WO2018101451A1 - 軟窒化用鋼および部品 - Google Patents

軟窒化用鋼および部品 Download PDF

Info

Publication number
WO2018101451A1
WO2018101451A1 PCT/JP2017/043211 JP2017043211W WO2018101451A1 WO 2018101451 A1 WO2018101451 A1 WO 2018101451A1 JP 2017043211 W JP2017043211 W JP 2017043211W WO 2018101451 A1 WO2018101451 A1 WO 2018101451A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
soft nitriding
steel
treatment
hot
Prior art date
Application number
PCT/JP2017/043211
Other languages
English (en)
French (fr)
Inventor
直哉 井原
正之 笠井
岩本 隆
西村 公宏
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to MX2019006232A priority Critical patent/MX2019006232A/es
Priority to KR1020197015288A priority patent/KR102240150B1/ko
Priority to US16/464,374 priority patent/US11242593B2/en
Priority to EP17875706.8A priority patent/EP3550048B1/en
Priority to JP2018554271A priority patent/JP6610808B2/ja
Priority to CN201780073733.XA priority patent/CN110036129B/zh
Publication of WO2018101451A1 publication Critical patent/WO2018101451A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • C23C8/30Carbo-nitriding
    • C23C8/32Carbo-nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/32Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for gear wheels, worm wheels, or the like

Definitions

  • the present invention relates to a steel for soft nitriding, suitable for use in automobile and construction machine parts that have a certain machinability before the soft nitriding treatment and have excellent fatigue characteristics after the soft nitriding treatment.
  • An object is to provide a soft nitriding steel.
  • the present invention relates to a part obtained by soft nitriding this soft nitriding steel.
  • surface hardening treatment is usually performed.
  • carburizing treatment induction hardening treatment, nitriding treatment and the like are well known.
  • the carburizing treatment allows C to penetrate and diffuse in a high temperature austenite region, so that a deep hardening depth is obtained and effective in improving fatigue characteristics.
  • heat treatment distortion occurs due to the carburizing treatment, it has been difficult to apply to parts that require strict dimensional accuracy from the viewpoint of quietness and the like.
  • the induction hardening process is a process in which the surface layer portion is quenched by induction heating, heat treatment distortion also occurs and there is a problem in terms of dimensional accuracy as in the carburizing process.
  • the nitriding treatment is a treatment for increasing the surface hardness by infiltrating and diffusing nitrogen in a relatively low temperature range below the Ac 1 transformation point, and thus there is no fear that the heat treatment distortion described above occurs.
  • the treatment time is as long as 50 to 100 hours, and it is necessary to remove a brittle compound layer on the surface layer after the treatment.
  • the core hardness can be increased by quench hardening, whereas the soft nitriding process is performed at a temperature below the transformation point of the steel.
  • the nitrocarburized material has a problem that the fatigue characteristics are inferior to the carburized material.
  • quenching / tempering treatment is usually performed before the nitrocarburizing process to increase the core hardness, but the obtained fatigue characteristics are hardly sufficient, Further, the manufacturing cost has increased, and further, the machinability has been inevitably lowered.
  • Patent Document 1 enables to obtain high bending fatigue characteristics after soft nitriding by including Ni, Cu, Al, Cr, Ti, or the like in steel.
  • a steel for soft nitriding has been proposed. That is, this steel is age-hardened with Ni-Al, Ni-Ti intermetallic compound or Cu compound at the core by soft nitriding, while Cr, Al, Ti, etc. are contained in the nitrided layer at the surface layer. Bending fatigue properties are improved by precipitation hardening of nitrides and carbides.
  • Patent Document 2 discloses that a steel containing 0.5 to 2% of Cu is forged by hot forging and then air-cooled to obtain a ferrite-based structure in which Cu is dissolved, at 580 ° C. for 120 minutes.
  • a steel for soft nitriding has been proposed that provides excellent bending fatigue characteristics after soft nitriding by precipitation hardening of Cu during soft nitriding of Ti, V, and Nb carbonitride. ing.
  • Patent Document 3 proposes a steel for soft nitriding in which Ti—Mo carbides and further carbides containing one or more of Nb, V, and W are dispersed.
  • the structure before nitriding is a structure mainly composed of bainite, and the precipitation of V and Nb carbonitrides at the stage before nitriding is suppressed.
  • a nitriding steel material having improved fatigue properties by improving the core hardness by precipitating carbonitride.
  • JP-A-5-59488 JP 2002-69572 A JP 2010-163671 A Japanese Patent No. 5567747
  • the soft nitrided steel described in Patent Document 1 has improved bending fatigue properties due to precipitation hardening of Ni—Al, Ni—Ti intermetallic compounds, Cu, etc., but it is difficult to say that workability is sufficient. It was.
  • the steel for soft nitriding described in Patent Document 2 has a problem that the production cost is high because it is necessary to add a relatively large amount of Cu, Ti, V, and Nb.
  • the steel for nitriding described in Patent Document 4 contains Cr, V, and Nb for precipitation hardening of the nitrided layer. Although these elements are effective elements for hardening the nitride layer, there is a problem that when added excessively, precipitation hardening occurs only in the vicinity of the surface layer, and the hardened layer is formed only in a shallow portion of the surface layer.
  • the present invention advantageously solves the above-described problems, and an object thereof is to provide a steel for soft nitriding in which a hardened layer depth is ensured by suppressing precipitation of Cr, V, and Nb on the surface layer. It is another object of the present invention to provide a component having improved fatigue properties by increasing the core hardness by soft nitriding after machining.
  • the inventors diligently studied the influence of the steel component composition and the structure. As a result, by containing a relatively large amount of inexpensive C as a component composition of steel and containing appropriate amounts of Cr, V and Nb, and making the steel structure a bainite phase with an area ratio of more than 50%, Cr, As a result of suppressing the precipitation of V and Nb, it was found that excellent machinability can be secured. Furthermore, after the soft nitriding treatment, fine precipitates containing Cr, V and Nb are dispersed and deposited on the core portion of the nitrocarburized component, the core hardness is increased, and excellent fatigue characteristics are obtained. And gained knowledge.
  • the component composition is further mass%, B: 0.0100% or less, 2.
  • the component composition is further mass%, Pb: 0.2% or less, Bi: 0.2% or less, 3.
  • the present invention it is possible to provide a steel for soft nitriding that is excellent in machinability in an inexpensive component system.
  • this nitrocarburizing steel By subjecting this nitrocarburizing steel to nitrocarburizing treatment, it is possible to obtain the component of the present invention having fatigue characteristics equivalent to or higher than those of JIS SCr420 material subjected to carburizing treatment. Therefore, the steel for soft nitriding of the present invention is extremely useful as a material for producing mechanical structural parts such as automobiles. Further, the component of the present invention is extremely useful when applied to a machine structural component such as an automobile.
  • C 0.010% or more and 0.100% or less C is necessary for the generation of a bainite phase, which will be described later, and for securing the strength.
  • the amount of C is less than 0.010%, not only a sufficient amount of bainite phase can be obtained, but also the amount of V and Nb precipitates becomes insufficient after nitrocarburizing treatment, making it difficult to secure strength.
  • the C content exceeds 0.100%, the hardness of the produced bainite phase increases and the machinability deteriorates. Therefore, the C content is set in the range of 0.010% to 0.100%. More preferably, it is 0.060% or more and 0.090% or less of range.
  • Si 1.00% or less Si is effective not only for deoxidation but also for the formation of bainite phase. However, when it exceeds 1.00%, it dissolves in the ferrite and bainite phases, and its solid solution hardening results in machinability and cold work.
  • the Si content is 1.00% or less. Preferably it is 0.50% or less, More preferably, it is 0.30% or less. In order to effectively contribute Si to deoxidation, the content is preferably 0.010% or more.
  • Mn 0.50% or more and 3.00% or less Mn enhances the hardenability of steel and has an effect of stably generating a bainite phase.
  • Mn improves bending impact resistance, which is important as an automobile part.
  • it is effective to increase the amount of C and increase the core hardness (hereinafter referred to as the core hardness) of the component.
  • the core hardness the core hardness
  • simply increasing the amount of C decreases the bending impact characteristics.
  • the Mn content is 0.50% or more, it is possible to suppress a decrease in bending impact characteristics accompanying an increase in the C content.
  • the Mn content is 0.50% or more.
  • the Mn content is 3.00% or less.
  • it is 1.50% or more and 2.50% or less, more preferably 1.50% or more and 2.00% or less.
  • P 0.020% or less
  • P is an element mixed in the steel as an impurity, but segregates at the austenite grain boundary and lowers the grain boundary strength, thereby lowering the strength and toughness. Therefore, it is desirable to suppress the P content as much as possible, but it is allowed up to 0.020%. In addition, since it requires high cost to make P less than 0.001%, it may be industrially reduced to 0.001%.
  • S 0.060% or less
  • S is an element mixed in steel as an impurity, but if its content exceeds 0.060%, the toughness of the steel decreases, so the content is limited to 0.060% or less. Preferably it is 0.040% or less.
  • S is also useful in the sense of improving the machinability by forming MnS in steel, and in order to express the machinability improvement effect by S, the S amount should be 0.002% or more. preferable.
  • Cr 0.30% or more and 0.90% or less Cr is added because it is effective for forming a bainite phase.
  • the content is less than 0.30%, the amount of bainite phase generated is reduced, and precipitates of V and Nb are generated before the soft nitriding treatment, so that the hardness before the soft nitriding increases.
  • the Cr content is 0.30% or more.
  • the effective hardened layer depth is reduced, so the Cr content is 0.90% or less.
  • it is 0.50 to 0.90% of range.
  • Mo 0.005% or more and 0.200% or less Mo has an effect of finely depositing V and Nb precipitates and improving the strength of the soft nitriding material, and is an important element in the present invention. It is also effective for the generation of bainite phase.
  • addition of 0.005% or more is required to improve the strength, but since it is an expensive element, addition over 0.200% causes an increase in component cost.
  • the Mo content is in the range of 0.005 to 0.200%. The range is preferably 0.010 to 0.200%, more preferably 0.040 to 0.200%.
  • V 0.02% or more and 0.50% or less V is an important element that increases the hardness of the core by forming fine precipitates together with Nb due to the temperature rise during soft nitriding, thereby improving the strength.
  • the amount of V is less than 0.02%, it is difficult to obtain the desired effect, while if it exceeds 0.50%, the precipitate becomes coarse and the strength improvement amount is saturated. Further, proeutectoid ferrite precipitates during continuous casting, and cracks are likely to occur. Therefore, the V content is set in the range of 0.02 to 0.50%. Preferably it is 0.03 to 0.30%, more preferably 0.03 to 0.25%.
  • Nb 0.003% or more and 0.150% or less Nb is extremely effective in improving fatigue characteristics because it forms fine precipitates with V and increases core hardness due to temperature rise during soft nitriding.
  • the amount of Nb is less than 0.003%, it is difficult to obtain a desired effect.
  • the precipitate becomes coarse and the strength improvement amount is saturated.
  • the Nb content is in the range of 0.003 to 0.150%.
  • it is 0.020 to 0.120% of range.
  • Al 0.005% or more and 0.200% or less
  • Al is an element useful for improving the surface hardness and the effective hardened layer depth after the soft nitriding treatment, so it is positively added. Moreover, it is an element useful also for refine
  • N 0.0200% or less
  • N is a useful element that forms carbonitrides in steel and improves the strength of the nitrocarburized material. Therefore, it is preferable to contain 0.0020% or more. However, if the content exceeds 0.0200%, the carbonitride to be formed becomes coarse and the toughness of the steel material is lowered. Moreover, the surface crack of a slab arises and slab quality falls. For this reason, N is limited to 0.0200% or less.
  • Sb has the effect of promoting the formation of a bainite phase. If the amount added is less than 0.0005%, the effect of addition is poor, while if added over 0.0200%, the effect is saturated, not only causing an increase in the component cost, but also causing a decrease in base material toughness due to segregation. , Sb is limited to a range of 0.0005 to 0.0200%. Preferably it is 0.0010 to 0.0100% of range.
  • W 0.3% or less (including 0%), Co: 0.3% or less (including 0%), Hf: 0.2% or less (including 0%), Zr: 0.2% or less (including 0%), Ti: 0.1% or less (including 0%)
  • W, Co, Hf, Zr and Ti are all effective elements for improving the strength of steel, and may be contained, but they are not necessarily required to be contained (the content is 0%). Also good). In order to contribute to improving the strength of steel, these elements contribute 0.01% or more for W, 0.01% or more for Co, 0.01% or more for Hf, 0.01% or more for Zr, Ti, respectively. If it is, it is preferable to make it 0.001% or more. Further, these elements may be contained in combination.
  • W is 0.01 to 0.25%
  • Co is 0.01 to 0.25%
  • Hf is 0.01 to 0.15%
  • Zr is 0.01 to 0.15%
  • Ti is 0.001 to 0.01%.
  • elements that form carbonitrides such as Cr, V, Nb, W, Co, Hf, Zr, and Ti have an excessive amount of N and C in the surface layer as their addition amount increases. And the hardened layer depth decreases. In order to avoid such a situation, it is important to satisfy the following expression (1).
  • FIG. 2 shows that the surface fatigue characteristics are particularly excellent when the value calculated by ([Cr] / 52 + [V] /50.9+ [Nb] /92.9+M) ⁇ 10 3 is 9.5 or more and 18.5 or less. . Furthermore, about the roller pitching test piece produced like the above, the hardened layer depth after soft nitriding treatment was measured on the same conditions as the fatigue characteristic evaluation in the Example mentioned later. As a result, when the value calculated by ([Cr] / 52 + [V] /50.9+ [Nb] /92.9+M) ⁇ 10 3 exceeds 18.5, it is compared with the case where this value is 18.5 or less. The depth of the hardened layer was found to be shallow.
  • B 0.0100% or less Since B has an effect of improving hardenability and promoting the formation of a bainite structure, it is preferably added at 0.0003% or more. On the other hand, if added over 0.0100%, B precipitates as BN and not only saturates the effect of improving hardenability, but also increases the component cost. Therefore, when added, the content is limited to 0.0100% or less. More preferably, it is 0.0005% or more and 0.0080% or less.
  • Cu 0.3% or less
  • Cu is a useful element that forms an intermetallic compound with Fe and Ni during soft nitriding and improves the strength of the soft nitriding material by precipitation hardening, and is also effective for the generation of bainite phase.
  • the Cu content exceeds 0.3%, the hot workability deteriorates, so the Cu content is set to a range of 0.3% or less. Preferably it is 0.05 to 0.25% of range.
  • Ni 0.3% or less Ni has an effect of increasing hardenability and suppressing low temperature brittleness. However, if the Ni content exceeds 0.3%, the hardness increases, which not only adversely affects the machinability but also is disadvantageous in terms of cost, so the Ni content is limited to a range of 0.3% or less. Preferably it is 0.05 to 0.25% of range.
  • Pb 0.2% or less
  • Bi 0.2% or less
  • Zn 0.2% or less
  • Sn 0.2% or less
  • Pb, Bi, Zn, and Sn are elements that have the effect of improving the machinability of steel. Is preferably 0.02% or more.
  • addition over 0.2% decreases the strength and toughness, so it is specified in the above range.
  • Pb is 0.02 to 0.1%
  • Bi is 0.02 to 0.1%
  • Zn 0.02 to 0.1%
  • Sn 0.02 to 0.1%
  • in steel composition it has Fe and an unavoidable impurity in remainder other than the element demonstrated above. The balance is preferably made of Fe and inevitable impurities.
  • the present invention is to disperse V and Nb precipitates in the core portion other than the surface nitriding portion after the soft nitriding treatment, thereby increasing the core hardness, It is intended to improve fatigue characteristics after nitriding.
  • the presence of Cr, V, and Nb precipitates prior to the soft nitriding treatment is disadvantageous from the viewpoint of machinability at the time of cutting performed before the soft nitriding treatment.
  • the steel structure of the nitrocarburizing steel of the present invention that is, the steel structure before the nitronitriding treatment is mainly composed of a bainite phase.
  • the bainite phase is more than 50% in terms of the area ratio with respect to the entire structure. Preferably it is more than 60%, more preferably more than 80%. It may be 100%.
  • a structure other than the bainite phase a ferrite phase, a pearlite phase, or the like can be considered, but it goes without saying that the smaller the structure, the better.
  • the area ratio of each phase can be obtained as follows. That is, a specimen was taken from the obtained nitrocarburizing steel, and the cross section parallel to the rolling direction (L cross section) was corroded with nital after polishing the surface, and the cross-sectional structure was observed using an optical microscope (200 times optical) The phase type is identified by microscopic observation) and the area ratio of each phase is obtained.
  • the amount of Cr, V and Nb dissolved in steel is 0.27% or more, 0.05% or more and 0.02% or more, respectively, and the proportion of the solid solution in the original content is 90% for Cr.
  • V is 75% or more and Nb is 50% or more.
  • Cr, V and Nb are finely precipitated in the soft nitriding process to improve the fatigue characteristics after the soft nitriding process. From the viewpoint of ensuring machinability, the formation of Cr, V and Nb precipitates should be avoided. Therefore, it is preferable that the amount of Cr, the amount of V and the amount of Nb to be dissolved are as described above.
  • FIG. 3 shows a typical manufacturing process for manufacturing a soft nitrided part using the soft nitriding steel (bar steel) according to the present invention.
  • S1 is a manufacturing process of a steel bar (soft nitriding steel)
  • S2 is a conveying process
  • S3 is a manufacturing process of a part (soft nitriding part).
  • the steel ingot is hot-rolled and / or hot-forged into a steel bar in the steel bar manufacturing process (S1), and shipped after quality inspection. Then, after the conveyance (S2), in the nitrocarburized part finishing step (S3), the steel bar is cut into a predetermined size, hot forging or cold forging is performed, and drilling or turning is performed as necessary. After making it into a desired shape (for example, a gear product or a shaft product), soft nitriding is performed to obtain a product.
  • a desired shape for example, a gear product or a shaft product
  • the hot rolled material may be finished as it is by a cutting process such as turning or drilling, and then subjected to soft nitriding to obtain a product.
  • a cutting process such as turning or drilling
  • soft nitriding to obtain a product.
  • cold correction may be performed after hot forging.
  • the final product may be subjected to a coating treatment such as paint or plating.
  • the heating temperature during the hot working and the working temperature are set to specific conditions, so that the bainite phase main component as described above is obtained.
  • hot working mainly means hot rolling and hot forging, but hot forging may be further performed after hot rolling. Needless to say, cold forging may be performed after hot rolling.
  • hot working process immediately before the soft nitriding treatment is a hot rolling process, that is, when hot forging is not performed after hot rolling, the following conditions are satisfied in the hot rolling process.
  • Hot rolling heating temperature 950-1250 ° C
  • carbides remaining from the time of dissolution are dissolved so that fine precipitates are not deposited on the rolled material (bar steel used as a component material by cold forging and / or cutting) and forgeability is not impaired.
  • the rolling heating temperature is less than 950 ° C., the remaining carbides from the time of melting are hardly dissolved.
  • it exceeds 1250 ° C. the crystal grains become coarse and the forgeability tends to deteriorate. For this reason, the rolling heating temperature is in the range of 950 to 1250 ° C.
  • Rolling finish temperature 800 ° C or more
  • the rolling finish temperature is less than 800 ° C, a ferrite phase is generated. Therefore, in order to generate a bainite phase satisfying an area ratio exceeding 50% with respect to the entire structure of the steel for soft nitriding. Disadvantageous. Also, the rolling load is increased. Therefore, the rolling finishing temperature is 800 ° C. or higher.
  • the upper limit is preferably about 1100 ° C.
  • Cr, Nb In order to ensure the solid solution amount of V and V as described above, in the temperature range of at least 700 to 550 ° C., which is the precipitation temperature range of fine precipitates, critical cooling that can secure the above solid solution amount at the cooling rate after rolling.
  • the speed exceeds the 0.4 ° C./s speed.
  • the upper limit is preferably about 200 ° C./s.
  • the hot working process before the soft nitriding process is a hot forging process, that is, when only hot forging is performed or when hot forging is performed after hot rolling, the hot forging process will be described below. Satisfy the conditions.
  • hot rolling is performed before hot forging, the above-described conditions may not necessarily be satisfied as the hot rolling conditions.
  • Hot forging conditions fine precipitates precipitate and solidify from the viewpoint of cold straightening and machinability after hot forging in order to make the bainite phase more than 50% in terms of the area ratio with respect to the entire structure.
  • the heating temperature during hot hot forging is 950 to 1250 ° C
  • the forging finish temperature is 800 ° C or higher
  • the cooling rate after forging is at least 700 to 550 ° C. Over 0.4 ° C./s in the temperature range.
  • the upper limit is preferably about 200 ° C./s.
  • the obtained rolled material or forged material is cut to obtain a part shape, and then subjected to soft nitriding.
  • the soft nitriding treatment may be performed under ordinary conditions. Specifically, the treatment temperature may be 550 to 700 ° C. and the treatment time may be 10 minutes or longer. By the soft nitriding treatment at this treatment temperature and treatment time, Cr, V and Nb which are in a solid solution state are finely precipitated, and the strength of the core portion is increased. Further, the hardened layer obtained under the normal soft nitriding treatment condition has a hardened layer thickness larger than that of conventionally known steel for soft nitriding.
  • the treatment temperature is less than 550 ° C, a sufficient amount of precipitates cannot be obtained.On the other hand, if the treatment temperature exceeds 700 ° C, it becomes an austenite region, and surface hardening treatment without phase transformation becomes difficult and transformation expansion occurs. Since the strain accompanying the surface hardening treatment increases, it can no longer be called soft nitriding treatment, and it becomes difficult to ensure the advantages of soft nitriding treatment.
  • the preferred range of the soft nitriding temperature is 550 to 630 ° C.
  • the component of the present invention is obtained by the above manufacturing process.
  • the parts thus obtained include a core portion having the same component composition and steel structure as the soft nitriding steel described above, and a surface layer portion having a high nitrogen and carbon content composition relative to the component composition of the core portion, And a precipitate containing Cr, V and Nb is dispersed and precipitated in the bainite phase.
  • Component composition of core portion and component composition of surface layer portion When soft nitriding treatment is performed on the steel for soft nitriding having the above-described component composition, nitrogen and carbon from the surface enter and diffuse into the surface layer portion. On the other hand, the diffusion of nitrogen and carbon does not proceed to the core. That is, the portion where C and N are not diffused is the core portion.
  • the component composition of the obtained component is that of the above-mentioned soft nitriding steel in the core, while the surface layer of the component has a higher nitrogen and carbon content than the core. . If nitrogen and carbon do not penetrate and diffuse into the surface layer of the part, that is, if the nitrogen and carbon content in the surface layer is not greater than the core, a hard layer will not be formed on the surface, so sufficient fatigue Cannot be expected to improve strength.
  • the steel structure of the above soft nitriding steel of the present invention When the above-mentioned soft nitriding steel of the present invention is subjected to soft nitriding to obtain a part, the steel structure of the above soft nitriding steel remains in the core part. That is, the area ratio of the steel structure of the core portion of the part after the nitrocarburizing treatment exceeds 50% with respect to the entire bainite structure. Since the steel structure of the core part of the part is the same as that of the steel for soft nitriding, as described above, the area ratio of the bainite phase to the entire structure is preferably more than 60%, more preferably more than 80%. It may be 100%. Furthermore, as a structure other than the bainite phase, a ferrite phase, a pearlite phase, and the like can be considered, but it goes without saying that the smaller the structure, the better.
  • Precipitates containing Cr, precipitates containing V, and precipitates containing Nb are dispersed in the bainite phase.
  • Precipitates containing Cr, precipitates containing V, and Nb If the precipitates containing are dispersed and precipitated, the core hardness increases, and the fatigue characteristics of the parts after the soft nitriding treatment are remarkably improved.
  • a precipitate containing Cr, a precipitate containing V, and a precipitate containing Nb are dispersed and precipitated.
  • the total dispersed precipitation state of these is (preferably) a particle size of less than 10 nm. In this case, 500 or more precipitates are dispersed and deposited per unit area of 1 ⁇ m 2 . Dispersion precipitation is preferred in this way in order to contribute to the precipitation strengthening of the parts after the soft nitriding treatment.
  • the measurement limit of the particle size of the precipitate that is, the minimum particle size that can be measured is 1 nm.
  • the part having the above configuration has a deep effective hardened layer depth described later, and has a high surface hardness and core hardness.
  • the effective hardened layer depth is 0.2 mm or more
  • the surface hardness is 700 HV or more
  • the core hardness is 200 HV or more.
  • the effective hardened layer depth is the depth of the effective hardened layer when a region having a hardness of a specific value or more is defined as the effective hardened layer. Specifically, the depth (mm) from the surface to be HV550 is defined as the effective hardened layer depth. If the effective hardened layer depth is not 0.2 mm or more, it is difficult to obtain high fatigue strength. Therefore, it is preferable to obtain an effective hardened layer depth of 0.2 mm or more. More preferably, it is 0.25 mm or more.
  • the surface hardness is 700 HV or more and the core hardness is 200 HV or more.
  • Steel having the composition shown in Table 1 was formed into a slab having a cross section of 300 mm ⁇ 400 mm by a continuous casting machine. At that time, the presence or absence of cracks on the surface was investigated. This slab was soaked at 1250 ° C. for 30 minutes and then hot-rolled to form a rectangular steel piece having a side of 140 mm. It was hot-rolled to obtain a 60 mm ⁇ steel bar (raw hot rolled material). Table 2 shows the heating temperature of the steel slab during hot rolling, the rolling finishing temperature, and the cooling rate in the range of 700 to 550 ° C. after hot rolling.
  • some of the above-mentioned hot-rolled raw materials are hot-forged at the heating temperature and forging finishing temperature shown in Table 2 to form a 30 mm ⁇ bar steel, and then in the range of 700 to 550 ° C. As a cooling rate shown in Table 2, it was cooled to room temperature to obtain a hot forged material.
  • the machinability (tool life) of the raw material and hot forged material thus obtained as hot rolled was evaluated by a peripheral turning test.
  • As the test material a raw material or hot forged material cut into 200 mm length was used as hot rolled.
  • As the cutting tool a CSBNR 2020 made by Mitsubishi Materials Corp., and a SNGN 120408 UTi20 high speed tool steel made by Mitsubishi Materials Corp. were used as the insert.
  • the conditions of the peripheral turning test were a cut amount of 1.0 mm, a feed rate of 0.25 mm / rev, a cutting rate of 200 m / min, and no lubricant was used.
  • the tool life was defined as the time until the tool wear amount (flank wear amount) reached 0.2 mm.
  • the structure observation and hardness measurement were performed on the raw material or hot forged material as hot rolled as described above.
  • the test specimen for evaluation was collected from the center of the obtained raw material or hot forging as it was hot rolled.
  • the type of phase was identified and the area ratio of each phase was determined by the method described above.
  • a Vickers hardness tester was used to measure the hardness at the radial direction 1/4 position with a test load of 2.94 N (300 gf) in accordance with JIS 244 Z2244, and the average value was defined as the hardness HV.
  • Table 3 The above measurement results and evaluation results are also shown in Table 3.
  • a roller pitching test piece having a parallel portion of 26 mm ⁇ ⁇ 28 mm and a grip portion of 24.3 mm ⁇ ⁇ 51 mm shown in FIG.
  • the test piece was subjected to soft nitriding treatment under two conditions of 3.5 hours at the treatment temperature shown in Table 4 and 3.5 hours at 560 ° C.
  • the hot forged steel of grade 35 is carburized and tempered at 930 ° C for 3 hours, kept at 850 ° C for 40 minutes, oil cooled, and tempered at 170 ° C for 1 hour. gave.
  • nitrocarburized material subjected to soft nitriding treatment at the soft nitriding temperature shown in Table 4 and the carburized quenching / tempering material were subjected to microstructure observation, hardness measurement, precipitate observation, Cr, V and Nb.
  • the amount of solid solution was measured and the fatigue characteristics were evaluated.
  • the type of phase was identified by the above-described method and the area ratio of each phase was obtained as before soft nitriding.
  • Hardness measurement is performed at the position where the hardness of the surface layer of the nitrocarburized material subjected to soft nitriding treatment at the soft nitriding temperature shown in Table 4 and the carburized quenching / tempering material is 0.05 mm deep from the surface of the parallel part.
  • the core part hardness of the parallel part was measured at a radial position of 1/4.
  • surface hardness and core hardness were measured using a Vickers hardness tester in accordance with JIS Z2244, measured at 6 points with a test load of 2.94N (300 gf), and the average value of each was measured. HV and core hardness HV.
  • the depth of the hardened layer was measured with respect to the depth from the surface to be HV550 (effective hardened layer depth).
  • the depth of the hardened layer was also measured for those subjected to soft nitriding treatment at 560 ° C. for 3.5 hours.
  • the twin-jet method was used for materials for observation with a transmission electron microscope from the radial position 1/4 of the parallel portion of the soft nitriding material and carburizing quenching / tempering material of soft nitriding temperature in Table 4.
  • the sample obtained by the electrolytic polishing method was obtained using a transmission electron microscope with an acceleration voltage of 200V.
  • the composition of the observed precipitate was determined by an energy dispersive X-ray spectrometer (EDX).
  • the measurement of Cr, V, and Nb solid solution amount was performed by the following method. First, a 10 mm ⁇ 10 mm ⁇ 40 mm test piece was taken from a 1/4 position in the radial direction of the hot forged 30 mm ⁇ steel bar, and 10% acetylacetone-1% tetramethylammonium chloride-methanol electrolyte was used. Then, constant current electrolysis was performed. The extracted precipitate was collected using a filter having a pore diameter of 0.2 mm. The obtained precipitate was decomposed and made into a solution using a mixed acid, and then analyzed by ICP emission spectroscopic analysis to measure the amount of precipitation. Then, the amount of solid solution was calculated
  • Fatigue property evaluation is performed for all of the structure observation, hardness measurement, and precipitate observation in the roller pitching test piece (see FIG. 1) after soft nitriding treatment at the soft nitriding temperature or carburizing quenching / tempering in Table 4. Evaluation was made by determining the number of repetitions until damage at a load surface pressure of 2600 MPa in a roller pitching test using a non-performed one.
  • the 26 mm ⁇ parallel part of the roller pitching test piece is the part to be the transfer surface, and it was left as it was soft-nitrided (without polishing) or as carburized and quenched and tempered (without polishing).
  • roller pitching test conditions were a slip rate of 40%, automatic transmission oil (Mitsubishi ATF SP-III) as the lubricating oil, and an oil temperature of 80 ° C.
  • a carburizing and quenching product of Crowning R150 mm SCM420H was used as a large roller to be brought into contact with the transfer surface.
  • Table 4 also shows the test results.
  • Invention Examples 1 to 26 are examples according to the present invention, Nos. 27 to 54 are comparative examples, and No. 55 is a conventional example obtained by carburizing and tempering JIS SCR420 equivalent steel.
  • all of Invention Examples Nos. 1 to 26 have excellent tool life at the stage before the soft nitriding treatment (the stage of the nitrocarburizing steel).
  • these invention examples Nos. 1 to 26 all have fatigue characteristics at the stage after soft nitriding (corresponding to parts subjected to soft nitriding) compared to conventional example No. 55 subjected to carburizing and tempering. Although slightly inferior, it exhibited excellent fatigue strength as a soft nitriding material.
  • Example Nos. 1 to 26 where the soft nitriding temperature was 560 ° C., the effective hardened layer depth was 0.2 mm or more. Further, when the composition of the precipitate was determined by an energy dispersive X-ray spectrometer (EDX) in accordance with the above, all of Invention Examples 1 to 26 were Cr-based precipitates, V-based precipitates and Nb particles having a particle size of less than 10 ⁇ m. It was confirmed that 500 or more precipitates of the system were dispersed and deposited per unit area of 1 ⁇ m 2 .
  • EDX energy dispersive X-ray spectrometer
  • Comparative Examples Nos. 27 to 54 the component composition or the steel structure obtained was outside the scope of the present invention, so that cracking occurred during continuous casting, or fatigue properties or machinability were inferior.
  • No. 27 has a low heating temperature at the time of hot rolling, and thus precipitates generated at the time of continuous casting are not sufficiently dissolved, and is inferior in fatigue characteristics after nitrocarburizing treatment. Further, since the total structural fraction of ferrite and pearlite is high, the machinability is also low after hot rolling.
  • No. 28 has a low bainite fraction and a poor machinability because the hot rolling finish temperature is too low.
  • the total structural fraction of ferrite and pearlite is high, the amount of solid solution Cr, Nb, V is small in the stage before soft nitriding, and as a result, fine precipitates after soft nitriding are not generated. The fatigue characteristics were low.
  • Nos. 29 and 30 have a slow cooling rate after hot rolling, so an appropriate amount of bainite cannot be obtained, and the amount of solid solution Cr, Nb, V is small in the stage before the soft nitriding treatment. Since the amount of fine precipitates after the soft nitriding treatment is small, precipitation strengthening is insufficient, and the fatigue characteristics are lower than those of the inventive examples. Also, machinability is low.
  • No. 31 has a low heating temperature at the time of hot forging, so the precipitates are not sufficiently dissolved, and the fatigue characteristics are inferior. Further, since the total structural fraction of ferrite and pearlite is high, the machinability is also low after hot rolling.
  • No. 32 has a low bainite fraction and a poor machinability because the finishing temperature of hot forging is too low.
  • the total structural fraction of ferrite and pearlite is high, the amount of solid solution Cr, Nb, V is small in the stage before soft nitriding, and as a result, fine precipitates after soft nitriding are not generated. The fatigue characteristics were low.
  • No. 33 and No. 34 have a slow cooling rate after hot forging, so an appropriate amount of bainite phase cannot be obtained, and the amount of solid solution Cr, Nb, V is small in the stage before soft nitriding, and soft nitriding Since the amount of fine precipitates produced by the treatment is small, precipitation strengthening is insufficient, and the fatigue properties are lower than those of the inventive examples. Also, machinability is low. In No. 35, since the C content is less than the appropriate range, the core hardness after soft nitriding is low, and the fatigue characteristics are lower than those of the inventive examples.
  • the steel structure of the hot forged material before the soft nitriding treatment is mainly composed of a ferrite phase and a pearlite phase because the Mn content is less than the appropriate range. For this reason, V and Nb precipitates are precipitated in the structure, the hardness before the soft nitriding treatment is increased, and the machinability is lowered.
  • No. 39 has cracks during continuous casting because the Mn content exceeds the appropriate range. Further, a martensite phase is generated before the soft nitriding treatment, and the machinability is low.
  • No. 40 has cracks during continuous casting because the P content exceeds the appropriate range. In addition, the fatigue characteristics are low. In No. 41, the S content exceeds the appropriate range, and cracking occurs during continuous casting. In addition, the fatigue characteristics are low.
  • the Cr content is less than the appropriate range, the steel structure of the hot forged material before the soft nitriding treatment is mainly composed of a ferrite phase and a pearlite phase. For this reason, coarse V and Nb precipitates are precipitated in the structure, the hardness before the soft nitriding treatment is increased, and the machinability is low.
  • the amount of solid solution Cr, Nb and V is small at the stage before soft nitriding, and the amount of fine precipitates generated by soft nitriding is small, resulting in insufficient precipitation strengthening and lower fatigue properties than the inventive examples. is there.
  • the Cr content exceeds the appropriate range, and cracking occurs during continuous casting. Moreover, since the hardness after hot forging is high, machinability is inferior.
  • No. 45 has a V content of less than the appropriate range, so the amount of solid solution V before soft nitriding is small, and the amount of fine precipitates generated after soft nitriding is small, resulting in sufficient core hardness. It is not done. For this reason, the fatigue characteristics are low.
  • the V content exceeds the appropriate range, and cracking occurs during continuous casting.
  • the Nb content is less than the appropriate range, so the amount of solid solution Nb before soft nitriding is small, and the amount of fine precipitates generated after soft nitriding is small. It is not done. For this reason, the fatigue characteristics are low.
  • the Nb content exceeds the appropriate range, and cracking occurs during continuous casting.
  • No. 49 has a low surface hardness after soft nitriding and low fatigue properties because the Al content is not within the proper range.
  • No. 50 has cracks during continuous casting because the Al content exceeds the appropriate range.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

C:0.01%以上0.10%以下、Si:1.0%以下、Mn:0.5%以上3.0%以下、P:0.02%以下、S:0.06%以下、Cr:0.30%以上0.9%以下、Mo:0.005%以上0.200%以下、V:0.02%以上0.50%以下、Nb:0.003%以上0.150%以下、Al:0.005%以上0.200%以下、N:0.0200%以下、Sb:0.0005%以上0.0200%以下、W:0.3%以下(0%を含む)、Co:0.3%以下(0%を含む)、Hf:0.2%以下(0%を含む)、Zr:0.2%以下(0%を含む)およびTi:0.1%以下(0%を含む)を、式9.5≦([Cr]/52+[V]/50.9+[Nb]/92.9+M)×10≦18.5を満足する範囲にて含み、残部がFeおよび不可避的不純物の成分組成を有し、ベイナイト相の組織全体に対する面積率が50%超である鋼組織とすることによって、ごく表層のCr,V,Nbの析出を抑制することで硬化層深さが確保された軟窒化用鋼を提供する。

Description

軟窒化用鋼および部品
本発明は、軟窒化用鋼に関し、軟窒化処理前には一定の被削性を有しつつ、軟窒化処理後には疲労特性に優れたものとなる、自動車や建設機械用部品に用いて好適な軟窒化用鋼を提供しようとするものである。さらに、本発明は、この軟窒化用鋼を軟窒化処理して得られる部品に関するものである。
自動車の歯車等の機械構造部品には優れた疲労特性が要求されるため、表面硬化処理が施されるのが通例である。表面硬化処理としては、浸炭処理や高周波焼入処理、窒化処理などが良く知られている。
 これらのうち、浸炭処理は、高温のオーステナイト域においてCを浸入・拡散させることから、深い硬化深さが得られ、疲労特性の向上に有効である。しかしながら、浸炭処理により熱処理歪が発生するため、静粛性等の観点から厳しい寸法精度が要求される部品に対しては、その適用が困難であった。
 また、高周波焼入処理は、高周波誘導加熱により表層部を焼入れする処理であるため、やはり熱処理歪みが発生し、浸炭処理と同様に寸法精度の面で問題があった。
 一方、窒化処理は、Ac変態点以下の比較的低温度域で窒素を浸入・拡散させて表面硬さを高める処理であるため、上記したような熱処理歪みが発生する、おそれはない。しかしながら、処理時間が50~100時間と長く、また処理後に表層の脆い化合物層を除去する必要があるという問題があった。
 そのため、窒化処理と同程度の処理温度で処理時間を短くした、いわゆる軟窒化処理が開発され、近年では機械構造用部品などを対象に広く普及している。この軟窒化処理は、500~600℃の温度域でNとCを同時に浸入・拡散させて、表面を硬化するものであり、従来の窒化処理に比べて処理時間を半分以下にすることが可能である。
 しかしながら、前述した浸炭処理では、焼入硬化により芯部硬度を上昇させることが可能であるのに対し、軟窒化処理は鋼の変態点以下の温度で処理を行うものであるため、芯部硬度が上昇せず、軟窒化処理材は浸炭処理材と比較すると、疲労特性が劣るという問題があった。
 そこで、軟窒化処理材の疲労特性を高めるため、通常、軟窒化処理前に焼入・焼戻し処理を行い、芯部硬度を上昇させているが、得られる疲労特性は十分とは言い難く、また、製造コストが上昇し、さらに機械加工性の低下も避けられなかった。
 このような問題を解決するものとして、特許文献1には、鋼中に、NiやCu,Al、Cr、Tiなどを含有させることにより、軟窒化処理後に高い曲げ疲労特性を得ることを可能にした軟窒化用鋼が提案されている。すなわち、この鋼は、軟窒化処理により、芯部についてはNi-Al、Ni-Ti系の金属間化合物あるいはCu化合物で時効硬化させる一方、表層部については窒化層中にCr、Al、Ti等の窒化物や炭化物を析出硬化させることで、曲げ疲労特性を向上させている。
 また、特許文献2には、Cuを0.5~2%含有させた鋼を、熱間鍛造で鍛伸後、空冷して、Cuが固溶したフェライト主体の組織とし、580℃、120分の軟窒化処理中にCuを析出硬化させ、さらにTi、VおよびNb炭窒化物の析出硬化も併用することで、軟窒化処理後において優れた曲げ疲労特性が得られる軟窒化用鋼が提案されている。
 さらに、特許文献3には、Ti-Mo炭化物、またそれらにさらにNb、V、Wの一種または二種以上を含む炭化物を分散させた軟窒化用鋼が提案されている。
 またさらに、特許文献4には、V,Nbを含有する鋼において、窒化前の組織をベイナイト主体の組織とし、窒化前の段階におけるV,Nb炭窒化物の析出を抑制する一方、窒化時にこれら炭窒化物を析出させることにより、芯部硬度を向上させた疲労特性に優れる窒化用鋼材が提案されている。
特開平5-59488号公報 特開2002-69572号公報 特開2010-163671号公報 特許第5567747号公報
 しかしながら、特許文献1に記載の軟窒化鋼は、Ni-Al、Ni-Ti系の金属間化合物やCu等の析出硬化により曲げ疲労特性は向上するものの、加工性の確保が十分とは言い難かった。また、特許文献2に記載の軟窒化用鋼は、Cu、Ti、V、Nbを比較的多量に添加する必要があるため、生産コストが高いという問題があった。さらに、特許文献3に記載の軟窒化用鋼では、微細析出物を十分に析出させるためにはTi、Moを多量に含有させる必要があり、やはり高コストであるという問題があった。
 一方、特許文献4に記載の窒化用鋼材は、窒化層の析出硬化のため,Cr,V,Nbを含んでいる。これらの元素は窒化層の硬化に有効な元素であるが過剰に添加した場合には表層のごく近傍でのみ析出硬化し、硬化層が表層の浅い部分のみに形成されるという課題があった。
 本発明は、上記の問題を有利に解決するもので、ごく表層のCr、V、Nbの析出を抑制することで硬化層深さが確保された軟窒化用鋼を提供することを目的とする。また、本発明は、機械加工後の軟窒化処理により芯部硬さを高め、もって疲労特性を向上させた部品を提供することを目的とする。
 発明者らは、上記の課題を解決するために、鋼の成分組成および組織の影響について鋭意検討を行った。その結果、鋼の成分組成として、安価なCを比較的多量に含有させるとともにCr、VおよびNbを適正量含有させ、鋼組織を面積率で50%超のベイナイト相とすることにより、Cr、V、Nbの析出が抑制される結果、優れた機械加工性を確保できることがわかった。さらに、軟窒化処理後には、軟窒化処理部品の芯部にCr、VおよびNbを含む微細な析出物を分散析出するようになり、芯部硬さが上昇し、優れた疲労特性が得られるとの知見を得た。また、Cr、V、Nb、W、Co、Hf、ZrおよびTiの含有量の適正化により、軟窒化処理時に、NおよびCが表面から内部への拡散を妨害する、炭窒化物形成元素が減少し、軟窒化処理により形成できる硬化層の厚さが増大し、これが面疲労強度の向上につながるという知見を得た。
 本発明は、上記の知見に基づき、さらに検討を加えた末に完成されたものであり、本発明の要旨構成は次のとおりである。
1.質量%で、
 C:0.010%以上0.100%以下、
 Si:1.00%以下、
 Mn:0.50%以上3.00%以下、
 P:0.020%以下、
 S:0.060%以下、
 Cr:0.30%以上0.90%以下、
 Mo:0.005%以上0.200%以下、
 V:0.02%以上0.50%以下、
 Nb:0.003%以上0.150%以下、
 Al:0.005%以上0.200%以下、
 N:0.0200%以下、
 Sb:0.0005%以上0.0200%以下、
 W:0.3%以下(0%を含む)、
 Co:0.3%以下(0%を含む)、
 Hf:0.2%以下(0%を含む)、
 Zr:0.2%以下(0%を含む)および
 Ti:0.1%以下(0%を含む)
を、下記式(1)を満足する範囲にて含有し、残部がFeおよび不可避的不純物の成分組成を有し、かつベイナイト相の組織全体に対する面積率が50%超である鋼組織を有する軟窒化用鋼。
                記
 9.5≦([Cr]/52+[V]/50.9+[Nb]/92.9+M)×10≦18.5  ---(1)
  但し、M:[W]/183.8、[Co]/58.9、[Hf]/178.5、[Zr]/91.2および[Ti]/47.9の総和
   ここで、[ ]は該括弧内の元素の含有量(質量%)
2.前記成分組成が、更に質量%で、
 B:0.0100%以下、
 Cu:0.3%以下および
 Ni:0.3%以下
のいずれか1種または2種以上を含有する前記1に記載の軟窒化用鋼。
3.前記成分組成が、更に質量%で、
 Pb:0.2%以下、
 Bi:0.2%以下、
 Zn:0.2%以下および
 Sn:0.2%以下
のうちから選ばれた1種または2種以上を含有する前記1または2に記載の軟窒化用鋼。
4.前記1から3のいずれかに記載の成分組成および鋼組織を有する芯部と、該芯部の成分組成に対して、窒素および炭素の含有量が高い成分組成である表層部とを有し、前記ベイナイト相中に、Crを含む析出物、Vを含む析出物、およびNbを含む析出物が分散析出してなる部品。
 本発明によれば、安価な成分系において、機械加工性に優れた軟窒化用鋼を提供することができる。この軟窒化用鋼に軟窒化処理を行うことにより、浸炭処理を施したJIS SCr420材と同等以上の疲労特性を有する、本発明の部品を得ることができる。従って、本発明の軟窒化用鋼は、自動車等の機械構造部品を製造するための素材として極めて有用である。また、本発明の部品は、自動車等の機械構造部品に適用して極めて有用である。
ローラーピッチング試験片を示す図である。 ([Cr]/52+[V]/50.9+[Nb]/92.9+M)×10の値が面疲労強度に及ぼす影響を示すグラフである。 軟窒化部品の代表的な製造工程を示す図である。
 以下、本発明を具体的に説明する。
 まず、本発明において、成分組成を前記の範囲に限定した理由について説明する。なお、以下の成分組成を表す「%」は、特に断らない限り「質量%」を意味するものとする。
C: 0.010%以上0.100%以下
 Cは、後述するベイナイト相の生成、および、強度確保のために必要である。C量が0.010%未満の場合、十分な量のベイナイト相が得られないだけでなく、軟窒化処理後にVおよびNbの析出物量が不足し、強度確保が困難となるため、0.010%以上とする。一方、C含有量が0.100%超になると、生成したベイナイト相の硬さが増加し、機械加工性が低下するため、C量は0.010%以上0.100%以下の範囲とする。より好ましくは0.060%以上0.090%以下の範囲である。 
Si:1.00%以下
 Siは、脱酸だけでなく、ベイナイト相の生成に有効であるが、1.00%を超えるとフェライトおよびベイナイト相に固溶し、その固溶硬化により、機械加工性および冷間加工性を劣化させるため、Si量は1.00%以下とする。好ましくは0.50%以下、より好ましくは0.30%以下である。なお、Siを脱酸に有効に寄与させるためには、含有量を0.010%以上とすることが好ましい。
Mn:0.50%以上3.00%以下
 Mnは、鋼の焼入れ性を高め、ベイナイト相を安定的に生成させる作用がある。また、Mnは自動車部品として重要な、曲げ衝撃性を向上させる。一般に、疲労特性を上げるためにはC量を上げ、部品における芯部硬さ(以下、芯部硬さという)を高くすることが有効である。しかし、単にC量を上げると、曲げ衝撃特性が低下する。しかし、Mn量が0.50%以上であれば、C量の上昇に伴う曲げ衝撃特性の低下を抑制できる。Mn量が0.50%未満の場合、上記効果は乏しく、また、MnSの生成量が十分でないため、被削性が低下する。従って、Mn量は0.50%以上とする。一方、3.00%を超えると機械加工性および冷間加工性を劣化させるので、Mn量は3.00%以下とする。好ましくは1.50%以上2.50%以下、より好ましくは1.50%以上2.00%以下の範囲である。
P:0.020%以下
 Pは、不純物として鋼中に混入する元素であるが、オーステナイト粒界に偏析し、粒界強度を低下させることにより、強度、靭性を低下させる。従って、Pの含有は極力抑制することが望ましいが、0.020%までは許容される。なお、Pを0.001%未満とするには高いコストを要することから、工業的には0.001%まで低減すればよい。
S:0.060%以下
 Sは、不純物として鋼中の混入する元素であるが、その含有量が0.060%を超えると、鋼の靭性が低下するため、含有量を0.060%以下に制限する。好ましくは0.040%以下である。一方、Sは、鋼中でMnSを形成し、被削性を向上させるという意味で有用でもあり、Sによる被削性向上効果を発現させるためには、S量を0.002%以上とすることが好ましい。
Cr:0.30%以上0.90%以下
 Crは、ベイナイト相の生成に有効なため添加する。しかしながら、含有量が0.30%未満の場合、ベイナイト相の生成量が少なくなり、軟窒化処理前にVおよびNbの析出物が生成するため、軟窒化前の硬さが増加する。加えて、軟窒化処理後におけるVおよびNbの析出物の絶対量が減少するため、軟窒化処理後の硬さが低下して強度確保が困難となる。従って、Cr量は0.30%以上とする。一方、後述のように0.90%を超えると有効硬化層深さの減少を招くため、Cr量は0.90%以下とする。好ましくは0.50~0.90%の範囲である。
Mo:0.005%以上0.200%以下
 Moは、VおよびNb析出物を微細に析出させ、軟窒化処理材の強度を向上させる効果があり、本発明において重要な元素である。またベイナイト相の生成にも有効である。ここに、強度向上のためには0.005%以上の添加を必要とするが、高価な元素であるため0.200%を超えて添加すると、成分コストの上昇を招く。このため、Mo量は0.005~0.200%の範囲とする。好ましくは0.010~0.200%、より好ましくは0.040~0.200%の範囲である。
V:0.02%以上0.50%以下
 Vは、軟窒化時の温度上昇により、Nbとともに微細析出物を形成して芯部硬さを増加させ、強度を向上させる重要な元素である。しかしながら、V量が0.02%未満では所望の効果が得難く、一方0.50%超では析出物が粗大化し、強度向上量が飽和する。さらに、連続鋳造中に初析フェライトが析出し、割れが生じやすくなるため、V量は0.02~0.50%の範囲とする。好ましくは0.03~0.30%、より好ましくは0.03~0.25%の範囲である。
Nb:0.003%以上0.150%以下
 Nbは、軟窒化時の温度上昇により、Vとともに微細析出物を形成して芯部硬さを増加させるため、疲労特性向上に極めて有効である。しかしながら、Nb量が0.003%未満では所望の効果が得難く、一方0.150%を超えると析出物が粗大化し、強度向上量が飽和する。さらに、連続鋳造中に初析フェライトが析出し、割れが生じやすくなるため、Nb量は0.003~0.150%の範囲とする。好ましくは0.020~0.120%の範囲である。
Al: 0.005%以上0.200%以下
 Alは、軟窒化処理後の表面硬さおよび有効硬化層深さの向上に有用な元素であるので、積極的に添加する。また、熱間鍛造時におけるオーステナイト粒成長を抑制することによって、組織を微細化し靭性を向上させる上でも有用な元素である。このような観点から、Alは0.005%以上で含有させる。一方、0.200%を超えて含有させてもその効果は飽和し、むしろ成分コストの上昇を招く不利が生じるので、Al量は0.200%以下に限定する。好ましくは0.020%以上0.100%以下の範囲、より好ましくは0.020%以上0.040%以下の範囲である。
N:0.0200%以下
 Nは、鋼中で炭窒化物を形成し、軟窒化処理材の強度を向上させる有用元素である。従って、0.0020%以上含有させることが好ましい。しかしながら、含有量が0.0200%を超えると、形成する炭窒化物が粗大化して鋼材の靭性を低下させる。また、鋳片の表面割れが生じ、鋳片品質が低下する。このため、Nは0.0200%以下に限定する。
Sb:0.0005%以上0.0200%
 Sbは、ベイナイト相の生成を促進する効果を有する。その添加量が0.0005%に満たないと添加効果に乏しく、一方0.0200%を超えて添加しても効果が飽和し、成分コストの上昇を招くだけでなく、偏析により母材靭性の低下も生じるため、Sbは0.0005~0.0200%の範囲に限定する。好ましくは0.0010~0.0100%の範囲である。
W:0.3%以下(0%を含む)、Co:0.3%以下(0%を含む)、Hf:0.2%以下(0%を含む)、Zr:0.2%以下(0%を含む)、Ti:0.1%以下(0%を含む)
 W、Co、Hf、ZrおよびTiはいずれも鋼の強度向上に有効な元素であり、含有されていてもよいが、必ずしも含有が必要とされる元素ではない(含有量が0%であってもよい)。これらの元素を鋼の強度向上に寄与させるためには、それぞれ、Wであれば0.01%以上、Coであれば0.01%以上、Hfであれば0.01%以上、Zrであれば0.01%以上、Tiであれば0.001%以上とすることが好ましい。また、これらの元素を複合して含有していてもよい。一方、Wは0.3%、Coは 0.3%、Hfは0.2%、Zrは0.2%、Tiは0.1%を超えて含有されると、鋼の靭性が低下するため、上記の範囲に規定する。なお、好ましくはW:0.01~0.25%、Co:0.01~0.25%、Hf:0.01~0.15%、Zr:0.01~0.15%,Ti:0.001~0.01%である。
 以上説明した元素のうち、Cr、V、Nb、W、Co、Hf、ZrおよびTiのような炭窒化物を形成する元素は、それらの添加量が増加すると、ごく表層でNやCが過剰に析出し、硬化層深さが減少する。かような事態を回避するには、下記の式(1)を満足させることが重要である。
                記
 9.5≦([Cr]/52+[V]/50.9+[Nb]/92.9+M)×10≦18.5  ---(1)
  但し、M:[W]/183.8、[Co]/58.9、[Hf]/178.5、[Zr]/91.2および[Ti]/47.9の総和
   ここで、[ ]は該括弧内の元素の含有量(質量%)
 以下に、上記した式(1)を特定するに至った実験について説明する。
 すなわち、C:0.05%、Si:0.1%、Mn:1.5%、Cr:(0~1.5)%、V:(0~0.3)%、Nb :(0~0.3)%、Mo:0.1%およびN:0.0100%を含み、残部Feおよび不可避的不純物の成分組成を有する、100kg鋼塊を溶製した。この鋼塊を33mmφの棒鋼に熱間鍛造した。得られた棒鋼を1200℃で1時間保持した後、放冷し、熱間鍛造相当材とした。この熱間鍛造相当材より、図1に示す26mmφ×130mmのローラーピッチング試験片を採取した。この試験片に対し、570℃で3時間の軟窒化処理を施し、ローラーピッチング試験に供した。ローラーピッチング試験は、後述する実施例における疲労特性評価と同じ条件で行った。
 ローラーピッチング試験の結果を、図2に示す。図2から、([Cr]/52+[V]/50.9+[Nb]/92.9+M)×10で算出される値が9.5以上18.5以下の場合、特に面疲労特性が優れていることがわかる。さらに、上記と同様にして作製したローラーピッチング試験片について、軟窒化処理後の硬化層深さを後述する実施例における疲労特性評価と同じ条件で測定した。その結果、([Cr]/52+[V]/50.9+[Nb]/92.9+M)×10で算出される値が、18.5を超える場合には、この値が18.5以下である場合に比較して硬化層深さが浅いことがわかった。このことが、この値が18.5を超える場合に面疲労特性が低下している原因であると考えられる。一方、この値が9.5未満である場合には、この値が9.5以上の場合に比して、表面硬さが低くなっていた。このことが、この値が9.5未満である場合に、面疲労特性が低下している原因であると考えられる。
 したがって、硬化層深さを増加させるためには、Cr、V、Nb、W、Co、Hf、ZrおよびTiのような炭窒化物を形成する元素の添加量を抑制する必要がある。軟窒化処理後の硬化層深さを増加させるためには、これらの炭窒化物の形成元素の含有量(質量%)が、上記の式(1)を満足する必要がある。
 以上が本発明の基本成分組成であるが、必要に応じて以下の元素の1種または2種以上を含有していてもよい。
B:0.0100%以下
 Bは、焼入れ性を向上させ、ベイナイト組織の生成を促進する効果を有するため、好ましくは、0.0003%以上で添加する。一方、0.0100%を超えて添加すると、BがBNとして析出し、焼入れ性向上効果が飽和するだけでなく、成分コストの上昇を招くため、添加する場合は0.0100%以下の範囲に限定する。より好ましくは、0.0005%以上0.0080%以下とする。
Cu:0.3%以下
 Cuは、軟窒化処理中にFeやNiと金属間化合物を形成し、析出硬化によって軟窒化処理材の強度を向上させる有用元素であり、ベイナイト相の生成にも有効である。Cu含有量が0.3%を超えると熱間加工性が低下するため、Cu含有量は0.3%以下の範囲とする。好ましくは0.05~0.25%の範囲である。
Ni:0.3%以下
 Niは、焼入れ性を増大し、低温脆性を抑制する効果を有する。しかし、Ni含有量が、0.3%を超えると硬度が上昇し、被削性に悪影響を及ぼすばかりでなく、コスト的にも不利となるため、Ni含有量は0.3%以下の範囲に限定する。好ましくは0.05~0.25%の範囲である。
Pb:0.2%以下、Bi:0.2%以下、Zn:0.2%以下、Sn:0.2%以下
 Pb、Bi、ZnおよびSnは、鋼の被削性を向上させる効果を有する元素であり、添加する場合は、それぞれ0.02%以上の含有量とすることが好ましい。一方、0.2%を超えての添加は強度や靭性を低下させるので、上記の範囲に規定する。なお、好ましくは、Pb:0.02~0.1%、Bi:0.02~0.1%、Zn:0.02~0.1%、Sn:0.02~0.1%である。
なお、鋼組成において、以上説明した元素以外の残部にFeおよび不可避的不純物を有する。この残部はFeおよび不可避的不純物からなることが好ましい。
 次に、本発明における軟窒化用鋼の鋼組織を前記の範囲に限定した理由を説明する。
ベイナイト相:組織全体に対する面積率が50%超
 本発明は、軟窒化処理後に表層窒化部以外の芯部にはVおよびNbの析出物を分散析出させ、これによって芯部硬度を上昇させ、軟窒化処理後の疲労特性を向上させようとするものである。ここで、軟窒化処理前にCr、VおよびNbの析出物が存在していると、通常、軟窒化処理前に行われる切削加工時の被削性の観点からは不利である。この点、ベイナイト変態過程では、フェライト-パーライト変態過程に比べ、母相中にCr、VおよびNbの析出物が生成し難い。従って、本発明の軟窒化用鋼の鋼組織、すなわち軟窒化処理前の鋼組織はベイナイト相を主体とする。具体的には、ベイナイト相を組織全体に対する面積率で50%超とする。好ましくは60%超、より好ましくは80%超である。また100%であってもよい。なお、ベイナイト相以外の組織としては、フェライト相やパーライト相等が考えられるが、これらの組織は少ないほど好ましいのは言うまでもない。
 ここに、各相の面積率は、次のようにして求めることができる。すなわち、得られた軟窒化用鋼から試験片を採取し、圧延方向に平行な断面(L断面)について、表面を研磨後にナイタールで腐食し、光学顕微鏡を用い、断面組織観察(200倍の光学顕微鏡組織観察)により相の種類を同定し、各相の面積率を求める。
 また、鋼中に固溶するCr量、V量およびNb量がそれぞれ0.27%以上、0.05%以上、0.02%以上であり、かつ元々の含有量に占める固溶量の割合が、Crは90%以上、Vは75%以上、Nbは50%以上であることが好ましい。上述のとおり、本発明においては、Cr,VおよびNbを軟窒化処理において微細析出させて軟窒化処理後の疲労特性を向上させようとするものである。そして、被削性の確保の観点からも、Cr、VおよびNbの析出物の生成を回避するべきである。そこで、固溶するCr量、V量およびNb量を上記のとおりとすることが好ましい。
以上説明した本発明の軟窒化用鋼では通常の軟窒化処理を行うことによっても、従来の軟窒化用鋼に対して硬化層深さが大きい部品を得ることができる。具体的には、NH:N:CO=50:45:5の雰囲気中で、560℃で3.5時間の軟窒化処理を行うことにより、後述の有効硬化層深さが0.2mm以上となる軟窒化用鋼が得られる。
 次に、軟窒化用鋼から軟窒化部品に至る製造方法について説明する。
 図3に、本発明に係る軟窒化用鋼(棒鋼)を用いて軟窒化部品を製造する代表的な製造工程を示す。ここで、S1は素材となる棒鋼(軟窒化用鋼)製造工程、S2は搬送工程、S3は部品(軟窒化部品)の製造工程である。
 まず、棒鋼製造工程(S1)で鋼塊を熱間圧延および/または熱間鍛造して棒鋼とし、品質検査後、出荷する。そして、搬送(S2)後、軟窒化部品仕上げ工程(S3)で、棒鋼を所定の寸法に切断し、熱間鍛造あるいは冷間鍛造を行い、必要に応じてドリル穿孔や旋削等の切削加工で所望の形状(例えば、ギア製品やシャフト製品)とした後、軟窒化処理を行って、製品とする。
 また、熱間圧延材をそのまま旋削やドリル穿孔等の切削加工で所望の形状に仕上げ、その後、軟窒化処理を行い製品とすることもある。なお、熱間鍛造の場合、熱間鍛造後に冷間矯正が行われる場合がある。また、最終製品にペンキやメッキ等の皮膜処理がなされる場合もある。
 本発明の軟窒化用鋼の製造方法では、軟窒化処理前の熱間加工工程において、熱間加工時の加熱温度、加工温度を特定の条件とすることにより、前述したようなベイナイト相主体の組織とし、Cr、VおよびNbの固溶量を確保する。ここに、熱間加工とは、主に熱間圧延、熱間鍛造を意味するが、熱間圧延後さらに熱間鍛造を行ってもよい。また、熱間圧延後、冷間鍛造を行ってもよいのは言うまでもない。ここで、軟窒化処理直前の熱間加工工程が熱間圧延工程である場合、すなわち、熱間圧延後に熱間鍛造を行わない場合は、熱間圧延工程において以下に示す条件を満足させる。
熱間圧延加熱温度:950~1250℃
 熱間圧延工程では、圧延材(冷間鍛造および/または切削加工による部品の素材となる棒鋼)に微細析出物が析出し鍛造性を損なわないよう、溶解時から残存する炭化物を固溶させる。
 ここで、圧延加熱温度が950℃に満たないと、溶解時から残存する炭化物が固溶し難くなる。一方、1250℃を超えると、結晶粒が粗大化して鍛造性が悪化しやすくなる。このため、圧延加熱温度は950~1250℃の範囲とする。
圧延仕上げ温度:800℃以上
 圧延仕上げ温度が800℃未満の場合、フェライト相が生成するため、軟窒化用鋼の組織全体に対して面積率で50%超を満足するベイナイト相を生成させる上で不利となる。また、圧延負荷も高くなる。従って、圧延仕上げ温度は800℃以上とする。なお、上限値については、1100℃程度とすることが好ましい。
圧延後の少なくとも700~550℃の温度域における冷却速度:0.4℃/s超
 所望形状への仕上げ加工前に微細析出物が析出し、加工性を損なわないようにするため、すなわち、Cr,NbおよびVの固溶量を上述のとおりに確保するため、微細析出物の析出温度範囲である少なくとも700~550℃の温度域においては、圧延後の冷却速度を上記固溶量を確保できる臨界冷却速度である0.4℃/sを超える速度とする。なお、上限値に
ついては、200℃/s程度とすることが好ましい。
 また、軟窒化処理前の熱間加工工程が熱間鍛造工程である場合、すなわち、熱間鍛造のみを行う場合または熱間圧延後に熱間鍛造を行う場合は、熱間鍛造工程において以下に示す条件を満足させる。なお、熱間鍛造前に熱間圧延を行う場合には、熱間圧延条件として必ずしも上記した条件を満足していなくてもよい。
熱間鍛造条件
 この熱間鍛造では、ベイナイト相を組織全体に対する面積率で50%超とするため、および熱間鍛造後の冷間矯正や被削性の観点から微細析出物が析出して固溶Cr、VおよびNbを確保できなくなることを回避するため、熱間熱間鍛造時の加熱温度を950~1250℃、鍛造仕上げ温度を800℃以上、鍛造後の冷却速度を少なくとも700~550℃の温度域において0.4℃/s超とする。なお、上限値については200℃/s程度とすることが好ましい。
 次いで、得られた圧延材または鍛造材に対して切削加工を施して部品形状とし、その後、軟窒化処理を行う。軟窒化処理は通常の条件でよく、具体的には処理温度を550~700℃とし、処理時間を10分以上とすればよい。この処理温度、処理時間の軟窒化処理により、固溶状態にあったCr,VおよびNbが微細に析出し、芯部の強度が上昇する。また、この通常の軟窒化処理条件により得られる硬化層は、従来知られている軟窒化用鋼に対しても硬化層厚が大きいものとなる。なお、処理温度が550℃に満たないと十分な量の析出物が得られず、一方、700℃を超えるとオーステナイト域となり、相変態を伴わない表面硬化処理が困難となり、変態膨張が発生し、表面硬化処理に伴う歪が大きくなるため、もはや軟窒化処理と呼ぶことはできなくなり、軟窒化処理による利点を確保することが困難となる。軟窒化処理温度の好適範囲は、550~630℃の範囲である。
 なお、軟窒化処理では、NとCとを同時に鋼中に浸入・拡散させるので、NHやNといった窒素性ガスと、COやCOといった浸炭性ガスの混合雰囲気、例えばNH:N:CO=50:45:5の雰囲気で軟窒化処理を行えばよい。
以上の製造工程により本発明の部品が得られる。かくして得られる部品は、上記した軟窒化用鋼と同じ成分組成および鋼組織を有する芯部と、該芯部の成分組成に対して、窒素および炭素の含有量が高い成分組成である表層部とを有し、前記ベイナイト相中に、Cr、VおよびNbを含む析出物が分散析出してなるものとなる。
芯部の成分組成、表層部の成分組成
上述の成分組成からなる軟窒化用鋼に対して軟窒化処理を行うと、表層部には表面からの窒素および炭素が侵入・拡散する。一方、芯部にまでは窒素および炭素の拡散が進行しない。すなわち、CおよびNが拡散していない部分が芯部である。その結果、得られる部品の成分組成は、芯部は上述した軟窒化用鋼の成分組成そのものとなり、一方、部品の表層部は芯部に対して窒素および炭素の含有量が高い成分組成となる。部品の表層部に窒素および炭素が侵入拡散していないと、つまり、芯部よりも表層部の窒素および炭素の含有量が多くなっていないと、表層に硬質層が形成されないため、十分な疲労強度の向上が期待できない。
芯部の鋼組織
上述の本発明の軟窒化用鋼に対して軟窒化処理を施して部品とすると、芯部には上述の軟窒化用鋼の鋼組織がそのまま残る。すなわち、軟窒化処理後の部品の芯部の鋼組織は、ベイナイトの組織全体に対する面積率が50%超となる。部品の芯部の鋼組織は、軟窒化用鋼の鋼組織と同一であるから、上述のとおり、ベイナイト相を組織全体に対する面積率で好ましくは60%超、より好ましくは80%超である。また100%であってもよい。さらに、ベイナイト相以外の組織としては、フェライト相やパーライト相等が考えられるが、これらの組織は少ないほど好ましいのは言うまでもない。
ベイナイト相中に、Crを含む析出物、Vを含む析出物、および、Nbを含む析出物が分散析出
 芯部のベイナイト相中に、Crを含む析出物、Vを含む析出物、および、Nbを含む析出物が分散析出していると、芯部硬さが上昇し、軟窒化処理後の部品の疲労特性が顕著に向上する。ここで、Crを含む析出物、Vを含む析出物、および、Nbを含む析出物が分散析出しているとは、こららの合計の分散析出状態が、(好ましくは)粒径が10nm未満の析出物が単位面積1μm2あたり500個以上分散析出していることである。かように分散析出していることが、軟窒化処理後の部品の析出強化に寄与させる上で好ましい。なお、析出物の粒径の測定限界、すなわち測定できる最少の粒径は1nmである。
 以上の構成を有する部品は、後述の有効硬化層深さが深く、表面硬さおよび芯部硬さが高いものとなる。具体的には、有効硬化層深さが0.2mm以上、表面硬さが700HV以上および芯部硬さが200HV以上の部品となる。
有効硬化層深さが0.2mm以上
 ここで、有効硬化層深さとは、特定の値以上の硬度を有する領域を有効硬化層としたときの有効硬化層の深さである。具体的には、HV550となる表面からの深さ(mm)を、有効硬化層深さとする。この有効硬化層深さが0.2mm以上でないと、高い疲労強度を得ることが難しくなる。よって、有効硬化層深さは、0.2mm以上は得ることが好ましい。より好ましくは、0.25mm以上である。
 さらに、本発明の部品では、表面硬さが700HV以上および芯部硬さが200HV以上であることが好ましい。これらの硬さ条件を満足させることで、疲労特性が良好な部品とすることができる。
 以下、本発明の実施例について具体的に説明する。
 表1に示す組成の鋼(鋼種1~42)を連続鋳造機にて断面300mm×400mmの鋳片とした。その際、表面における割れの有無を調査した。この鋳片を1250℃で30分の均熱後に熱間圧延にて一辺が140mmの矩形断面の鋼片とした。熱間圧延し、60mmφの棒鋼(熱間圧延まま素材)とした。熱間圧延時の鋼片の加熱温度、圧延仕上げ温度、熱間圧延後の700~550℃の範囲の冷却速度は表2に示すとおりとした。
 また、上記した熱間圧延まま素材のうち一部については、表2に示すとおりの加熱温度、鍛造仕上げ温度にて熱間鍛造を施し、30mmφの棒鋼とし、その後、700~550℃の範囲を表2に示す冷却速度として、室温まで冷却し熱間鍛造材とした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 かくして得られた熱間圧延まま素材および熱間鍛造材について、被削性(工具寿命)を外周旋削試験により評価した。試験材には、熱間圧延まま素材あるいは熱間鍛造材を200mm長さに切断したものを用いた。切削工具としては、フォルダーが三菱マテリアル社製CSBNR 2020、また、チップは三菱マテリアル社製SNGN 120408 UTi20高速度工具鋼を用いた。外周旋削試験の条件は、切り込み量1.0mm、送り速度0.25mm/rev、切削速度200m/minで、潤滑剤は用いなかった。評価項目としては、工具摩耗量(逃げ面摩耗量)が0.2mmとなるまでの時間を工具寿命とした。
 また、上記した熱間圧延まま素材または熱間鍛造材について、組織観察および硬度測定を行った。評価用の試験片は、得られた、熱間圧延まま素材あるいは熱間鍛造材の中心部から採取した。組織観察では、前述した方法により、相の種類を同定するとともに、各相の面積率を求めた。硬度測定では、ビッカース硬度計を用い、JIS Z2244に準拠して径方向1/4位置の硬さを2.94N(300gf)の試験荷重で5点測定し、その平均値を硬さHVとした。以上の測定結果および評価結果を表3に併記する。
Figure JPOXMLDOC01-appb-T000004
 さらに、上記した熱間圧延まま素材または熱間鍛造材について、長手方向と平行に、図1に示す平行部26mmφ×28mm長さおよびその両側の掴み部24.3mmφ×51mmのローラーピッチング試験片を採取し、この試験片に対して表4に示す処理温度で3.5時間および560℃で3.5時間の2種の条件にて軟窒化処理を行った。軟窒化処理は、NH:N:CO=50:45:5の雰囲気とした。ここで、鋼種35の熱間鍛造材については、比較のため、930℃で3時間浸炭し、850℃に40分保持後、油冷し、さらに170℃で1時間焼戻す浸炭焼入れ・焼戻しを施した。
 かくして得られた、表4に示す軟窒化処理温度にて軟窒化処理を行った軟窒化処理材、および浸炭焼入れ・焼戻し材について、組織観察、硬度測定、析出物の観察、Cr、VおよびNb固溶量の測定および疲労特性評価を行った。
 ここで、組織観察は、軟窒化処理前と同様に、前述した方法により相の種類を同定するとともに、各相の面積率を求めた。
 硬度測定は、表4に示す軟窒化処理温度にて軟窒化処理を行った軟窒化処理材および、浸炭焼入れ・焼戻し材の表層の硬さを平行部の表面から0.05mm深さの位置で、平行部の芯部硬さを径方向1/4位置でそれぞれ測定した。また、表層硬さおよび芯部硬さの測定は、いずれもビッカース硬度計を用い、JIS Z2244に準拠して、2.94N(300gf)の試験荷重で6点測定し、その平均値をそれぞれ表層硬さHV,芯部硬さHVとした。さらに、硬化層深さは、HV550となる表面からの深さ(有効硬化層深さ)について測定した。なお、硬化層深さは、560℃で3.5時間の軟窒化処理を行ったものについても測定した。
 析出物の観察は、表4の軟窒化温度の軟窒化材および浸炭焼入れ・焼戻し材の平行部の径方向1/4位置から、透過型電子顕微鏡観察用の資料を、ツインジェット法を用いた電解研磨法により作製し、得られた試料について、加速電圧を200Vとした透過型電子顕微鏡を用いて行った。さらに、観察される析出物の組成をエネルギー分散型X線分光装置(EDX)により求めた。
 Cr、VおよびNb固溶量の測定は、次の方法で行った。まず、上述の熱間鍛造した30mmφの棒鋼の径方向1/4位置から、10mm×10mm×40mmの試験片を採取し、10%アセチルアセトン-1%塩化テトラメチルアンモニウム-メタノール電解液を使用して、定電流電解を行った。抽出した析出物を孔径0.2mmのフィルターを用いて捕集した。得られた析出物について、混酸を用いて分解・溶液化した後、ICP発光分光分析法により分析し、析出量を測定した。その後、元々の含有量から、求めた析出量を引いて固溶量を求めた。
 疲労特性評価は、表4の軟窒化温度の軟窒化処理あるいは浸炭焼入れ・焼き戻しを行った後のローラーピッチング試験片(図1参照)のうち、組織観察、硬度測定および析出物観察のいずれも行っていないものを用いて、ローラーピッチング試験にて、負荷面圧2600MPaにおける損傷までの繰り返し数を求めることで評価した。ローラーピッチング試験片の26mmφの平行部は転送面となる部分であり、軟窒化まま(研磨なし)あるいは浸炭焼入れ・焼戻しまま(研磨なし)とした。ローラーピッチング試験条件は、すべり率40%で、潤滑油としてオートマチックトランスミッションオイル(三菱ATF SP-III)を用い、油温80℃で行った。転送面に接触させる大ローラーにはクラウニングR150mmのSCM420Hの浸炭焼入品を使用した。
Figure JPOXMLDOC01-appb-T000005
 表4に試験結果を併せて示す。発明例1~26が本発明に従う事例、No.27~54が比較例、No.55がJIS SCR420相当鋼に浸炭焼入れ・焼戻しを施した従来例である。
 表4から明らかなように、発明例No.1~26はいずれも、軟窒化処理前の段階(軟窒化処理用鋼の段階)においては工具寿命に優れている。また、これら発明例No.1~26はいずれも、軟窒化処理後の段階(軟窒化処理された部品に相当)では、浸炭焼入れ・焼戻しを施した従来例No.55に比べて疲労特性が若干劣るものの、軟窒化処理材としては優れた疲労強度を示した。なお、測定結果の詳細は省略するが、発明例No.1~26において、軟窒化処理温度を560℃としたものはいずれも、有効硬化層深さが0.2mm以上であった。また、前述に従って析出物の組成をエネルギー分散型X線分光装置(EDX)により求めたところ、発明例1~26はいずれも、粒径が10μm未満のCr系析出物、V系析出物およびNb系の析出物が単位面積1μm2あたり500個以上分散析出していることが確認できた。
 一方、比較例No.27~54は、成分組成あるいは得られた鋼組織が本発明の範囲外であったため、連続鋳造時に割れが生じているか、疲労特性あるいは被削性に劣っている。
 No.27は、熱間圧延時の加熱温度が低いため、連続鋳造時に生成した析出物が十分に固溶せず、軟窒化処理後の疲労特性に劣っている。また、フェライトとパーライトの合計の組織分率が高いため、熱間圧延後に被削性も低位である。
 No.28は、熱間圧延の仕上げ温度が低すぎるため、組織のベイナイト分率が低く、被削性が劣っている。また、フェライトとパーライトの合計の組織分率が高いため、軟窒化処理前の段階において固溶Cr,Nb,V量が少なく、その結果、軟窒化処理後の微細析出物が生成せずに、疲労特性が低位となった。
 No.29および30は、熱間圧延後の冷却速度が遅いため、適正量のベイナイトが得られず、また、軟窒化処理前の段階において固溶Cr,Nb,V量が少なく、その結果、軟窒化処理後の微細析出物が生成量が少ないため析出強化が不足し、発明例に比べ疲労特性が低位である。また、被削性も低位である。
 No.31は、熱間鍛造時の加熱温度が低いため、析出物が十分に固溶せず、疲労特性も劣っている。また、フェライトとパーライトの合計組織分率が高いため、熱間圧延後に被削性も低位である。
 No.32は、熱間鍛造の仕上げ温度が低すぎるため、組織のベイナイト分率が低く、被削性が劣っている。また、フェライトとパーライトの合計の組織分率が高いため、軟窒化処理前の段階において固溶Cr,Nb,V量が少なく、その結果、軟窒化処理後の微細析出物が生成せずに、疲労特性が低位となった。
 No.33および34は、熱間鍛造後の冷却速度が遅いため、適正量のベイナイト相が得られず、軟窒化処理前の段階において固溶Cr,Nb,V量が少なく、また、軟窒化処理による微細析出物の生成量が少ないため析出強化が不足し、発明例に比べ疲労特性が低位である。また、被削性も低位である。No.35は、C含有量が適正範囲に満たないため、軟窒化処理後の芯部硬さが低く、発明例に比べ疲労特性が低位である。
 No.36は、C含有量が適正範囲を超えているため、軟窒化処理前の熱間鍛造材の硬さが増加し、被削性が低下している。
 No.37は、Si含有量が適正範囲を超えているため、窒化処理前の熱間鍛造材の硬さが増加し、被削性が低下している。
 No.38は、Mn含有量が適正範囲に満たないため、軟窒化処理前の熱間鍛造材の鋼組織がフェライト相-パーライト相主体となっている。このため、組織中にVおよびNb析出物が析出して、軟窒化処理前の硬さが増加し、被削性が低下している。
 No.39は、Mn含有量が適正範囲を超えているため、連続鋳造時に割れが生じている。また、軟窒化処理前にマルテンサイト相が生成し、被削性が低くなっている。
 No.40は、P含有量が適正範囲を超えているため、連続鋳造時に割れが生じている。また、疲労特性も低くなっている。
 No.41は、S含有量が適正範囲を超えており、連続鋳造時に割れが生じている。また、疲労特性も低くなっている。
 No.42は、Cr含有量が適正範囲に満たないため、軟窒化処理前の熱間鍛造材の鋼組織がフェライト相-パーライト相主体となっている。このため、組織中に粗大なVおよびNb析出物が析出して、軟窒化処理前の硬さが増加し、被削性が低位である。また、軟窒化処理前の段階において固溶Cr、NbおよびV量が少なく、また、軟窒化処理による微細析出物の生成量が少ないため析出強化が不足し、発明例に比べ疲労特性が低位である。
 No.43は、Cr含有量が適正範囲を超えており、連続鋳造時に割れが生じている。また、熱間鍛造後の硬さも高いため、被削性が劣っている。
 一方、No.44は、Mo含有量が適正範囲に満たないため、焼入れ性が低下し、ベイナイト相の生成が不十分である。その結果、軟窒化処理前の段階においてCr、NbおよびV量が少なく、また、軟窒化処理による微細析出物の生成量が少ないため析出強化が不足し、疲労特性が低位である。
 No.45は、V含有量が適正範囲に満たないため、軟窒化処理前の固溶V量が少なく、軟窒化処理後の微細析出の生成量が少ないため、十分な芯部硬さが得られていない。このため、疲労特性が低位である。
 No.46は、V含有量が適正範囲を超えており、連続鋳造時に割れが生じている。
 No.47は、Nb含有量が適正範囲に満たないため、軟窒化処理前の固溶Nb量が少なく、軟窒化処理後の微細析出の生成量が少ないため、十分な芯部硬さが得られていない。このため、疲労特性が低位である。
 No.48は、Nb含有量が適正範囲を超えており、連続鋳造時に割れが生じている。
 No.49は、Al含有量が適正範囲に満たないため、軟窒化処理後の表面硬さが低く、疲労特性が低位である。
 No.50は、Al含有量が適正範囲を超えているため、連続鋳造時に割れが生じている。
 No.51は、N含有量が適正範囲を超えており、連続鋳造時に割れが生じている。
 No.52は、式(1)を満足していないため、軟窒化処理後の硬化層深さが浅く、疲労特性が低位である。
 No.53は、式(1)を満足していないため、軟窒化処理後の表面硬さが低く、疲労特性が低位である。
 No.54は、Sb含有量が適正範囲に満たないため、連続鋳造時に割れが生じている。

Claims (4)

  1.  質量%で、
     C:0.010%以上0.100%以下、
     Si:1.00%以下、
     Mn:0.50%以上3.00%以下、
     P:0.020%以下、
     S:0.060%以下、
     Cr:0.30%以上0.90%以下、
     Mo:0.005%以上0.200%以下、
     V:0.02%以上0.50%以下、
     Nb:0.003%以上0.150%以下、
     Al:0.005%以上0.200%以下、
     N:0.0200%以下、
     Sb:0.0005%以上0.0200%以下、
     W:0.3%以下(0%を含む)、
     Co:0.3%以下(0%を含む)、
     Hf:0.2%以下(0%を含む)、
     Zr:0.2%以下(0%を含む)および
     Ti:0.1%以下(0%を含む)
    を、下記式(1)を満足する範囲にて含み、残部がFeおよび不可避的不純物の成分組成を有し、かつベイナイト相の組織全体に対する面積率が50%超である鋼組織を有する軟窒化用鋼。
                    記
     9.5≦([Cr]/52+[V]/50.9+[Nb]/92.9+M)×10≦18.5  ---(1)
      但し、M:[W]/183.8、[Co]/58.9、[Hf]/178.5、[Zr]/91.2および[Ti]/47.9の総和
       ここで、[ ]は該括弧内の元素の含有量(質量%)
  2.  前記成分組成が、更に質量%で、
     B:0.0100%以下、
     Cu:0.3%以下および
     Ni:0.3%以下
    のいずれか1種または2種以上を含有する請求項1に記載の軟窒化用鋼。
  3.  前記成分組成が、更に質量%で、
     Pb:0.2%以下、
     Bi:0.2%以下、
     Zn:0.2%以下および
     Sn:0.2%以下
    のうちから選ばれた1種または2種以上を含有する請求項1または2に記載の軟窒化用鋼。
  4.  請求項1から3のいずれかに記載の成分組成および鋼組織を有する芯部と、該芯部の成分組成に対して、窒素および炭素の含有量が高い成分組成である表層部とを有し、前記ベイナイト相中に、Crを含む析出物、Vを含む析出物、および、Nbを含む析出物が分散析出してなる部品。
PCT/JP2017/043211 2016-11-30 2017-11-30 軟窒化用鋼および部品 WO2018101451A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
MX2019006232A MX2019006232A (es) 2016-11-30 2017-11-30 Acero para nitrocarburacion, y componente.
KR1020197015288A KR102240150B1 (ko) 2016-11-30 2017-11-30 연질화용 강 및 부품
US16/464,374 US11242593B2 (en) 2016-11-30 2017-11-30 Steel for nitrocarburizing, and component
EP17875706.8A EP3550048B1 (en) 2016-11-30 2017-11-30 Steel for soft nitriding, and component
JP2018554271A JP6610808B2 (ja) 2016-11-30 2017-11-30 軟窒化用鋼および部品
CN201780073733.XA CN110036129B (zh) 2016-11-30 2017-11-30 软氮化用钢和部件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-233423 2016-11-30
JP2016233423 2016-11-30

Publications (1)

Publication Number Publication Date
WO2018101451A1 true WO2018101451A1 (ja) 2018-06-07

Family

ID=62241755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043211 WO2018101451A1 (ja) 2016-11-30 2017-11-30 軟窒化用鋼および部品

Country Status (7)

Country Link
US (1) US11242593B2 (ja)
EP (1) EP3550048B1 (ja)
JP (2) JP6610808B2 (ja)
KR (1) KR102240150B1 (ja)
CN (1) CN110036129B (ja)
MX (1) MX2019006232A (ja)
WO (1) WO2018101451A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020090816A1 (ja) * 2018-10-29 2020-05-07 日本製鉄株式会社 窒化部品粗形材、および窒化部品
WO2020090739A1 (ja) * 2018-10-31 2020-05-07 Jfeスチール株式会社 軟窒化用鋼および軟窒化部品並びにこれらの製造方法
WO2020153185A1 (ja) * 2019-01-25 2020-07-30 古河ロックドリル株式会社 ドリルツールおよびその製造方法
JP2020117789A (ja) * 2019-01-25 2020-08-06 Jfeスチール株式会社 自動車変速機用リングギアおよびその製造方法
JP2020152938A (ja) * 2019-03-18 2020-09-24 愛知製鋼株式会社 窒化用鍛造部材及びその製造方法、並びに表面硬化鍛造部材及びその製造方法
WO2022050300A1 (ja) 2020-09-02 2022-03-10 第一三共株式会社 新規エンド-β-N-アセチルグルコサミニダーゼ

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021088083A (ja) 2019-12-03 2021-06-10 セイコーエプソン株式会社 液体噴射ヘッドおよび液体噴射システム
CN111455290A (zh) * 2020-04-15 2020-07-28 深圳市兴鸿泰锡业有限公司 一种镀锡板及其生产方法
EP4151760A4 (en) * 2020-05-15 2023-10-11 JFE Steel Corporation STEEL COMPONENT

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0559488A (ja) 1991-09-02 1993-03-09 Kobe Steel Ltd 機械加工性の優れた析出硬化型高強度軟窒化用鋼
JP2002069572A (ja) 2000-08-29 2002-03-08 Nippon Steel Corp 曲げ疲労強度に優れた軟窒化用鋼
JP2010163671A (ja) 2009-01-19 2010-07-29 Jfe Bars & Shapes Corp 軟窒化用鋼
WO2012067181A1 (ja) * 2010-11-17 2012-05-24 新日本製鐵株式会社 窒化用鋼及び窒化処理部品
WO2013121794A1 (ja) * 2012-02-15 2013-08-22 Jfe条鋼株式会社 軟窒化用鋼およびこの鋼を素材とする軟窒化部品
WO2014017074A1 (ja) * 2012-07-26 2014-01-30 Jfeスチール株式会社 軟窒化用鋼および軟窒化部品ならびにこれらの製造方法
JP2016056451A (ja) * 2014-09-05 2016-04-21 Jfeスチール株式会社 軟窒化用鋼および部品ならびにこれらの製造方法
WO2016152167A1 (ja) * 2015-03-24 2016-09-29 Jfeスチール株式会社 軟窒化用鋼および部品並びにこれらの製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000282175A (ja) 1999-04-02 2000-10-10 Kawasaki Steel Corp 加工性に優れた超高強度熱延鋼板およびその製造方法
JP5245259B2 (ja) 2007-02-21 2013-07-24 新日鐵住金株式会社 延性に優れた高強度鋼板およびその製造方法
JP5783101B2 (ja) 2012-03-22 2015-09-24 新日鐵住金株式会社 窒化用鋼材

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0559488A (ja) 1991-09-02 1993-03-09 Kobe Steel Ltd 機械加工性の優れた析出硬化型高強度軟窒化用鋼
JP2002069572A (ja) 2000-08-29 2002-03-08 Nippon Steel Corp 曲げ疲労強度に優れた軟窒化用鋼
JP2010163671A (ja) 2009-01-19 2010-07-29 Jfe Bars & Shapes Corp 軟窒化用鋼
WO2012067181A1 (ja) * 2010-11-17 2012-05-24 新日本製鐵株式会社 窒化用鋼及び窒化処理部品
WO2013121794A1 (ja) * 2012-02-15 2013-08-22 Jfe条鋼株式会社 軟窒化用鋼およびこの鋼を素材とする軟窒化部品
WO2014017074A1 (ja) * 2012-07-26 2014-01-30 Jfeスチール株式会社 軟窒化用鋼および軟窒化部品ならびにこれらの製造方法
JP5567747B2 (ja) 2012-07-26 2014-08-06 Jfeスチール株式会社 軟窒化用鋼および軟窒化部品ならびにこれらの製造方法
JP2016056451A (ja) * 2014-09-05 2016-04-21 Jfeスチール株式会社 軟窒化用鋼および部品ならびにこれらの製造方法
WO2016152167A1 (ja) * 2015-03-24 2016-09-29 Jfeスチール株式会社 軟窒化用鋼および部品並びにこれらの製造方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020090816A1 (ja) * 2018-10-29 2020-05-07 日本製鉄株式会社 窒化部品粗形材、および窒化部品
JPWO2020090816A1 (ja) * 2018-10-29 2021-09-16 日本製鉄株式会社 窒化部品粗形材、および窒化部品
JP7273324B2 (ja) 2018-10-29 2023-05-15 日本製鉄株式会社 窒化部品粗形材、および窒化部品
WO2020090739A1 (ja) * 2018-10-31 2020-05-07 Jfeスチール株式会社 軟窒化用鋼および軟窒化部品並びにこれらの製造方法
JP6721141B1 (ja) * 2018-10-31 2020-07-08 Jfeスチール株式会社 軟窒化用鋼および軟窒化部品並びにこれらの製造方法
US11814709B2 (en) 2018-10-31 2023-11-14 Jfe Steel Corporation Steel for nitrocarburizing and nitrocarburized component, and methods of producing same
JP7263796B2 (ja) 2019-01-25 2023-04-25 Jfeスチール株式会社 自動車変速機用リングギアおよびその製造方法
WO2020153185A1 (ja) * 2019-01-25 2020-07-30 古河ロックドリル株式会社 ドリルツールおよびその製造方法
JP2020117790A (ja) * 2019-01-25 2020-08-06 古河ロックドリル株式会社 ドリルツールおよびその製造方法
JP2020117789A (ja) * 2019-01-25 2020-08-06 Jfeスチール株式会社 自動車変速機用リングギアおよびその製造方法
JP2020152938A (ja) * 2019-03-18 2020-09-24 愛知製鋼株式会社 窒化用鍛造部材及びその製造方法、並びに表面硬化鍛造部材及びその製造方法
JP7196707B2 (ja) 2019-03-18 2022-12-27 愛知製鋼株式会社 窒化用鍛造部材及びその製造方法、並びに表面硬化鍛造部材及びその製造方法
KR20230061360A (ko) 2020-09-02 2023-05-08 다이이찌 산쿄 가부시키가이샤 신규 엔도-β-N-아세틸글루코사미니다아제
WO2022050300A1 (ja) 2020-09-02 2022-03-10 第一三共株式会社 新規エンド-β-N-アセチルグルコサミニダーゼ

Also Published As

Publication number Publication date
JP6610808B2 (ja) 2019-11-27
KR20190077033A (ko) 2019-07-02
US11242593B2 (en) 2022-02-08
MX2019006232A (es) 2019-08-01
CN110036129A (zh) 2019-07-19
EP3550048A4 (en) 2019-12-04
JPWO2018101451A1 (ja) 2019-02-28
EP3550048B1 (en) 2021-03-10
US20200149148A1 (en) 2020-05-14
CN110036129B (zh) 2021-11-02
EP3550048A1 (en) 2019-10-09
JP2019218633A (ja) 2019-12-26
KR102240150B1 (ko) 2021-04-13
JP6737387B2 (ja) 2020-08-05

Similar Documents

Publication Publication Date Title
JP6610808B2 (ja) 軟窒化用鋼および部品
US10202677B2 (en) Production method of carburized steel component and carburized steel component
JP5567747B2 (ja) 軟窒化用鋼および軟窒化部品ならびにこれらの製造方法
WO2013121794A1 (ja) 軟窒化用鋼およびこの鋼を素材とする軟窒化部品
US11959177B2 (en) Steel for nitrocarburizing and nitrocarburized component, and methods of producing same
JP2006307271A (ja) 耐結晶粒粗大化特性と冷間加工性に優れた軟化焼鈍の省略可能な肌焼用鋼およびその製法
JP6225965B2 (ja) 軟窒化用鋼および部品ならびにこれらの製造方法
JP6431456B2 (ja) 軟窒化用鋼および部品ならびにこれらの製造方法
JP2006307270A (ja) 耐結晶粒粗大化特性と冷間加工性に優れた肌焼用鋼およびその製法
JP6721141B1 (ja) 軟窒化用鋼および軟窒化部品並びにこれらの製造方法
JPH11229032A (ja) 軟窒化用鋼材の製造方法及びその鋼材を用いた軟窒化部品
JP6477614B2 (ja) 軟窒化用鋼および部品ならびにこれらの製造方法
JPH11335732A (ja) 軟窒化用鋼材の製造方法及びその鋼材を用いた軟窒化部品

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018554271

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17875706

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197015288

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017875706

Country of ref document: EP

Effective date: 20190701