述泵浦之间设有过滤器,所述过滤器能够有效阻挡所述再生槽中的铜泥进入所述阴极区,从而避免所述阴极镀件附近出现铜泥而影响镀层质量。
优选地,步骤1所用的隔膜采用阴离子膜,当所述阴极电镀液随着铜离子在所述阴极镀件上还原成金属铜时,剩余的硫酸根离子在电场作用下从所述阴极区通过所述阴离子膜进入所述阳极区,与所述阳极上水电解后生成的氢离子结合成为硫酸,故所述阳极电镀液中的硫酸浓度越来越高。将所述阳极区的溢流口通过管道与所述再生槽相连,并使用含有比重计、液位计、酸度计、ORP计中的一种或多种检测器的自动检测投料控制机对所述阳极电镀液的比重和/或液位和/或酸度和/或氧化还原电位参数进行检测,一方面,当所述阳极电镀液的比重或液位或酸度或氧化还原电位偏离设定范围时,由所述自动检测投料控制机通过投料泵控制往所述阳极区中投放清水,使所述阳极电镀液的成分浓度保持稳定。另一方面,所述阳极电镀液在阳极区满溢并通过溢流口流入所述再生槽后,所述阳极电镀液中增加的硫酸参与所述再生槽中的硫酸铜电镀液再生反应,进一步实现电镀液再生循环的稳定电镀工艺系统。
优选地,步骤1所用的隔膜采用阳离子膜,当阳极上发生水电解后生成的氢离子在电场作用下通过所述阳离子膜进入所述阴极区时,与所述阴极电镀液随着铜离子在所述阴极镀件上还原成金属铜而剩余的硫酸根离子结合成为硫酸,故所述阴极电镀液中的硫酸浓度越来越高,可进一步使用含有比重计、液位计、酸度计、ORP计中一种或多种检测器的自动检测投料控制机对所述阳极电镀液的比重和/或液位和/或酸度和/或氧化还原电位参数进行检测,当所述阳极电镀液的比重或液位或酸度或氧化还原电位偏离设定范围时由所述自动检测投料控制机通过投料泵控制往所述阳极区中投放清水,令所述阳极电镀液中因水电解和抽气损失的部分水得到补充。
本发明还可以在所述阴极区的溢流口与所述再生槽顶部相连的管道中设置隔膜,所 述隔膜能有效阻止有机物的通行。由于酸性硫酸铜电镀液中通常加有主要成分为有机物的电镀光亮剂,以获得更光亮的铜面,而电镀光亮剂易与氧气和/或氧化剂反应而被消耗,增加了电镀加工过程中电镀光亮剂的使用量。故设置所述的隔膜,能利用压力差有效地使溶液中分子较小的无机成分通过而减少电镀光亮剂进入所述再生槽,从而达到降低成本和改善环保的目的。
本发明的第二目的在于提供一种前述使用不溶性阳极的酸性电镀铜工艺的设备。
本发明的第二发明目的可以通过以下技术方案来实现:一种使用不溶性阳极的酸性电镀铜设备,包括使用不溶性阳极、阴极、电镀槽和硫酸铜电镀液,其特征在于:采用隔膜将所述电镀槽分为阳极区和阴极区,所述隔膜允许电子自由通过,同时增设再生槽,使所述阴极区的溢流口与所述再生槽以管道相连,以便阴极电镀液满溢时溢流到再生槽中;所述再生槽连接一泵浦,所述泵浦通过回流管与所述阴极区接通形成回路,以便阴极电镀液在所述阴极区与所述再生槽之间作循环流动;所述再生槽还与一氧气源加投系统相连,所述氧气源加投系统用于控制氧气的添加;增设自动检测投料控制机,用于检测所述阴极区中的电镀液和/或再生槽中的再生电镀液的酸度和/或比色和/或氧化还原电位参数,并分别用于控制氧气源加投系统的启动和关停;再生槽中的再生电镀液通过所述泵浦灌输到所述阴极区中,所述阴极电镀液满溢时从所述阴极区溢流口通过管道流入所述再生槽中形成循环流动,从而对所述阴极电镀液不断地补充铜离子和调整硫酸浓度,实现电镀工艺中各参数的稳定。
本发明所述的氧气源加投系统主要由氧气源和加投控制装置组成。所述加投控制装置可以是控制阀,或真空射流增氧装置,或抽气罩风机系统,或沸石分子筛制氧机配置。
本发明所述的用于分隔电镀槽为阳极区和阴极区的隔膜可以采用阴离子膜,也可以采用阳极隔膜。
本发明具有以下有益效果:
(1)镀铜的品质高效率高:本发明利用隔膜分隔阴、阳极区的电镀液,可避免出现阴极区电镀液返蚀阴极镀件的现象,使其电流效率高、电镀质量好,满足酸性镀铜的品质要求;
(2)节能成本低:本发明另行设置再生槽用于再生电镀液的配制,可使用比氧化铜和磷铜更为便宜的铜金属,利用氧气作氧化剂实现阴极电镀液循环再生配制硫酸铜的 节能环保工艺,比使用氧化铜和磷铜的现有技术创造更好的经济效果,同时也能避免再生所添加的氧气不会对镀层产生返蚀,影响镀铜的质量;
(3)简单环保:本发明的工艺简单可靠,可完全代替使用可溶性磷铜阳极的酸性镀铜工艺,减少环境污染。
附图说明
下面结合附图和具体实施例,对本发明进行进一步的说明:
图1为本发明实施例1、实施例5~8的酸性镀铜装置示意图;
图2为本发明实施例2、实施例10~12的酸性镀铜装置示意图;
图3为本发明实施例3的酸性镀铜装置示意图;
图4为本发明的实施例4的酸性镀铜装置示意图;
图5为本发明的实施例9的酸性镀铜装置示意图;
图6为本发明的实施例2-4和实施例10-12的射流真空增氧装置装置示意图。
附图标记如下:1-阴极区,2-阳极区,3-抽气罩风机;4-再生槽,5-过滤器,6-泵浦,7-入液口,8-出液口,9-吸气区,10-隔膜,11-射流真空增氧装置,12-加氧泵浦、13-回流管、14-阴极区溢流口、15-阳极区溢流口、16-沸石分子筛制氧机。
具体实施方式
以下列举具体实施例对本发明进行说明。需要指出的是,实施例只用于对本发明做进一步说明,不代表本发明的保护范围,其他人根据本发明作出的非本质的修改与调整,仍属于本发明的保护范围。
在下述实施例中,所使用的硫酸铜优选为常州海润化工生产的硫酸铜;所使用的硫酸优选为广州化学试剂厂生产的硫酸;所使用的金属铜优选为长沙天久金属材料有限公司生产的无磷铜粉或市售的纯铜板或纯铜棒;所使用的阳极优选为祺鑫钛业公司生产的涂覆贵金属氧化物的钛阳极板;所使用的沸石分子筛制氧机优选为青岛市三凯医学科技有限公司生产的沸石分子筛制氧机;所使用的瓶装压缩氧气优选为广州市广气气体有限公司生产的压缩氧气;所使用的隔膜优选为美国Membrane International公司生产的隔膜;所使用的显微镜优选为广州光学仪器厂生产的电脑显微镜;所使用的自动检测投料机优选为广州市业高化工有限公司生产的自动检测投料机。除上述列举的之外,本领域技术人员根据常规选择,也可以选择其他具有与本发明列举的上述产品具有相似性能的产品,均可以实现本发明的目的。
电流效率计算式-1如下:
电流效率η=m′÷m×100%=m′÷(I·t·k)×100%
其中
m′  实际产物质量;
m  按法拉第定律计算获得的理论产物质量;
I  电流强度(A);
t  通电时间(h);
k  电化当量(g/(A·h))
实施例1
如图1所示的阴极电镀液再生循环系统是本发明实施例1和实施例5-8所用的设备,包括不溶性阳极(未标注)、阴极镀件(未标注)、电镀槽、硫酸铜电镀液、再生槽4、金属铜(图未显示)、泵浦6、氧气源加投系统和自动检测投料控制机(图未显示),其使用不溶性阳极的酸性电镀铜工艺具体包括如下步骤:
步骤1准备工艺设备:使用阴离子膜将电镀槽分隔为阳极区2和阴极区1,所述阳极区和阴极区的溢流口同时与所述再生槽4顶部以管道相连;所述再生槽连接一泵浦6,所述泵浦通过回流管13与所述阴极区接通形成回路;所述再生槽还与氧气源加投系统相连,所述氧气源加投系统中的氧气源为阳极上生成析出的氧气,加投控制装置为设置在所述阳极区2正上方的抽气罩风机3,所述抽气罩风机3的排气管的出气口置于再生槽中的电镀液内;分别为所述阳极区2和所述阴极区1设置自动检测投料控制机,用于分别检测所述两电极区中的电镀液的技术参数;
步骤2准备电镀液:在常温常压下,按照表-1所示,配制阳极电镀液和阴极电镀液,其中,阳极电镀液:300g/L硫酸水溶液;阴极电镀液:150g/L硫酸铜水溶液;并将所述的阳极电镀液倒入所述阳极区中,将所述阴极电镀液倒入所述阴极区以及装有金属铜的所述再生槽中,并称量阴极镀件的初始重量;
金属铜用量是根据需要电镀的铜量来计算的,即以阴极镀件上镀上X克的铜,再生槽中金属铜的总含铜量应大于或等于X克。
步骤3启动电镀作业:将不溶性阳极与电源正极连接并浸入所述阳极电镀液中,将 所述阴极镀件与电源负极连接并浸入所述阴极电镀液中;开启步骤1所述泵浦,接通电极电源进行电镀作业和硫酸铜电镀液循环再生配制;
步骤4控制阴极电镀液再生:使用自动检测投料控制机对所述阴极电镀液的酸度和所述阳极电镀液的比重参数进行检测并分别控制所述抽气罩风机的关停和所述阳极区2的清水加投,根据初始阴极电镀液的酸度设置酸度设定值,根据初始阳极电镀液的比重设置比重设定值;当所述阴极电镀液的酸度高于设定值时开启所述抽气罩风机3,以便在所述再生槽的电镀液中补充氧气,加速硫酸、金属铜和氧气参与的硫酸铜电镀液再生反应,使硫酸再生为硫酸铜,成为再生电镀液;当所述阴极电镀液的酸度达到设定值时,关闭所述抽气罩风机3,停止补充氧气;当所述阳极电镀液的比重高于设定值时由所述自动检投料控制机通过投料泵控制往所述阳极区2中投放清水;
步骤5阴极电镀液再生循环:在步骤4电镀液再生后,通过所述泵浦6灌输到所述阴极区1中,同时所述两电极区中的电镀液分别从其溢流口通过管道流入所述再生槽4中形成循环流动,从而对所述阴极电镀液不断地补充铜离子和调整硫酸浓度,实现电镀工艺中各参数的稳定。
设定电镀试验时间为15小时、阴极电流密度为3A/dm2,当设定电镀时间完成后将所述阴极镀件取出;使用清水清洗所述阴极镀件并使用热风吹干后称重,按式-1计算电流效率,并使用电脑显微镜观察镀层表面,将观察的结果记录于表-1中。
实施例2
如图2所示的阴极电镀液再生循环系统是本发明实施例2和实施例10-12所用的设备,包括不溶性阳极(未标注)、阴极镀件(未标注)、电镀槽、硫酸铜电镀液、再生槽4、金属铜(图未显示)、泵浦6、过滤器5、氧气源加投系统、自动检测投料控制机(图未显示)和射流真空增氧装置11,其使用不溶性阳极的酸性电镀铜工艺具体包括如下步骤:
步骤1准备工艺设备:使用阳离子膜将电镀槽分隔为阳极区2和阴极区1,所述阴极区1的溢流口与所述再生槽4顶部以管道相连;所述再生槽4依次连接过滤器5和泵浦6,所述泵浦6通过回流管13与所述阴极区1接通形成回路;所述再生槽4还与氧气源加投系统相连,所述氧气源加投系统中的氧气源为阳极上生成析出的氧气,加投控制装置为设置在所述阳极区正上方的抽气罩风机3,所述抽气罩风机3的排气管的出气口与射流真空增氧装置11的吸气区9相连,所述射流真空增氧装置的入液口7依次与加 氧泵浦12和所述再生槽4底部通过管道相连,所述射流真空增氧装置11的出液口8置于所述再生槽4中;分别为所述阴极区1、阳极区2和再生槽4设置自动检测投料控制机,用于分别检测所述两电极区中的电镀液的技术参数;
步骤2准备电镀液:在常温常压下,按照表-1所示,配制阳极电镀液和阴极电镀液,其中,阳极电镀液:200g/L硫酸铜、100g/L硫酸的混合水溶液;阴极电镀液:200g/L硫酸铜、100g/L硫酸的混合水溶液;将所述的阳极电镀液倒入所述阳极区2中,将所述阴极电镀液分别倒入所述阴极区1和装有1:1金属铜和氧化铜混合物的再生槽4中,并称量阴极镀件的初始重量;
金属铜和氧化铜混合物的用量是以阴极镀件上镀上X克的铜来确定,再生槽中金属铜和氧化铜混合物的总含铜量应大于或等于X克。
步骤3启动电镀作业:将不溶性阳极与电源正极连接并浸入所述阳极电镀液中,将所述阴极镀件与电源负极连接并浸入所述阴极电镀液中;开启步骤1所述泵浦6,接通电极电源进行电镀作业和硫酸铜电镀液循环再生配制;
步骤4控制阴极电镀液再生:使用自动检测投料控制机分别对所述阴极电镀液和再生槽4中的再生电镀液的比色以及所述阳极电镀液的液位参数进行检测,并利用所述参数分别控制所述射流真空增氧装置11与抽气罩风机3的启动和关停及所述阳极区2的清水加投,根据初始阴极电镀液的颜色深度设置比色设定值,根据初始阳极电镀液的液位设置液位设定值;当所述阴极电镀液或再生电镀液的比色低于设定值时,开启所述射流真空增氧装置11与抽气罩风机3,以便在所述再生槽4的电镀液中补充氧气,加速硫酸、金属铜和氧气参与的硫酸铜电镀液再生反应,使硫酸再生为硫酸铜,成为再生电镀液;当所述阴极电镀液或再生电镀液的比色达到设定值时,关闭所述抽气罩风机3,停止补充氧气;当所述阳极电镀液的液位低于设定值时,由所述自动检投料控制机通过投料泵控制往所述阳极区2中投放清水;
步骤5阴极电镀液再生循环:在步骤4再生槽4中的再生电镀液配置后,通过所述泵浦6灌输到所述阴极区1中,同时所述阴极电镀液从所述阴极区1溢流口通过管道流入所述再生槽4中形成循环流动,从而对所述阴极电镀液不断地补充铜离子和调整硫酸浓度,实现电镀工艺中各参数的稳定。
设定电镀试验时间为15小时、阴极电流密度为3A/dm2,当设定电镀时间完成后将所述阴极镀件取出;使用清水清洗所述阴极镀件并使用热风吹干后称重,按式-1计算电 流效率,并使用电脑显微镜观察镀层表面,将观察的结果记录于表-1中。
实施例3
如图3所示的阴极电镀液再生循环系统是本发明实施例3所用的设备,包括不溶性阳极(未标注)、阴极镀件(未标注)、电镀槽、硫酸铜电镀液、再生槽4、金属铜(图未显示)、泵浦6、过滤器5、氧气源加投系统、自动检测投料控制机(图未显示)和射流真空增氧装置11,其使用不溶性阳极的酸性电镀铜工艺具体包括如下步骤:
步骤1准备工艺设备:使用阳离子膜将电镀槽分隔为阳极区2和阴极区1,所述阴极区1的溢流口与所述再生槽4顶部以管道相连,所述管道上设有隔膜;所述再生槽4依次连接过滤器5和泵浦6,所述泵浦6通过回流管13与所述阴极区1接通形成回路;所述再生槽4还与氧气源加投系统相连,所述氧气源加投系统中的氧气源为瓶装压缩氧气,加投控制装置为射流真空增氧装置11,所述射流真空增氧装置11与所述瓶装压缩空气相连,所述射流真空增氧装置11的入液口7与所述再生槽4底部通过管道相连,所述射流真空增氧装置的出液口8置于所述再生槽4中;分别为所述阴极区1、阳极区2和再生槽4设置自动检测投料控制机,用于分别检测所述两电极区中的电镀液的技术参数;
步骤2准备电镀液:在常温常压下,按照表-1所示,配制阳极电镀液和阴极电镀液,其中,阳极电镀液:240g/L硫酸铜、50g/L硫酸的混合水溶液;阴极电镀液:240g/L硫酸铜、50g/L硫酸、10mg/L盐酸的混合水溶液;将所述的阳极电镀液倒入所述阳极区2中,将所述阴极电镀液倒入所述阴极区1和装有1:1金属铜和氧化铜混合物的所述再生槽4中,并称量阴极镀件的初始重量;
步骤3启动电镀作业:将不溶性阳极与电源正极连接并浸入所述阳极电镀液中,将所述阴极镀件与电源负极连接并浸入所述阴极电镀液中;开启步骤1所述泵浦6,接通电极电源进行电镀作业和硫酸铜电镀液循环再生配制;
步骤4控制阴极电镀液再生:使用自动检测投料控制机分别对所述再生电镀液的氧化还原电位和所述阳极电镀液的比重以及氧化还原电位参数进行检测,并利用所述参数分别控制所述射流真空增氧装置的启动和关停及所述阳极区2的清水加投,根据初始阴极电镀液的氧化还原电位设置阴极电镀液的氧化还原电位设定值,根据初始阳极电镀液的比重和氧化还原电位分别设置阳极电镀液的比重和氧化还原电位设定值;当所述再生电镀液的氧化还原电位低于设定值时,开启所述射流真空增氧装置11以便在所述再生 槽4的电镀液中补充氧气,加速硫酸、金属铜和氧气参与的硫酸铜电镀液再生反应,使硫酸再生为硫酸铜,成为再生电镀液;当所述再生电镀液的氧化还原电位达到设定值时,关闭射流真空增氧装置11,停止补充氧气;当所述阳极电镀液的比重或ORP参数高于设定值时,由所述自动检投料控制机通过投料泵控制往所述阳极区2中投放清水;
步骤5阴极电镀液再生循环:在步骤4再生槽4中的再生电镀液配置后,通过所述泵浦6灌输到所述阴极区1中,同时所述阴极电镀液从所述阴极区1溢流口通过管道流入所述再生槽4中形成循环流动,从而对所述阴极电镀液不断地补充铜离子和调整硫酸浓度,实现电镀工艺中各参数的稳定。
设定电镀试验时间为15小时、阴极电流密度为3A/dm2,当设定电镀时间完成后将所述阴极镀件取出;使用清水清洗所述阴极镀件并使用热风吹干后称重,按式-1计算电流效率,并使用电脑显微镜观察镀层表面,将观察的结果记录于表-1中。
实施例4
如图4所示的阴极电镀液再生循环系统是本发明实施例4所用的设备,包括不溶性阳极(未标注)、阴极镀件(未标注)、电镀槽、硫酸铜电镀液、再生槽4、金属铜(图未显示)、泵浦6、过滤器5、氧气源加投系统、自动检测投料控制机(图未显示)和射流真空增氧装置11,其使用不溶性阳极的酸性电镀铜工艺具体包括如下步骤:
步骤1准备工艺设备:使用阳离子膜将电镀槽分隔为阳极区2和阴极区1,所所述阴极区1的溢流口与所述再生槽4顶部以管道相连,所述管道上设有隔膜;所述再生槽4依次连接过滤器5,和泵浦6,所述泵浦6通过另一管道13与所述阴极区1接通形成回路;所述再生槽4还与氧气源加投系统相连,所述氧气源加投系统中的氧气源为阳极上生成析出的氧气以及空气中的氧气,加投控制装置为设置在所述阳极区正上方的抽气罩风机3以及沸石分子筛制氧机14,所述抽气罩风机3的排气管的出气口与射流真空增氧装置11的吸气区9相连,所述射流真空增氧装置的入液口7依次与加氧泵浦12和所述再生槽4底部通过管道相连,所述射流真空增氧装置11的出液口8置于所述再生槽4中;分别为所述阴极区1、阳极区2和再生槽4设置自动检测投料控制机,用于分别检测所述两电极区中的电镀液的技术参数;
步骤2准备电镀液:在常温常压下,按照表-1所示,配制阳极电镀液和阴极电镀液,其中,阳极电镀液:200g/L硫酸铜、90g/L硫酸的混合水溶液;阴极电镀液:150g/L硫酸铜、150g/L硫酸、205.6mg/L盐酸的混合水溶液;所述的阳极电镀液倒入所述阳极 区2中,将所述阴极电镀液倒入所述阴极区1和装有1:1金属铜和氧化铜混合物的所述再生槽4中,并称量阴极镀件的初始重量;
步骤3启动电镀作业:将阳极与电源正极连接并浸入所述阳极电镀液中,将所述阴极镀件与电源负极连接并浸入所述阴极电镀液中;开启步骤1所述泵浦6,接通电极电源进行电镀作业和硫酸铜电镀液循环再生配制;
步骤4控制阴极电镀液再生:使用自动检测投料控制机分别对所述再生槽中的再生电镀液的氧化还原电位以及所述阳极电镀液的酸度参数进行检测,并分别控制所述射流真空增氧装置11和抽气罩风机3的启动和关停以及所述阳极区2的清水加投,根据初始阴极电镀液的比重设置比重设定值,根据初始阳极电镀液的酸度设置酸度设定值;当所述再生电镀液的氧化还原电位低于设定值时,开启所述射流真空增氧装置11和抽气罩风机13,以便在所述再生槽4的电镀液中补充氧气,加速硫酸、金属铜和氧气参与的硫酸铜电镀液再生反应,使硫酸再生为硫酸铜,成为再生电镀液;当所述电镀液的比重低于设定值时,关闭所述射流真空增氧装置11和抽气罩风机13,停止补充氧气;当所述阳极电镀液的酸度高于设定值时,由所述自动检投料控制机通过投料泵控制往所述阳极区2中投放清水;
步骤5阴极电镀液再生循环:在步骤4再生槽4中的再生电镀液配置后,通过所述泵浦6灌输到所述阴极区1中,同时所述阴极电镀液从所述阴极区1溢流口通过管道流入所述再生槽4中形成循环流动,从而对所述阴极电镀液不断地补充铜离子和调整硫酸浓度,实现电镀工艺中各参数的稳定。
设定电镀试验时间为15小时、阴极电流密度为3A/dm2,当设定电镀时间完成后将所述阴极镀件取出;使用清水清洗所述阴极镀件并使用热风吹干后称重,按式-1计算电流效率,并使用电脑显微镜观察镀层表面,将观察的结果记录于表-1中。
实施例5
实施例5与实施例1的区别在于:在常温常压下,按照表-1所示,配制阳极电镀液和阴极电镀液,其中,阳极电镀液:50g/L硫酸铜、150g/L硫酸的混合水溶液;阴极电镀液:35g/L硫酸铜、220g/L硫酸、8239mg/L盐酸的混合水溶液。
实施例6
实施例6与实施例1的区别在于:在常温常压下,按照表-1所示,配制阳极电镀液和阴极电镀液,其中,阳极电镀液:150g/L硫酸铜、90g/L硫酸的混合水溶液;阴极 电镀液:100g/L硫酸铜、190g/L硫酸、10282mg/L盐酸的混合水溶液。
实施例7
实施例7与实施例1的区别在于:在常温常压下,按照表-1所示,配制阳极电镀液和阴极电镀液,其中,阳极电镀液:100g/L硫酸铜、60g/L硫酸的混合水溶液;阴极电镀液:100g/L硫酸铜、220g/L硫酸、4078mg/L盐酸、5000mg/L氯化钠的混合水溶液。
实施例8
实施例8与实施例1的区别在于:在常温常压下,按照表-1所示,配制阳极电镀液和阴极电镀液,其中,阳极电镀液:35g/L硫酸铜、250g/L硫酸的混合水溶液;阴极电镀液:50g/L硫酸铜、250g/L硫酸、10mg/L盐酸的混合水溶液。
实施例9
如图1所示的阴极电镀液再生循环系统是本发明实施例1和实施例5-8所用的设备,包括不溶性阳极(未标注)、阴极镀件(未标注)、电镀槽、硫酸铜电镀液、再生槽4、金属铜(图未显示)、泵浦6、氧气源加投系统和自动检测投料控制机(图未显示),其使用不溶性阳极的酸性电镀铜工艺具体包括如下步骤:
步骤1准备工艺设备:使用普通电镀隔膜将电镀槽分隔为阳极区2和阴极区1,所述阴极区1的溢流口与所述再生槽4顶部以管道相连;所述再生槽连接泵浦6,所述泵浦6通过回流管13与所述阴极区1接通形成回路;所述再生槽4还与氧气源加投系统相连,所述氧气源加投系统中的氧气源为阳极上生成析出的氧气,加投控制装置为设置在所述阳极区正上方的抽气罩风机3,所述抽气罩风机3的排气管的出气口与所述再生槽4底部通过管道相连;分别为所述阴极区1、阳极区2和再生槽设置自动检测投料控制机,用于分别检测所述两电极区中的电镀液的技术参数;
步骤2准备电镀液:在常温常压下,按照表-1所示,配制阳极电镀液和阴极电镀液,其中,阳极电镀液:50g/L硫酸铜、0.001g/L硫酸的混合水溶液;阴极电镀液:50g/L硫酸铜、0.001g/L硫酸的混合水溶液;所述的阳极电镀液倒入所述阳极区2中,将所述阴极电镀液分别倒入所述阴极区1以及装有金属铜的再生槽4中,并称量阴极镀件的初始重量;
步骤3启动电镀作业:将不溶性阳极与电源正极连接并浸入所述阳极电镀液中,将所述阴极镀件与电源负极连接并浸入所述阴极电镀液中;开启步骤1所述泵浦6,接通电极电源进行电镀作业和硫酸铜电镀液循环再生配制;
步骤4控制阴极电镀液再生:使用自动检测投料控制机分别对所述阴极电镀液的酸度进行检测并控制所述抽气罩风机3的的启动和关停,根据初始阴极电镀液的酸度设置酸度设定值,当所述阴极电镀液其酸度高于设定值时开启所述抽气罩风机3;以便在所述再生槽4的电镀液中补充氧气,加速硫酸、金属铜和氧气参与的硫酸铜电镀液再生反应,使硫酸再生为硫酸铜,成为再生电镀液;当所述阴极电镀液酸度达到设定值时,关闭所述抽气罩风机3,停止补充氧气;
步骤5阴极电镀液再生循环:在步骤4再生槽4中的再生电镀液配置后,通过所述泵浦6灌输到所述阴极区1中,同时所述阴极电镀液从所述阴极区1溢流口通过管道流入所述再生槽4中形成循环流动,从而对所述阴极电镀液不断地补充铜离子和调整硫酸浓度,实现电镀工艺中各参数的稳定。
设定电镀试验时间为15小时、阴极电流密度为3A/dm2,当设定电镀时间完成后将所述阴极镀件取出;使用清水清洗所述阴极镀件并使用热风吹干后称重,按式-1计算电流效率,并使用电脑显微镜观察镀层表面,将观察的结果记录于表-1中。
实施例10
实施例10与实施例2的区别在于:在常温常压下,按照表-1所示,配制阳极电镀液和阴极电镀液,其中,阳极电镀液:0.001g/L硫酸铜、400g/L硫酸的混合水溶液;阴极电镀液:100g/L硫酸铜、300g/L硫酸的混合水溶液。
实施例11
实施例11与实施例2的区别在于:在常温常压下,按照表-1所示,配制阳极电镀液和阴极电镀液,其中,阳极电镀液:550g/L硫酸;阴极电镀液:200g/L硫酸铜、350g/L硫酸的混合水溶液。
实施例12
实施例12与实施例2的区别在于:在常温常压下,按照表-1所示,配制阳极电镀液和阴极电镀液,其中,阳极电镀液:700g/L硫酸;阴极电镀液:240g/L硫酸铜、400g/L硫酸的混合水溶液。
比较例1
本比较例所使用的电镀液的成分示于表-1,其中,130g/L硫酸铜、70g/L硫酸、70mg/L盐酸的混合水溶液。
步骤1:将表1中指定的组分按配比溶于水中,配制电镀液;
步骤2:将步骤1中所得的电镀液倒入电镀缸中,并称量阴极镀件的初始重量;
步骤3:使用不溶性阳极,将阳极和阴极镀件浸入电镀液中,并分别与电源的正极和负极相接;
步骤4:通电进行电镀作业,设定电镀试验时间为15小时、阴极电流密度为3A/dm2,电镀过程中向电解槽加投氧化铜以补充电解液的铜离子含量,电镀完成后将阴极镀件取出。使用清水清洗镀件并使用热风吹干后,称量镀件重量。按式1计算电流效率,并使用电脑显微镜观察镀层表面,将观察的结果记录于表1中。
比较例2
比较例2和比较例1的区别在于:本比较例所使用的电镀液成分示于表-1,其中,130g/L硫酸铜、70g/L硫酸、60g/L硫酸铁、70mg/L盐酸的混合水溶液。
表-1
Figure PCTCN2017114562-appb-000002
Figure PCTCN2017114562-appb-000003
Figure PCTCN2017114562-appb-000004

Claims (21)

  1. 一种使用不溶性阳极的酸性电镀铜工艺,包括使用不溶性阳极、阴极、电镀槽和硫酸铜电镀液,其特征在于包括以下步骤:
    步骤1准备工艺设备:使用隔膜将所述电镀槽分为阳极区和阴极区,所述隔膜允许电子自由通过,同时增设再生槽,所述阴极区的溢流口与所述再生槽以管道相连;所述再生槽连接一泵浦,所述泵浦通过回流管与所述阴极区接通形成回路;所述再生槽还与一氧气源加投系统相连,所述氧气源加投系统用于控制氧气的添加;增设自动检测投料控制机,用于检测所述阴极区中的电镀液和/或再生槽中的再生电镀液的酸度和/或比色和/或氧化还原电位参数/或比重参数;
    步骤2准备电镀液:配制阳极电镀液和阴极电镀液,并将所述阳极电镀液倒入所述阳极区中,将所述阴极电镀液倒入所述阴极区和所述再生槽中,同时,在再生槽中添加金属铜;所述阳极电镀液为硫酸水溶液,所述阴极电镀液为硫酸铜水溶液;当硫酸铜电镀液循环再生配制工作开始后,所述再生槽中的溶液为再生电镀液;
    步骤3启动电镀作业:将不溶性阳极与电源正极连接,并浸入所述阳极电镀液中,将阴极镀件与电源负极连接并浸入所述阴极电镀液中,开启步骤1所述泵浦,接通所述电极的电源进行电镀作业和硫酸铜电镀液循环再生配制;
    步骤4控制阴极电镀液再生:使用自动检测投料控制机对所述阴极区中的电镀液和/或再生槽中的再生电镀液进行酸度和/或比色和/或氧化还原电位参数/或比重参数的检测并分别用于控制氧气源加投系统的启动与关停:当所述阴极电镀液和/或所述再生电镀液的酸度高于设定值、或比色或氧化还原电位/或比重参数低于设定值时,开启所述氧气源加投系统;在检测到所述阴极电镀液和/或所述再生电镀液的酸度、或比色或氧化还原电位/或比重参数达到设定值时,关闭所述氧气源加投系统,停止补充氧气;
    步骤5阴极电镀液再生循环:在步骤4再生槽中的再生电镀液通过所述泵浦灌输到所述阴极区中,所述阴极电镀液从所述阴极区溢流口通过管道流入所述再生槽中形成循环流动。
  2. 根据权利要求1所述的使用不溶性阳极的酸性电镀铜工艺,其特征在于:步骤2所述阳极电镀液为浓度0.001~700g/L的硫酸水溶液;所述阴极电镀液为浓度35~240g/L的硫酸铜水溶液
  3. 根据权利要求2所述的使用不溶性阳极的酸性电镀铜工艺,其特征在于:所述的氧气源加投系统包含氧气源和加投控制装置,其中,所述氧气源为阳极上生成析出的氧气、空气中的氧气、瓶装压缩氧气所发出氧气中的一种或多种;所述加投控制装置为射流真空增氧装置、抽气罩风机、压缩空气机、沸石分子筛制氧机中的一种或多种。
  4. 根据权利要求3所述的使用不溶性阳极的酸性电镀铜工艺,其特征在于:步骤1中,当氧气源采用阳极上生成析出的氧气时,所述加投控制装置为抽气罩风机,在所述阳极区正上方设置抽气罩风机系统,所述抽气罩风机的排气管出气口置于所述再生槽中的电镀液里。
  5. 根据权利要求3所述的使用不溶性阳极的酸性电镀铜工艺,其特征在于:在步骤2所述再生槽中另外添加氧化铜,金属铜和氧化铜混合物的用量是以阴极镀件上的镀铜量来确定,即再生槽中金属铜和氧化铜混合物的总含铜量应大于或等于所述镀铜量。
  6. 根据权利要求1~4任一所述的使用不溶性阳极的酸性电镀铜工艺,其特征在于:步骤1所述隔膜选用阴离子膜时,增设所述阳极区的溢流口,并通过管道与所述再生槽相连;并在步骤4中使用含有比重计、液位计、酸度计、ORP计中的一种或多种检测器的自动检测投料控制机对所述阳极电镀液的比重和/或液位和/或酸度和/或氧化还原电位参数进行检测,一方面,当所述阳极电镀液的比重或液位或酸度或氧化还原电位偏离设定范围时,由所述自动检测投料控制机通过投料泵控制往所述阳极区中投放清水,使所述阳极电镀液的成分浓度保持稳定;另一方面,所述阳极电镀液在阳极区满溢并通过溢流口流入所述再生槽后,所述阳极电镀液中增加的硫酸参与所述再生槽中的硫酸铜电镀液再生反应。
  7. 根据权利要求1~4任一所述的使用不溶性阳极的酸性电镀铜工艺,其特征在于:步骤1所用的隔膜采用阳离子膜时,在步骤4中使用含有比重计、液位计、酸度计、ORP计中一种或多种检测器的自动检测投料控制机对所述阳极电镀液的比重和/或液位和/或酸度和/或氧化还原电位参数进行检测;当所述阳极电镀液的比重或液位或酸度或氧化还原电位偏离设定范围时由所述自动检测投料控制机通过投料泵控制往所述阳极区 中投放清水,以补充所述阳极电镀液中因水电解和抽气损失的水。
  8. 根据权利要求6所述的使用不溶性阳极的酸性电镀铜工艺,其特征在于:在步骤1中设置一个射流真空增氧装置,其吸气区与所述加投控制装置的出气口相连,其入液口则连接一加氧泵浦,所述加氧泵浦另一端通过管道与所述再生槽底部相连,所述射流真空增氧装置的出液口置于所述再生槽中。
  9. 根据权利要求7所述的使用不溶性阳极的酸性电镀铜工艺,其特征在于:步骤4中使用自动检测投料控制机对所述阴极电镀液和/或所述再生电镀液的酸度和/或比色和/或氧化还原电位/或比重参数进行检测时,在控制所述氧气源加投系统启闭的同时,还分别控制所述射流真空增氧装置的启闭:当所述阴极电镀液和/或所述再生电镀液的酸度高于设定值、或氧化还原电位或比色或比重参数低于设定值时,开启所述射流真空增氧装置以加速氧气于所述再生槽中的硫酸铜电镀液再生反应。
  10. 根据权利要求8所述的使用不溶性阳极的酸性电镀铜工艺,其特征在于:在步骤1中所述再生槽和所述泵浦之间设置一过滤器,用于阻挡所述再生槽中的铜泥进入所述阴极区。
  11. 根据权利要求9所述的使用不溶性阳极的酸性电镀铜工艺,其特征在于:在步骤1所述阴极区的溢流口与所述再生槽顶部相连的管道中设置有隔膜,以便阻止有机物的通行。
  12. 根据权利要求5所述的使用不溶性阳极的酸性电镀铜工艺,其特征在于:步骤2中所述阳极电镀液中包含浓度为0.001~240g/L硫酸铜。
  13. 根据权利要求5所述的使用不溶性阳极的酸性电镀铜工艺,其特征在于:步骤2中所述阴极电镀液中包含有浓度为0.001~400g/L硫酸。
  14. 根据权利要求12所述的使用不溶性阳极的酸性电镀铜工艺,其特征在于:所述阴极电镀液中包含10~10000mg/L的氯离子,所述氯离子的来源为盐酸和/或氯化钠。
  15. 一种使用权利要求1~13任一项所述的使用不溶性阳极的酸性电镀铜工艺的设备,包括使用不溶性阳极、阴极、电镀槽和硫酸铜电镀液,其特征在于:采用隔膜将所述电镀槽分为阳极区和阴极区,所述隔膜允许电子自由通过,同时增设再生槽,使所述 阴极区的溢流口与所述再生槽以管道相连,以便阴极电镀液满溢时溢流到再生槽中;所述再生槽连接一泵浦,所述泵浦通过回流管与所述阴极区接通形成回路,以便阴极电镀液在所述阴极区与所述再生槽之间作循环流动;所述再生槽还与一氧气源加投系统相连,所述氧气源加投系统用于控制氧气的添加;增设自动检测投料控制机,用于检测所述阴极区中的电镀液和/或再生槽中的再生电镀液的酸度和/或比色和/或氧化还原电位参数,并分别用于控制氧气源加投系统的启动和关停;再生槽中的再生电镀液通过所述泵浦灌输到所述阴极区中,所述阴极电镀液满溢时从所述阴极区溢流口通过管道流入所述再生槽中形成循环流动。
  16. 根据权利要求14所述的使用不溶性阳极的酸性电镀铜工艺的设备,其特征在于:所述的氧气源加投系统主要由氧气源和加投控制装置组成,所述加投控制装置为控制阀,或真空射流增氧装置,或抽气罩风机系统,或沸石分子筛制氧机中的一种或多种。
  17. 根据权利要求15所述的使用不溶性阳极的酸性电镀铜工艺的设备,其特征在于:当氧气源为阳极上生成析出的氧气作时,所述加投控制装置为在阳极区正上方设置的抽气罩风机,所述抽气罩风机的排气管其出气口置于再生槽中。
  18. 根据权利要求16所述的使用不溶性阳极的酸性电镀铜工艺的设备,其特征在用于分隔电镀槽为阳极区和阴极区的隔膜采用阴离子膜或阳极隔膜,当采用阴离子膜时,所述阳极区增设溢流口,并通过管道与所述再生槽相连。
  19. 根据权利要求14~17任一项所述的使用不溶性阳极的酸性电镀铜工艺的设备,其特征在于:增设一个射流真空增氧装置,其吸气区与所述加投控制装置的出气口相连,其入液口则连接一加氧泵浦,所述加氧泵浦另一端通过管道与所述再生槽底部相连,所述射流真空增氧装置的出液口置于所述再生槽中。
  20. 根据权利要求18所述的使用不溶性阳极的酸性电镀铜工艺的设备,其特征在于:所述再生槽和所述泵浦之间设有过滤器。
  21. 根据权利要求18所述的使用不溶性阳极的酸性电镀铜工艺的设备,其特征在于:所述阴极区的溢流口与所述再生槽顶部相连的管道中设置有隔膜。
PCT/CN2017/114562 2016-12-05 2017-12-05 一种使用不溶性阳极的酸性电镀铜工艺及其设备 WO2018103621A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201621321509.7 2016-12-05
CN201621321509 2016-12-05

Publications (1)

Publication Number Publication Date
WO2018103621A1 true WO2018103621A1 (zh) 2018-06-14

Family

ID=62491730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/114562 WO2018103621A1 (zh) 2016-12-05 2017-12-05 一种使用不溶性阳极的酸性电镀铜工艺及其设备

Country Status (2)

Country Link
TW (1) TWI648435B (zh)
WO (1) WO2018103621A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110964923A (zh) * 2019-12-24 2020-04-07 中南大学 一种多场耦合下深度置换提铜的装置与方法
CN113373495A (zh) * 2021-05-27 2021-09-10 东莞市琢器机械设备科技有限公司 感应式纳米隔膜
CN113818055A (zh) * 2020-08-28 2021-12-21 叶涛 一种不溶性阳极的酸性电镀铜镀液或电镀补充液的成分调整方法及装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020042870A1 (zh) * 2018-08-27 2020-03-05 叶涛 不溶性阳极酸性电镀铜的镀液生产和再生工艺及装置
WO2024078627A1 (zh) * 2022-10-14 2024-04-18 叶涛 一种结合电解溶铜的不溶性阳极镀铜工艺优化方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3634205A (en) * 1968-09-27 1972-01-11 Bunker Ramo Method of plating a uniform copper layer on an apertured printed circuit board
US6054037A (en) * 1998-11-11 2000-04-25 Enthone-Omi, Inc. Halogen additives for alkaline copper use for plating zinc die castings
CN101532160A (zh) * 2008-03-11 2009-09-16 上村工业株式会社 连续电镀铜的方法
CN101407935B (zh) * 2007-07-27 2011-09-07 上村工业株式会社 连续电镀铜的方法
CN102644095A (zh) * 2011-02-18 2012-08-22 三星电子株式会社 电镀铜方法
CN103917691B (zh) * 2011-11-30 2016-02-10 不二商事株式会社 使电镀液再生的方法、电镀方法和电镀装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3634205A (en) * 1968-09-27 1972-01-11 Bunker Ramo Method of plating a uniform copper layer on an apertured printed circuit board
US6054037A (en) * 1998-11-11 2000-04-25 Enthone-Omi, Inc. Halogen additives for alkaline copper use for plating zinc die castings
CN101407935B (zh) * 2007-07-27 2011-09-07 上村工业株式会社 连续电镀铜的方法
CN101532160A (zh) * 2008-03-11 2009-09-16 上村工业株式会社 连续电镀铜的方法
CN102644095A (zh) * 2011-02-18 2012-08-22 三星电子株式会社 电镀铜方法
CN103917691B (zh) * 2011-11-30 2016-02-10 不二商事株式会社 使电镀液再生的方法、电镀方法和电镀装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110964923A (zh) * 2019-12-24 2020-04-07 中南大学 一种多场耦合下深度置换提铜的装置与方法
CN110964923B (zh) * 2019-12-24 2023-09-19 中南大学 一种多场耦合下深度置换提铜的装置与方法
CN113818055A (zh) * 2020-08-28 2021-12-21 叶涛 一种不溶性阳极的酸性电镀铜镀液或电镀补充液的成分调整方法及装置
CN113373495A (zh) * 2021-05-27 2021-09-10 东莞市琢器机械设备科技有限公司 感应式纳米隔膜

Also Published As

Publication number Publication date
TWI648435B (zh) 2019-01-21
TW201821654A (zh) 2018-06-16

Similar Documents

Publication Publication Date Title
WO2018103621A1 (zh) 一种使用不溶性阳极的酸性电镀铜工艺及其设备
TWI707067B (zh) 不溶性陽極酸性電鍍銅製程的電鍍液或電鍍補液的生產方法和裝置
TWI448588B (zh) 連續電鍍銅之方法
CN113818055B (zh) 一种不溶性阳极的酸性电镀铜镀液或电镀补充液的成分调整方法及装置
CN115135806B (zh) 碱性蚀刻废液再生回用的方法及其设备
CN102586851B (zh) 一种缓解并减少镀锡溶液产生锡泥的电解方法
CN105862089B (zh) 一种防止阳极结垢的生产电解铜箔用电解液及其制备方法
CN215976101U (zh) 焊丝电镀生产线
CN201793799U (zh) 一种缓解镀锡液中锡泥产生的装置
CN109913935B (zh) 一种电镀用铜离子补充装置及补充方法
WO1990015171A1 (en) Process for electroplating metals
CN210104117U (zh) 一种电镀用铜离子补充装置
JP3903120B2 (ja) 硫酸銅めっき方法
USRE34191E (en) Process for electroplating metals
JP3110444U (ja) 金属の電解回収装置及び電解めっきシステム
WO2024078627A1 (zh) 一种结合电解溶铜的不溶性阳极镀铜工艺优化方法及装置
JP2010084195A (ja) 銅メッキシステム並びに銅メッキ方法及び電解メッキ液の製造方法
CN103108995A (zh) 镍pH值调整方法及设备
WO2024114054A1 (zh) 一种线路板氨碱性硫酸四氨合铜蚀刻工艺及其装置
CN112011821A (zh) 三价铁溶铜系统
CN205062184U (zh) 微蚀废液循环再生系统
WO2022143860A1 (zh) 不溶性阳极酸性硫酸盐电镀铜的优化工艺及装置
CN220433016U (zh) 无氯气生成的电解装置和蚀刻液循环再生系统
KR20010043597A (ko) 기판의 구리 도금 방법
WO2009098756A1 (ja) 高純度硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液の製造方法及び製造装置、並びに高純度硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17878650

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17878650

Country of ref document: EP

Kind code of ref document: A1