WO2018101390A1 - 永久磁石 - Google Patents
永久磁石 Download PDFInfo
- Publication number
- WO2018101390A1 WO2018101390A1 PCT/JP2017/042996 JP2017042996W WO2018101390A1 WO 2018101390 A1 WO2018101390 A1 WO 2018101390A1 JP 2017042996 W JP2017042996 W JP 2017042996W WO 2018101390 A1 WO2018101390 A1 WO 2018101390A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rotor
- permanent magnet
- magnetic pole
- pole surface
- magnetic
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
- H02K1/2706—Inner rotors
- H02K1/272—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
- H02K1/274—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
- H02K1/2753—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
- H02K1/276—Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/02—Details of the magnetic circuit characterised by the magnetic material
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/24—Rotor cores with salient poles ; Variable reluctance rotors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
- H02K1/2706—Inner rotors
- H02K1/272—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
- H02K1/274—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
- H02K1/2753—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
- H02K1/276—Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
- H02K1/2766—Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
- H02K1/2706—Inner rotors
- H02K1/272—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
- H02K1/274—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
- H02K1/2753—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
- H02K1/278—Surface mounted magnets; Inset magnets
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K15/00—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
- H02K15/02—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
- H02K15/03—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K29/00—Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
- H02K29/03—Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K41/00—Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
- H02K41/02—Linear motors; Sectional motors
- H02K41/03—Synchronous motors; Motors moving step by step; Reluctance motors
- H02K41/031—Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type
- H02K41/033—Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type with armature and magnets on one member, the other member being a flux distributor
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K2201/00—Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
- H02K2201/03—Machines characterised by aspects of the air-gap between rotor and stator
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K2213/00—Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
- H02K2213/03—Machines characterised by numerical values, ranges, mathematical expressions or similar information
Definitions
- the present invention relates to a permanent magnet used for a rotor of a rotating electrical machine.
- Some rotors of permanent magnet type rotating electrical machines are formed by embedding permanent magnets inside the rotor core.
- An example of such a rotor is shown in Patent Document 1 and Patent Document 2, which are cited below.
- the rotor (11) disclosed in Patent Document 1 is formed by embedding a flat permanent magnet (102) in a rotor core (101) (see Patent Document 1: FIGS. 2 to 4).
- the rotor (11) of Patent Document 1 has four poles (two pole pairs).
- Patent Document 2 also shows a rotor formed by embedding a flat permanent magnet (21) in a rotor core (20). This rotor has eight magnetic poles (four pole pairs).
- FIG. 10 showing an example of the rotor 200 similar to that of Patent Document 1.
- the width in which the permanent magnet can be arranged is restricted by the diameter of the rotor core 3 (radius r shown in FIG. 10) and the number of magnetic poles P.
- the radius r of the rotor core (101) of Patent Document 1 and the rotor core (20) of Patent Document 2 are the same, the case of Patent Document 1 as compared to the case where the magnetic pole P is 8 poles as in Patent Document 2 will be described.
- the installation allowable width W can be increased when the number of magnetic poles P is four.
- the plate-like permanent magnet 100 in order to increase the magnetic flux of the plate-like permanent magnet 100 having a width within the set allowable width W while maintaining the number of the magnetic poles P, in the direction along the rotation axis X (axial direction). It is necessary to lengthen the flat permanent magnet 100. However, if the plate-like permanent magnet 100 is lengthened in the axial direction, the rotor 200 becomes larger, which hinders the downsizing of the rotating electrical machine.
- the permanent magnet used for the rotor of the rotating electrical machine has the magnetic pole surface on both of the two magnetic pole surfaces in an axial orthogonal cross section orthogonal to the rotation axis of the rotor in the mounted state attached to the rotor. Concavities and convexities that repeatedly protrude and retreat with a curvature larger than the average curvature are formed.
- the permanent magnet used for the rotor of the rotating electrical machine is an intermediate between the separation distances of the two magnetic pole faces in an axial orthogonal cross section orthogonal to the rotation axis of the rotor in an attached state attached to the rotor.
- the virtual center line connecting the positions has a concavo-convex shape that repeatedly protrudes and retracts with a curvature larger than the average curvature of the magnetic pole surface.
- the curve is longer between the straight line and the curve connecting the same two points.
- a rectangular flat plate-shaped permanent magnet whose magnetic pole surface is linear is compared with a permanent magnet whose magnetic pole surface has a concave-convex shape and a curved shape. Even if the length between the end portions in the circumferential direction of these permanent magnets is the same in the axial orthogonal cross section in the mounted state, the length of the magnetic pole surface extends is a rectangular flat plate whose cross section of the magnetic pole surface is linear
- the permanent magnet having a curved cross section of the magnetic pole surface is longer than the permanent magnet having the shape. A larger surface area of the magnetic pole face can generate more effective magnetic flux.
- the effective magnetic flux can be increased without making the permanent magnet long in the circumferential direction and the axial direction of the rotor core by making the cross section of the magnetic pole surface curved. That is, according to this configuration, it is possible to increase the effective magnetic flux of the permanent magnet attached to the rotor while suppressing an increase in size of the rotor.
- FIG. 1 shows a cross section of the permanent magnet 1 in an attached state in which the permanent magnet 1 is attached to the rotor 2.
- FIG. 2 is an axial orthogonal sectional view showing an example of the rotor 2 to which the permanent magnet 1 is attached
- FIG. 10 is an axial orthogonal sectional view showing an example of a general rotor 200 as a comparative example.
- the rotor 2 and the rotor 200 illustrated in FIGS. 2 and 10 both have four poles (two pole pairs).
- the rotor 200 of the comparative example shown in FIG. 10 is configured by embedding a plate-like permanent magnet (plate-like permanent magnet 100) in the magnet insertion hole 5 formed in the rotor core 3.
- a space indicated by reference numeral 5 is formed in addition to a space in which the flat permanent magnet 100 is inserted.
- This air gap is referred to as a flux barrier 6 and is provided in order to suppress a short circuit of magnetic flux (magnetic flux short circuit between magnetic poles) between adjacent magnetic poles P in the circumferential direction C of the rotor 200.
- q-axis magnetic flux path 7 of magnetic flux (q-axis magnetic flux in a so-called dq-axis vector coordinate system) for generating reluctance torque.
- FIG. 10 illustrates the rotor 200 having four poles (two pole pairs) of magnetic poles P.
- the installation allowable width W is further shortened.
- the length in the circumferential direction C increases as the diameter of the rotor core 3 (for example, the radius r) increases, if the number of poles of the magnetic pole P is the same, the installation allowable width W is increased as the radius r of the rotor core 3 increases.
- the installation allowable width W depends on the number of poles (number of pole pairs) of the magnetic pole P and the diameter (radius r) of the rotor core 3.
- the diameter (radius r) of the rotor core 3 is increased when attempting to increase the allowable installation width W of the permanent magnet 1 while maintaining the number of poles.
- enlargement of the radius r is not preferable because it leads to an increase in the size of the rotor 2 and an increase in the size of the rotating electrical machine.
- this method also increases the size of the rotor 2 in the axial direction and the size of the rotating electrical machine.
- a neodymium magnet is constituted by sintering a molded product using a compound in which a magnetic raw material powder (magnetized ore is pulverized and powdered) and a binder as described below. Many.
- a magnetic raw material powder magnetized ore is pulverized and powdered
- a binder as described below.
- a flat plate shape is required for processing such as cutting the sintered neodymium magnet.
- a permanent magnet 100 is embedded in the rotor core 3.
- the rotor 2 may be increased in size as described above.
- FIG. 1 shows the principle of enlarging the surface area of the pole face 10 as described above.
- the flat permanent magnet 100 shown at the top of FIG. 1 is the same as the flat permanent magnet 100 illustrated in FIG.
- the length of the permanent magnet 1 in the direction along the installation allowable width W in the attached state in which the permanent magnet 1 is attached to the rotor core 3 is referred to as “permanent magnet width”. 1 and 10 illustrate a case where the width W1 of the flat permanent magnet 100 is a length corresponding to the installation allowable width W (the maximum width that the flat permanent magnet 100 can take).
- the generated magnetic flux is increased by setting the width W1 of the flat permanent magnet 100 to “W2” larger than “W1” as in the case of the enlarged permanent magnet 1M shown second from the top in FIG. be able to.
- the installation allowable width W is equal to “W1”
- the enlarged permanent magnet 1M having a width of “W2” cannot be used. Therefore, as shown in the third from the top in FIG. 1, the expansion permanent magnet 1 ⁇ / b> M is deformed so that the magnetic pole surface 10 of the expansion permanent magnet 1 ⁇ / b> M has irregularities 20, so that the width of the permanent magnet is set to the installation allowable width W.
- the permanent magnet 1 (1A) that is within is formed.
- the magnetic field is oriented in the form of a flat plate having the width W2 of the enlarged permanent magnet 1M, it is deformed and sintered to form the shape of the permanent magnet 1 (1A) using a mold or the like.
- the permanent magnet 1 (1A) is formed.
- a compound is produced by first mixing a magnetic raw material powder (pulverized magnetic ore or the like) and a binder. This compound is formed into a shape that conforms to, for example, a flat plate-shaped enlarged permanent magnet 1M, and a magnetic field is applied to the formed product to apply magnetic field orientation.
- the molded product whose magnetic field orientation has been completed is deformed into a predetermined shape (in this case, the shape of the permanent magnet 1 (1A) having the concavo-convex 20) and solidified by sintering to form the permanent magnet 1 (1A). .
- the formed permanent magnet 1 (1 ⁇ / b> A) has an average cross section of the two magnetic pole surfaces 10 in the axial orthogonal cross section orthogonal to the rotation axis X of the rotor 2 in the attached state attached to the rotor 2. It is a concavo-convex shape having concavo-convex 20 that repeatedly protrudes and retreats with a curvature larger than the curvature.
- the permanent magnet 1 (1A) has a curvature in which the virtual center line VC connecting the intermediate positions of the separation distances D of the two magnetic pole faces 10 is larger than the average curvature of the magnetic pole faces 10 in the axial orthogonal section. It has a concave-convex shape (20) that repeatedly protrudes and retreats (see FIG. 8).
- corrugation 20 is not restricted to the form which has circular-arc-shaped cross-sectional shape.
- the cross-sectional shape of the unevenness 20 may be triangular as in the permanent magnet 1 (1B) illustrated in FIG. 3 or may be rectangular although not shown.
- both the two magnetic pole faces 10 have a curvature larger than the average curvature of the magnetic pole face 10 in the axial orthogonal cross section. It is an uneven shape having unevenness 20 that repeatedly protrudes and retracts. Further, as illustrated in FIG.
- the virtual center line VC connecting the intermediate positions of the separation distances D of the two magnetic pole faces 10 in the axial orthogonal cross section is
- the concavo-convex shape (20) has a curvature larger than the average curvature of the magnetic pole surface 10 and repeatedly protrudes and retracts.
- the “curved shape” is not a straight line, that is, “triangular, "Rectangular shape (or triangular wave shape, rectangular wave shape)".
- the curvature even if the cross-sectional shape is triangular or rectangular, it can be approximated to a set of a plurality of arcs using a known Fourier series expansion or the like.
- the curvature of the arc of the basic shape (corresponding to the fundamental wave in the Fourier series expansion) of the plurality of arcs is preferably the curvature of the unevenness 20.
- the magnetic flux can be increased by increasing the surface area of the magnetic pole face 10 of the permanent magnet 1 as described above, it is necessary to extend the rotor core 3 in the axial direction or enlarge the diameter (radius r) of the rotor core 3. Absent. That is, since the increase in size of the rotor 2 is suppressed, the cost of raw materials such as coils wound around the rotor core 3 and the stator can also be suppressed.
- Both the two magnetic pole faces 10 of the permanent magnet 1 (1A, 1B, 1C) illustrated in FIGS. 1 to 4 have protrusions and depressions 20 that repeatedly protrude and retreat with a curvature larger than the average curvature of the magnetic pole face 10. Is formed.
- the unevenness 20 continuously changes along the circumferential direction C of the rotor 2 in the attached state. Thereby, the permanent magnet 1 (1A, 1B, 1C) can generate the regularly stable magnetic flux.
- the two magnetic pole faces 10 are distinguished, they are referred to as a first magnetic pole face 11 and a second magnetic pole face 12, respectively.
- the two magnetic pole faces 10 of the permanent magnet 1 (1A, 1B, 1C) illustrated in FIGS. 1 to 4 are formed with irregularities 20 that repeatedly project and retract with the following rules. That is, the concave portion 22 of the unevenness 20 on the first magnetic pole surface 11 and the convex portion 21 of the unevenness 20 on the second magnetic pole surface 12 are formed at corresponding positions in the circumferential direction C of the rotor 2 in the attached state. 11 and the concave portion 22 of the unevenness 20 on the second magnetic pole surface 12 are formed at corresponding positions in the circumferential direction C of the rotor 2 in the attached state.
- the thickness of the permanent magnet 1 in the direction orthogonal to the RP is made substantially uniform.
- the approximate plane RP is a plane obtained by approximating the magnetic pole surface (10) that is curved in the axial orthogonal section so as to be linear in the axial orthogonal section.
- the distance D between the two magnetic pole faces 10 in the axial orthogonal section may be the same at each position in the direction along the magnetic pole face 10 in the axial orthogonal section (see FIGS. 8 and 9). If the thickness of the permanent magnet 1 can be made uniform, the permanent magnet 1 is difficult to demagnetize and a magnetic flux can be generated stably.
- the direction of the magnetic flux generated by the permanent magnet 1 can be variously set when the permanent magnet 1 is formed.
- the permanent magnet 1 (1 ⁇ / b> A) can be set so that the direction of the magnetic flux B on the magnetic pole surface 10 is orthogonal to the surface of the rotor 2 in the attached state.
- the form which the magnetic flux B from the magnetic pole surface 10 follows in the direction orthogonal to the tangent with respect to the surface of the rotor 2 (rotor core 3) in an axial orthogonal cross section is illustrated.
- FIG. 6 shows a direction (in parallel) along the reference direction CR, with a direction perpendicular to the reference tangent S to the surface of the rotor 2 (rotor core 3) at the center position of the magnetic pole P in the circumferential direction C in the axial orthogonal cross section as a reference direction CR.
- the direction along which the magnetic flux B from the magnetic pole surface 10 is along is illustrated.
- the variation of the magnetic flux B is reduced in the direction along the approximate straight line RL of the magnetic pole surface 10 in the axial orthogonal cross section.
- the approximate straight line RL is a straight line obtained by approximating the magnetic pole surface 10 having a curved shape in the axial orthogonal cross section so as to be linear in the axial orthogonal cross section.
- the permanent magnet 1 having such magnetic characteristics according to the magnetic characteristics required for the rotating electrical machine. As described above, when the magnetic field orientation is performed in the state of the compound molded product, the magnetic field orientation is performed in consideration of the shape of the sintered permanent magnet 1 (1A, 1B, 1C). Is preferred.
- the direction of the magnetic flux B generated by the permanent magnet 1 may be a direction orthogonal to the magnetic pole surface 10 as shown in FIG.
- the thickness of the permanent magnet 1 in the direction along the magnetic flux B can be made uniform, the occurrence of demagnetization can be suppressed and the highly reliable permanent magnet 1 can be formed.
- the permanent magnet 1 is constituted by a neodymium sintered magnet.
- the permanent magnet 1 is not limited to a neodymium sintered magnet, and may be configured using, for example, a bond magnet or a rubber magnet.
- bond magnets and rubber magnets have a lower residual magnetic flux density after magnetic field orientation than neodymium sintered magnets. Therefore, preferably, the permanent magnet 1 is composed of a neodymium sintered magnet.
- the permanent magnet (1) used in the rotor (2) of the rotating electrical machine in view of the above is a rotating shaft (X) of the rotor (2) in an attached state attached to the rotor (2).
- the two magnetic pole faces (10) both have an uneven shape that repeatedly protrudes and retracts with a curvature larger than the average curvature of the magnetic pole face (10).
- the permanent magnet (1) used for the rotor (2) of the rotating electrical machine is orthogonal to the rotation axis (X) of the rotor (2) in the attached state attached to the rotor (2).
- the virtual center line (VC) connecting the intermediate positions of the separation distances (D) of the two magnetic pole faces (10) in the axial orthogonal cross section has a curvature larger than the average curvature of the magnetic pole face (10). It has an uneven shape that repeatedly protrudes and retreats.
- the curve is longer between the straight line and the curve connecting the same two points.
- the permanent magnet (100) having a rectangular parallelepiped shape in which the magnetic pole surface (10) is linear and the permanent shape having a concave and convex shape having the concave and convex portions (20) on the magnetic pole surface (10) are curved. Compare with magnet (1). Even if the length (W) between the end portions in the circumferential direction (C) of these permanent magnets (1, 100) is the same in the axial orthogonal section in the mounted state, the length that the magnetic pole surface (10) extends.
- the permanent magnet (1) having a curved cross section of the magnetic pole surface (10) is longer than the permanent magnet (100) having a rectangular shape in the cross section of the magnetic pole surface (10).
- a larger surface area of the magnetic pole surface (10) can generate more effective magnetic flux. Therefore, the effective magnetic flux can be increased without making the permanent magnet long in the circumferential direction and axial direction of the rotor core by making the cross section of the magnetic pole face (10) curved. That is, according to this configuration, it is possible to increase the effective magnetic flux of the permanent magnet attached to the rotor while suppressing an increase in size of the rotor.
- the uneven shape is continuously changed along the circumferential direction of the rotor (2) in the attached state.
- the permanent magnet (1) can generate a regularly stable magnetic flux (B).
- the two magnetic pole surfaces (10) are a first magnetic pole surface (11) and a second magnetic pole surface (12), and the concave-convex recesses in the first magnetic pole surface (11). (22) and the convex and concave portions (21) on the second magnetic pole surface (12) are formed at corresponding positions in the circumferential direction (C) of the rotor (2) in the attached state.
- the concavo-convex convex portion (21) on one magnetic pole surface (11) and the concavo-convex concave portion (22) on the second magnetic pole surface (12) are circumferential directions of the rotor (2) in the attached state ( It is preferable that it is formed at a corresponding position in C).
- the concave portion (22) and the convex portion (21) correspond to different magnetic pole surfaces, the permanent magnet (1) in the direction orthogonal to the approximate plane (RP) of the magnetic pole surface (10). It is possible to obtain a permanent magnet (1) that can be made substantially uniform in thickness, hardly demagnetized, and stably generate a magnetic flux.
- the approximate plane (RP) is a plane obtained by approximating the magnetic pole surface (10) that is curved in the axial orthogonal cross section so as to be linear in the axial orthogonal cross section.
- the permanent magnet (1) used in the rotor (2) of the rotating electrical machine is in an axis orthogonal cross section orthogonal to the rotation axis (X) of the rotor (2) in the attached state attached to the rotor (2).
- the separation distance (D) is the same at each position in the direction along the magnetic pole surface (10) in the cross section perpendicular to the axis.
- the thickness of the permanent magnet (1) can be made uniform, the permanent magnet (1) is difficult to demagnetize and the permanent magnet (1) can stably generate magnetic flux.
- the direction of the magnetic flux (B) at the magnetic pole surface (10) is preferably a direction orthogonal to the surface of the rotor (2). It is.
- the variation of the magnetic flux (B) is reduced in the direction along the approximate straight line (RL) of the magnetic pole surface (10) in the cross section orthogonal to the axis.
- the rotor (2) having magnetic characteristics capable of suppressing the generation of torque called ripple torque or cogging torque is formed. be able to.
- the approximate straight line (RL) is a straight line obtained by approximating the magnetic pole surface (10) that is curved in the axial orthogonal cross section so as to be linear in the axial orthogonal cross section.
- the direction of the magnetic flux (B) at the magnetic pole surface (10) is a direction perpendicular to the magnetic pole surface (10).
- the thickness of the permanent magnet (1) in the direction along the magnetic flux (B) can be made uniform, so that the demagnetization is suppressed and the permanent magnet (1) with high reliability is suppressed. Can be formed.
- the rotor (2) is preferably a rotor for an embedded magnet type rotating electrical machine.
- a flux barrier In a rotor for an embedded magnet type rotating electrical machine, a flux barrier is referred to as a flux barrier between magnetic poles in order to suppress short-circuiting of magnetic flux (B) between adjacent magnetic poles (P) in the circumferential direction (C). In many cases, a void is provided. In addition, a path (q-axis flux path) of a magnetic flux (q-axis flux in a so-called dq-axis vector coordinate system) for generating a reluctance torque between adjacent magnetic poles (P) in the circumferential direction (C) is also provided. Often provided.
- the magnetic pole surface (10) is a curved surface having an uneven shape in the cross section perpendicular to the axis, it is possible to give the magnetic pole surface (10) a surface area that exceeds the limit of the width (W).
- the magnetic flux (B) generated according to the surface area of the magnetic pole face (10) can be increased. Therefore, in the rotor for an embedded magnet type rotating electrical machine, the application of the permanent magnet (1) having the above-described configuration is suitable.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Electromagnetism (AREA)
- Manufacturing & Machinery (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
Abstract
ロータの大型化を抑制すると共にロータに取り付けられる永久磁石の有効磁束を増加させる。回転電機のロータ(2)に用いられる永久磁石(1)は、ロータ(2)に取り付けられた取付状態でのロータ(2)の回転軸(X)に直交する軸直交断面において、2つの磁極面(10)の双方が、磁極面(10)の平均曲率よりも大きい曲率を有して繰り返し突出及び引退する凹凸(20)を有する凹凸形状となっている。
Description
本発明は、回転電機のロータに用いられる永久磁石に関する。
永久磁石式回転電機のロータには、ロータコアの内部に永久磁石を埋め込んで形成されるものがある。下記に出典を示す特許文献1及び特許文献2には、そのようなロータの一例が示されている。以下、背景技術の説明において括弧付きで示す符号は、参照する文献で用いられる参照符号である。特許文献1に示されたロータ(11)は、ロータコア(101)に平板状の永久磁石(102)が埋め込まれて形成されている(特許文献1:図2~図4参照)。特許文献1のロータ(11)は、4極(2極対)の磁極を有している。特許文献2にも、ロータコア(20)に平板状の永久磁石(21)が埋め込まれて形成されたロータが示されている。このロータは、8極(4極対)の磁極を有している。
以下、特許文献1と同様のロータ200の一例を示す図10も参照して説明する。永久磁石の加工コストを考慮すると、特許文献1や特許文献2のように平板状の永久磁石を利用することが好ましい。しかし、永久磁石を配置できる幅(図10に示す設置許容幅W)は、ロータコア3の径(図10に示す半径r)や、磁極Pの数によって制約を受ける。例えば、特許文献1のロータコア(101)と特許文献2のロータコア(20)の半径rが同じだとすれば、特許文献2のように磁極Pが8極の場合に比べて、特許文献1のように磁極Pが4極の場合の方が、設置許容幅Wを長く取ることができる。ここで、磁極Pの数を維持しつつ、定められた設置許容幅W以内の幅を有する平板状永久磁石100の磁束を増加させるためには、回転軸Xに沿った方向(軸方向)に平板状永久磁石100を長くする必要がある。しかし、軸方向に平板状永久磁石100を長くするとロータ200が大型化し、回転電機の小型化の妨げとなる。
上記背景に鑑みて、ロータの大型化を抑制すると共にロータに取り付けられる永久磁石の有効磁束を増加させる技術が望まれる。
上記に鑑みた、回転電機のロータに用いられる永久磁石は、前記ロータに取り付けられた取付状態での前記ロータの回転軸に直交する軸直交断面において、2つの磁極面の双方に、当該磁極面の平均曲率よりも大きい曲率を有して繰り返し突出及び引退する凹凸が形成されている。また、別の観点では、回転電機のロータに用いられる永久磁石は、前記ロータに取り付けられた取付状態での前記ロータの回転軸に直交する軸直交断面における、2つの磁極面の離間距離の中間位置を結んだ仮想中心線が、前記磁極面の平均曲率よりも大きい曲率を有して繰り返し突出及び引退する凹凸形状となっている。
同一の2点間を結ぶ直線と曲線とでは、曲線の方が長くなる。ここで、軸直交断面において、磁極面が直線状である直方平板状の永久磁石と、磁極面が凹凸を有した凹凸形状で曲線状となる永久磁石とを比較する。取付状態における軸直交断面において、これらの永久磁石の周方向の端部間の長さが同じであっても、磁極面が延在する長さは、磁極面の断面が直線状である直方平板状の永久磁石よりも、磁極面の断面が曲線状となる永久磁石の方が長くなる。磁極面の表面積が大きい方が有効磁束を多く発生させることができる。従って、磁極面の断面を曲線状とすることによって、永久磁石をロータコアの周方向及び軸方向に長くすることなく、有効磁束を増加させることができる。即ち、本構成によれば、ロータの大型化を抑制すると共にロータに取り付けられる永久磁石の有効磁束を増加させることができる。
回転電機のロータに用いられる永久磁石のさらなる特徴と利点は、図面を参照して説明する実施形態についての以下の記載から明確となる。
以下、埋込磁石型回転電機のロータの実施形態を図面に基づいて説明する。図1は、永久磁石1をロータ2へ取り付けた取付状態における永久磁石1の断面を示している。図2は、永久磁石1を取り付けたロータ2の一例を示す軸直交断面図、図10は、比較例としての一般的なロータ200の一例を示す軸直交断面図である。図2及び図10に例示するロータ2及びロータ200は、共に4極(2極対)の磁極を有している。
図10に示す比較例のロータ200は、ロータコア3に形成された磁石挿入孔5に、平板状の永久磁石(平板状永久磁石100)が埋め込まれて構成されている。磁石挿入孔5には、平板状永久磁石100が挿入される空間の他、符号5で示される空隙も形成されている。この空隙は、フラックスバリア6と称され、ロータ200の周方向Cにおいて隣接する磁極P同士での磁束の短絡(磁極間磁束短絡)を抑制するために設けられている。隣接する磁極Pのフラックスバリア6の間は、リラクタンストルクを生じさせるための磁束(いわゆるd-q軸ベクトル座標系におけるq軸磁束)の経路(q軸磁束経路7)となる。
このため、1つの磁極Pにおいて周方向Cに沿う方向に平板状永久磁石100を設置することができる幅(設置許容幅W)には制限がある。図10では、4極(2極対)の磁極Pを有するロータ200を例示しているが、さらに多くの極数(例えば8極(4極対)など)の磁極Pを有する場合には、設置許容幅Wはさらに短くなる。また、周方向Cの長さはロータコア3の径(例えば半径r)が長くなるほど長くなるので、磁極Pの極数が同じであれば、ロータコア3の半径rが長くなれば設置許容幅Wを長くすることができる。つまり、設置許容幅Wは、磁極Pの極数(極対数)及びロータコア3の径(半径r)に依存する。
磁極Pの数はコギングトルクの低減などを含む回転電機の要求仕様により定まるので、極数を保って永久磁石1の設置許容幅Wを広げようとすると、ロータコア3の径(半径r)を拡大する必要がある。しかし、半径rの拡大は、ロータ2の大型化、回転電機の大型化に繋がり、好ましくない。半径rも維持した状態で永久磁石1からの磁束を増加させるためには、ロータ2の回転軸Xの方向(軸方向)に永久磁石1を伸長させる必要がある。しかし、この方法でもロータ2が軸方向に大型化し、回転電機も大型化することになる。
ところで、近年、強い磁力を有する磁石としてネオジウム磁石など、希土類を用いた磁石の利用が拡大している。ネオジウム磁石は、下記で説明するように磁石原料の粉末(磁鉱石等を粉砕して粉末化したもの)とバインダーとを混合したコンパウンドを用いた成形物を焼結することによって構成されることが多い。焼結後のネオジウム焼結磁石を切削するような加工にはコストが発生するため、ネオジウム焼結磁石を用いたロータ2の場合には、多くの場合、図10に例示したように、平板状永久磁石100がロータコア3に埋め込まれる。ここで、ネオジウム焼結磁石が発生する磁束をさらに増加させようとすると、上述したようにロータ2の大型化を招く場合がある。
永久磁石1が発生する磁束は、磁極面10の表面積が大きいほど大きくなることが知られている。従って、設置許容幅Wを維持した状態で永久磁石1の磁極面10の表面積を大きくすれば、ロータ2の大型化を抑制した状態で磁束を増加させることができる。図1の説明図は、そのように、磁極面10の表面積を拡大する原理を示している。図1の最上段に示す平板状永久磁石100は、図10に例示した平板状永久磁石100と同一である。尚、以下の説明において、ロータコア3に永久磁石1を取り付けた取付状態において、設置許容幅Wに沿う方向の永久磁石1の長さを「永久磁石の幅」と称する。図1及び図10では、平板状永久磁石100の幅W1が、設置許容幅W(平板状永久磁石100が採り得る最大の幅)に対応する長さである場合を例示している。
ここで、平板状永久磁石100の幅W1を、図1の上から2番目に示す拡大永久磁石1Mのように、“W1”よりも大きい“W2”とすることによって、発生する磁束を増加させることができる。但し、上述したように、設置許容幅Wは、“W1”に等しいため、“W2”の幅を有する拡大永久磁石1Mを用いることはできない。そこで、図1の上から3番目に示すように、この拡大永久磁石1Mの磁極面10が凹凸20を有するように、拡大永久磁石1Mを変形させることによって、永久磁石の幅が設置許容幅W以内となる永久磁石1(1A)を形成する。具体的には、拡大永久磁石1Mの幅W2を有する平板状の形態で磁場を配向した後、成形型等を用いて永久磁石1(1A)の形状となるように変形させて焼結することによって永久磁石1(1A)を形成する。
例えば、はじめに磁石原料の粉末(磁鉱石等を粉砕して粉末化したもの)とバインダーとを混合してコンパウンドが生成される。このコンパウンドが、例えば平板状の拡大永久磁石1Mに準じた形状に成形され、この成形物に磁場が印加されることによって磁場配向を施される。磁場配向が完了した成形物を所定の形状(この場合は凹凸20を有する永久磁石1(1A)の形状)に変形させ、焼結することによって固化し、永久磁石1(1A)が形成される。
形成された永久磁石1(1A)は、ロータ2に取り付けられた取付状態でのロータ2の回転軸Xに直交する軸直交断面において、2つの磁極面10の双方が、当該磁極面10の平均曲率よりも大きい曲率を有して繰り返し突出及び引退する凹凸20を有する凹凸形状である。ロータコア3に、このような永久磁石1(1A)が収納できるように磁石挿入孔5を形成しておくことによって、設置許容幅Wを維持すると共に、磁束の発生量を増加させたロータ2を得ることができる(図1の下段、及び図2参照)。別の観点では、永久磁石1(1A)は、軸直交断面において、2つの磁極面10の離間距離Dの中間位置を結んだ仮想中心線VCが、磁極面10の平均曲率よりも大きい曲率を有して繰り返し突出及び引退する凹凸形状(20)となっている(図8参照)。
尚、凹凸20は、円弧状の断面形状を有する形態には限らない。凹凸20の断面形状は、図3に例示する永久磁石1(1B)のように三角状であってもよいし、不図示であるが矩形状であってもよい。図3に示すように、永久磁石1(1B)が三角形状であっても、軸直交断面において、2つの磁極面10の双方は、当該磁極面10の平均曲率よりも大きい曲率を有して繰り返し突出及び引退する凹凸20を有する凹凸形状である。また、図9に例示するように、永久磁石1(1B)が三角形状であっても、軸直交断面において、2つの磁極面10の離間距離Dの中間位置を結んだ仮想中心線VCが、磁極面10の平均曲率よりも大きい曲率を有して繰り返し突出及び引退する凹凸形状(20)となっている。
従って、本明細書において「軸直交断面において磁極面10が『曲線状』となる」などの表現を伴った場合においても、『曲線状』には、一直線ではない形状、つまり、『三角状、矩形状(或いは三角波状、矩形波状)』を含む。また、曲率についても同様である。例えば断面形状が三角状や矩形状であっても、公知のフーリエ級数展開等を利用して複数の円弧の集合に近似させることができる。この場合、これらの複数の円弧の内の基本形状(フーリエ級数展開での基本波に相当)の円弧の曲率を当該凹凸20の曲率とすると好適である。
このように永久磁石1の磁極面10の表面積を増やすことによって磁束を増加させることができるので、ロータコア3を軸方向に延長したり、ロータコア3の径(半径r)を拡大したりする必要もない。つまり、ロータ2が大型化することが抑制されるので、ロータコア3やステータに巻き回されるコイルなどの原材料費も抑制することができる。
また、図2では、図10と同様に、磁石挿入孔5にフラックスバリア6となる空隙を有する状態で永久磁石1が取り付けられる形態を例示している。しかし、図4に例示する永久磁石1(1C)のように、フラックスバリア6に対応する空間も含めてロータコア3に永久磁石1(1C)が埋め込まれる形態を妨げるものではない。
図1~図4に例示した永久磁石1(1A,1B,1C)の2つの磁極面10の双方には、磁極面10の平均曲率よりも大きい曲率を有して繰り返し突出及び引退する凹凸20が形成されている。この凹凸20は、取付状態においてロータ2の周方向Cに沿って連続的に変化している。これにより、永久磁石1(1A,1B,1C)は、規則的に安定した磁束を発生することができる。
ここで、2つの磁極面10を区別する場合には、それぞれ第1磁極面11及び第2磁極面12と称する。図1~図4に例示した永久磁石1(1A,1B,1C)の2つの磁極面10には、繰り返し突出及び引退する凹凸20が以下のような規則を有して形成されている。つまり、第1磁極面11における凹凸20の凹部22と、第2磁極面12における凹凸20の凸部21とが取付状態におけるロータ2の周方向Cにおいて対応する位置に形成され、第1磁極面11における凹凸20の凸部21と、第2磁極面12における凹凸20の凹部22とが取付状態におけるロータ2の周方向Cにおいて対応する位置に形成されている。
このように、異なる磁極面同士で、凹部22と凸部21とが対応するので、図1~図4に例示した永久磁石1(1A,1B,1C)のように、磁極面10の近似平面RPに直交する方向の永久磁石1の厚みがほぼ均一化される。尚、近似平面RPとは、軸直交断面において曲線状となる磁極面(10)を、軸直交断面において直線状となるように近似した平面である。また、別の観点では、軸直交断面における2つの磁極面10の離間距離Dが、軸直交断面において磁極面10に沿う方向の各位置で同じであるとよい(図8、図9参照)。永久磁石1の厚みを均一化することができると、永久磁石1が減磁しにくく、安定的に磁束を発生することができる。
ところで、永久磁石1が発生させる磁束の方向は、永久磁石1の形成時に種々設定することができる。例えば、図5に示すように、永久磁石1(1A)は、取付状態において、磁極面10での磁束Bの方向が、ロータ2の表面で直交する方向とすることができる。図5に示す例では、軸直交断面においてロータ2(ロータコア3)の表面に対する接線に直交する方向に、磁極面10からの磁束Bが沿う形態を例示している。図6は、軸直交断面において周方向Cにおける磁極Pの中心位置でのロータ2(ロータコア3)の表面に対する基準接線Sに直交する方向を基準方向CRとして、基準方向CRに沿う方向(平行する方向)に、磁極面10からの磁束Bが沿う形態を例示している。
図5及び図6の構成、特に図6の構成では、軸直交断面における磁極面10の近似直線RLに沿う方向において磁束Bのバラツキが少なくなる。尚、近似直線RLとは、軸直交断面において曲線状となる磁極面10を、軸直交断面において直線状となるように近似した直線である。永久磁石1(1A)からの磁束Bがこのように発生する場合、例えば、永久磁石1をロータコア3の表面近くに設置することによって、表面磁石型回転電機のロータに近い磁気特性を有するロータ2を構成することも可能となる。表面磁石型回転電機は、一般的に突極性や逆突極性と称される磁気特性が現れにくく、リップルトルクやコギングトルクと称されるトルクの発生が埋込磁石型回転電機よりも抑制される。従って、回転電機に要求される磁気特性に応じて、このような磁気特性を有する永久磁石1を用いると好適である。尚、上述したように、コンパウンドの成形物の状態で磁場配向が施される場合には、焼結後の永久磁石1(1A,1B,1C)の形状を考慮して磁場配向が行われると好適である。
また、永久磁石1が発生させる磁束Bの方向は、図7に示すように、磁極面10に直交する方向であってもよい。この場合には、例えば磁束Bに沿った方向の永久磁石1の厚みを均一化することができるので、減磁が生じることを抑制して信頼性の高い永久磁石1を形成することができる。
上記においては、ネオジウム焼結磁石により永久磁石1を構成する形態を例示して説明した。しかし、永久磁石1は、ネオジウム焼結磁石に限らず、例えばボンド磁石やラバー磁石等を用いて構成されていてもよい。但し、ボンド磁石やラバー磁石は、磁場配向を施した後の残留磁束密度がネオジウム焼結磁石と比べて低い。従って、好ましくは、永久磁石1は、ネオジウム焼結磁石により構成されるとよい。
〔実施形態の概要〕
以下、上記において説明した永久磁石(1)の概要について簡単に説明する。
以下、上記において説明した永久磁石(1)の概要について簡単に説明する。
1つの態様として、上記に鑑みた、回転電機のロータ(2)に用いられる永久磁石(1)は、前記ロータ(2)に取り付けられた取付状態での前記ロータ(2)の回転軸(X)に直交する軸直交断面において、2つの磁極面(10)の双方が、当該磁極面(10)の平均曲率よりも大きい曲率を有して繰り返し突出及び引退する凹凸形状である。また、別の観点では、回転電機のロータ(2)に用いられる永久磁石(1)は、前記ロータ(2)に取り付けられた取付状態での前記ロータ(2)の回転軸(X)に直交する軸直交断面における、2つの磁極面(10)の離間距離(D)の中間位置を結んだ仮想中心線(VC)が、前記磁極面(10)の平均曲率よりも大きい曲率を有して繰り返し突出及び引退する凹凸形状となっている。
同一の2点間を結ぶ直線と曲線とでは、曲線の方が長くなる。ここで、軸直交断面において、磁極面(10)が直線状である直方平板状の永久磁石(100)と、磁極面(10)が凹凸(20)を有した凹凸形状で曲線状となる永久磁石(1)とを比較する。取付状態における軸直交断面において、これらの永久磁石(1,100)の周方向(C)の端部間の長さ(W)が同じであっても、磁極面(10)が延在する長さは、磁極面(10)の断面が直線状である直方平板状の永久磁石(100)よりも、磁極面(10)の断面が曲線状となる永久磁石(1)の方が長くなる。磁極面(10)の表面積が大きい方が有効磁束を多く発生させることができる。従って、磁極面(10)の断面を曲線状とすることによって、永久磁石をロータコアの周方向及び軸方向に長くすることなく、有効磁束を増加させることができる。即ち、本構成によれば、ロータの大型化を抑制すると共にロータに取り付けられる永久磁石の有効磁束を増加させることができる。
ここで、前記凹凸形状は、前記取付状態において前記ロータ(2)の周方向に沿って連続的に変化していると好適である。
この構成によれば、永久磁石(1)が規則的に安定した磁束(B)を発生することができる。
また、1つの態様として、前記2つの前記磁極面(10)は、第1磁極面(11)及び第2磁極面(12)であり、前記第1磁極面(11)における前記凹凸形状の凹部(22)と、前記第2磁極面(12)における前記凹凸形状の凸部(21)とが前記取付状態における前記ロータ(2)の周方向(C)において対応する位置に形成され、前記第1磁極面(11)における前記凹凸形状の凸部(21)と、前記第2磁極面(12)における前記凹凸形状の凹部(22)とが前記取付状態における前記ロータ(2)の周方向(C)において対応する位置に形成されていると好適である。
この構成によれば、異なる磁極面同士で、凹部(22)と凸部(21)とが対応するので、磁極面(10)の近似平面(RP)に直交する方向の永久磁石(1)の厚みをほぼ均一化することができ、減磁しにくく、安定的に磁束を発生する永久磁石(1)を得ることができる。尚、近似平面(RP)とは、軸直交断面において曲線状となる磁極面(10)を、軸直交断面において直線状となるように近似した平面である。
また、回転電機のロータ(2)に用いられる永久磁石(1)が、前記ロータ(2)に取り付けられた取付状態での前記ロータ(2)の回転軸(X)に直交する軸直交断面における、2つの磁極面(10)の離間距離(D)の中間位置を結んだ仮想中心線(VC)が、前記磁極面(10)の平均曲率よりも大きい曲率を有して繰り返し突出及び引退する凹凸形状となっている場合に、前記離間距離(D)は、前記軸直交断面における前記磁極面(10)に沿う方向の各位置で同じであると好適である。
この構成によれば、永久磁石(1)の厚みを均一化することができるので、永久磁石(1)が減磁しにくく、永久磁石(1)が安定的に磁束を発生することができる。
また、1つの態様として、永久磁石(1)は、前記取付状態において、前記磁極面(10)での磁束(B)の方向が、前記ロータ(2)の表面で直交する方向であると好適である。
この構成によれば、軸直交断面において、磁極面(10)の近似直線(RL)に沿う方向において磁束(B)のバラツキが少なくなる。例えば、永久磁石(1)をロータコア(3)の表面近くに設置することによって、リップルトルクやコギングトルクと称されるトルクの発生を抑制することができる磁気特性を有するロータ(2)を形成することができる。尚、近似直線(RL)とは、軸直交断面において曲線状となる磁極面(10)を、軸直交断面において直線状となるように近似した直線である。
また、1つの態様として、永久磁石(1)は、前記磁極面(10)での磁束(B)の方向が、前記磁極面(10)に直交する方向であると好適である。
この構成によれば、例えば磁束(B)に沿った方向の永久磁石(1)の厚みを均一化することができるので、減磁が生じることを抑制して信頼性の高い永久磁石(1)を形成することができる。
前記ロータ(2)は、埋込磁石型回転電機用ロータであると好適である。
埋込磁石型回転電機用ロータでは、周方向(C)において隣接する磁極(P)同士での磁束(B)の短絡(磁極間磁束短絡)を抑制するために、磁極間にフラックスバリアと称される空隙を設けることが多い。また、周方向(C)において隣接する磁極(P)の間には、リラクタンストルクを生じさせるための磁束(いわゆるd-q軸ベクトル座標系におけるq軸磁束)の経路(q軸磁束経路)も設けられることが多い。このため、1つの磁極(P)において周方向(C)に沿う方向に永久磁石(1)を設置することができる幅(W)には制限がある。軸直交断面において磁極面(10)が凹凸形状を有する曲面となることによって、磁極面(10)に、当該幅(W)による制限を超えた表面積を与えることが可能となる。これにより、磁極面(10)の表面積に応じて発生する磁束(B)を増加させることができる。従って、埋込磁石型回転電機用ロータにおいて、上述した構成の永久磁石(1)の適用は好適である。
1 :永久磁石
2 :ロータ
10 :磁極面
11 :第1磁極面
12 :第2磁極面
20 :凹凸
21 :凸部
22 :凹部
B :磁束
C :周方向
D :離間距離
VC :仮想中心線
X :回転軸
2 :ロータ
10 :磁極面
11 :第1磁極面
12 :第2磁極面
20 :凹凸
21 :凸部
22 :凹部
B :磁束
C :周方向
D :離間距離
VC :仮想中心線
X :回転軸
Claims (8)
- 回転電機のロータに用いられる永久磁石であって、
前記ロータに取り付けられた取付状態での前記ロータの回転軸に直交する軸直交断面において、2つの磁極面の双方は、当該磁極面の平均曲率よりも大きい曲率を有して繰り返し突出及び引退する凹凸形状となっている永久磁石。 - 前記凹凸形状は、前記取付状態において前記ロータの周方向に沿って連続的に変化している請求項1に記載の永久磁石。
- 前記2つの前記磁極面は、第1磁極面及び第2磁極面であり、
前記第1磁極面における前記凹凸形状の凹部と、前記第2磁極面における前記凹凸形状の凸部とが前記取付状態における前記ロータの周方向において対応する位置に形成され、
前記第1磁極面における前記凹凸形状の凸部と、前記第2磁極面における前記凹凸形状の凹部とが前記取付状態における前記ロータの周方向において対応する位置に形成されている、請求項1又は2に記載の永久磁石。 - 回転電機のロータに用いられる永久磁石であって、
前記ロータに取り付けられた取付状態での前記ロータの回転軸に直交する軸直交断面における、2つの磁極面の離間距離の中間位置を結んだ仮想中心線が、前記磁極面の平均曲率よりも大きい曲率を有して繰り返し突出及び引退する凹凸形状となっている永久磁石。 - 前記離間距離は、前記軸直交断面における前記磁極面に沿う方向の各位置で同じである請求項4に記載の永久磁石。
- 前記取付状態において、前記磁極面での磁束の方向が、前記ロータの表面で直交する方向である請求項1から5の何れか一項に記載の永久磁石。
- 前記磁極面での磁束の方向が、前記磁極面に直交する方向である請求項1から5の何れか一項に記載の永久磁石。
- 前記ロータは、埋込磁石型回転電機用ロータである請求項1から7の何れか一項に記載の永久磁石。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/341,586 US20190379247A1 (en) | 2016-11-30 | 2017-11-30 | Permanent magnet |
DE112017004436.7T DE112017004436T5 (de) | 2016-11-30 | 2017-11-30 | Permanentmagnet |
CN201780070828.6A CN109983651A (zh) | 2016-11-30 | 2017-11-30 | 永久磁铁 |
JP2018554233A JPWO2018101390A1 (ja) | 2016-11-30 | 2017-11-30 | 永久磁石 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-233186 | 2016-11-30 | ||
JP2016233186 | 2016-11-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018101390A1 true WO2018101390A1 (ja) | 2018-06-07 |
Family
ID=62241683
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/042996 WO2018101390A1 (ja) | 2016-11-30 | 2017-11-30 | 永久磁石 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20190379247A1 (ja) |
JP (1) | JPWO2018101390A1 (ja) |
CN (1) | CN109983651A (ja) |
DE (1) | DE112017004436T5 (ja) |
WO (1) | WO2018101390A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3132803B1 (fr) * | 2022-02-11 | 2024-07-26 | Renault Sas | Procédé de fabrication d’un rotor pour machine électrique |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07212994A (ja) * | 1994-01-24 | 1995-08-11 | Toshiba Corp | 永久磁石形モータ |
JP2000350428A (ja) * | 1999-04-16 | 2000-12-15 | Newage Internatl Ltd | 交流機器 |
JP2004023085A (ja) * | 2002-06-20 | 2004-01-22 | Aichi Steel Works Ltd | モータ用異方性ボンド磁石の配向処理方法 |
JP2006223048A (ja) * | 2005-02-10 | 2006-08-24 | Jtekt Corp | リング磁石の固定構造及び回転電機 |
JP2014011890A (ja) * | 2012-06-29 | 2014-01-20 | Jtekt Corp | 電動回転機およびその製造方法 |
CN103595212A (zh) * | 2013-10-17 | 2014-02-19 | 泰豪科技股份有限公司 | 一种混磁工频发电机 |
JP2014103741A (ja) * | 2012-11-19 | 2014-06-05 | Jtekt Corp | 磁石埋込型ロータ |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001314052A (ja) * | 2000-02-25 | 2001-11-09 | Nissan Motor Co Ltd | 同期電動機のロータ構造 |
CA2441746C (en) * | 2001-03-14 | 2010-06-29 | Akira Hosaka | Magnetic motor |
JP5709907B2 (ja) * | 2011-02-04 | 2015-04-30 | 三菱電機株式会社 | 車両用永久磁石埋込型回転電機 |
US8928198B2 (en) * | 2011-02-28 | 2015-01-06 | Uqm Technologies Inc. | Brushless PM machine construction enabling low coercivity magnets |
JP2013207977A (ja) | 2012-03-29 | 2013-10-07 | Daikin Ind Ltd | 回転電気機械および圧縮機 |
JP2016082696A (ja) | 2014-10-16 | 2016-05-16 | アイシン精機株式会社 | 埋込磁石型モータおよび埋込磁石型モータのロータ |
-
2017
- 2017-11-30 DE DE112017004436.7T patent/DE112017004436T5/de not_active Withdrawn
- 2017-11-30 US US16/341,586 patent/US20190379247A1/en not_active Abandoned
- 2017-11-30 WO PCT/JP2017/042996 patent/WO2018101390A1/ja active Application Filing
- 2017-11-30 CN CN201780070828.6A patent/CN109983651A/zh active Pending
- 2017-11-30 JP JP2018554233A patent/JPWO2018101390A1/ja active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07212994A (ja) * | 1994-01-24 | 1995-08-11 | Toshiba Corp | 永久磁石形モータ |
JP2000350428A (ja) * | 1999-04-16 | 2000-12-15 | Newage Internatl Ltd | 交流機器 |
JP2004023085A (ja) * | 2002-06-20 | 2004-01-22 | Aichi Steel Works Ltd | モータ用異方性ボンド磁石の配向処理方法 |
JP2006223048A (ja) * | 2005-02-10 | 2006-08-24 | Jtekt Corp | リング磁石の固定構造及び回転電機 |
JP2014011890A (ja) * | 2012-06-29 | 2014-01-20 | Jtekt Corp | 電動回転機およびその製造方法 |
JP2014103741A (ja) * | 2012-11-19 | 2014-06-05 | Jtekt Corp | 磁石埋込型ロータ |
CN103595212A (zh) * | 2013-10-17 | 2014-02-19 | 泰豪科技股份有限公司 | 一种混磁工频发电机 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2018101390A1 (ja) | 2019-07-18 |
DE112017004436T5 (de) | 2019-06-19 |
CN109983651A (zh) | 2019-07-05 |
US20190379247A1 (en) | 2019-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101880377B1 (ko) | 영구 자석 매립형 회전 전기 기기 | |
US10361599B2 (en) | Three-phase rotating electrical machine | |
US7902707B2 (en) | Anisotropic permanent magnet motor | |
US8598763B2 (en) | Field element | |
US9716411B2 (en) | Permanent-magnet-type rotating electric mechanism | |
JP4466681B2 (ja) | 回転電機のロータおよび回転電機 | |
US10003228B2 (en) | Interior permanent magnet machine with axially varying permanent magnet size | |
JP5713075B2 (ja) | ロータおよび回転電気機械 | |
JP2009254143A (ja) | ロータ及び埋込磁石型モータ | |
JP2011091911A (ja) | 永久磁石式回転電機 | |
JP5640678B2 (ja) | Ipmモータ用ロータとipmモータ | |
KR20150054859A (ko) | 영구 자석 전기 머신용 회전자 및 그 이용 | |
JP2008245336A (ja) | 回転子及び永久磁石回転電機 | |
US11601024B2 (en) | Rotating electrical machine | |
JP6314479B2 (ja) | 回転電機用ロータの製造方法 | |
JP4855747B2 (ja) | 永久磁石型リラクタンス回転電機 | |
WO2020100675A1 (ja) | 回転子およびそれを備えた回転電気機械 | |
EP3145054B1 (en) | Electrical rotating machine | |
JP6507956B2 (ja) | 永久磁石式回転電機 | |
WO2018101390A1 (ja) | 永久磁石 | |
JP5621372B2 (ja) | 永久磁石埋込型回転子及び回転電機 | |
JP4850439B2 (ja) | 埋め込み磁石型回転電機用永久磁石部材および回転電機 | |
JP3943532B2 (ja) | 焼結リング磁石 | |
CN207868887U (zh) | 一种高速永磁体同步电机转子结构 | |
WO2023195258A1 (ja) | ロータ、および回転電機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17876664 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018554233 Country of ref document: JP Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17876664 Country of ref document: EP Kind code of ref document: A1 |