WO2018101200A1 - 音響発生装置 - Google Patents

音響発生装置 Download PDF

Info

Publication number
WO2018101200A1
WO2018101200A1 PCT/JP2017/042385 JP2017042385W WO2018101200A1 WO 2018101200 A1 WO2018101200 A1 WO 2018101200A1 JP 2017042385 W JP2017042385 W JP 2017042385W WO 2018101200 A1 WO2018101200 A1 WO 2018101200A1
Authority
WO
WIPO (PCT)
Prior art keywords
acoustic signal
amplifier
speaker
voltage
current
Prior art date
Application number
PCT/JP2017/042385
Other languages
English (en)
French (fr)
Inventor
双太 栗林
Original Assignee
双太 栗林
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 双太 栗林 filed Critical 双太 栗林
Publication of WO2018101200A1 publication Critical patent/WO2018101200A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/04Circuits for transducers, loudspeakers or microphones for correcting frequency response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/12Circuits for transducers, loudspeakers or microphones for distributing signals to two or more loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/12Circuits for transducers, loudspeakers or microphones for distributing signals to two or more loudspeakers
    • H04R3/14Cross-over networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • H04R9/04Construction, mounting, or centering of coil

Definitions

  • the present invention relates to a sound generator that improves the frequency characteristics of sound output for reproduction by a speaker and improves sound quality.
  • an amplifier is sometimes referred to as an amplifier.
  • Patent Documents 1 and 2 use a double voice coil speaker to improve reproduction frequency characteristics, and one or both voice coils have an improvement circuit for only a specific frequency band such as the lowest resonance frequency f0. And are driven individually by each of the two amplifiers or commonly driven by one amplifier. Therefore, it is difficult to improve various speakers, for example, the entire frequency band of audible frequencies 20 Hz to 20 kHz.
  • An object of the present invention is to provide a sound generator that can use various speakers and improve characteristics over a predetermined frequency band to be sonicated, for example, the entire frequency band.
  • the present invention An acoustic signal source 20 for generating an acoustic signal;
  • a plurality of amplifiers 1 and 2 having different operation characteristics to which an acoustic signal is provided, and driving corresponding to the acoustic signal so that the sound pressure in the sound field by one or more speakers has a predetermined characteristic over a predetermined frequency band
  • a sound generator comprising: drive means 1, 2, 3, 4, 16, 17, 68, 69 for supplying a signal to a speaker by operating at least the amplifiers 1 and 2;
  • the system is characterized by using at least two amplifiers 1 and 2 which are amplifiers having different operating characteristics.
  • the amplifiers 1 and 2 having different operating characteristics are, for example, a voltage driven amplifier 1 and a current driven amplifier 2.
  • the same acoustic signal is input to two types of amplifiers, for example, two amplifiers, that is, the voltage-driven amplifier 1 and the current-driven amplifier 2, and various amplifiers 1 and 2 can drive various speakers.
  • various speakers are (1) a plurality of speakers each having a single voice coil, for example, in order to synthesize sound by the sound pressure of air in a sound field (FIGS. 1 and 20).
  • one speaker having a plurality of voice coils for example, a speaker having a double voice coil for synthesizing electromagnetic force, or a speaker having three or more voice coil turns (FIG. 8).
  • a speaker (FIGS. 9 to 11).
  • the synthesis can be achieved not only by sound pressure and electrical signals, but also by various other configurations, and the excellent effects of the present invention can be achieved by these synthesis.
  • a predetermined frequency band of sound pressure for example, the entire frequency band, for example, sound pressure characteristics, impedance, etc. that vary depending on the frequency, etc. Change or improve the characteristics to be as desired as desired.
  • Each of the plurality of speakers (FIGS. 1, 20, 23, and 26) is connected and configured to have the same polarity corresponding to the common acoustic signal from the acoustic signal source 20, for example, the acoustic signal is positive or negative. In this case, the vibration members of the plurality of speakers are displaced in the same direction before or after the displacement drive.
  • the speaker has a characteristic that impedance changes depending on the frequency of a given signal, and may be a speaker provided with a voice coil, but may be a ribbon speaker, a capacitor speaker, etc., and an element such as a piezoelectric element, ceramic, or crystal is used.
  • a speaker may be used.
  • various speakers can be used, and a plurality of amplifiers 1 and 2 having different operating characteristics, such as a voltage drive type and a current drive type, are used.
  • Characteristics of the desired level of sound pressure that vary depending on the frequency obtained in the sound field, for example, deviation or deterioration from the characteristics of flat sound pressure, which occurs when individually driven by the amplifier 1 or 2 Can be offset and supplemented. Therefore, it is easy to change or improve the sound pressure characteristics over a predetermined frequency band to be acousticized, for example, the entire frequency band so as to become as desired.
  • characteristics such as impedance may be used, and the characteristics of the speaker may be characteristics of a speaker unit that is a single speaker, but the speaker unit may be a box 107, 108, 65 (see FIG. 18, 19; 21, 22; 24, 25) may be the characteristics of the speaker devices 11, 13, and 14.
  • the characteristics of the speaker may be characteristics of a speaker unit that is a single speaker, but the speaker unit may be a box 107, 108, 65 (see FIG. 18, 19; 21, 22; 24, 25) may be the characteristics of the speaker devices 11, 13, and 14.
  • a plurality of speakers not only two speakers having the same characteristics, but also a combination of speakers having slightly different characteristics, such as two speakers having slightly different characteristics, are excellent in the present invention. The effect is achieved.
  • a sound pressure level of human hearing may be used.
  • FIGS. An acoustic signal source 20 that generates an acoustic signal of varying amplitude of voltage or current;
  • a voltage-driven amplifier 1 that amplifies and outputs the amplitude of the voltage in response to a change in the amplitude of the acoustic signal applied from the acoustic signal source 20;
  • a current-driven amplifier 2 that amplifies and outputs the amplitude of the current in response to a change in the amplitude of the acoustic signal applied from the acoustic signal source 20;
  • the second speaker 22 is driven by the output from the current-driven amplifier 2 and has a second characteristic in which the impedance changes in accordance with the frequency of the drive signal. The second characteristic approximates the first characteristic. : 60b
  • the frequency characteristics output from the first and second speakers 21 and 22 are improved, and the synthesized sound pressure felt by the listener's hearing in the sound field is flat over the desired frequency band. Sound quality is improved.
  • a voltage-driven amplifier 1 that amplifies the amplitude of the voltage in response to a change in the amplitude of the voltage of the acoustic signal from the acoustic signal source 20 has a characteristic that the impedance at the lowest resonance frequency f0 and the high frequency is increased.
  • the second speaker 22 having characteristics similar to those of the first speaker 21 is driven by the current-driven amplifier 2 that drives the speaker 21 and amplifies the amplitude of the current corresponding to the change in the amplitude of the voltage of the acoustic signal.
  • the speaker has a characteristic that an acoustic power or a sound pressure depending on a frequency of a driving signal for driving the speaker changes.
  • the voltage-driven and current-driven speakers 21 and 22 may have similar configurations, for example, may have the same configuration.
  • the speaker 6 in FIG. A straight cylindrical bobbin 83 having an axis is fixed on a straight line including the axis of the vibration member 81, and one or a plurality (2 in FIG.
  • coils 71 which are voice coils serving as an inductance component on the bobbin 83.
  • 72 are wound and fixed.
  • the magnetic circuit 84 displaces and drives the vibration member 81 so as to generate a sound pressure corresponding to the amplitude of the acoustic signal by the electromagnetic force of the coils 71 and 72.
  • the first and second speakers 21 and 22 synthesize the synthesized sound pressure perceived by the listener's hearing in the sound field so that the synthesized sound pressure is flat over the desired frequency band.
  • it may be a speaker such as a woofer or a tweeter for each frequency band in which the entire frequency band is divided into a plurality of predetermined frequencies.
  • reference numerals are generally indicated only by the numeral 60, omitting the subscripts a and b such as reference numerals 60a and 60b.
  • reference numerals 60a and 60b are generally indicated only by the numeral 60, omitting the subscripts a and b such as reference numerals 60a and 60b.
  • Corresponding parts are given the same subscript, and for example, corresponding to the woofer 60a, the same subscript a may be given to indicate a tweeter 61a or the like.
  • the woofer 60a and tweeter 61a in FIG. 20 are driven in the same manner in addition to the first speaker 21 in FIG.
  • the current driven amplifier 2 drives the woofer 60b and tweeter 61b of FIG. 20, the tweeter 64 of FIG. 23, the woofer 66b and tweeter 67b of FIG.
  • the voltage-driven amplifier 1 amplifies the voltage with respect to the input signal regardless of the electrical impedance of the speaker.
  • the voltage-driven amplifier 1 outputs a voltage proportional to the input voltage of the acoustic signal over the entire frequency band and applies it to a voice coil of a speaker as a load.
  • the current-driven amplifier 2 amplifies the current with respect to the input signal regardless of the electrical impedance of the speaker.
  • the current-driven amplifier 2 outputs a current proportional to the input voltage of the acoustic signal over the entire frequency band and passes it through a voice coil of a speaker as a load.
  • the acoustic signal from the acoustic signal source may be a signal whose amplitude of the current changes.
  • FIG. (A) an acoustic signal source 20 that generates an acoustic signal with varying voltage or current amplitude; (B) a voltage-driven amplifier 1 that amplifies and outputs the amplitude of the voltage in response to a change in the amplitude of the acoustic signal supplied from the acoustic signal source 20; (C) a current-driven amplifier 2 that amplifies and outputs the current amplitude in response to a change in the amplitude of the acoustic signal supplied from the acoustic signal source 20; (D) a speaker 6, A vibration member 81; A first coil 71 fixed to the vibration member 81 and provided with an output from the voltage-driven amplifier 1; A second coil 72 fixed to the vibration member 81 and provided with an output from the current-driven amplifier 2; And a speaker 6 having a magnetic circuit 84 for driving the vibration member
  • voltage driving and current driving can be achieved by a single speaker 6, and the configuration can be miniaturized.
  • An acoustic signal source 20 that generates an acoustic signal of varying amplitude of voltage or current;
  • a voltage-driven amplifier 1 that amplifies and outputs the amplitude of the voltage in response to a change in the amplitude of the acoustic signal applied from the acoustic signal source 20;
  • a current driven amplifier 2 that amplifies and outputs the amplitude of the current in response to a change in the amplitude of the acoustic signal from the acoustic signal source 20;
  • Synthesis circuits 16 and 17 for synthesizing outputs from the voltage-driven amplifier 1 and the current-driven amplifier 2;
  • the sound generating device includes a speaker 21 that is driven by outputs from the synthesis circuits 16 and 17 and whose impedance changes in accordance with the frequency of the drive signal.
  • the synthesis circuits 16 and 17 synthesize the output signals from the voltage driven amplifier 1 and the current driven amplifier 2 and drive one speaker 21, the configuration can be reduced in size. Can be achieved.
  • the present invention as shown in FIGS.
  • the synthesis circuit 16 (A) the first transformer 9, A first primary winding 86 to which the output from the voltage driven amplifier 1 is provided; A first transformer 9 having a first secondary winding 87 electromagnetically coupled to the first primary winding 86; (B) the second transformer 10, A second primary winding 88 to which the output from the current driven amplifier 2 is provided; A second transformer 10 having a second secondary winding 89 that is electromagnetically coupled to the second primary winding 88; (C) The first and second secondary windings 87 and 89 are connected in series with the same polarity and connected to the speaker 21.
  • the synthesis circuit 17 is realized by a transformer, which is A first primary winding 92 to which the output from the voltage driven amplifier 1 is provided; A second primary winding 93 to which the output from the current driven amplifier 2 is given; The first and second primary windings 92 and 93 are electromagnetically coupled with the same polarity and have a secondary winding 94 connected to the speaker 21.
  • the synthesis circuits 16 and 17 are realized by a transformer, and can also achieve an impedance matching function, and can drive a single speaker 21, thereby reducing the size of the configuration. .
  • the voltage-driven amplifier 1 when the voltage-driven amplifier 1 is realized by the specific circuits 23 to 25 of FIGS. 12 to 14, respectively, it may be indicated by the same reference numerals as the realized circuits.
  • the current driven amplifier 2 is realized by the specific circuits 26 to 28 of FIGS. 15 to 17, respectively, it may be indicated by the same reference numerals as the realized circuits.
  • the sound generator for example, one of the voltage-driven amplifiers 23 to 25 shown in FIGS. 12 to 14 and one of the current-driven amplifiers 26 to 28 shown in FIGS. 15 to 17 are used in combination. Even if the combination of the voltage-driven amplifiers 23 to 25 and the current-driven amplifiers 26 to 28 is slightly changed, for example, the combination of the voltage-driven amplifier 23 of FIG. 12 and the current-driven amplifier 26 of FIG. Even with a large number of amplifiers not illustrated, the excellent effects of the present invention can be achieved.
  • the voltage-driven amplifier 23 is realized by a non-inverting amplifier circuit, which is (A) an operational amplifier 50, A non-inverting input terminal to which an acoustic signal is given from the acoustic signal source 20; An inverting input terminal; An operational amplifier 50 having an output terminal connected to one terminal 21a of the speaker 21; (B) a negative feedback resistor 40 connected between the output terminal and the inverting input terminal; (C) It has a voltage dividing resistor 41 connected between the inverting input terminal and the other terminal 21b of the speaker 21 and the common potential of the acoustic signal source 20.
  • the voltage-driven amplifier 24 is realized by an inverting amplifier circuit, which (A) an operational amplifier 51, A non-inverting input terminal; An inverting input terminal; An operational amplifier 51 having an output terminal; (B) an input resistor 43 for applying an acoustic signal from the acoustic signal source 20 to the inverting input terminal; (C) a negative feedback resistor 42 connected between the output terminal and the inverting input terminal; (D) The non-inverting input terminal, one terminal 21a of the speaker 21 and the common potential of the acoustic signal source 20 are connected, (E) The output terminal is connected to the other terminal 21 b of the speaker 21.
  • the voltage-driven amplifiers 23 and 24 can be realized with a simple configuration using the operational amplifiers 50 and 51.
  • the outputs of the voltage driven amplifiers 23 and 24 may be amplified by an additional amplifier connected in cascade, for example, and the speaker 21 may be supplied to both terminals 21a and 21b of the voice coil for driving.
  • the current driven amplifier 26 is (A) an operational amplifier 53, A non-inverting input terminal to which an acoustic signal is given from the acoustic signal source 20; An operational amplifier 53 having an output terminal connected to one terminal 22a of the speaker 22 and an inverting input terminal connected to the other terminal 22b of the speaker; (B) It has a current detection resistor 44 connected between the connection point 96 of the inverting input terminal and the other terminal 22b of the speaker 22 and the common potential of the acoustic signal source 20.
  • the current drive type amplifier 27 (A) an operational amplifier 54, A non-inverting input terminal connected to the common potential of the acoustic signal source 20; An inverting input terminal; An operational amplifier 54 having an output terminal; (B) an input resistor 46 for applying an acoustic signal from the acoustic signal source 20 to the inverting input terminal; (C) a negative feedback resistor 47 connected between the inverting input terminal and one terminal 22a of the speaker 22, (D) a current detection resistor 45 connected between the common potential of the acoustic signal source 20 and the other terminal 22b of the speaker 22; (E) The output terminal is connected to the other terminal 22 b of the speaker 22.
  • the current-driven amplifiers 26 and 27 can be realized with a simple configuration using the operational amplifiers 53 and 54.
  • the outputs of the current driven amplifiers 26 and 27 may be amplified by an additional amplifier connected in cascade, for example, and the speaker 22 may be supplied to both terminals 22a and 22b of the voice coil to be driven.
  • the present invention as shown in FIGS. Filters 68 and 69 are provided for filtering a predetermined frequency band of the acoustic signal
  • the voltage-driven amplifier 1 and the current-driven amplifier 2 have first and second speakers (a woofer 60a, a tweeter 61a in FIG. 20, a tweeter 63 in FIG. 23, and a filter in FIG. 26) in the frequency band filtered by the filters 68 and 69.
  • the woofer 66a, the tweeter 67a, the woofer 60b, the tweeter 61b in FIG. 20, the tweeter 64 in FIG. 23, the woofer 66b in FIG. 26, and the tweeter 67b) are driven.
  • the filter may be a passive filter including a coil, a capacitor and the like, or may be an active filter including an active element such as a transistor in addition to the coil and the capacitor. It may be a channel divider that can also amplify a signal for each of a plurality of divided frequency bands.
  • a filter may be interposed in the output or input of the voltage-driven amplifier 1 and the current-driven amplifier 2 in FIGS.
  • Embodiment 1 of this invention is a graph schematically showing output power with respect to electrical impedance in the voltage-driven amplifier 1.
  • 3 is a graph schematically showing output power with respect to electrical impedance in a current-driven amplifier 2.
  • 3 is a graph schematically showing electrical impedance characteristics of speakers 21 and 22.
  • 3 is a graph schematically showing output power with respect to electrical impedance in the voltage-driven amplifier 1.
  • 3 is a graph schematically showing output power with respect to electrical impedance in a current-driven amplifier 2.
  • FIG. 2 is an electric circuit diagram showing an inverting amplifier circuit 24 which is one of the voltage driven amplifiers 1 used in the present invention.
  • FIG. 2 is an electric circuit diagram showing a non-inverting amplifier circuit 26 which is one of current-driven amplifiers 2 used in the present invention.
  • FIG. 3 is an electric circuit diagram showing an inverting amplifier circuit 27 which is one of current-driven amplifiers 2 used in the present invention. It is a figure which shows the non-feedback circuit 28 which is one of the current drive type amplifiers 2 used by this invention.
  • It is the schematic which shows the front surface of the coaxial speaker apparatus 11 used by this invention. It is the schematic which shows the cross section of the coaxial speaker apparatus 11 used by this invention.
  • FIG. 1 is an electric circuit diagram for connecting two speakers 21 and 22 using two amplifiers 1 and 2 in the first embodiment.
  • the same acoustic signal from the acoustic signal source 20 is applied to the voltage driven amplifier 1 and the current driven amplifier 2 via lines 30 and 31.
  • the output of the voltage driven amplifier 1 is given to the speaker 21 by lines 32 and 33, and the output of the current driven amplifier 2 is given to the speaker 22 by lines 34 and 35.
  • the signal sent from the acoustic signal source 20 is output to the speakers 21 and 22 via the two amplifiers 1 and 2 having different characteristics, and the sound pressure generated from each speaker 21 and 22 is air in the sound field.
  • the frequency characteristics are improved by synthesizing them as vibrations of each other and complementing each other.
  • the acoustic signal source 20 generates an acoustic signal whose voltage amplitude changes.
  • the voltage-driven amplifier 1 amplifies the voltage amplitude in response to a change in the amplitude of the acoustic signal supplied from the acoustic signal source 20 and outputs the amplified voltage.
  • the first speaker 21 is driven by the output from the voltage-driven amplifier 1 and has a first characteristic in which the impedance changes in accordance with the frequency of the driven signal.
  • the current-driven amplifier 2 amplifies the current amplitude in response to the change in the amplitude of the acoustic signal given from the acoustic signal source 20 and outputs the amplified current signal.
  • the second speaker 22 is driven by the output from the current-driven amplifier 2 and has a second characteristic in which the impedance changes in accordance with the frequency of the drive signal.
  • the second characteristic is the first characteristic. Approximate and identical.
  • the polarities of the input / output signals of the amplifiers 1 and 2 are the same.
  • the polarities of the signals given to the speakers 21 and 22 and the displacement directions of the corn-like vibrating members electromagnetically driven by the signals are the same.
  • the acoustic signal source 20 may generate an acoustic signal whose current amplitude changes.
  • FIG. 2 shows the relationship between the electrical impedance Z1 of the voice coil of the speaker 21 and the output power P1 in the voltage-driven amplifier 1.
  • the horizontal axis is the electrical impedance Z1, the left is low and the right is high.
  • the vertical axis represents the output power P1, with the bottom being low and the top being high.
  • the power consumption P1 is (the square of the voltage V1 divided by the impedance Z1) where the voltage is V1 and the impedance is Z1, so the voltage V1 is in a constant state.
  • the electric power P1 changes according to the change of the electric impedance Z1. For this reason, when the electrical impedance Z1 increases due to the frequency characteristics of the speaker 21, the output power P1 decreases although the voltage is the same. Conversely, when the electrical impedance Z1 decreases, the output power P1 increases.
  • FIG. 3 shows the relationship between the electrical impedance Z2 of the voice coil of the speaker 22 and the output power P2 in the current drive type amplifier 2.
  • the horizontal axis is the electrical impedance Z2, the left is low and the right is high.
  • the vertical axis represents output power, with the bottom being low and the top being high.
  • the above two types of amplifiers 1 and 2 have characteristics in which the output power with respect to the electrical impedance of the speakers 21 and 22 is inclined reversely as shown in FIGS.
  • Speakers 21 and 22 have characteristics that electrical impedances Z1 and Z2 change depending on the input frequency.
  • the present invention is effective for a single speaker full-range speaker, a multiway speaker using a plurality of speakers, and other types of speakers whose output impedance changes, but for the sake of explanation, a single speaker will be described below. .
  • FIG. 4 is a curve of the electrical impedances Z1 and Z2 shown by the speakers 21 and 22.
  • a cone-like vibrating member that generates sound is driven by the electromagnetic force of the coil.
  • a curve like 4 is shown.
  • the horizontal axis is frequency, left is low and right is high.
  • the vertical axis represents electrical impedances Z1 and Z2, with the bottom being low and the top being high.
  • the curves shown by the typical speakers 21 and 22 become high-peak electrical impedances Z1 and Z2 at the resonance frequency f0 inherent to the speakers 21 and 22, and the electrical impedances Z1 and Z2 gradually increase as the frequency becomes higher.
  • the two types of amplifiers 1 and 2 receive the same acoustic signal, and (1) for example, a plurality of speakers (FIGS. 1, 20, 23, and 26) or a plurality of speakers provided in one speaker. Each voice coil (FIG. 8) is individually driven, or (2) one speaker (FIGS. 9 to 11) by an electrical signal synthesized through synthesis circuits 16 and 17 such as transformers 9 and 10, for example. Drive).
  • FIG. 7 is a diagram schematically showing effects obtained when the output powers P1 and P2 with respect to the electrical impedances Z1 and Z2 in the voltage-driven amplifier 1 and the current-driven amplifier 2 are combined.
  • the voltage-driven amplifier 1 is provided with the speakers 21 and 22 caused by the change in frequency when an input signal whose voltage is a predetermined value in each frequency band is given.
  • a change in output power P1 (FIG. 5) occurs due to a change in electrical impedance (FIG. 4).
  • the current drive type amplifier 2 is caused by a change in frequency when an input signal having a predetermined voltage value in each frequency band is given.
  • a change in the output power P2 occurs due to a change in the electrical impedance of the speakers 21 and 22 (FIG. 4).
  • both the voltage-driven amplifier 1 and the current-driven amplifier 2 have operating characteristics in which changes in the output powers P1 and P2 depending on the frequency are opposite to each other, and therefore, FIG. 7 (1) and FIG. 7 (2)
  • FIG. 7 (1) and FIG. 7 (2) As a result, the output power obtained by synthesizing the output powers P1 and P2 in the entire frequency band as shown in FIG. 7 (3), and thus the sound in the sound field.
  • the pressure is flattened and improved, and the sound quality is improved.
  • FIG. 8 is an electric circuit diagram for connecting one double voice coil speaker 6 using the two amplifiers 1 and 2 in the second embodiment.
  • the double voice coil speaker 6 includes, for example, a cone-shaped vibration member 81 and a drive portion 82 that electromagnetically drives the vibration member 81.
  • a straight cylindrical bobbin 83 having an axis on a straight line including the axis of the vibration member 81 is fixed to the vibration member 81, and a first voice coil that is shifted in the axial direction on the bobbin 83.
  • the second coils 71 and 72 are wound and fixed in the same winding direction, and therefore in the same polarity and with the same number of turns.
  • the magnetic circuit 84 displaces and drives the vibrating member 81 so as to generate a sound pressure corresponding to the amplitude of the acoustic signal by the electromagnetic driving force of the coils 71 and 72.
  • the voltage-driven amplifier 1 is connected to the coil 71 via lines 32 and 33, and the current-driven amplifier 2 is connected to the coil 72 via lines 34 and 35.
  • the signal sent from the acoustic signal source 20 is output to the coils 71 and 72 via the two amplifiers 1 and 2 having different characteristics, and the drive part 82 including the coils 71 and 72 causes the amplifiers 1 and 2 to The electromagnetic driving force by the output power is synthesized. Therefore, the operation characteristics of FIG. 7 (1) and FIG. 7 (2) of the voltage-driven amplifier 1 and the current-driven amplifier 2 cancel each other and complement each other, so that it depends on the frequency as shown in FIG. The sound pressure characteristics in the sound field to be improved are improved.
  • FIG. 9 is an electric circuit diagram in which the two amplifiers 1 and 2 are used in the third embodiment and the speaker 21 is connected via the two transformers 9 and 10 constituting the synthesis circuit 16.
  • the synthesis circuit 16 synthesizes the outputs from the voltage driven amplifier 1 and the current driven amplifier 2.
  • the voltage-driven amplifier 1 and the current-driven amplifier 2 are supplied with the same acoustic signal from the acoustic signal source 20 via lines 30 and 31.
  • the transformer 9 in the synthesis circuit 16 is electromagnetically coupled to a first primary winding 86 to which an output from the voltage driven amplifier 1 is given via lines 32 and 33, and to the first primary winding 86. 1 secondary winding 87.
  • Another transformer 10 in the synthesis circuit 16 is electromagnetically coupled to a second primary winding 88 to which the output from the current-driven amplifier 2 is given via lines 34 and 35, and to the second primary winding 88. And a second secondary winding 89.
  • the first and second secondary windings 87 and 89 are connected in series with the same polarity and are connected to the speaker 21 via lines 36 and 37.
  • the signal sent from the acoustic signal source 20 passes through the two amplifiers 1 and 2 having different characteristics, and the output signal is electrically synthesized after being output from the transformers 9 and 10 and output to the speaker 21.
  • the frequency characteristics are improved by canceling and complementing each other.
  • the transformers 9 and 10 have flat output characteristics over a wide frequency band with respect to input and output voltages and currents. Since the synthesis circuit 16 synthesizes the output signals from the voltage-driven amplifier 1 and the current-driven amplifier 2 and drives one speaker 6, the configuration can be reduced.
  • FIG. 10 is an electric circuit diagram in which the speaker 21 is connected using the two transformer built-in voltage drive amplifiers 3 and the transformer built-in current drive amplifier 4 in the fourth embodiment.
  • the fourth embodiment in FIG. 10 is similar to the third embodiment in FIG. 9, and the same reference numerals are given to corresponding parts.
  • the same acoustic signal from the acoustic signal source 20 is supplied to the transformer built-in voltage drive amplifier 3 and the transformer built-in current drive amplifier 4 via lines 30 and 31.
  • the transformer built-in voltage drive amplifier 3 and transformer built-in current drive amplifier 4 shown in FIG. 10 are provided, for example, in the vicinity of the speaker 21, so that the lines 32 to 35, 36, and 37 can be shortened, and the embodiment of FIG.
  • the transformer built-in voltage drive amplifier 3 and the transformer built-in current drive amplifier 4 have transformers 9 and 10 constituting the synthesis circuit 16 in their structures, and their secondary windings 87 and 89 are connected in series. Is possible. Outputs of the transformer built-in voltage drive amplifier 3 and the transformer built-in current drive amplifier 4 are connected in series to the speaker 21 via lines 36 and 37. As a result, the signal sent from the acoustic signal source 20 passes through the two amplifiers 3 and 4 having different characteristics, and the output signals are electrically synthesized after being output from the transformers 9 and 10 and output to the speaker 21. The frequency characteristics are improved by complementing each other.
  • FIG. 11 is an electric circuit diagram in which the two amplifiers 1 and 2 are used in the fifth embodiment, and the speaker 21 is connected through one transformer constituting the synthesis circuit 17.
  • This transformer may be given the same reference numeral as that of the synthesis circuit 17.
  • the voltage-driven amplifier 1 and the current-driven amplifier 2 are supplied with the same acoustic signal from the acoustic signal source 20 via lines 30 and 31.
  • the transformer which is the synthesis circuit 17 includes a first primary winding 92 to which an output from the voltage driven amplifier 1 is given via lines 32 and 33, and an output from the current driven amplifier 2 through lines 34 and 35.
  • a secondary winding 94 that is electromagnetically coupled to the first primary winding 92 and the first primary winding 92 and 93 and is connected to the speaker 21 via lines 36 and 37.
  • the signal sent from the acoustic signal source 20 passes through the two amplifiers 1 and 2 having different characteristics, and the output signal is electrically synthesized after being output from the transformer 17 and output to the speaker 21. Cancel each other and complement each other to improve the frequency characteristics.
  • the embodiments 1 to 5 of FIGS. 1 to 11 are similar and achieve the operations and functions of FIGS. 2 to 7 in the same manner.
  • FIG. 12 shows an example of a non-inverting amplifier circuit 23 that is one of the voltage-driven amplifiers 1.
  • the voltage-driven amplifier 23 is given as an input signal from the acoustic signal source 20 via lines 30 and 31.
  • the voltage-driven amplifier 23 gives the output signal to the speaker 21 via lines 32 and 33.
  • the line 30 is connected to the positive input of the operational amplifier 50, and the output of the operational amplifier 50 is connected to the line 32.
  • the lines 31 and 33 are connected to the ground which is a common potential.
  • the output of the operational amplifier 50 is connected to the resistor 41 via the resistor 40 and is connected to the ground.
  • a connection point 106 between the resistor 40 and the resistor 41 is connected as a feedback signal to the negative input of the operational amplifier 50.
  • the operational amplifier 50 operates so that the positive input and the negative input have the same value.
  • the voltage-driven amplifier 23 is realized by a non-inverting amplifier circuit.
  • the non-inverting amplifier circuit includes an operational amplifier 50.
  • the operational amplifier 50 is inverted with a non-inverting input terminal to which an acoustic signal is supplied from the acoustic signal source 20.
  • An operational amplifier 50 having an input terminal and an output terminal connected to one terminal 21 a of the speaker 21, a negative feedback resistor 40 connected between the output terminal and the inverting input terminal, an inverting input terminal, and the speaker 21 Voltage dividing resistor 41 connected between the other terminal 21b and the common potential of the acoustic signal source 20.
  • the operational amplifier 50 operates according to Equation 1 below.
  • V30 R41 ⁇ (R40 + R41) ⁇ V32 (1)
  • FIG. 13 shows an example of the voltage-driven amplifier 24 in the inverting amplifier circuit.
  • the voltage driven amplifier 24 is supplied as an input signal from the acoustic signal source 20 via lines 30 and 31.
  • the voltage drive type amplifier 24 provides the output signal to the speaker 21 via lines 32 and 33.
  • the speaker 21 is reversely connected to that in FIG.
  • the line 30 is connected to the negative input of the operational amplifier 51 through the resistor 43, and the output of the operational amplifier 51 is connected to the line 32.
  • the positive inputs of the lines 31 and 33 and the operational amplifier 51 are connected to the common potential ground.
  • the output of the operational amplifier 51 is connected as a feedback signal to the negative input of the operational amplifier 51 through the resistor 42.
  • the voltage-driven amplifier 24 is realized by an inverting amplifier circuit, and the inverting amplifier circuit has an operational amplifier 51.
  • the operational amplifier 51 has a non-inverting input terminal, an inverting input terminal, and an output terminal.
  • the input resistor 43 gives an acoustic signal from the acoustic signal source 20 to the inverting input terminal.
  • the negative feedback resistor 42 is connected between the output terminal and the inverting input terminal.
  • the non-inverting input terminal, one terminal 21a of the speaker 21 and the common potential of the acoustic signal source 20 are connected.
  • the output terminal is connected to the other terminal 21 b of the speaker 21.
  • the operational amplifier 51 operates according to Equation 2 when the voltage V30 of the line 30 is set, the resistance values R42 and R43 of the resistors 42 and 43 are set, and the voltage V32 of the line 32 is set.
  • V30 ⁇ R43 ⁇ (V32 ⁇ R42) (2)
  • FIG. 14 shows an example of the voltage-driven amplifier 25 in the non-feedback circuit.
  • the non-feedback circuit type voltage driven amplifier unit 52 of the voltage driven amplifier 25 is given as an input signal from the acoustic signal source 20 via lines 30 and 31.
  • the non-feedback circuit type voltage drive type amplifier unit 52 of the voltage drive type amplifier 25 provides an output signal to the speaker 21 via lines 32 and 33.
  • the line 30 is connected to the input of the amplifier unit 52, and the output of the amplifier unit 52 is connected to the line 32.
  • the lines 31 and 33 are connected to the ground which is a common potential.
  • the amplifier unit 52 may have a part of feedback in the internal circuit, but the output circuit depends on the input voltage depending on the amplification factor specific to the transistor or FET (field effect transistor) and the electronic circuit of the amplifier unit 52. An amplified output voltage is obtained.
  • the electrical impedance of the speaker 21 is changed by the signal output from the amplifier unit 52.
  • the amplifier unit 52 has no feedback, it is not affected by the electrical impedance Z5 of the speaker 21.
  • the voltage driven amplifier 25 in the non-feedback circuit of FIG. 14 does not change the output voltage regardless of the input frequency.
  • the electrical impedance Z5 changes, the power consumption P5 becomes (the square of the voltage V32 / electrical impedance Z5), and the output power P5 is as shown in FIG.
  • the voltage change of the acoustic signal source 20 is not limited to the circuit shown in this example. Any voltage-driven amplifier can be used in which the signal output when the frequency changes in the absence of noise is not affected by the change in the electrical impedance of the speaker 21 and the output power is as shown in FIG.
  • FIG. 15 shows an example of the current drive type amplifier 26 in the non-inverting amplifier circuit.
  • the current drive amplifier 26 is supplied as an input signal to the acoustic signal source 20 via lines 30 and 31.
  • the current drive type amplifier 26 provides an output signal to the speaker 21 via lines 34 and 35.
  • Line 30 is connected to the positive input of operational amplifier 53, and the output of operational amplifier 53 is connected to line 34.
  • the line 31 is connected to the ground which is a common potential.
  • the output of the operational amplifier 53 is connected to the current detection resistor 44 via the speaker 22 and connected to the ground.
  • a connection point 96 between the line 35 of the speaker 22 and the current detection resistor 44 is connected to the negative input of the operational amplifier 53 as a feedback signal.
  • the operational amplifier 53 operates so that the positive input and the negative input are the same by the voltage fed back.
  • the current drive type amplifier 26 has an operational amplifier 53.
  • the operational amplifier 53 has a non-inverting input terminal to which an acoustic signal is given from the acoustic signal source 20, an output terminal connected to one terminal 22a of the speaker 22, and a speaker. And an inverting input terminal connected to the other terminal 22b.
  • the current detection resistor 44 is connected between the connection point 96 of the inverting input terminal and the other terminal 22 b of the speaker 22 and the common potential of the acoustic signal source 20.
  • the operational amplifier 53 operates according to Equation 3 when the voltage V30 of the line 30, the resistance value R44 of the current detection resistor 44, the electrical impedance Z5 of the speaker 22, and the voltage V34 of the line 34 are obtained.
  • V30 R44 ⁇ (Z5 + R44) ⁇ V34 (3)
  • FIG. 16 shows an example of the current drive type amplifier 27 in the inverting amplifier circuit.
  • the current drive amplifier 27 is provided as an input signal to the acoustic signal source 20 via lines 30 and 31.
  • the current drive type amplifier 27 gives an output signal to the speaker 22 via lines 34 and 35.
  • the speaker 22 is reversely connected to that in FIG.
  • the line 30 is connected to the negative input of the operational amplifier 54 through the resistor 46, and the output of the operational amplifier 54 is connected to the line 34.
  • the positive input of the line 31 and the operational amplifier 54 is connected to the ground that is a common potential.
  • the output of the operational amplifier 54 is connected to the ground via the speaker 22 and the current detection resistor 45.
  • a connection point 97 between the speaker 22 and the current detection resistor 45 is connected to give a feedback signal to the negative input of the operational amplifier 54 via the negative feedback resistor 47. Since the positive input of the operational amplifier 54 is connected to the ground, the operational amplifier 54 operates so that the negative input has the same potential as the ground.
  • the current drive type amplifier 27 includes an operational amplifier 54, and the operational amplifier 54 has a non-inverting input terminal connected to the common potential of the acoustic signal source 20, an inverting input terminal, and an output terminal.
  • the input resistor 46 gives the acoustic signal from the acoustic signal source 20 to the inverting input terminal.
  • the negative feedback resistor 47 is connected between the inverting input terminal and one terminal 22 a of the speaker 22.
  • the current detection resistor 45 is connected between the common potential of the acoustic signal source 20 and one terminal 22 a of the speaker 22.
  • the output terminal is connected to the other terminal 22b of the speaker.
  • the operational amplifier 54 is Operates with Equation 4.
  • V30 ⁇ R46 ⁇ (V34 ⁇ (R45 ⁇ (Z7 + R45))) ⁇ R47 (4)
  • FIG. 17 shows an example of the current drive type amplifier 28 in the non-feedback circuit.
  • the non-feedback circuit type current drive type amplifier unit 55 of the current drive type amplifier 28 is given as an input signal from the acoustic signal source 20 via lines 30 and 31.
  • the non-feedback circuit type current drive type amplifier unit 55 of the current drive type amplifier 28 provides an output signal to the speaker 22 via lines 34 and 35.
  • the line 30 is connected to the input of the amplifier unit 55, and the output of the amplifier unit 55 is connected to the line 34.
  • the lines 31 and 35 are connected to the ground that is a common potential.
  • the amplifier unit 55 may have a part of feedback in the internal circuit, but the output circuit depends on the input voltage depending on the amplification factor specific to the transistor or FET (field effect transistor) and the electronic circuit of the amplifier unit 55. An amplified output current is obtained.
  • the electrical impedance Z8 of the speaker 22 is changed by a signal output from the amplifier unit 55.
  • the amplifier unit 55 has no feedback, it is not affected by the electrical impedance Z8 of the speaker 22. Therefore, the current drive amplifier 28 in the non-feedback circuit of FIG. 17 does not change the output current I34 regardless of the input frequency.
  • the electrical impedance Z8 changes, the power consumption P8 becomes (the square of the current I34 ⁇ the electrical impedance Z8), and the output power is as shown in FIG.
  • FIGS. 15 to 17 an example of the current drive type amplifiers 26 to 28 used in the present invention is shown in FIGS. 15 to 17, but there is no change in the current of the acoustic signal source 20 even if it is other than the circuit given in this example.
  • any current-driven amplifier can be used in which the signal output when the frequency changes is not affected by the change in the electrical impedance of the speaker 22 and the output power is as shown in FIG.
  • the single cone speakers 21 and 22 are mainly used for the explanation.
  • the present invention has an effect of improving the sound quality in all speakers having impedance changes depending on the frequency.
  • FIG. 18 and 19 are examples of the coaxial speaker device 11.
  • FIG. 18 is a front view of the coaxial speaker device 11, and
  • FIG. 19 is a simplified cross-sectional view of the coaxial speaker device 11.
  • the coaxial speaker device 11 includes a woofer 60 and a tweeter 61 and is attached to a coaxial speaker box 107.
  • the coaxial speaker device 11 of FIGS. 18 and 19 has a structure in which a tweeter 61 is coaxially arranged in a woofer 60.
  • FIG. 20 is an electric circuit diagram when two coaxial speaker devices 11a and 11b are prepared and connected.
  • the woofer 60 and the tweeter 61 of each speaker device 11a, 11b are individually shown by adding the subscripts a and b to the reference numerals of the numbers, and generally only the numbers.
  • the woofer 60 and the tweeter 61 have a low-pass filter 68 for the woofer 60 and a high-pass filter 69 for the tweeter 61, which are electrical circuits in the path of the acoustic signal. Each frequency band is separated and driven.
  • the present invention if the electrical impedance of the woofer 60 and / or the tweeter 61 changes with respect to the input frequency even if separated by an electric circuit, the coaxial speaker shown in FIGS. If two apparatuses 11a and 11b are prepared and the connections shown in FIG. 20 are made, the present invention achieves a good effect.
  • the voltage driven amplifier 1 and the current driven amplifier 2 are supplied as input signals from the acoustic signal source 20 via lines 30 and 31.
  • the voltage-driven amplifier 1 provides its output to the woofer 60a and tweeter 61a of the coaxial speaker device 11a through lines 32 and 33 through a low-pass filter 68a and a high-pass filter 69a, respectively.
  • the current drive type amplifier 2 gives its output to the woofer 60b and the tweeter 61b of the coaxial speaker device 11b from the lines 34 and 35 through the low pass filter 68b and the high pass filter 69b, respectively.
  • the speaker box 107 of the coaxial speaker device 11 may incorporate a corresponding low-pass filter 68 and high-pass filter 69.
  • FIGS. 21 and 22 are examples of the double tweeter integrated speaker device 13.
  • FIG. 21 is a front view of the speaker device 13
  • FIG. 22 is a simplified cross-sectional view of the speaker device 13.
  • the double tweeter integrated speaker device 13 of FIGS. 20 and 21 has a structure in which tweeters 63 and 64 are arranged in a woofer 62 and mounted in a speaker box 108.
  • FIG. 23 is an electric circuit diagram when the double tweeter integrated speaker device 13 is connected.
  • the same acoustic signal from the acoustic signal source 20 is given to the voltage driven amplifier 1 and the current driven amplifier 2 through the high pass filter 69 via the lines 30 and 31.
  • the output of the voltage driven amplifier 1 is sent from the lines 32 and 33 to one tweeter 63 of the double tweeter integrated speaker device 13, and the output of the current driven power amplifier 2 is sent from the lines 34 and 35 to the other tweeter 64.
  • the woofer 62 of the double tweeter integrated speaker device 13 is supplied with the output of the woofer amplifier 70 that amplifies the power of all frequency bands separately connected to the acoustic signal source 20 from the lines 30 and 31 via the low-pass filter 68.
  • the woofer amplifier 70 may be, for example, the voltage driven amplifier 1 or the current driven amplifier 2.
  • the woofer 62 and the tweeters 63 and 64 are driven with the generated frequency band separated by the filters 68 and 69 in an electric circuit. If the electrical impedance of the tweeters 63 and 64 changes with respect to the input frequency even if they are separated by an electric circuit, a voltage-driven amplifier is connected to one tweeter 63 of the double tweeter integrated speaker device 13 shown in FIGS. 1 is connected to the other tweeter 64, the woofer 62 needs to be considered by the woofer amplifier 70, but the present invention has an effect of improving the sound quality with respect to the tweeters 63 and 64.
  • the acoustic signal sent from the acoustic signal source 20 passes through the two amplifiers 1 and 2 having different characteristics, and the sound pressure generated by the tweeters 63 and 64 of the double tweeter integrated speaker device 13 is the sound field.
  • the frequency characteristics are improved by synthesizing and complementing each other.
  • FIG. 24 and 25 are examples of the two-way speaker device 14.
  • FIG. 24 is a front view of the speaker device 14, and
  • FIG. 25 is a simplified cross-sectional view of the speaker device 14.
  • a two-way speaker device 14 is configured by attaching a woofer 66 and a tweeter 67 to the speaker box 65.
  • FIG. 26 is an electric circuit diagram when two two-way speaker devices 14a and 14b are prepared and connected.
  • the woofer 66 and the tweeter 67 of each two-way speaker device 14 are individually shown by adding a suffix “a” and “b” to a reference numeral, and generally, only a numeral.
  • the woofer 66 and the tweeter 67 are provided with a low-pass filter 68 and a high-pass filter 69 which are electrical circuits in the path of the acoustic signal. The frequency band of the acoustic signal is separated and driven.
  • the present invention if the electrical impedance of the woofer 66 and / or the tweeter 67 changes with respect to the input frequency even if separated by an electric circuit, the two units shown in FIGS. If the speaker devices 14a and 14b are prepared and the connections shown in FIG. 26 are made, the present invention achieves a good effect.
  • the voltage driven amplifier 1 and the current driven amplifier 2 are given as input signals from the acoustic signal source 20 via lines 30 and 31.
  • the voltage-driven amplifier 1 provides its output from lines 32 and 33 to the woofer 66a and tweeter 67a of the two-way speaker device 14a via a low-pass filter 68a and a high-pass filter 69a, respectively.
  • the current drive type amplifier 2 gives the output from the lines 34 and 35 to the woofer 66b and the tweeter 67b of the two-way speaker device 14b through the low-pass filter 68b and the high-pass filter 69b, respectively.
  • Each speaker box 108 of each two-way speaker device 14 may incorporate a corresponding low-pass filter 68 and high-pass filter 69.
  • the signal sent from the acoustic signal source 20 passes through the two amplifiers 1 and 2 having different characteristics, the two-way speaker device 14 is driven, and the sound generated by the two-way speaker device 14 is synthesized in the sound field.
  • the frequency characteristics are improved by complementing each other.
  • the entire frequency band can be divided into a plurality of three or more frequency bands, and for example, a woofer, squawker, and tweeter can be driven according to the present invention.
  • the present invention has an effect of improving the sound quality regardless of the type of the speaker if the impedance changes with respect to the frequency input by the speaker to be used.
  • the present invention relates to a stationary stereo sound reproduction device called a so-called audio device, a radio receiver having a recording / playback function called a radio cassette, a car stereo device, a television receiver, and contents recorded on a recording medium
  • the present invention can be implemented in connection with a device that generates sound for a wide range of applications, such as a loudspeaker that expands sound such as voice by an electric signal from a microphone or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

【課題】 ボイスコイルを備えるスピーカー21、22による音質の向上を図る。 【解決手段】 音響信号源20からの音響信号の振幅の変化に対応して電圧の振幅を増幅する電圧駆動型増幅器1によって、最低共振周波数f0と高域周波数でのインピーダンスが上昇する特性を有する第1スピーカー21を駆動し、前記音響信号の振幅の変化に対応して電流の振幅を増幅する電流駆動型増幅器2によって、第1スピーカー21と特性が近似した第2スピーカー22を駆動する。最低共振周波数f0と高域周波数において、第1スピーカー21の電圧駆動による音圧レベルの減少と、第2スピーカー22の電流駆動による音圧レベルの増加とを相殺、補完し、音場における広い周波数帯域にわたって均一な音圧レベルを得て、音質を向上する。

Description

音響発生装置
 本発明は、スピーカーによる再生などのための音響出力における周波数特性を改善し音質を向上する音響発生装置に関するものである。
 本件明細書中、増幅器をアンプということがある。
 従来の音響発生装置は、単一のパワーアンプなどを使用する、又は、複数個のパワーアンプを使用する場合でもコイル、コンデンサ、チャンネルデバイダー、アクティブフィルタ、インピーダンス補正回路等を用いて再生周波数の特性改善を行っている(例えば、特許文献1、特許文献2参照)。
特開平8-186891号公報 特開平11-146479号公報
 特許文献1、2の従来の技術は、再生周波数特性を改善するために、ダブルボイスコイルスピーカーを使用し、一方または両方のボイスコイルに、最低共振周波数f0などの特定の周波数帯域のみに対する改善回路を設けて、2台の各アンプで個別的に駆動し、または1台のアンプで共通に駆動する。したがって、各種のスピーカーのたとえば可聴周波数20Hz~20kHzの全周波数帯域に対しての改善は難しい。
 本発明の目的は、各種のスピーカーを使用することができ、音響化しようとする予め定める周波数帯域、たとえば全周波数帯域にわたる特性を改善する音響発生装置を提供することである。
 本発明は、図1、8、9~11、20、23、26に示されるように、
 音響信号を発生する音響信号源20と、
 スピーカー6、21、22、60~64、66、67であって、このスピーカーを駆動する駆動信号の周波数に依存する音響パワーまたは音圧が変化する特性を有する1または複数のスピーカーと、
 音響信号が与えられる複数の動作特性の異なる増幅器1、2を備え、1または複数のスピーカーによる音場における音圧が予め定める周波数帯域にわたって、予め定める特性となるように、音響信号に対応する駆動信号を、少なくとも増幅器1、2を動作させてスピーカーに与える駆動手段1、2、3、4、16、17、68、69とを含むことを特徴とする音響発生装置である。
 本発明によれば、動作特性の異なる増幅器であるアンプ1、2を少なくとも2台用いる事を特徴とするシステムである。動作特性の異なるアンプ1、2は、たとえば、電圧駆動型アンプ1と電流駆動型アンプ2である。電圧駆動型アンプ1と電流駆動型アンプ2の2種類のたとえば2台のアンプに対して同一音響信号を入力し、各アンプ1、2によって、各種のスピーカーを駆動できる。本発明の実施の一形態では、各種のスピーカーは、(1)音場における空気の音圧によって音響を合成するために、たとえば単一のボイスコイルをそれぞれ有する複数台のスピーカー(図1、20、23、26)、もしくは、複数のボイスコイルのある1台のスピーカー、たとえば電磁力を合成するダブルボイスコイルのあるスピーカー、または3以上のボイスコイルの巻き数のあるスピーカー(図8)であり、または、(2)たとえばインピーダンスマッチング用などの働きを兼ねてもよいトランス9、10などの合成回路16、17を介して合成した電気信号によって駆動される単一のボイスコイルを有する1台のスピーカー(図9~11)である。前記合成は、音圧、電気信号だけでなく、それら以外の各種の構成によっても達成でき、これらの合成によって、本発明の優れた効果が奏される。
 こうして、各種のスピーカーを駆動する事で再生などの音響化される音響パワーまたは音圧の予め定める周波数帯域、たとえば全周波数帯域にわたって、たとえば周波数に依存して変化する音圧の特性、インピーダンスなどの特性を、希望する予め定めるとおりになるように変化または改善する。複数の各スピーカー(図1、20、23、26)は、音響信号源20からの共通な音響信号に対応して同一の極性となるように接続、構成され、たとえば、音響信号が正または負のとき、複数の各スピーカーの振動部材は変位駆動の前または後の同一方向に、それぞれ変位する。
 スピーカーは、与えられる信号の周波数に依存してインピーダンスが変化する特性を有し、ボイスコイルを備えるスピーカーでもよいが、リボンスピーカー、コンデンサスピーカーなどでもよく、圧電素子、セラミック、クリスタルなどの素子を用いるスピーカーなどでもよい。
 本発明によれば、各種のスピーカーを使用することができ、複数のたとえば電圧駆動型、電流駆動型などのような動作特性が異なるアンプ1、2で駆動するので、1台のスピーカーを1台のアンプ1または2で個別的に駆動したときに生じる、音場で得られる周波数に依存して変化する希望する音圧の大小のレベルの特性、たとえば平坦な音圧の特性からのずれまたは悪化を、相殺、補完することができる。したがって、音響化しようとする予め定める周波数帯域、たとえば全周波数帯域にわたる音圧の特性を、希望する予め定めるとおりになるように変化または改善することが容易である。変化または改善する音圧の特性に代えて、インピーダンスなどの特性であってもよく、スピーカーの特性は、スピーカー単体であるスピーカーユニットの特性でもよいが、スピーカーユニットをボックッス107、108、65(図18、19;21、22;24、25)に装着したスピーカー装置11、13、14の特性でもよい。複数のスピーカーについて、本発明によれば、特性が同じである2個のスピーカーだけでなく、特性が似た少し違う2個のスピーカーなど、特性が多少違うスピーカーの組合せでも、本発明の優れた効果が達成される。音響パワーまたは音圧に代えて、人間の聴覚の音圧レベルなどであってもよい。
 本発明は、図1、20、23、26に示されるように、
 電圧または電流の振幅が変化する音響信号を発生する音響信号源20と、
 音響信号源20から与えられる音響信号の振幅の変化に対応して電圧の振幅を増幅して出力する電圧駆動型増幅器1と、
 電圧駆動型増幅器1からの出力によって駆動され、駆動される信号の周波数に対応してインピーダンスが変化する第1の特性を有する第1スピーカー21:60a、61a:63:66a、67aと、
 音響信号源20から与えられる音響信号の振幅の変化に対応して電流の振幅を増幅して出力する電流駆動型増幅器2と、
 電流駆動型増幅器2からの出力によって駆動され、その駆動信号の周波数に対応してインピーダンスが変化する第2の特性を有し、この第2の特性は第1の特性に近似する第2スピーカー22:60b、61b:64:66b、67bとを含むことを特徴とする音響発生装置である。
 本発明によれば、第1および第2スピーカー21、22から出力される周波数特性が改善され、音場における、聴取者の聴覚で感じ取る合成された音圧が希望する周波数帯域にわたって平坦となるようにでき、音質が向上する。音響信号源20からの音響信号の電圧の振幅の変化に対応して電圧の振幅を増幅する電圧駆動型増幅器1によって、最低共振周波数f0と高域周波数でのインピーダンスが上昇する特性を有する第1スピーカー21を駆動し、前記音響信号の電圧の振幅の変化に対応して電流の振幅を増幅する電流駆動型増幅器2によって、第1スピーカー21と特性が近似した第2スピーカー22を駆動する。最低共振周波数f0と高域周波数において、第1スピーカー21の電圧駆動による音圧レベルの減少と、第2スピーカー22の電流駆動による音圧レベルの増加とが相殺、補完され、音場における広いまたは予め定める周波数帯域にわたって均一な音圧レベルを得ることができ、音質が向上される。スピーカーは、それを駆動する駆動信号の周波数に依存する音響パワーまたは音圧が変化する特性を有する。電圧駆動および電流駆動されるスピーカー21、22は、近似した構成であってもよく、たとえば同一の構成であってもよく、図8のスピーカー6のように、たとえばコーン状などの振動部材81に、振動部材81の軸線を含む直線上に軸線を有する直円筒状のボビン83が固定され、このボビン83上に、インダクタンス成分となるボイスコイルである1または複数(図8では2)のコイル71、72が巻回されて固定される。磁気回路84は、コイル71、72の電磁力によって音響信号の振幅に対応する音圧を発生するように振動部材81を変位駆動する。
 第1および第2スピーカー21、22は、音場における、聴取者の聴覚で感じ取る合成された音圧が希望する周波数帯域にわたって平坦となるように合成し、この希望する周波数帯域は、全周波数帯域であってもよいが、全周波数帯域が予め定める複数に分割された各周波数帯域毎の、たとえばウーハーまたはツイーターなどの各スピーカーであってもよい。
 以下の説明では、理解に不都合を生じないようにしつつ簡略化のために、参照符は、たとえば参照符60a、60bなどの添え字a、bなどを省略して数字60だけで総括的に示すことがある。対応する各部分には、同一の添え字を付し、たとえばウーハー60aに対応して、同一の添え字aを付してツイーター61aなどと示すことがある。
 電圧駆動型増幅器1によって、図1の第1スピーカー21の他に、図20のウーハー60a、ツイーター61a、図23のツイーター63、図26のウーハー66a、ツイーター67aも同様に駆動される。電流駆動型増幅器2によって、図1の第2スピーカー22の他に、図20のウーハー60b、ツイーター61b、図23のツイーター64、図26のウーハー66b、ツイーター67bも同様に駆動される。
 電圧駆動型増幅器1は、入力信号に対して出力はスピーカーの電気インピーダンスに関わらず電圧を増幅するものである。電圧駆動型増幅器1は、音響信号の入力電圧に比例した電圧を、全周波数帯域にわたって出力して負荷であるスピーカーのボイスコイルなどに印加する。電流駆動型増幅器2は、入力信号に対して出力はスピーカーの電気インピーダンスに関わらず電流を増幅するものである。電流駆動型増幅器2は、音響信号の入力電圧に比例した電流を、全周波数帯域にわたって出力して負荷であるスピーカーのボイスコイルなどに流す。
 音響信号源からの音響信号は、その電流の振幅が変化する信号であってもよい。
 本発明は、図8に示されるように、
 (a)電圧または電流の振幅が変化する音響信号を発生する音響信号源20と、
 (b)音響信号源20から与えられる音響信号の振幅の変化に対応して電圧の振幅を増幅して出力する電圧駆動型増幅器1と、
 (c)音響信号源20から与えられる音響信号の振幅の変化に対応して電流の振幅を増幅して出力する電流駆動型増幅器2と、
 (d)スピーカー6であって、
  振動部材81と、
  振動部材81に固定され、電圧駆動型増幅器1からの出力が与えられる第1コイル71と、
  振動部材81に固定され、電流駆動型増幅器2からの出力が与えられる第2コイル72と、
  第1および第2コイル71、72の電磁力によって音響信号の振幅に対応する音圧を発生するように振動部材81を変位駆動する磁気回路84とを備えるスピーカー6とを含むことを特徴とする音響発生装置である。
 本発明によれば、電圧駆動と電流駆動とを1台のスピーカー6で達成することができ、構成の小形化を図ることができる。
 本発明は、図9~11に示されるように、
 電圧または電流の振幅が変化する音響信号を発生する音響信号源20と、
 音響信号源20から与えられる音響信号の振幅の変化に対応して電圧の振幅を増幅して出力する電圧駆動型増幅器1と、
 音響信号源か20から与えられる音響信号の振幅の変化に対応して電流の振幅を増幅して出力する電流駆動型増幅器2と、
 電圧駆動型増幅器1と電流駆動型増幅器2とからの各出力を合成する合成回路16、17と、
 合成回路16、17からの出力によって駆動され、その駆動信号の周波数に対応してインピーダンスが変化するスピーカー21とを含むことを特徴とする音響発生装置である。
 本発明によれば、合成回路16、17は、電圧駆動型増幅器1と電流駆動型増幅器2とからの各出力の信号を合成して、1台のスピーカー21を駆動するので、構成の小形化を図ることができる。
 本発明は、図9、10に示されるように、
 合成回路16は、
 (a)第1トランス9であって、
  電圧駆動型増幅器1からの出力が与えられる第1の1次巻線86と、
  第1の1次巻線86に電磁結合される第1の2次巻線87とを有する第1トランス9と、
 (b)第2トランス10であって、
  電流駆動型増幅器2からの出力が与えられる第2の1次巻線88と、
  第2の1次巻線88に電磁結合される第2の2次巻線89とを有する第2トランス10とを備え、
 (c)第1および第2の2次巻線87、89が同一極性で直列接続されてスピーカー21に接続されることを特徴とする。
 本発明は、図11に示されるように、
 合成回路17は、トランスによって実現され、このトランスは、
  電圧駆動型増幅器1からの出力が与えられる第1の1次巻線92と、
  電流駆動型増幅器2からの出力が与えられる第2の1次巻線93と、
  第1および第2の1次巻線92、93に同一極性で電磁結合され、スピーカー21に接続される2次巻線94とを有することを特徴とする。
 本発明によれば、合成回路16、17は、トランスによって実現され、インピーダンスのマッチング機能を併せて達成することもでき、1台のスピーカー21を駆動するので、構成の小形化を図ることができる。
 参照符について、電圧駆動型増幅器1は、図12~14の具体的な回路23~25によってそれぞれ実現されるとき、その実現される回路と同一の参照符で示すことがある。電流駆動型増幅器2は、図15~17の具体的な回路26~28によってそれぞれ実現されるとき、その実現される回路と同一の参照符で示すことがある。音響発生装置では、たとえば図12~14の電圧駆動型増幅器23~25の1つと、図15~17の電流駆動型増幅器26~28の1つとが組み合されて使用される。電圧駆動型増幅器23~25と電流駆動型増幅器26~28の組合せが多少変わっても、例えば図12の電圧駆動型増幅器23と図16の電流駆動型増幅器26組合せや、本件明細書、図面に例示されていない多数のアンプでも、本発明の優れた効果が達成される。
 本発明は、図12に示されるように、
 電圧駆動型増幅器23は、非反転増幅回路によって実現され、この非反転増幅回路は、
 (a)オペアンプ50であって、
  音響信号源20から音響信号が与えられる非反転入力端子と、
  反転入力端子と、
  スピーカー21の一方の端子21aに接続される出力端子とを有するオペアンプ50と、
 (b)出力端子と反転入力端子との間に接続される負帰還抵抗40と、
 (c)反転入力端子と、スピーカー21の他方の端子21bおよび音響信号源20の共通電位との間に接続される分圧抵抗41とを有することを特徴とする。
 本発明は、図13に示されるように、
 電圧駆動型増幅器24は、反転増幅回路によって実現され、この反転増幅回路は、
 (a)オペアンプ51であって、
  非反転入力端子と、
  反転入力端子と、
  出力端子とを有するオペアンプ51と、
 (b)音響信号源20から音響信号を反転入力端子に与える入力抵抗43と、
 (c)出力端子と反転入力端子との間に接続される負帰還抵抗42とを有し、
 (d)非反転入力端子とスピーカー21の一方の端子21aと音響信号源20の共通電位とが接続され、
 (e)出力端子は、スピーカー21の他方の端子21bに接続されることを特徴とする。
 本発明によれば、電圧駆動型増幅器23、24を、オペアンプ50、51を用いて簡単な構成で実現できる。電圧駆動型増幅器23、24の出力を、たとえば縦続接続される追加的な増幅器で増幅してスピーカー21を、そのボイスコイルの両端子21a、21bに与えて駆動してもよい。
 本発明は、図15に示されるように、
 電流駆動型増幅器26は、
 (a)オペアンプ53であって、
  音響信号源20から音響信号が与えられる非反転入力端子と、
  スピーカー22の一方の端子22aに接続される出力端子と
  スピーカーの他方の端子22bに接続される反転入力端子とを有するオペアンプ53と、
 (b)反転入力端子およびスピーカー22の他方の端子22bの接続点96と、音響信号源20の共通電位との間に接続される電流検知抵抗44とを有することを特徴とする。
 本発明は、図16に示されるように、
 電流駆動型増幅器27は、
 (a)オペアンプ54であって、
  音響信号源20の共通電位に接続される非反転入力端子と、
  反転入力端子と、
  出力端子とを有するオペアンプ54と、
 (b)音響信号源20からの音響信号を反転入力端子に与える入力抵抗46と、
 (c)反転入力端子とスピーカー22の一方の端子22aとの間に接続される負帰還抵抗47と、
 (d)音響信号源20の共通電位とスピーカー22の他方の端子22bとの間に接続される電流検知抵抗45とを有し、
 (e)出力端子は、スピーカー22の他方の端子22bに接続されることを特徴とする。
 本発明によれば、電流駆動型増幅器26、27を、オペアンプ53、54を用いて簡単な構成で実現できる。電流駆動型増幅器26、27の出力を、たとえば縦続接続される追加的な増幅器で増幅してスピーカー22を、そのボイスコイルの両端子22a、22bに与えて駆動してもよい。
 本発明は、図20、23、26に示されるように、
 音響信号の予め定める周波数帯域を濾波するフィルタ68、69が設けられ、
 電圧駆動型増幅器1および電流駆動型増幅器2は、フィルタ68、69によって濾波された前記周波数帯域で第1および第2スピーカー(図20のウーハー60a、ツイーター61a、図23のツイーター63、図26のウーハー66a、ツイーター67a、および図20のウーハー60b、ツイーター61b、図23のツイーター64、図26のウーハー66b、ツイーター67b)をそれぞれ駆動することを特徴とする。
 本発明によれば、フィルタは、コイル、コンデンサなどを含むパッシブフィルタであってもよく、コイル、コンデンサなどの他にトランジスタなどの能動素子を含むアクティブフィルタであってもよく、これらのフィルタで周波数分割された複数の各周波数帯域毎に信号の増幅もできるチャンネルデバイダーなどであってもよい。図1、8~11における電圧駆動型増幅器1および電流駆動型増幅器2の出力または入力に、フィルタを介在してもよい。
 本発明の目的、特色、および利点は、下記の詳細な説明と図面とからより明確になるであろう。
本発明の実施の形態1を示す電気回路図である。 電圧駆動型アンプ1における電気インピーダンスに対する出力電力を概略的に示したグラフである。 電流駆動型アンプ2における電気インピーダンスに対する出力電力を概略的に示したグラフである。 スピーカー21、22における電気インピーダンス特性を概略的に示したグラフである。 電圧駆動型アンプ1における電気インピーダンスに対する出力電力を概略的に示したグラフである。 電流駆動型アンプ2における電気インピーダンスに対する出力電力を概略的に示したグラフである。 電圧駆動型アンプ1、電流駆動型アンプ2における電気インピーダンスに対する出力電力を合成した場合に得られる効果を概略的に示した図である。 本発明の実施の形態2を示す電気回路図である。 本発明の実施の形態3を示す電気回路図である。 本発明の実施の形態4を示す電気回路図である。 本発明の実施の形態5を示す電気回路図である。 本発明で使用される電圧駆動型アンプ1の一つである非反転増幅回路23を示す電気回路図である。 本発明で使用される電圧駆動型アンプ1の一つである反転増幅回路24を示す電気回路図である。 本発明で使用される電圧駆動型アンプ1の一つである無帰還回路25を示す電気回路図である。 本発明で使用される電流駆動型アンプ2の一つである非反転増幅回路26を示す電気回路図である。 本発明で使用される電流駆動型アンプ2の一つである反転増幅回路27を示す電気回路図である。 本発明で使用される電流駆動型アンプ2の一つである無帰還回路28を示す図である。 本発明で使用されるコアキシャルスピーカー装置11の前面を示す概略図である。 本発明で使用されるコアキシャルスピーカー装置11の断面を示す概略図である。 本発明で使用されるコアキシャルスピーカー装置11での接続例を示す電気回路図である。 本発明で使用されるダブルツイーター一体型スピーカー装置13の前面を示す概略図である。 本発明で使用されるダブルツイーター一体型スピーカー装置13の断面を示す概略図である。 本発明で使用されるダブルツイーター一体型スピーカー装置13での接続例を示す電気回路図である。 本発明で使用されるツーウェイスピーカー装置14の前面を示す概略図である。 本発明で使用されるツーウェイスピーカー装置14の断面を示す概略図である。 本発明で使用されるツーウェイスピーカー装置14での接続例を示す電気回路図である。
 以下図面を参考にして本発明の好適な実施例を詳細に説明する。
 図1は、実施の形態1で2台のアンプ1、2を用いて2台のスピーカー21、22を接続する電気回路図である。電圧駆動型アンプ1、電流駆動型アンプ2には、音響信号源20の同一の音響信号がライン30、31を介して与えられる。電圧駆動型アンプ1の出力はスピーカー21にライン32、33で、電流駆動型アンプ2の出力はスピーカー22にライン34、35で与えられる。これにより、音響信号源20から送られた信号は2台の特性の異なるアンプ1、2を経由しスピーカー21、22に出力され、各スピーカー21、22から発生された音圧が音場で空気の振動として合成され、特性が互いに補完する事で周波数特性が改善される。音響信号源20は、電圧の振幅が変化する音響信号を発生する。電圧駆動型増幅器1は、音響信号源20から与えられる音響信号の振幅の変化に対応して電圧の振幅を増幅して出力する。第1スピーカー21は、電圧駆動型増幅器1からの出力によって駆動され、駆動される信号の周波数に対応してインピーダンスが変化する第1の特性を有する。電流駆動型増幅器2は、音響信号源20から与えられる音響信号の振幅の変化に対応して電流の振幅を増幅して出力する。第2スピーカー22は、電流駆動型増幅器2からの出力によって駆動され、その駆動信号の周波数に対応してインピーダンスが変化する第2の特性を有し、この第2の特性は第1の特性に近似し、同一であってもよい。各アンプ1、2の入出力の信号の極性は、同一である。各スピーカー21、22に与えられる信号と、それによって電磁駆動されるコーン状などの振動部材の変位方向との極性は、同一である。
 音響信号源20は、電流の振幅が変化する音響信号を発生してもよい。
 図2は、電圧駆動型アンプ1におけるスピーカー21のボイスコイルの電気インピーダンスZ1と出力電力P1の関係を示している。横軸は電気インピーダンスZ1で、左が低く右が高い。縦軸は出力電力P1で、下が低く上が高くなっている。同一電圧で周波数、したがってインピーダンスZ1が変化すると、消費電力P1は、電圧をV1とし、インピーダンスをZ1とすると、(電圧V1の2乗÷インピーダンスZ1)であるので、電圧V1が一定状態であっても電気インピーダンスZ1の変化に応じて電力P1が変化する。この為、スピーカー21の周波数特性で電気インピーダンスZ1が増加した場合、同一電圧であるにも関わらず出力電力P1が減少するという特徴がある。逆に、電気インピーダンスZ1が減少した場合は出力電力P1が増加するという特徴がある。
 図3は、電流駆動型アンプ2におけるスピーカー22のボイスコイルの電気インピーダンスZ2と出力電力P2の関係を示している。横軸が電気インピーダンスZ2で、左が低く右が高い。縦軸は出力電力で、下が低く上が高くなっている。同一電流でインピーダンスZ2が変化すると、消費電力P2は、(電流I2の2乗掛けるインピーダンスZ2)であるので、電流I2が一定状態であってもインピーダンスZ2の変化に応じて電力P2が変化する。この為、スピーカー22の周波数特性で電気インピーダンスZ2が増加した場合、同一電流であるにも関わらず出力電力P2が増加するという特徴がある。逆に、電気インピーダンスZ2が減少した場合は出力電力P2が減少するという特徴がある。
 上記2種類のアンプ1、2は、図2、3の通りスピーカー21、22の電気インピーダンスに対した出力電力が逆に傾斜した特性を持つ。
 スピーカー21、22は、入力周波数により電気インピーダンスZ1、Z2が変化する特性を有する。本発明では、シングルスピーカーのフルレンジスピーカー、複数台のスピーカーを使用したマルチウエイスピーカー、その他の全ての出力インピーダンスが変化するタイプのスピーカーで効果があるが、説明の為以下ではシングルスピーカーについて説明を行う。
 図4は、スピーカー21、22が示す電気インピーダンスZ1、Z2の曲線であり、典型的なスピーカー21、22では、音響を発生するコーン状などの振動部材が、コイルの電磁力によって駆動され、図4の様な曲線が示される。横軸は周波数で、左が低く右が高い。縦軸は電気インピーダンスZ1、Z2で、下が低く上が高くなっている。典型的スピーカー21、22が示す曲線は、スピーカー21、22に固有の共振周波数f0において高いピークの電気インピーダンスZ1、Z2になり、高域周波数になるにつれて電気インピーダンスZ1、Z2が漸増する。
 電圧駆動型アンプ1に図4の特性を持つスピーカー21を接続すると、図4の特性を上下逆にしたような図5のような入力周波数に応じた出力電力P1、したがって音場における空気の振動である音響パワーになる。
 電流駆動型アンプ2を図4の性能を持つスピーカー22に接続すると、図4の特性に類似した図6の特性の入力周波数に応じた出力電力P2、したがって音場における空気の振動である音響パワーになる。
 上記2種類のアンプ1、2は、同一の音響信号が入力されて、(1)たとえば複数台の各スピーカー(図1、20、23、26)を、もしくは、1台のスピーカーに備えられる複数の各ボイスコイル(図8)を、個別的に駆動し、または、(2)たとえばトランス9、10などの合成回路16、17を介して合成した電気信号によって1台のスピーカー(図9~11)を駆動する。
 図7は、電圧駆動型アンプ1、電流駆動型アンプ2における電気インピーダンスZ1、Z2に対する出力電力P1、P2を合成した場合に得られる効果を概略的に示した図である。電圧駆動型アンプ1は、図5および図7(1)のように、全周波数帯域で電圧が予め定める一定の値である入力信号がそれぞれ与えられるとき、周波数の変化から起こるスピーカー21、22の電気インピーダンス変化(図4)によって、出力電力P1の変化(図5)が発生する。これに対して、電流駆動型アンプ2は、図6および図7(2)のように、全周波数帯域で電圧が予め定める一定の値である入力信号がそれぞれ与えられるとき、周波数の変化から起こるスピーカー21、22の電気インピーダンス変化(図4)によって、出力電力P2の変化(図6)が発生する。このように電圧駆動型アンプ1、電流駆動型アンプ2の双方は、周波数に依存する出力電力P1、P2の変化が逆の動作特性を持つので、図7(1)と図7(2)との動作特性の凹凸を互いに相殺、補完しあう事ができ、その結果、図7(3)のように全周波数帯域で出力電力P1、P2が合成されて得られる出力電力、したがって音場における音圧は、平坦化されて改善され、音質が向上する。説明は特定のスピーカー21、22で行ったが、この補完効果は、周波数によるインピーダンス変化がある全てのスピーカーで効果がある。
 図8は、実施の形態2で2台のアンプ1、2を用いて1台のダブルボイスコイルスピーカー6を接続する電気回路図である。ダブルボイスコイルスピーカー6には、たとえばコーン状などの振動部材81と、振動部材81を電磁駆動する駆動部分82とを有する。駆動部分82では、振動部材81に、振動部材81の軸線を含む直線上に軸線を有する直円筒状のボビン83が固定され、このボビン83上に、軸線方向にずれてボイスコイルである第1および第2コイル71、72が同一巻回方向に、したがって同一極性で、同一巻回数で巻回されて固定される。磁気回路84は、コイル71、72の電磁駆動力によって音響信号の振幅に対応する音圧を発生するように振動部材81を変位駆動する。電圧駆動型アンプ1はコイル71にライン32、33を介して接続し、電流駆動型アンプ2はコイル72にライン34、35を介して接続する。
 これにより、音響信号源20から送られた信号は2台の特性の異なるアンプ1、2を経由してコイル71、72に出力され、コイル71、72を含む駆動部分82でアンプ1、2の出力電力による電磁駆動力が合成される。したがって、電圧駆動型アンプ1、電流駆動型アンプ2の図7(1)、図7(2)の動作特性が互いに相殺、補完される事で、図7(3)のように、周波数に依存する音場における音圧の特性が改善される。
 図9は、実施の形態3で2台のアンプ1、2を用い、合成回路16を構成する2台のトランス9、10を介してスピーカー21を接続する電気回路図である。合成回路16は、電圧駆動型増幅器1と電流駆動型増幅器2とからの各出力を合成する。電圧駆動型アンプ1、電流駆動型アンプ2には音響信号源20の同一の音響信号を、ライン30、31を介して与える。合成回路16におけるトランス9は、電圧駆動型増幅器1からの出力がライン32、33を介して与えられる第1の1次巻線86と、第1の1次巻線86に電磁結合される第1の2次巻線87とを有する。合成回路16におけるもう1つのトランス10は、電流駆動型増幅器2からの出力がライン34、35を介して与えられる第2の1次巻線88と、第2の1次巻線88に電磁結合される第2の2次巻線89とを有する。第1および第2の2次巻線87、89は、同一極性で直列接続されてスピーカー21にライン36、37を介して接続される。これにより、音響信号源20から送られた信号は2台の特性の異なるアンプ1、2を経由し、出力された信号がトランス9、10を出力後に電気的に合成されてスピーカー21に出力され、特性が互いに相殺、補完する事で周波数特性が改善される。トランス9、10は、入出力される電圧および電流について、広い周波数帯域にわたって平坦な出力特性を有する。合成回路16は、電圧駆動型増幅器1と電流駆動型増幅器2とからの各出力の信号を合成して、1台のスピーカー6を駆動するので、構成の小形化を図ることができる。
 図10は、実施の形態4で2台のトランス内蔵電圧駆動型アンプ3とトランス内蔵電流駆動型アンプ4を用いてスピーカー21を接続する電気回路図である。図10の実施の形態4は、図9の実施の形態3に類似し、対応する部分に同一の参照符を付す。トランス内蔵電圧駆動型アンプ3、トランス内蔵電流駆動型アンプ4には音響信号源20の同一の音響信号を、ライン30、31を介して与える。図10で示されるトランス内蔵電圧駆動型アンプ3、トランス内蔵電流駆動アンプ4は、たとえばスピーカー21の近傍に設けられ、したがって、ライン32~35、36、37を短くでき、図9の実施の形態3におけるライン32~35、36、37が比較的長いことによる音質の低下を防ぐ。トランス内蔵電圧駆動型アンプ3、トランス内蔵電流駆動アンプ4は、その構造上、内部に合成回路16を構成するトランス9、10を有し、かつ、それらの2次巻線87、89は直列接続可能である。トランス内蔵電圧駆動型アンプ3とトランス内蔵電流駆動型アンプ4の出力は、直列でスピーカー21にライン36、37で接続する。これにより、音響信号源20から送られた信号は2台の特性の異なるアンプ3、4を経由し、出力された信号がトランス9、10を出力後に電気的に合成されてスピーカー21に出力され、特性が互いに補完する事で周波数特性が改善される。
 図11は、実施の形態5で2台のアンプ1、2を用い、合成回路17を構成する1台のトランスを介してスピーカー21を接続する電気回路図である。このトランスには、合成回路17と同一の参照符を付すことがある。電圧駆動型アンプ1、電流駆動型アンプ2には音響信号源20の同一の音響信号を、ライン30、31を介して与える。合成回路17であるトランスは、電圧駆動型増幅器1からの出力がライン32、33を介して与えられる第1の1次巻線92と、電流駆動型増幅器2からの出力がライン34、35を介して与えられる第2の1次巻線93と、第1および第2の1次巻線92、93に電磁結合され、スピーカー21にライン36、37を介して接続される2次巻線94とを有する.これにより、音響信号源20から送られた信号は2台の特性の異なるアンプ1、2を経由し、出力された信号がトランス17を出力後に電気的に合成されてスピーカー21に出力され、特性が互いに相殺、補完する事で周波数特性が改善される。
 図1~11の実施の各形態1~5は類似し、図2~7の動作、機能を同様に達成する。
 図1~11の実施の各形態1~5における電圧駆動型アンプ1の具体的構成の各例は、図12~14に参照符23~25で示される。
 図12は、電圧駆動型アンプ1の一つである非反転増幅回路23の一例である。電圧駆動型アンプ23には、入力信号として音響信号源20からライン30、31を介して与える。電圧駆動型アンプ23は、出力信号としてスピーカー21へライン32、33を介して与える。ライン30は、オペアンプ50のプラス入力へ接続し、オペアンプ50の出力はライン32接続する。ライン31、33は、共通電位であるグランドに接続する。オペアンプ50の出力は、抵抗40を介して抵抗41に接続され、グランドに接続される。抵抗40と抵抗41との接続点106から、オペアンプ50のマイナス入力に帰還信号として接続する。帰還された電圧により、オペアンプ50はプラス入力とマイナス入力が同じ値になる様に動作する。電圧駆動型増幅器23は、非反転増幅回路によって実現され、この非反転増幅回路は、オペアンプ50を有し、このオペアンプ50は、音響信号源20から音響信号が与えられる非反転入力端子と、反転入力端子と、スピーカー21の一方の端子21aに接続される出力端子とを有するオペアンプ50と、出力端子と反転入力端子との間に接続される負帰還抵抗40と、反転入力端子と、スピーカー21の他方の端子21bおよび音響信号源20の共通電位との間に接続される分圧抵抗41とを有する。
 これにより、オペアンプ50は下記の式1で動作する。ライン30の電圧V30とし、抵抗40、41の抵抗値R40、R41とし、ライン32の電圧V32とすると、式1が成り立つ。
   V30=R41÷(R40+R41)×V32     …(1)
 音響信号源20の電圧変化が無い状態で周波数が変化した場合、スピーカー21はオペアンプ50から出力される信号により電気インピーダンスZ3が変化する。しかしながら、この状態であっても、式1中にスピーカー21の電気インピーダンスZ3が無い為にオペアンプ50へ影響は無い。この為、図12の非反転増幅回路における電圧駆動型アンプ23は入力周波数に関わらず出力電圧V32の変化は無い。又、電気インピーダンスZ3が変化する為、消費電力P3は、(電圧V32の2乗÷電気インピーダンスZ3)となり、出力電力P3は図2の通りになる。
 図13は、反転増幅回路における電圧駆動型アンプ24の一例である。電圧駆動型アンプ24には、入力信号として音響信号源20からライン30、31を介して与える。電圧駆動型アンプ24は、出力信号としてスピーカー21へライン32、33を介して与える。但し、反転増幅であるので、スピーカー21は図12とは逆接続にする。ライン30は抵抗43を介してオペアンプ51のマイナス入力へ接続し、オペアンプ51の出力はライン32に接続する。ライン31、33、オペアンプ51のプラス入力は、共通電位のグランドに接続する。オペアンプ51の出力は、抵抗42を介しオペアンプ51のマイナス入力に帰還信号として接続する。オペアンプ51のプラス入力がグランドに接続されている為、オペアンプ51はマイナス入力がグランドと同電位になる様に動作する。電圧駆動型増幅器24は、反転増幅回路によって実現され、この反転増幅回路は、オペアンプ51を有し、このオペアンプ51は、非反転入力端子と、反転入力端子と、出力端子とを有する。入力抵抗43は、音響信号源20から音響信号を反転入力端子に与える。負帰還抵抗42は、出力端子と反転入力端子との間に接続される。非反転入力端子とスピーカー21の一方の端子21aと音響信号源20の共通電位とが接続される。出力端子は、スピーカー21の他方の端子21bに接続される。
 これにより、オペアンプ51は、ライン30の電圧V30とし、抵抗42、43の抵抗値R42、R43とし、ライン32の電圧V32とすると、式2で動作する。
   V30÷R43=-(V32÷R42)        …(2)
 音響信号源20の電圧変化が無い状態で周波数が変化した場合、スピーカー21はオペアンプ51から出力される信号により電気インピーダンスZ4が変化する。しかしながら、この状態であっても、式2中にスピーカー21の電気インピーダンスZ4が無い為にオペアンプ51へ影響は無い。この為、図13の反転増幅回路における電圧駆動型アンプ24は入力周波数に関わらず出力電圧の変化は無い。又、電気インピーダンスZ4が変化する為、消費電力は、(電圧V32の2乗÷電気インピーダンスZ4)となり、反転増幅の為に電圧の符号は逆転するが2乗するので、符号は打ち消され、出力電力は図2の通りになる。
 図14は、無帰還回路における電圧駆動型アンプ25の一例である。電圧駆動型アンプ25の無帰還回路型電圧駆動型アンプユニット52には、入力信号として音響信号源20からライン30、31を介して与える。電圧駆動型アンプ25の無帰還回路型電圧駆動型アンプユニット52は、出力信号をスピーカー21へライン32、33を介して与える。ライン30は、アンプユニット52の入力に接続し、アンプユニット52の出力はライン32に接続する。ライン31、33は、共通電位であるグランドに接続する。アンプユニット52は内部回路で一部帰還部分が存在する場合もあるが、出力回路はトランジスタやFET(電界効果トランジスタ)固有の増幅率やアンプユニット52の電子回路により、入力された電圧に応じて増幅した出力電圧が得られる。
 音響信号源20の電圧変化が無い状態で周波数が変化した場合、スピーカー21はアンプユニット52から出力される信号により電気インピーダンスが変化する。しかしながらアンプユニット52は帰還が無い為、スピーカー21の電気インピーダンスZ5による影響は無い。この為、図14の無帰還回路における電圧駆動型アンプ25は入力周波数に関わらず出力電圧の変化は無い。又、電気インピーダンスZ5が変化する為、消費電力P5は、(電圧V32の2乗÷電気インピーダンスZ5)となり、出力電力P5は図2の通りになる。
 図12、図13、図14において、本発明で使用される電圧駆動型アンプ23、24、25の一例を示したが、この例にあげた回路以外であっても音響信号源20の電圧変化が無い状態で周波数が変化した場合に出力される信号がスピーカー21の電気インピーダンスが変化に影響を受けず図2の様な出力電力になる全ての電圧駆動型アンプが使用可能である。
 図1~11の実施の各形態1~5における電流駆動型アンプ2の具体的構成の各例は、図15~17に参照符26~28で示される。
 図15は、非反転増幅回路における電流駆動型アンプ26の一例である。電流駆動型アンプ26には、入力信号として音響信号源20にライン30、31を介して与える。電流駆動型アンプ26は、出力信号をスピーカー21へライン34、35を介して与える。ライン30はオペアンプ53のプラス入力へ接続し、オペアンプ53の出力はライン34に接続する。ライン31は、共通電位であるグランドに接続する。オペアンプ53の出力は、スピーカー22を介し電流検知抵抗44に接続され、グランドに接続する。スピーカー22のライン35と電流検知抵抗44の接続点96は、オペアンプ53のマイナス入力に帰還信号として接続する。帰還された電圧により、オペアンプ53はプラス入力とマイナス入力が同じになる様に動作する。電流駆動型増幅器26は、オペアンプ53を有し、このオペアンプ53は、音響信号源20から音響信号が与えられる非反転入力端子と、スピーカー22の一方の端子22aに接続される出力端子とスピーカーの他方の端子22bに接続される反転入力端子とを有する。電流検知抵抗44は、反転入力端子およびスピーカー22の他方の端子22bの接続点96と、音響信号源20の共通電位との間に接続される。
 これにより、オペアンプ53は、ライン30の電圧V30、電流検知抵抗44の抵抗値R44、スピーカー22の電気インピーダンスZ5、ライン34の電圧V34とすると、式3で動作する。
   V30=R44÷(Z5+R44)×V34      …(3)
 音響信号源20の電圧変化が無い状態で周波数が変化した場合、スピーカー22はオペアンプ53から出力される信号により電気インピーダンスZ6が変化する。電気インピーダンスZ6が増加すれば、スピーカー22に流れる電流I22が減少し、同じく電流検知抵抗44の電流I44(=I22)が減少し、オペアンプ53への帰還電圧V96が、(電流I44×抵抗値R44)で減少する。これによりアンプ53の出力電圧V34が増加する。最終的には、スピーカー22と電流検知抵抗44間の電流が電気インピーダンス変化前と同じ値になるまでオペアンプ53の出力電圧V34が増加する。電気インピーダンスZ6が減少した場合は逆になり、スピーカー22と電流検知抵抗44間の電流が電気インピーダンス変化前と同じ値になるまでオペアンプ53の出力電圧V34が減少する。この為、図15の非反転増幅回路における電流駆動型アンプ26では、入力周波数変化に応じ出力電圧V34が変化する。しかしながら、電流検知抵抗44の両端電圧V44は変化しない為、入力周波数に関わらず出力電流I44の変化は無い。又、電気インピーダンスZ6が変化する為、消費電力P6は、(電流I44の2乗×電気インピーダンスZ6)となり、出力電力P6は図3の通りになる。
 図16は、反転増幅回路における電流駆動型アンプ27の一例である。電流駆動型アンプ27には、入力信号として音響信号源20にライン30、31を介して与える。電流駆動型アンプ27は、出力信号をスピーカー22へライン34、35を介して与える。但し、反転増幅であるので、スピーカー22は図15とは逆接続にする。ライン30は抵抗46を介してオペアンプ54のマイナス入力へ接続し、オペアンプ54の出力はライン34に接続する。ライン31、オペアンプ54のプラス入力は、共通電位であるグランドに接続する。オペアンプ54の出力は、スピーカー22、電流検知抵抗45を介しグランドに接続する。スピーカー22と電流検知抵抗45との接続点97を、負帰還抵抗47を介してオペアンプ54のマイナス入力に帰還信号を与えるために接続する。オペアンプ54のプラス入力がグランドに接続されている為、オペアンプ54はマイナス入力がグランドと同電位になる様に動作する。電流駆動型増幅器27は、オペアンプ54を有し、このオペアンプ54は、音響信号源20の共通電位に接続される非反転入力端子と、反転入力端子と、出力端子とを有する。入力抵抗46は、音響信号源20からの音響信号を反転入力端子に与える。負帰還抵抗47は、反転入力端子とスピーカー22の一方の端子22aとの間に接続される。電流検知抵抗45は、音響信号源20の共通電位とスピーカー22の一方の端子22aとの間に接続される。出力端子は、スピーカーの他方の端子22bに接続される。
 これにより、ライン30の電圧V30、抵抗46の抵抗値R46、抵抗47の抵抗値R47、ライン34の電圧V34、電流検知抵抗45の抵抗値R45、スピーカー22の電気インピーダンスZ7とすると、オペアンプ54は式4で動作する。
 V30÷R46=-(V34×(R45÷(Z7+R45)))÷R47
                             …(4)
 音響信号源20の電圧変化が無い状態で周波数が変化した場合、スピーカー22はオペアンプ54から出力される信号により電気インピーダンスZ7が変化する。電気インピーダンスZ7が増加すればスピーカー22に流れる電流I22が減少し、同じく電流検知抵抗45の電流I45(=I22)が減少し、オペアンプ54への帰還電圧が(電流I45×抵抗値R45)で減少する。これによりオペアンプ54の出力電圧V34が増加する。最終的には、スピーカー22と電流検知抵抗45間の電流が電気インピーダンス変化前と同じ値になるまでオペアンプ54の出力電圧が増加する。電気インピーダンスZ7が減少した場合は逆になり、スピーカー22と電流検知抵抗45間の電流が電気インピーダンス変化前と同じ値になるまでオペアンプ54の出力電圧V34が減少する。この為、図16の非反転増幅回路における電流駆動型アンプ27では、入力周波数変化に応じ出力電圧V34が変化する。しかしながら、電流検知抵抗45の両端電圧V45は変化しない為、入力周波数に関わらず出力電流の変化は無い。又、電気インピーダンスZ7が変化する為、消費電力P7は、(電流I45の2乗×電気インピーダンスZ7)となり、反転増幅の為に電流は符号が逆転するが2乗するので符号は打ち消され、出力電力P7は図3の通りになる。
 図17は、無帰還回路における電流駆動型アンプ28の一例である。電流駆動型アンプ28の無帰還回路型電流駆動型アンプユニット55には、入力信号として音響信号源20からライン30、31を介して与える。電流駆動型アンプ28の無帰還回路型電流駆動型アンプユニット55は、出力信号をスピーカー22へライン34、35を介して与える。ライン30はアンプユニット55の入力に接続し、アンプユニット55の出力はライン34に接続する。ライン31、35は、共通電位であるグランドに接続する。アンプユニット55は内部回路で一部帰還部分が存在する場合もあるが、出力回路はトランジスタやFET(電界効果トランジスタ)固有の増幅率やアンプユニット55の電子回路により、入力された電圧に応じて増幅した出力電流が得られる。
 音響信号源20の電圧変化が無い状態で周波数が変化した場合、スピーカー22はアンプユニット55から出力される信号により電気インピーダンスZ8が変化する。しかしながらアンプユニット55は帰還が無い為、スピーカー22の電気インピーダンスZ8による影響は無い。この為、図17の無帰還回路における電流駆動型アンプ28は入力周波数に関わらず出力電流I34の変化は無い。又、電気インピーダンスZ8が変化する為、消費電力P8は、(電流I34の2乗×電気インピーダンスZ8)となり、出力電力は図3の通りになる。
 本発明では、図15~17で本発明で使用される電流駆動型アンプ26~28の一例を示したが、この例にあげた回路以外であっても音響信号源20の電流変化が無い状態で周波数が変化した場合に出力される信号がスピーカー22の電気インピーダンスが変化に影響を受けず図3の様な出力電力になる全ての電流駆動型アンプが使用可能である。
 実施の形態1~5では、説明の為に主としてシングルコーンスピーカー21、22を使用したが、本発明は周波数に依存するインピーダンス変化がある全てのスピーカーで音質向上の効果がある。
 以下の図18~26は、本発明が実施されるスピーカー装置11、13、14の例をそれぞれ示す。
 図18、19はコアキシャルスピーカー装置11の例である。図18はコアキシャルスピーカー装置11の正面図、図19はコアキシャルスピーカー装置11の簡略化した断面図である。コアキシャルスピーカー装置11は、ウーハー60と、ツイーター61とを有し、コアキシャルスピーカーボックス107に装着される。図18、19のコアキシャルスピーカー装置11は、ウーハー60の中にツイーター61が同軸で配置される構造を有する。
 図20は、コアキシャルスピーカー装置11a、11bを2台用意して接続する場合の電気回路図である。各スピーカー装置11a、11bのウーハー60とツイーター61とには、数字の参照符に添え字a、bを付して個別的に示し、総括的には数字だけで示す。ウーハー60とツイーター61とは、音響信号の経路の中に電気的な回路であるウーハー60のためのローパスフィルタ68、ツイーター61のためのハイパスフィルタ69とによって、音響信号の低域と高域の各周波数帯域が分離されて、それぞれ駆動される。本発明に従えば、電気回路で分離してもウーハー60、又は、ツイーター61の片方、又は、両方が入力周波数に対して電気インピーダンスが変化するのであれば、図18、19で示されるコアキシャルスピーカー装置11a、11bを2台用意し、図20の接続をすれば本発明は良い効果を達成する。図20において、電圧駆動型アンプ1、電流駆動型アンプ2には、入力信号として音響信号源20からライン30、31を介して与える。電圧駆動型アンプ1はその出力を、コアキシャルスピーカー装置11aのウーハー60a、ツイーター61aにライン32、33からローパスフィルタ68a、ハイパスフィルタ69aをそれぞれ介して与える。電流駆動型アンプ2はその出力を、コアキシャルスピーカー装置11bのウーハー60b、ツイーター61bにライン34、35からローパスフィルタ68b、ハイパスフィルタ69bをそれぞれ介して与える。コアキシャルスピーカー装置11のスピーカーボックス107には、対応するローパスフィルタ68、ハイパスフィルタ69を内蔵してもよい。これにより、音響信号源20から送られた信号は2台の特性の異なるアンプ1、2を経由し、コアキシャルスピーカー装置11a、11bが駆動され、音場でコアキシャルスピーカー装置11a、11bによって発生された音が合成され、特性が互いに補完する事で周波数特性が改善される。
 図21、22は、ダブルツイーター一体型スピーカー装置13の例である。図21はスピーカー装置13の正面図、図22はスピーカー装置13の簡略化した断面図である。図20、21のダブルツイーター一体型スピーカー装置13は、ウーハー62の中にツイーター63、64が配置され、スピーカーボックス108に装着される構造を有する。
 図23は、ダブルツイーター一体型スピーカー装置13を接続する場合の電気回路図である。音響信号源20からの同一の音響信号は、ライン30、31を介して、ハイパスフィルタ69を経由し、電圧駆動型アンプ1、電流駆動型アンプ2に与えられる。電圧駆動型アンプ1の出力は、ライン32、33からダブルツイーター一体型スピーカー装置13の一方のツイーター63に、又、電流駆動型パワーアンプ2の出力は、ライン34、35から他方のツイーター64にそれぞれ与えられる。ダブルツイーター一体型スピーカー装置13のウーハー62には、音響信号源20にライン30、31からローパスフィルタ68を経由し、別途接続された全周波数帯域を電力増幅するウーハー用アンプ70の出力が与えられて駆動される。ウーハー用アンプ70は、たとえば電圧駆動型アンプ1または電流駆動型アンプ2であってもよい。
 ウーハー62、ツイーター63、64は、電気的な回路でフィルタ68、69によって、発生する周波数帯域を分離して駆動される。電気回路で分離してもツイーター63、64が入力周波数に対して電気インピーダンスが変化するのであれば、図21、22で示されるダブルツイーター一体型スピーカー装置13の一方のツイーター63に電圧駆動型アンプ1を、他方のツイーター64に電流駆動型アンプ2を接続すれば、ウーハー62はウーハー用アンプ70による考慮が必要だが、ツイーター63、64に対して本発明は音質向上の効果がある。これにより、音響信号源20から送られた音響信号は2台の特性の異なるアンプ1、2を経由し、ダブルツイーター一体型スピーカー装置13のツイーター63、64で発生された音圧が音場で合成され、特性が互いに補完する事で周波数特性が改善される。
 図24、25はツーウェイスピーカー装置14の例である。図24はスピーカー装置14の正面図、図25はスピーカー装置14の簡略化した断面図である。スピーカーボックス65に、ウーハー66とツイーター67とが取り付けられてツーウェイスピーカー装置14が構成される。
 図26は、ツーウェイスピーカー装置14a、14bを2台用意して接続する場合の電気回路図である。各ツーウェイスピーカー装置14のウーハー66とツイーター67とには、数字の参照符に添え字a、bを付して個別的に示し、総括的には数字だけで示す。ウーハー66とツイーター67とは、音響信号の経路の中に電気的な回路であるローパスフィルタ68、ハイパスフィルタ69を設け。音響信号の周波数帯域を分離してそれぞれ駆動される。本発明に従えば、電気回路で分離してもウーハー66、又は、ツイーター67の片方、又は、両方が入力周波数に対して電気インピーダンスが変化するのであれば、図24、25で示される2台のスピーカー装置14a、14bを用意し、図26の接続をすれば本発明は良い効果を達成する。図26において、電圧駆動型アンプ1、電流駆動型アンプ2には、入力信号として音響信号源20からライン30、31を介して与える。電圧駆動型アンプ1はその出力を、ライン32、33から、ツーウェイスピーカー装置14aのウーハー66a、ツイーター67aにローパスフィルタ68a、ハイパスフィルタ69aをそれぞれ介して与える。電流駆動型アンプ2はその出力を、ライン34、35から、ツーウェイスピーカー装置14bのウーハー66b、ツイーター67bにローパスフィルタ68b、ハイパスフィルタ69bをそれぞれ介して与える。各ツーウェイスピーカー装置14の各スピーカーボックス108には、対応するローパスフィルタ68、ハイパスフィルタ69が内蔵されてもよい。これにより、音響信号源20から送られた信号は2台の特性の異なるアンプ1、2を経由し、ツーウェイスピーカー装置14が駆動され、音場でツーウェイスピーカー装置14によって発生された音が合成され、特性が互いに補完する事で周波数特性が改善される。ツーウェイスピーカー装置14に代えて、全周波数帯域を3以上の複数の周波数帯域に分割して、たとえば、ウーハー、スコーカー、ツイーターを、本発明に従ってそれぞれ駆動することもできる。
 実施の形態で説明した通り、本発明は使用するスピーカーが入力する周波数に対してインピーダンス変化があれば、スピーカーの種類に関わらず音質向上の効果がある。
 本発明は、いわゆるオーディオ装置と呼ばれる据置き型のステレオ音響再生装置、いわゆるラジカセと呼ばれる録音再生機能を有するラジオ受信機、車載用カーステレオ装置、テレビジョン受信機、さらに記録媒体に記録された内容を再生する用途だけでなく声などの音響をマイクロホンなどから電気信号で拡大して音響化する拡声器などの広い用途にわたる音響を発生する装置に関連して実施できる。
 本発明は、その精神または主要な特徴から逸脱することなく、他のいろいろな形態で実施できる。したがって、前述の実施形態はあらゆる点で単なる例示に過ぎず、本発明の範囲は特許請求の範囲に示すものであって、明細書本文には何ら拘束されない。さらに、特許請求の範囲に属する変形や変更は全て本発明の範囲内のものである。
1 電圧駆動型アンプ
2 電流駆動型アンプ
3 トランス内蔵電圧駆動型アンプ
4 トランス内蔵電圧駆動型アンプ
6 ダブルボイスコイルスピーカー
9、10 トランス
11 コアキシャルスピーカー装置
13 ダブルツイーター一体型スピーカー装置
14 ツーウェイスピーカー装置
16、17 合成回路
20 音響信号源
21、22 スピーカー
23 非反転増幅回路型電圧駆動型アンプ
24 反転増幅回路型電圧駆動型アンプ
25 無帰還回路型電圧駆動型アンプ
26 非反転増幅回路型電流駆動型アンプ
27 反転増幅回路型電流駆動型アンプ
28 無帰還回路型電流駆動型アンプ
40、41、42、43、46、47 抵抗
44、45 電流検知抵抗
50、51、53、54 オペアンプ
52 無帰還回路型電圧駆動型アンプユニット
55 無帰還回路型電流駆動型アンプユニット
60、62、66 ウーハー
61、63、64、67 ツイーター
65、107、108 スピーカーボックス
68 ローパスフィルタ
69 ハイパスフィルタ
70 ウーハー用アンプ
71、72 ボイスコイル
81 振動部材
82 駆動部分
83 ボビン
84 磁気回路

Claims (11)

  1.  音響信号を発生する音響信号源と、
     スピーカーであって、このスピーカーを駆動する駆動信号の周波数に依存する音響パワーが変化する特性を有する1または複数のスピーカーと、
     音響信号が与えられる複数の動作特性の異なる増幅器を備え、前記1または複数のスピーカーによる音場における音圧が予め定める周波数帯域にわたって、予め定める特性となるように、音響信号に対応する駆動信号を、少なくとも増幅器を動作させてスピーカーに与える駆動手段とを含むことを特徴とする音響発生装置。
  2.  電圧または電流の振幅が変化する音響信号を発生する音響信号源と、
     音響信号源から与えられる音響信号の振幅の変化に対応して電圧の振幅を増幅して出力する電圧駆動型増幅器と、
     電圧駆動型増幅器からの出力によって駆動され、駆動される信号の周波数に対応してインピーダンスが変化する第1の特性を有する第1スピーカーと、
     音響信号源から与えられる音響信号の振幅の変化に対応して電流の振幅を増幅して出力する電流駆動型増幅器と、
     電流駆動型増幅器からの出力によって駆動され、その駆動信号の周波数に対応してインピーダンスが変化する第2の特性を有し、この第2の特性は第1の特性に近似する第2スピーカーとを含むことを特徴とする音響発生装置。
  3.  (a)電圧または電流の振幅が変化する音響信号を発生する音響信号源と、
     (b)音響信号源から与えられる音響信号の振幅の変化に対応して電圧の振幅を増幅して出力する電圧駆動型増幅器と、
     (c)音響信号源から与えられる音響信号の振幅の変化に対応して電流の振幅を増幅して出力する電流駆動型増幅器と、
     (d)スピーカーであって、
      振動部材と、
      振動部材に固定され、電圧駆動型増幅器からの出力が与えられる第1コイルと、
      振動部材に固定され、電流駆動型増幅器からの出力が与えられる第2コイルと、
      第1および第2コイルの電磁力によって音響信号の振幅に対応する音圧を発生するように振動部材を変位駆動する磁気回路とを備えるスピーカーとを含むことを特徴とする音響発生装置。
  4.  電圧または電流の振幅が変化する音響信号を発生する音響信号源と、
     音響信号源から与えられる音響信号の振幅の変化に対応して電圧の振幅を増幅して出力する電圧駆動型増幅器と、
     音響信号源から与えられる音響信号の振幅の変化に対応して電流の振幅を増幅して出力する電流駆動型増幅器と、
     電圧駆動型増幅器と電流駆動型増幅器とからの各出力を合成する合成回路と、
     合成回路からの出力によって駆動され、その駆動信号の周波数に対応してインピーダンスが変化するスピーカーとを含むことを特徴とする音響発生装置。
  5.  合成回路は、
     (a)第1トランスであって、
      電圧駆動型増幅器からの出力が与えられる第1の1次巻線と、
      第1の1次巻線に電磁結合される第1の2次巻線とを有する第1トランスと、
     (b)第2トランスであって、
      電流駆動型増幅器からの出力が与えられる第2の1次巻線と、
      第2の1次巻線に電磁結合される第2の2次巻線とを有する第2トランスとを備え、
     (c)第1および第2の2次巻線が同一極性で直列接続されてスピーカーに接続されることを特徴とする請求項4に記載の音響発生装置。
  6.  合成回路は、トランスによって実現され、このトランスは、
      電圧駆動型増幅器からの出力が与えられる第1の1次巻線と、
      電流駆動型増幅器からの出力が与えられる第2の1次巻線と、
      第1および第2の1次巻線に同一極性で電磁結合され、スピーカーに接続される2次巻線とを有することを特徴とする請求項4に記載の音響発生装置。
  7.  電圧駆動型増幅器は、非反転増幅回路によって実現され、この非反転増幅回路は、
     (a)オペアンプであって、
      音響信号源から音響信号が与えられる非反転入力端子と、
      反転入力端子と、
      スピーカーの一方の端子に接続される出力端子とを有するオペアンプと、
     (b)出力端子と反転入力端子との間に接続される負帰還抵抗と、
     (c)反転入力端子と、スピーカーの他方の端子および音響信号源の共通電位との間に接続される分圧抵抗とを有することを特徴とする請求項2~6の1つに記載の音響発生装置。
  8.  電圧駆動型増幅器は、反転増幅回路によって実現され、この反転増幅回路は、
     (a)オペアンプであって、
      非反転入力端子と、
      反転入力端子と、
      出力端子とを有するオペアンプと、
     (b)音響信号源から音響信号を反転入力端子に与える入力抵抗と、
     (c)出力端子と反転入力端子との間に接続される負帰還抵抗とを有し、
     (d)非反転入力端子とスピーカーの一方の端子と音響信号源の共通電位とが接続され、
     (e)出力端子は、スピーカーの他方の端子に接続されることを特徴とする請求項2~6の1つに記載の音響発生装置。
  9.  電流駆動型増幅器は、
     (a)オペアンプであって、
      音響信号源から音響信号が与えられる非反転入力端子と、
      スピーカーの一方の端子に接続される出力端子と
      スピーカーの他方の端子に接続される反転入力端子とを有するオペアンプと、
     (b)反転入力端子およびスピーカーの他方の端子の接続点と、音響信号源の共通電位との間に接続される電流検知抵抗とを有することを特徴とする請求項2~6の1つに記載の音響発生装置。
  10.  電流駆動型増幅器は、
     (a)オペアンプであって、
      音響信号源の共通電位に接続される非反転入力端子と、
      反転入力端子と、
      出力端子とを有するオペアンプと、
     (b)音響信号源からの音響信号を反転入力端子に与える入力抵抗と、
     (c)反転入力端子とスピーカーの一方の端子との間に接続される負帰還抵抗と、
     (d)音響信号源の共通電位とスピーカーの他方の端子との間に接続される電流検知抵抗とを有し、
     (e)出力端子は、スピーカーの他方の端子に接続されることを特徴とする請求項2~6の1つに記載の音響発生装置。
  11.  音響信号の予め定める周波数帯域を濾波するフィルタが設けられ、
     電圧駆動型増幅器および電流駆動型増幅器は、フィルタによって濾波された前記周波数帯域で第1および第2スピーカーをそれぞれ駆動することを特徴とする請求項2に記載の音響発生装置。
PCT/JP2017/042385 2016-11-29 2017-11-27 音響発生装置 WO2018101200A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016231406A JP6221023B1 (ja) 2016-11-29 2016-11-29 音響発生装置
JP2016-231406 2016-11-29

Publications (1)

Publication Number Publication Date
WO2018101200A1 true WO2018101200A1 (ja) 2018-06-07

Family

ID=60156843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042385 WO2018101200A1 (ja) 2016-11-29 2017-11-27 音響発生装置

Country Status (2)

Country Link
JP (1) JP6221023B1 (ja)
WO (1) WO2018101200A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112383851A (zh) * 2020-11-13 2021-02-19 苏州森斯微电子技术有限公司 一种具有扬声器功能的多变量传感器及应用
US20220329212A1 (en) * 2021-04-12 2022-10-13 Cirrus Logic International Semiconductor Ltd. Signal amplitude-selected signal predistortion in an amplifier
CN115278473A (zh) * 2022-07-27 2022-11-01 重庆电子工程职业学院 一种蓝牙立体声系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102184933B1 (ko) * 2019-10-08 2020-12-01 한국과학기술원 음향 통신용 스피커 드라이버

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5684008A (en) * 1979-12-12 1981-07-09 Sony Corp Constant-current amplifier
JPS58100514A (ja) * 1981-12-11 1983-06-15 Kokusai Densetsu Kogyo Kk 広帯域電力増幅装置
JPH05110349A (ja) * 1991-10-16 1993-04-30 Matsushita Electric Ind Co Ltd オーデイオ電力増幅器
JPH05504218A (ja) * 1990-02-10 1993-07-01 ドイチエ トムソン―ブラント ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 周波数特性の補償された回路
JPH08204476A (ja) * 1995-01-25 1996-08-09 Sony Corp 電流制御回路及びそれを用いた装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4130317B2 (ja) * 2002-01-31 2008-08-06 三菱電機株式会社 高周波増幅器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5684008A (en) * 1979-12-12 1981-07-09 Sony Corp Constant-current amplifier
JPS58100514A (ja) * 1981-12-11 1983-06-15 Kokusai Densetsu Kogyo Kk 広帯域電力増幅装置
JPH05504218A (ja) * 1990-02-10 1993-07-01 ドイチエ トムソン―ブラント ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 周波数特性の補償された回路
JPH05110349A (ja) * 1991-10-16 1993-04-30 Matsushita Electric Ind Co Ltd オーデイオ電力増幅器
JPH08204476A (ja) * 1995-01-25 1996-08-09 Sony Corp 電流制御回路及びそれを用いた装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112383851A (zh) * 2020-11-13 2021-02-19 苏州森斯微电子技术有限公司 一种具有扬声器功能的多变量传感器及应用
US20220329212A1 (en) * 2021-04-12 2022-10-13 Cirrus Logic International Semiconductor Ltd. Signal amplitude-selected signal predistortion in an amplifier
US11539331B2 (en) * 2021-04-12 2022-12-27 Cirrus Logic, Inc. Signal amplitude-selected signal predistortion in an amplifier
CN115278473A (zh) * 2022-07-27 2022-11-01 重庆电子工程职业学院 一种蓝牙立体声系统

Also Published As

Publication number Publication date
JP6221023B1 (ja) 2017-10-25
JP2018088634A (ja) 2018-06-07

Similar Documents

Publication Publication Date Title
WO2018101200A1 (ja) 音響発生装置
US4220832A (en) Two-way speaker with transformer-coupled split coil
US4276443A (en) Sound reproducing system utilizing motional feedback and velocity-frequency equalization
JP4289343B2 (ja) スピーカ駆動装置
JP4917650B2 (ja) 合成された正のインピーダンスを有するオーディオシステム
US8774424B2 (en) Apparatus for reproduction of sound
US20060008110A1 (en) Receiver with multiple drive coils
US9204217B2 (en) Microphone filter system
WO2016194858A1 (ja) スピーカ
JP2008187598A (ja) スピーカ装置及び表示装置
JP2004031998A (ja) 音響駆動回路
JP2009111836A (ja) 正多面体広指向特性拡声装置
JP2015056705A (ja) ヘッドホン用増幅器およびヘッドホン再生装置
US20200204919A1 (en) Audio processor
US8150094B2 (en) Electroacoustic transducer
JP6997478B1 (ja) アンプ装置、オーディオ装置、及びアンプ装置の制御方法
WO2023171499A1 (ja) 電力増幅装置
US20240186959A1 (en) Amplifier device, audio device, and method for controlling amplifier device
JP2018046396A (ja) 音声再生システム、および、これを構成する終端処理回路
US20120224717A1 (en) Audio cable capable of increasing gain and filtering noise
US9277317B2 (en) Tunable inductive device for parametric audio systems and related methods
RU2804725C1 (ru) Устройство вывода звука, способ регулировки мнимого источника и способ регулировки громкости
US20160173986A1 (en) Ultra-low distortion integrated loudspeaker system
KR100440318B1 (ko) 트위터 스피커 구조
JP2016019121A (ja) スピーカー装置およびこれを構成するスイッチングアンプ、動電型スピーカー、並列共振発生回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17875122

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17875122

Country of ref document: EP

Kind code of ref document: A1