WO2018103169A1 - 一种彩膜基板、液晶面板、液晶显示装置及其制备方法 - Google Patents

一种彩膜基板、液晶面板、液晶显示装置及其制备方法 Download PDF

Info

Publication number
WO2018103169A1
WO2018103169A1 PCT/CN2017/000033 CN2017000033W WO2018103169A1 WO 2018103169 A1 WO2018103169 A1 WO 2018103169A1 CN 2017000033 W CN2017000033 W CN 2017000033W WO 2018103169 A1 WO2018103169 A1 WO 2018103169A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
liquid crystal
crystal display
color
thickness
Prior art date
Application number
PCT/CN2017/000033
Other languages
English (en)
French (fr)
Inventor
陈帅
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to KR1020197018586A priority Critical patent/KR102202165B1/ko
Priority to JP2019527290A priority patent/JP6915058B2/ja
Priority to US15/323,790 priority patent/US10725335B2/en
Priority to EP17878624.0A priority patent/EP3553596B1/en
Publication of WO2018103169A1 publication Critical patent/WO2018103169A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133516Methods for their manufacture, e.g. printing, electro-deposition or photolithography
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133388Constructional arrangements; Manufacturing methods with constructional differences between the display region and the peripheral region
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136222Colour filters incorporated in the active matrix substrate

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a color film substrate, a liquid crystal panel, a liquid crystal display device, and a method of fabricating the same.
  • VA Vertical Alignment
  • the liquid crystal molecules are vertically "standing" so that the VA display mode has a very high front contrast, but when viewed from the side, the contrast of the VA is greatly reduced, and the color of the screen is prone to color shift, especially when the user is at the center of the liquid crystal display panel. When observed, the edge area of the liquid crystal display panel may appear reddish.
  • the present invention provides a color filter substrate, a liquid crystal panel, a liquid crystal display device, and a method of fabricating the same, and the color film substrate of the present invention can improve the color shift problem of the liquid crystal display panel.
  • one technical solution proposed by the present invention is:
  • a liquid crystal display device wherein the touch display panel includes a liquid crystal display panel and a driving circuit, and the driving circuit is electrically connected to the liquid crystal display panel for driving the liquid crystal display panel;
  • the liquid crystal display panel comprises a color filter substrate; the color film substrate comprises:
  • a plurality of red color resists and blue color resists are disposed on the substrate;
  • the thickness of the plurality of red color resists in the edge region of the substrate is greater than the thickness in the central region of the substrate; the thickness of the plurality of blue color resists in the edge region of the substrate is smaller than that on the substrate The thickness of the central area;
  • the substrate is divided into a plurality of regions from the center to the edge, and the thickness of the red color resist of the region closer to the center of the substrate is smaller.
  • the substrate is divided into a plurality of regions from the center to the edge, and the closer to the edge of the substrate The thickness of the blue color resist of the region is smaller.
  • the substrate is a glass substrate or a TFT substrate.
  • the color film substrate further comprises a black matrix, and the black matrix is disposed between two adjacent color resistors.
  • a color filter substrate which includes:
  • the plurality of red color resists have a thickness in an edge region of the substrate greater than a thickness in a central region of the substrate.
  • the substrate is divided into a plurality of regions from the center to the edge, and the thickness of the red color resist of the region closer to the center of the substrate is smaller.
  • the method further includes a plurality of blue color resists disposed on the substrate, the plurality of blue color resists having a thickness in an edge region of the substrate that is smaller than a thickness in a central region of the substrate.
  • the substrate is divided into a plurality of regions from the center to the edge, and the thickness of the blue color resist of the region closer to the edge of the substrate is smaller.
  • the substrate is a glass substrate or a TFT substrate.
  • the color film substrate further comprises a black matrix, and the black matrix is disposed between two adjacent color resistors.
  • another technical solution proposed by the present invention is to provide a method for preparing a color filter substrate, wherein, in the exposure process of the color filter substrate, the transmittance of the edge region is greater than that of the central region.
  • the light transmittance mask exposes the color resist material used to form the red color resist.
  • the mask is divided into a plurality of regions from the center to the edge, and the closer to the center of the mask The smaller the transmission rate of the area.
  • the method further includes exposing the color resist material for forming the blue color resist using a mask having a light transmittance of the edge region smaller than a light transmittance of the central region during the exposure of the color filter substrate.
  • the mask is divided into a plurality of regions from the center to the edge, and the transmittance closer to the region of the center of the mask is larger.
  • the color film substrate provided by the present invention comprises a substrate and a plurality of red color resists disposed on the substrate; wherein the plurality of red color resists have a thickness in an edge region of the substrate greater than a thickness in a central region of the substrate .
  • the box gap corresponding to the red color resistance of the central region of the liquid crystal display panel prepared by using the color filter substrate is larger than the box gap corresponding to the red color resistance of the edge region, and the red light is transparent in the central area of the display panel.
  • the phenomenon that the edge area of the liquid crystal display panel is reddish is improved, and the display quality of the liquid crystal display panel is improved.
  • FIG. 1 is a schematic structural view of a liquid crystal display panel of the prior art
  • FIG. 2 is a schematic structural view of a first embodiment of a liquid crystal display panel of the present invention
  • FIG. 4 is a schematic structural view of a third embodiment of a liquid crystal display panel of the present invention.
  • FIG. 5 is a schematic structural view of a fourth embodiment of a liquid crystal display panel of the present invention.
  • Fig. 6 is a flow chart showing an embodiment of a method for preparing a color filter substrate of the present invention.
  • the liquid crystal display panel exhibits different colors by controlling the brightness ratio between red light, green light and blue light. Therefore, evaluating the color shift problem of the liquid crystal display panel under different viewing angles can be defined as evaluating the liquid crystal display panel under different viewing angles. Difference in brightness ratio between red, green and blue light question.
  • the transmittance of light of three colors can be referred to the following formula:
  • the azimuth angle of the liquid crystal molecules, ⁇ nd is a transmittance change factor, wherein ⁇ n is the difference between the refractive indices of normal light and extraordinary light caused by the birefringence characteristics of the liquid crystal molecules, d is the cell gap, and ⁇ is incident to the liquid crystal molecules.
  • the wavelength of light. Azimuth of liquid crystal molecules in VA display mode It is a fixed value, but the corresponding transmittance change factor ⁇ nd is different at different viewing angles. Therefore, the transmittances of red, green, and blue light change at different viewing angles.
  • FIG. 1 is a schematic structural view of a liquid crystal display panel of the prior art.
  • the color filter substrate 300 of the prior art liquid crystal display panel is provided with a red color resist R arranged on the lower substrate 30 as shown in FIG.
  • the green color resist G and the blue color resist B are disposed opposite to the lower substrate 30, and the liquid crystal molecules are filled between the upper substrate 40 and the lower substrate 30.
  • the thickness of the color resistance of the three colors in the color filter substrate 300 of the prior art is the same on the entire lower substrate 30, and the corresponding cell gap d is also the same.
  • the transmittance of light of three colors changes.
  • the factor ⁇ nd is reduced, and the amount of change in the transmittance change factor is the same. It is assumed that the transmittances of red, green, and blue light are ⁇ Tr, ⁇ Tg, and ⁇ Tb, respectively, since the wavelength relationship between red, green, and blue light is ⁇ r> ⁇ g> ⁇ b, according to the above transmittance formula.
  • the relationship between the amounts of change in transmittance of red light, green light, and blue light is ⁇ Tr ⁇ ⁇ Tg ⁇ ⁇ Tb. Therefore, from the central region to the edge region of the liquid crystal display panel, the transmittance of red light is minimal, and the brightness of red light is highest in the edge region of the liquid crystal display panel, so that when the user at point A views the liquid crystal display panel, the edge region is centered. The color of the area is reddish and there is a serious color shift problem.
  • FIG. 2 is a schematic structural view of a first embodiment of a liquid crystal display panel according to the present invention.
  • the liquid crystal display panel includes a color filter substrate 100.
  • the color filter substrate 100 includes a substrate 10 and is disposed on the substrate 10. a plurality of red color resists R, blue color resists B, and green color resists G, among which a plurality of red
  • the color resist R is thicker in the edge region of the substrate 10 than in the central region of the substrate 10.
  • the thicknesses of the red color resist R, the blue color resist B, and the green color resist G are the same, but the thickness of the blue color resist B and the green color resist G in the edge region and the blue color resistance B of the central region are The thickness of the green color resist G is the same, and the thickness of the red color resist R of the edge region is larger than the thickness of the red color resist R of the central region.
  • the liquid crystal display panel further includes another substrate 20 facing the color filter substrate 100, and the liquid crystal molecules are filled between the color filter substrate 100 and the other substrate 20. The thicknesses of the green color resist G and the blue color resist B are always the same throughout the substrate 10.
  • the cell gap of the red color resist R of the central region is larger than the cell gap of the red color resist R of the edge region, and further
  • the transmittance of the red light in the edge region is made smaller than the transmittance of the red light in the central region, and the luminance of the red light in the edge region of the liquid crystal display panel is lowered.
  • the transmittance change of the red light is smaller than the transmittance change of the red light in the prior art from the central region to the edge region of the liquid crystal display panel, so that the edge of the liquid crystal display panel
  • the ratio of the brightness between the red, blue and green light of the region approaches the ratio of the brightness between the red, blue and green light in the central region, thereby improving the redness of the edge region of the liquid crystal display panel.
  • the substrate 10 of the color filter substrate 100 may be the glass substrate 10 or the TFT substrate 10. Since the color filter substrate 100 is used for filtering in the liquid crystal display panel, the light transmitted through the liquid crystal display panel exhibits a corresponding color. According to the existing preparation process, the substrate 10 of the color filter substrate 100 may be the glass substrate 10 or TFT substrate 10.
  • a color matrix substrate 100 is further provided with a black matrix (not shown), and the black matrix is disposed between two adjacent color resists, for example, between the red color resist R and the green color resist G.
  • a black matrix is disposed, a black matrix is disposed between the green color resist G and the blue color resist B, and a black matrix is also disposed between the adjacent red color resists R, the adjacent green color resists G, and the corresponding blue color resists B. .
  • FIG. 3 is a schematic structural view of a second embodiment of the liquid crystal display panel of the present invention.
  • the present embodiment is improved on the basis of the first embodiment of the liquid crystal display panel shown in FIG. 2.
  • the substrate 10 is divided into a plurality of regions from the center to the edge, and the thickness of the red color resist G is smaller as the region closer to the center of the substrate 10. That is, in a plurality of regions of the substrate 10, the thickness of the red color resist G on the substrate 10 changes as a gradient. In the central region of the substrate 10, the thicknesses of the red color resist R, the blue color resist B, and the green color resist G are the same, and the thicknesses of the blue color resist B and the green color resist G do not change in any one of the regions of the substrate 10.
  • each region includes a plurality of red color resists G, blue color resists B, and green color resists G, and each of the regions may have the same width. It can also be different.
  • the viewing angle change of the user relative to the liquid crystal display panel is not abrupt, but is from the center of the liquid crystal display panel.
  • the area to the edge area gradually changes.
  • the substrate 10 is divided into a plurality of regions from the center to the edge, and the thickness of the red color resist G from the central region to the plurality of regions of the edge region is changed in a gradient so that each region on the liquid crystal display panel
  • the ratio of the brightness between the red, blue and green light on the upper side approaches the ratio of the brightness between the red, blue and green light in the central region, so that the brightness between the red, blue and green light on the entire liquid crystal display panel
  • the ratio tends to be consistent, further improving the color shift of the liquid crystal display panel and improving the display quality.
  • FIG. 4 is a schematic structural view of a third embodiment of a liquid crystal display panel of the present invention. This embodiment is improved on the basis of the second embodiment of the liquid crystal display panel shown in FIG. It can be understood that the thickness of the blue color resist B in the present embodiment is also set in combination with the structure of the first embodiment of the liquid crystal display panel shown in FIG. 2.
  • the thickness of the plurality of blue color resists B provided on the substrate 10 of the color filter substrate 102 in the edge region of the substrate 10 is smaller than the thickness in the central region of the substrate 10.
  • the amount of change in the transmittance of the green light is second only to the amount of change in the transmittance of the red light. Therefore, when the redness phenomenon in the edge region of the liquid crystal display panel is improved, a greenish phenomenon occurs.
  • the green color resist G contributes a large amount of brightness. If the same method is used to increase the thickness of the green color resist G in the edge region of the substrate 10, the transmittance of light of the entire liquid crystal display surface is percentage. The decrease causes the overall brightness of the liquid crystal display panel to decrease, thereby degrading the display quality. Therefore, this approach is not desirable.
  • the thickness of the green color resist G in the edge region of the substrate 10 is equal to the center of the substrate 10.
  • the thickness of the area does not reduce the overall brightness of the entire liquid crystal display panel. Since the color exhibited by the liquid crystal display panel is determined by the brightness ratio of red light, green light, and blue light, the present embodiment increases the edge of the liquid crystal display panel by reducing the thickness of the blue color resist B of the edge region of the substrate 10.
  • the transmittance of the blue light in the region increases the brightness of the blue light in the edge region, which is equivalent to reducing the brightness of the green light in the edge region, thereby improving the color of the edge region to be greenish and improving the display quality.
  • FIG. 5 is a schematic structural view of a fourth embodiment of a liquid crystal display panel of the present invention. This embodiment is improved on the basis of the third embodiment of the liquid crystal display panel shown in FIG.
  • the color film substrate 103 in the liquid crystal display panel is specifically arranged such that the substrate 10 is divided into a plurality of regions from the center to the edge, and the thickness of the blue color resist B is smaller as the region closer to the edge of the substrate 10 is smaller. . That is, in a plurality of regions of the substrate 10, the thickness of the blue color resist B on the substrate 10 changes as a gradient. It can be understood that the setting of the blue color resist B in this embodiment can be combined with the setting of the red color resist R in the first embodiment of the liquid crystal display panel shown in FIG.
  • each region when the substrate 10 is divided into a plurality of regions from the center to the edge, each region includes a plurality of red color resists R, blue color resists B, and green color resists G, and each of the regions may have the same width. Can be different.
  • the setting of the blue color resist B in this embodiment is similar to the thickness setting of the red color resist R. Due to the large size of the liquid crystal display panel, when the user views the liquid crystal display panel, the viewing angle of the user relative to the liquid crystal display panel gradually changes from the central region to the edge region of the liquid crystal display panel. Therefore, in the embodiment, the substrate 10 is divided into a plurality of regions from the center to the edge, and the thickness of the blue color resist B on the plurality of regions from the center to the edge is gradually changed so as to be on each region on the liquid crystal display panel.
  • the ratio of the brightness between the red, blue and green light approaches the ratio of the brightness between the red, blue and green light in the central region, so that the brightness ratio between red, blue and green light on the entire liquid crystal display panel
  • the convergence tends to further improve the color shift of the liquid crystal display panel and improve the display quality.
  • FIG. 6 is a schematic flow chart of an embodiment of a method for preparing a color filter substrate of the present invention.
  • the color filter substrate of the present invention includes the following steps during the exposure process:
  • S101 Exposing a color resist material for forming a red color resist by using a mask having an edge region having a light transmittance greater than a transmittance of the central region.
  • a color resist material for forming a red color resist is coated on the substrate of the color filter substrate, and when the color resist material for forming the red color resist is exposed, the light transmittance of the edge region is greater than the light transmittance of the central region.
  • the mask exposes the color resist material used to form the red color resist.
  • the color resist material is a negative material, the more exposure it receives or the greater the exposure intensity, the more complete the photocuring of the color resist material. Therefore, when the color resist material for forming a red color resist applied on the substrate is exposed, the color resist material of the edge region of the substrate is made by using a mask having a light transmittance of the edge region greater than a light transmittance of the central region. The exposure intensity is greater than the exposure intensity of the color resist material in the central region, so that the color resist material of the edge region of the substrate is cured to a greater extent than the color resist material of the central region, and the developer is used to form a red color resist.
  • the thickness of the red color resist of the obtained edge region is greater than the thickness of the red color resist of the central region.
  • the structure of the red color resist thus formed is as shown in the structure of the red color resist G in the color filter substrate 100 in the liquid crystal display panel shown in FIG.
  • the mask for exposing the color resist material for forming the red color resist may be divided into a plurality of regions from the center to the edge, and the transmittance closer to the region near the center of the mask is smaller. .
  • the structure of the red color resist thus formed is as shown in the structure of the red color resist G in the color filter substrate 101 in the liquid crystal display panel shown in FIG.
  • a color resist material for forming a blue color resist is coated on the substrate of the color filter substrate, and when the color resist material for forming the blue color resist is exposed, the light transmittance of the edge region is greater than the light transmittance of the central region.
  • the mask plate exposes the color resist material used to form the blue color resist.
  • the structure of the red color resist thus formed is as shown in the structure of the blue color resist B in the color filter substrate 102 in the liquid crystal display panel shown in FIG.
  • the mask for exposing the color resist material for forming the blue color resist may be divided into a plurality of regions from the center to the edge, and the transmittance closer to the region of the center of the mask is larger.
  • the greater the exposure intensity of the color resist material for forming the blue color resist the closer to the central region of the substrate, the greater the thickness of the blue color resist corresponding to the region near the center of the substrate.
  • the structure of the blue color resist thus formed is as shown in the structure of the blue color resist B in the color filter substrate 103 in the liquid crystal display panel shown in FIG.
  • the color resist material for forming the blue color resist may be exposed by using a mask having a constant light transmittance, and the thickness of the blue color resist on the substrate of the obtained color filter substrate is always the same.
  • the structure of the blue color resist thus formed is as shown in the structure of the blue color resist B in the color filter substrate 100 in the liquid crystal display panel shown in FIG.
  • the color resist material for forming the green color resist is exposed using a mask having a constant light transmittance.
  • step S101, step S102, and step S103 are respectively exposing the color resist materials for forming the red color resistance, the blue color resistance, and the green color resistance to form a red color resistance, a blue color resistance, and a green color resistance. There is no order relationship. Therefore, there is no order limitation between steps S101, S102, and S103.
  • the present invention also provides a liquid crystal display device comprising a liquid crystal display panel and a driving circuit; wherein the driving circuit is electrically connected to the liquid crystal display panel, and the liquid crystal display panel is driven by the driving circuit.
  • the liquid crystal display panel in this embodiment may be any one of the liquid crystal display panels shown in FIGS. 2 to 5.
  • the thickness of the red color resist of the edge region of the substrate of the color filter substrate is greater than the thickness of the red color resist of the central region, and the cell gap corresponding to the red color resist of the central region of the liquid crystal display panel prepared by using the color filter substrate is obtained.
  • the box gap corresponding to the red color resistance of the edge region further compensates the color shift of the edge region of the liquid crystal display panel, improves the phenomenon of reddishness in the edge region of the liquid crystal display panel, and improves the display quality of the liquid crystal display panel.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Filters (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种彩膜基板(100)、液晶面板、液晶显示装置及其制备方法,该彩膜基板(100)包括基板(10)和设置在该基板(10)上的多个红色色阻;多个红色色阻在基板(10)的边缘区域的厚度大于在基板(10)的中心区域的厚度。通过上述方式使利用该彩膜基板(100)制备的液晶显示面板的中心区域的红色色阻对应的盒间隙大于边缘区域的红色色阻对应的盒间隙,进而使液晶显示面板边缘区域的色偏得到补偿,改善液晶显示面板的边缘区域出现偏红的现象,提高液晶显示面板的显示质量。

Description

一种彩膜基板、液晶面板、液晶显示装置及其制备方法 【技术领域】
本发明涉及显示技术领域,具体而言涉及一种彩膜基板、液晶面板、液晶显示装置及其制备方法。
【背景技术】
在现有的VA(Vertical Alignment,垂直配向)显示模式以其高对比度和无须摩擦配向等优势,逐渐成为大尺寸液晶显示面板的常见显示模式。
VA显示模式中液晶分子垂直分“站立”使得VA显示模式具有非常高的正面对比度,但在侧面观察时,VA的对比度下降非常明显,画面颜色容易出现色偏,特别是用户位于液晶显示面板中心观察时,液晶显示面板的边缘区域会出现偏红的现象。
【发明内容】
有鉴于此,本发明提供一种彩膜基板、液晶面板、液晶显示装置及其制备方法,本发明的彩膜基板能够改善液晶显示面板的色偏问题。
为解决上述技术问题,本发明提出的一个技术方案是:
提供一种液晶显示装置,其中,所述触摸显示面板包括包括液晶显示面板和驱动电路,所述驱动电路,与所述液晶显示面板电连接,用于驱动所述液晶显示面板;
所述液晶显示面板包含彩膜基板;所述彩膜基板包括:
基板;
多个红色色阻和蓝色色阻,均设置在所述基板上;
其中,所述多个红色色阻在所述基板的边缘区域的厚度大于在所述基板的中心区域的厚度;所述多个蓝色色阻在所述基板的边缘区域的厚度小于在所述基板的中心区域的厚度;
其中,所述基板由中心到边缘划分为若干个区域,越靠近所述基板中心的所述区域的红色色阻的厚度越小。
其中,所述基板由中心到边缘划分为若干个区域,越靠近所述基板边缘的 所述区域的蓝色色阻的厚度越小。
其中,还包括设置在所述基板上的多个绿色色阻,所述多个绿色色阻在所述基板的边缘区域的厚度等于在所述基板的中心区域的厚度。
其中,所述基板为玻璃基板或TFT基板。
其中,所述彩膜基板还包括黑矩阵,所述黑矩阵设置在相邻的两个色阻之间。
为解决上述技术问题,本发明提出的另一个技术方案是:提供一种彩膜基板,其中,包括:
基板;
多个红色色阻,设置在所述基板上;
其中,所述多个红色色阻在所述基板的边缘区域的厚度大于在所述基板的中心区域的厚度。
其中,所述基板由中心到边缘划分为若干个区域,越靠近所述基板中心的所述区域的红色色阻的厚度越小。
其中,还包括设置在所述基板上的多个蓝色色阻,所述多个蓝色色阻在所述基板的边缘区域的厚度小于在所述基板的中心区域的厚度。
其中,所述基板由中心到边缘划分为若干个区域,越靠近所述基板边缘的所述区域的蓝色色阻的厚度越小。
其中,还包括设置在所述基板上的多个绿色色阻,所述多个绿色色阻在所述基板的边缘区域的厚度等于在所述基板的中心区域的厚度。
其中,所述基板为玻璃基板或TFT基板。
其中,所述彩膜基板还包括黑矩阵,所述黑矩阵设置在相邻的两个色阻之间。
为解决上述技术问题,本发明提出的另一个技术方案是:提供一种彩膜基板的制备方法,其中,在所述彩膜基板的曝光过程中,使用边缘区域的透光率大于中心区域的透光率的掩膜板对用于形成红色色阻的色阻材料进行曝光。
其中,在所述掩膜板从中心至边缘划分为多个区域,越靠近掩膜板中心的 区域的透过率越小。
其中,还包括在所述彩膜基板的曝光过程中,使用边缘区域的透光率小于中心区域的透光率的掩膜板对用于形成蓝色色阻的色阻材料进行曝光。
其中,所述掩膜板从中心至边缘划分为多个区域,越靠近掩膜板中心的区域的透过率越大。
本发明提供的彩膜基板包括基板和设置在该基板上的多个红色色阻;其中,所述多个红色色阻在所述基板的边缘区域的厚度大于在所述基板的中心区域的厚度。本发明通过上述方式使利用该彩膜基板制备的液晶显示面板的中心区域的红色色阻对应的盒间隙大于边缘区域的红色色阻对应的盒间隙,减小红光在显示面板中心区域的透过率与在边缘区域的透过率之间的差异,进而使液晶显示面板的边缘区域的红光、蓝光、绿光的亮度比例趋近中心区域的红光、蓝光、绿光的亮度比例,改善液晶显示面板的边缘区域出现偏红的现象,提高液晶显示面板的显示质量。
【附图说明】
图1是现有技术的液晶显示面板的结构示意图;
图2是本发明液晶显示面板第一实施例的结构示意图;
图3是本发明液晶显示面板第二实施例的结构示意图;
图4是本发明液晶显示面板第三实施例的结构示意图;
图5是本发明液晶显示面板第四实施例的结构示意图;
图6是本发明彩膜基板的制备方法一实施例的流程示意图。
【具体实施方式】
为使本领域的技术人员更好地理解本发明的技术方案,下面结合附图和具体实施例对本发明所提供的一种彩膜基板、液晶面板、液晶显示装置及其制备方法做进一步详细描述。在附图中,相同的标号在整个说明书和附图中用来表示相同的结构。
液晶显示面板通过控制红光、绿光以及蓝光之间亮度比例而呈现出不同的颜色,因此,评价液晶显示面板的在不同观看角度下色偏问题可以定义为评价液晶显示面板在不同观看角度下的红光、绿光以及蓝光之间亮度比例的差异问 题。
VA(Vertical Alignment,垂直配向)显示模式的液晶显示面板中,三种颜色的光的透过率均可以参照如下公式:
Figure PCTCN2017000033-appb-000001
公式中
Figure PCTCN2017000033-appb-000002
为液晶分子的方位角,Δnd为透过率变化因子,其中,Δn为液晶分子的双折射特性造成的正常光与非常光的折射率之差,d为盒间隙,λ为入射至液晶分子的光的波长。VA显示模式的液晶分子的方位角
Figure PCTCN2017000033-appb-000003
为固定值,但在不同观看角度下对应的透过率变化因子Δnd不同,因此,在不同观看角度下红光、绿光以及蓝光的透过率均会发生变化。
参考图1,图1是现有技术的液晶显示面板的结构示意图,现有技术的液晶显示面板中的彩膜基板300如图1所示,在下基板30上设置有顺序排列的红色色阻R、绿色色阻G和蓝色色阻B,上基板40与下基板30相对设置,上基板40与下基板30之间填充有液晶分子。现有技术的彩膜基板300中三种颜色的色阻的厚度在整个下基板30上均相同,其对应的盒间隙d也相同。
当位于A点的用户观看液晶显示面板时,其相对于液晶显示面板的中心区域为正视,边缘区域为侧视,且观看角度变化量相同,此时,三种颜色的光的透过率变化因子Δnd均减小,且透过率变化因子的变化量相同。假设此时红光、绿光以及蓝光的透过率变化量分别为ΔTr、ΔTg以及ΔTb,由于红光、绿光以及蓝光之间的波长关系为λr>λg>λb,根据上述透过率公式可知红光、绿光以及蓝光的透过率变化量之间的关系为ΔTr<ΔTg<ΔTb。因此,从液晶显示面板的中心区域至边缘区域,红光的透过率变化量最小,在液晶显示面板边缘区域红光的亮度最高,使得A点的用户观看液晶显示面板时,边缘区域较中心区域色彩偏红,存在严重的色偏问题。
参阅图2,图2是本发明液晶显示面板第一实施例的结构示意图,如图2所示,该液晶显示面板包括彩膜基板100,该彩膜基板100包括基板10以及设置在该基板10上的多个红色色阻R、蓝色色阻B以及绿色色阻G,其中,多个红 色色阻R在基板10的边缘区域的厚度大于在基板10中心区域的厚度。即在基板10的中心区域,红色色阻R、蓝色色阻B以及绿色色阻G的厚度相同,但边缘区域的蓝色色阻B和绿色色阻G的厚度与中心区域的蓝色色阻B和绿色色阻G的厚度相同,边缘区域的红色色阻R的厚度大于中心区域的红色色阻R的厚度。此外,该液晶显示面板还包括与该彩膜基板100正对的另一基板20,彩膜基板100与另一基板20之间填充液晶分子。绿色色阻G和蓝色色阻B的厚度在整个基板10上始终相同。
本实施例中,由于中心区域的红色色阻R的厚度小于边缘区域的红色色阻R的厚度,使中心区域的红色色阻R的盒间隙大于边缘区域的红色色阻R的盒间隙,进而使边缘区域的红光的透过率小于中心区域的红光的透过率,降低了液晶显示面板的边缘区域的红光的亮度。当用户处于液晶显示面板中心位置观看时,从液晶显示面板的中心区域至边缘区域,红光的透过率变化量小于现有技术中红光的透过率变化量,使液晶显示面板的边缘区域的红光、蓝光以及绿光之间的亮度比例趋近中心区域的红光、蓝光以及绿光之间的亮度比例,进而改善液晶显示面板的边缘区域偏红的现象。
本实施例中彩膜基板100的基板10可以为玻璃基板10,也可以为TFT基板10。由于彩膜基板100在液晶显示面板中用于滤光,使透过液晶显示面板的光呈现相应的颜色,根据现有制备工艺,彩膜基板100的基板10既可以为玻璃基板10也可以为TFT基板10。
本实施例中,彩膜基板100上还设置有黑矩阵(图中未画出),黑矩阵设置在相邻的两个色阻之间,例如,红色色阻R与绿色色阻G之间设置有黑矩阵,绿色色阻G与蓝色色阻B之间设置有黑矩阵,相邻的红色色阻R、相邻的绿色色阻G以及相应的蓝色色阻B之间同样设置有黑矩阵。
进一步的,参考图3,图3是本发明液晶显示面板第二实施例的结构示意图。本实施例的在图2所示的液晶显示面板第一实施例的基础上进行改进得到的。
如图3所示,在该液晶显示面板中的彩膜基板101中,将基板10由中心到边缘划分为若干个区域,越靠近基板10中心的区域的红色色阻G的厚度越小。 即在基板10的若干个区域中,红色色阻G在基板10上的厚度变化为梯度变化。在基板10的中心区域,红色色阻R、蓝色色阻B以及绿色色阻G的厚度相同,且在基板10的任意一个区域中蓝色色阻B和绿色色阻G的厚度不发生变化。可以理解的是,将基板10由中心至边缘划分为若干个区域时,每个区域均包含若干个红色色阻G、蓝色色阻B以及绿色色阻G,且每个区域的宽度可以相同,也可以不相同。
由于液晶显示面板的尺寸较大,用户在观看液晶显示面板时从液晶显示面板的中心区域至边缘区域,用户相对于液晶显示面板的观看角度变化并不是突变的,而是从液晶显示面板的中心区域至边缘区域逐渐变化的。由此,本实施例将基板10从中心至边缘划分为若干个区域,使红色色阻G从中心区域至边缘区域的若干个区域上的厚度呈梯度变化,使液晶显示面板上的每个区域上的红光、蓝光以及绿光之间的亮度比例趋近中心区域的红光、蓝光以及绿光之间的亮度比例,从而使整个液晶显示面板上红光、蓝光以及绿光之间的亮度比例趋于一致,进一步改善液晶显示面板的色偏问题,提高显示质量。
参考图4,图4是本发明液晶显示面板第三实施例的结构示意图。本实施例是在图3所示的液晶显示面板第二实施例的基础上进行改进得到的。可以理解的是,本实施例中对蓝色色阻B的厚度是设置也可以与图2所示的液晶显示面板第一实施例的结构相结合。
如图4所示,在彩膜基板102的基板10上设置的多个蓝色色阻B在基板10的边缘区域的厚度小于在基板10的中心区域的厚度。
根据上述对色偏的分析可知,由于绿光的波长仅次于红光的波长,导致绿光的透过率变化量仅次于红光的透过率变化量。因此当液晶显示面板的边缘区域的偏红现象得到改善后,会出现偏绿的现象。但在液晶显示面板中,绿色色阻G对亮度的贡献较大,若也采用相同的方法增加基板10的边缘区域的绿色色阻G的厚度会使整个液晶显示面的光的透过率百分比下降,导致液晶显示面板的整体亮度下降,进而降低显示质量。因此,这种方式并不可取。
本实施例中,绿色色阻G在基板10的边缘区域的厚度等于在基板10中心 区域的厚度,因此对整个液晶显示面板而言不会降低整体的亮度。由于液晶显示面板呈现的颜色是由红光、绿光和蓝光三者的亮度比例决定的,本实施例通过减小基板10的边缘区域的蓝色色阻B的厚度,增加了液晶显示面板的边缘区域蓝光的透过率,提高了边缘区域蓝光的亮度,这种做法相当于降低了边缘区域的绿光的亮度,从而对边缘区域的颜色偏绿的情况进行改善,提高显示质量。
参考图5,图5是本发明液晶显示面板第四实施例的结构示意图。本实施例是在图4所示的液晶显示面板第三实施例的基础上进行改进得到的。
如图5所示,该液晶显示面板中的彩膜基板103的设置具体为:将基板10由中心到边缘划分为若干个区域,越靠近基板10边缘的区域的蓝色色阻B的厚度越小。即在基板10的若干个区域中,蓝色色阻B在基板10上的厚度变化为梯度变化。可以理解的是,本实施例中对蓝色色阻B的设置可以与图1所示的液晶显示面板第一实施例中对红色色阻R的设置相结合。
本实施例中,将基板10由中心至边缘划分为若干个区域时,每个区域包含若干个红色色阻R、蓝色色阻B以及绿色色阻G,且每个区域的宽度可以相同,也可以不相同。
本实施例中蓝色色阻B的设置与红色色阻R的厚度呈梯度设置类似。由于液晶显示面板的尺寸较大,用户在观看液晶显示面板时,从液晶显示面板的中心区域至边缘区域,用户相对于液晶显示面板的观看角度是逐渐发生变化的。由此,本实施例中将基板10从中心至边缘划分为若干个区域,使蓝色色阻B从中心至边缘的若干个区域上的厚度呈梯度变化,使液晶显示面板上的每个区域上的红光、蓝光以及绿光之间的亮度比例趋近中心区域的红光、蓝光以及绿光之间的亮度比例,从而使整个液晶显示面板上红光、蓝光以及绿光之间的亮度比例趋于一致,进一步改善液晶显示面板的色偏问题,提高显示质量。
参考图6,图6是本发明彩膜基板的制备方法一实施例的流程示意图。如图6所示,本发明的彩膜基板在曝光过程中包括如下步骤:
S101、使用边缘区域的透光率大于中心区域的透光率的掩膜板对用于形成红色色阻的色阻材料进行曝光。
在彩膜基板的基板上涂覆用于形成红色色阻的色阻材料,对用于形成红色色阻的色阻材料进行曝光过程时,使用边缘区域的透光率大于中心区域的透光率的掩膜板对用于形成红色色阻的色阻材料进行曝光。
由于色阻材料为负性材料,其接受的曝光量越多或曝光强度越大,色阻材料的光固化程度越彻底。因此在对基板上涂覆的用于形成红色色阻的色阻材料进行曝光时,利用边缘区域的透光率大于中心区域的透光率的掩膜板,使基板的边缘区域的色阻材料的曝光强度大于中心区域的色阻材料的曝光强度,导致基板的边缘区域的色阻材料的固化程度大于中心区域的色阻材料的固化程度,进而在使用显影液对用于形成红色色阻的色阻材料进行显影时,得到的边缘区域的红色色阻的厚度大于中心区域的红色色阻的厚度。由此形成的红色色阻的结构如图2所示的液晶显示面板中的彩膜基板100中的红色色阻G的结构。
此外,本实施中的还可以将对用于形成红色色阻的色阻材料进行曝光的掩膜板从中心至边缘划分为多个区域,越靠近掩膜板中心的区域的透过率越小。使得越靠近基板的中心区域的用于形成红色色阻的色阻材料的曝光强度越小,相应的,越靠近基板中心的区域的红色色阻厚度越小。由此形成的红色色阻的结构如图3所示的液晶显示面板中的彩膜基板101中的红色色阻G的结构。
S102、使用边缘区域的透光率小于中心区域的透光率的掩膜板对用于形成蓝色色阻的色阻材料进行曝光。
在彩膜基板的基板上涂覆用于形成蓝色色阻的色阻材料,对用于形成蓝色色阻的色阻材料进行曝光过程时,使用边缘区域的透光率大于中心区域的透光率的掩膜板对用于形成蓝色色阻的色阻材料进行曝光。由此形成的红色色阻的结构如图4所示的液晶显示面板中的彩膜基板102中的蓝色色阻B的结构。
此外,本步骤的还可以将对用于形成蓝色色阻的色阻材料进行曝光的掩膜板从中心至边缘划分为多个区域,越靠近掩膜板中心的区域的透过率越大。使得越靠近基板的中心区域的用于形成蓝色色阻的色阻材料的曝光强度越大,相应的,越靠近基板中心的区域的蓝色色阻厚度越大。由此形成的蓝色色阻的结构如图5所示的液晶显示面板中的彩膜基板103中的蓝色色阻B的结构。
此外,该步骤中还可以使用透光率不变的掩膜板对用于形成蓝色色阻的色阻材料进行曝光,得到的彩膜基板的基板上蓝色色阻的厚度始终相同。由此形成的蓝色色阻的结构如图2所示的液晶显示面板中的彩膜基板100中的蓝色色阻B的结构。
S103、使用透光率不变的掩膜板对用于形成绿色色阻的色阻材料进行曝光。
由于绿色色阻的厚度在整个彩膜基板的基板上的厚度相同,因此使用透光率不变的掩膜板对用于形成绿色色阻的色阻材料进行曝光。
可以理解的是,步骤S101、步骤S102以及步骤S103是分别对用于形成红色色阻、蓝色色阻以及绿色色阻的色阻材料进行曝光,而形成红色色阻、蓝色色阻以及绿色色阻并没有先后顺序关系,因此,步骤S101、步骤S102以及步骤S103之间没有先后执行顺序的限定。
本发明还提出了一种液晶显示设备,该液晶显示设备包括液晶显示面板和驱动电路;其中,驱动电路与液晶显示面板电连接,通过驱动电路驱动液晶显示面板工作。本实施例中的液晶显示面板可以是图2至图5所示的任意一项液晶显示面板。
本发明通过是彩膜基板的基板的边缘区域的红色色阻的厚度大于中心区域的红色色阻的厚度,使利用该彩膜基板制备的液晶显示面板的中心区域的红色色阻对应的盒间隙大于边缘区域的红色色阻对应的盒间隙,进而使液晶显示面板边缘区域的色偏得到补偿,改善液晶显示面板的边缘区域出现偏红的现象,提高液晶显示面板的显示质量。
以上仅为本发明的实施例,并非因此限制本发明的专利保护范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围。

Claims (16)

  1. 一种液晶显示装置,其中,包括液晶显示面板和驱动电路,所述驱动电路与所述液晶显示面板电连接,且用于驱动所述液晶显示面板;
    所述液晶显示面板包含彩膜基板;所述彩膜基板包括:
    基板;
    多个红色色阻和蓝色色阻,均设置在所述基板上;
    其中,所述多个红色色阻在所述基板的边缘区域的厚度大于在所述基板的中心区域的厚度;所述多个蓝色色阻在所述基板的边缘区域的厚度小于在所述基板的中心区域的厚度;
    其中,所述基板由中心到边缘划分为若干个区域,越靠近所述基板中心的所述区域的红色色阻的厚度越小。
  2. 根据权利要求1所述的液晶显示装置,其中,所述基板由中心到边缘划分为若干个区域,越靠近所述基板边缘的所述区域的蓝色色阻的厚度越小。
  3. 根据权利要求1所述的液晶显示装置,其中,还包括设置在所述基板上的多个绿色色阻,所述多个绿色色阻在所述基板的边缘区域的厚度等于在所述基板的中心区域的厚度。
  4. 根据权利要求1所述的液晶显示装置,其中,所述基板为玻璃基板或TFT基板。
  5. 根据权利要求1所述的液晶显示装置,其中,所述彩膜基板还包括黑矩阵,所述黑矩阵设置在相邻的两个色阻之间。
  6. 一种彩膜基板,其中,包括:
    基板;
    多个红色色阻,设置在所述基板上;
    其中,所述多个红色色阻在所述基板的边缘区域的厚度大于在所述基板的中心区域的厚度。
  7. 根据权利要求6所述的彩膜基板,其中,所述基板由中心到边缘划分为若干个区域,越靠近所述基板中心的所述区域的红色色阻的厚度越小。
  8. 根据权利要求6所述的彩膜基板,其中,还包括设置在所述基板上的多个蓝色色阻,所述多个蓝色色阻在所述基板的边缘区域的厚度小于在所述基板的中心区域的厚度。
  9. 根据权利要求8所述的彩膜基板,其中,所述基板由中心到边缘划分为若干个区域,越靠近所述基板边缘的所述区域的蓝色色阻的厚度越小。
  10. 根据权利要求8所述的彩膜基板,其中,还包括设置在所述基板上的多个绿色色阻,所述多个绿色色阻在所述基板的边缘区域的厚度等于在所述基板的中心区域的厚度。
  11. 根据权利要求6所述的彩膜基板,其中,所述基板为玻璃基板或TFT基板。
  12. 根据权利要求6所述的彩膜基板,其中,所述彩膜基板还包括黑矩阵,所述黑矩阵设置在相邻的两个色阻之间。
  13. 一种彩膜基板的制备方法,其中,在所述彩膜基板的曝光过程中,使用边缘区域的透光率大于中心区域的透光率的掩膜板对用于形成红色色阻的色阻材料进行曝光。
  14. 根据权利要求13所述的制备方法,其中,在所述掩膜板从中心至边缘划分为多个区域,越靠近掩膜板中心的区域的透过率越小。
  15. 根据权利要求13所述的制备方法,其中,还包括在所述彩膜基板的曝光过程中,使用边缘区域的透光率小于中心区域的透光率的掩膜板对用于形成蓝色色阻的色阻材料进行曝光。
  16. 根据权利要求15所述的制备方法,其中,所述掩膜板从中心至边缘划分为多个区域,越靠近掩膜板中心的区域的透过率越大。
PCT/CN2017/000033 2016-12-07 2017-01-03 一种彩膜基板、液晶面板、液晶显示装置及其制备方法 WO2018103169A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020197018586A KR102202165B1 (ko) 2016-12-07 2017-01-03 컬러 필름 기판, 액정 패널, 액정 디스플레이 장치 및 그의 제조 방법
JP2019527290A JP6915058B2 (ja) 2016-12-07 2017-01-03 カラーフィルム基板、液晶パネル、液晶ディスプレイ装置及びその作製方法
US15/323,790 US10725335B2 (en) 2016-12-07 2017-01-03 Color filter substrate, and liquid crystal display device having color filters with different thicknesses
EP17878624.0A EP3553596B1 (en) 2016-12-07 2017-01-03 Colour filter substrate, liquid crystal display device and manufacturing method of a colour filter substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611115694.9 2016-12-07
CN201611115694.9A CN106646992B (zh) 2016-12-07 2016-12-07 一种彩膜基板、液晶面板、液晶显示装置及其制备方法

Publications (1)

Publication Number Publication Date
WO2018103169A1 true WO2018103169A1 (zh) 2018-06-14

Family

ID=58819621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/000033 WO2018103169A1 (zh) 2016-12-07 2017-01-03 一种彩膜基板、液晶面板、液晶显示装置及其制备方法

Country Status (6)

Country Link
US (1) US10725335B2 (zh)
EP (1) EP3553596B1 (zh)
JP (1) JP6915058B2 (zh)
KR (1) KR102202165B1 (zh)
CN (1) CN106646992B (zh)
WO (1) WO2018103169A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106896569B (zh) * 2017-03-30 2019-03-15 武汉华星光电技术有限公司 一种彩色滤光基板
CN107153293B (zh) * 2017-06-20 2020-10-13 惠科股份有限公司 阵列基板、显示面板及显示装置
CN107145006B (zh) * 2017-06-20 2020-10-02 惠科股份有限公司 阵列基板及显示面板
CN108281090B (zh) * 2018-01-17 2021-05-14 京东方科技集团股份有限公司 显示基板、显示屏幕及电子设备
CN112666744B (zh) * 2020-12-29 2022-08-12 厦门天马微电子有限公司 彩膜基板及其制作方法、显示面板和显示装置
CN113485043A (zh) * 2021-07-26 2021-10-08 京东方科技集团股份有限公司 一种显示面板及电子设备
CN114527596B (zh) * 2022-03-10 2023-10-03 Tcl华星光电技术有限公司 显示面板及移动终端

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002098826A (ja) * 2000-09-26 2002-04-05 Casio Comput Co Ltd カラーフィルタの製造方法
KR20060000277A (ko) * 2004-06-28 2006-01-06 엘지.필립스 엘시디 주식회사 컬러필터 기판 및 이를 이용한 액정표시장치
CN1892261A (zh) * 2005-06-29 2007-01-10 Lg.菲利浦Lcd株式会社 滤色片基板及其制造方法
CN101013224A (zh) * 2007-02-08 2007-08-08 友达光电股份有限公司 液晶显示面板与阵列基板及其制造方法
CN101498802A (zh) * 2008-02-01 2009-08-05 奇美电子股份有限公司 彩色滤光片结构及其制造方法、液晶显示装置
US20120274889A1 (en) * 2010-01-29 2012-11-01 Sharp Kabushiki Kaisha Liquid crystal display device
CN104777666A (zh) * 2015-04-30 2015-07-15 武汉华星光电技术有限公司 一种彩膜基板及液晶显示器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4934791A (en) * 1987-12-09 1990-06-19 Matsushita Electric Industrial Co., Ltd. Color filter
JPH05313006A (ja) * 1992-05-12 1993-11-26 Fujitsu Ltd カラーフィルタの製造方法
JP2003098517A (ja) * 2001-09-20 2003-04-03 Seiko Epson Corp 液晶装置及びその製造方法並びに電子機器
KR20060015203A (ko) * 2004-08-13 2006-02-16 삼성전자주식회사 액정 표시 패널 및 이를 갖는 액정 표시 장치
JP2007271898A (ja) * 2006-03-31 2007-10-18 Toray Ind Inc 半透過型液晶表示装置用カラーフィルターおよびその製造方法、並びにそれを用いた半透過型液晶表示装置
KR101266740B1 (ko) * 2006-12-28 2013-05-28 엘지디스플레이 주식회사 액정표시장치 및 그 제조 방법
KR101150192B1 (ko) * 2009-04-20 2012-06-12 삼성코닝정밀소재 주식회사 디스플레이 장치용 광학필터 및 이를 구비하는 디스플레이 장치
KR101799528B1 (ko) * 2010-05-25 2017-11-20 엘지디스플레이 주식회사 오프 셋 인쇄용 블랙매트릭스용 잉크 및 이용한 컬러필터 기판의 제조 방법
WO2012012600A2 (en) * 2010-07-21 2012-01-26 Eastern Virginia Medical School Peptide compounds to regulate the complement system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002098826A (ja) * 2000-09-26 2002-04-05 Casio Comput Co Ltd カラーフィルタの製造方法
KR20060000277A (ko) * 2004-06-28 2006-01-06 엘지.필립스 엘시디 주식회사 컬러필터 기판 및 이를 이용한 액정표시장치
CN1892261A (zh) * 2005-06-29 2007-01-10 Lg.菲利浦Lcd株式会社 滤色片基板及其制造方法
CN101013224A (zh) * 2007-02-08 2007-08-08 友达光电股份有限公司 液晶显示面板与阵列基板及其制造方法
CN101498802A (zh) * 2008-02-01 2009-08-05 奇美电子股份有限公司 彩色滤光片结构及其制造方法、液晶显示装置
US20120274889A1 (en) * 2010-01-29 2012-11-01 Sharp Kabushiki Kaisha Liquid crystal display device
CN104777666A (zh) * 2015-04-30 2015-07-15 武汉华星光电技术有限公司 一种彩膜基板及液晶显示器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3553596A4 *

Also Published As

Publication number Publication date
JP6915058B2 (ja) 2021-08-04
CN106646992B (zh) 2018-06-15
KR102202165B1 (ko) 2021-01-12
EP3553596B1 (en) 2021-10-13
JP2019536105A (ja) 2019-12-12
EP3553596A4 (en) 2020-06-17
US10725335B2 (en) 2020-07-28
CN106646992A (zh) 2017-05-10
EP3553596A1 (en) 2019-10-16
US20180307094A1 (en) 2018-10-25
KR20190085130A (ko) 2019-07-17

Similar Documents

Publication Publication Date Title
WO2018103169A1 (zh) 一种彩膜基板、液晶面板、液晶显示装置及其制备方法
US6731359B1 (en) Color filters including light scattering fine particles and colorants
TWI497164B (zh) 液晶顯示裝置
TWI491957B (zh) 液晶顯示用之對向基板及液晶顯示裝置
TWI457670B (zh) 液晶顯示基板及液晶顯示裝置
TWI471647B (zh) 液晶顯示裝置用彩色濾光片基板及液晶顯示裝置
TW201300912A (zh) 液晶顯示裝置及其製造方法
US7936436B2 (en) Liquid crystal display device with orientation control projection having light shielding
WO2016176882A1 (zh) 彩色滤光片及其制作方法、液晶显示面板
US20130070187A1 (en) Method for improving view angle of lcd and lcd
JP4504482B2 (ja) カラーフィルタ
WO2021134867A1 (zh) 显示面板及其制作方法
WO2018120022A1 (zh) 彩色滤光片、显示装置及制备彩色滤光片的方法
JP5699317B2 (ja) カラーフィルタの製造方法および液晶ディスプレイ
WO2020052066A1 (zh) 一种显示面板和显示装置
WO2020107537A1 (zh) 显示面板及其制造方法和显示装置
JP4500409B2 (ja) カラーフィルタ
CN109143700A (zh) Tft阵列基板及其制作方法
JP3435113B2 (ja) 液晶表示装置
JP4260429B2 (ja) カラーフィルタおよび液晶表示装置
JP2007225715A (ja) 液晶表示装置用カラーフィルタの製造方法及び液晶表示装置用カラーフィルタ
JP4147209B2 (ja) Mvaモード用カラーフィルタおよびその製造方法
JP3052353B2 (ja) 電気光学装置
JP2008256803A (ja) 液晶表示パネル及び液晶表示装置
JP2008046222A (ja) 液晶表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15323790

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17878624

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019527290

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197018586

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017878624

Country of ref document: EP

Effective date: 20190708