WO2018101178A1 - 塗装乾燥方法及びその装置 - Google Patents

塗装乾燥方法及びその装置 Download PDF

Info

Publication number
WO2018101178A1
WO2018101178A1 PCT/JP2017/042295 JP2017042295W WO2018101178A1 WO 2018101178 A1 WO2018101178 A1 WO 2018101178A1 JP 2017042295 W JP2017042295 W JP 2017042295W WO 2018101178 A1 WO2018101178 A1 WO 2018101178A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
drying
heat pump
drying furnace
heat
Prior art date
Application number
PCT/JP2017/042295
Other languages
English (en)
French (fr)
Inventor
加藤 秀和
啓貴 松井
敏弘 吉田
直人 和久
Original Assignee
マツダ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マツダ株式会社 filed Critical マツダ株式会社
Priority to MX2019006350A priority Critical patent/MX2019006350A/es
Priority to EP17875268.9A priority patent/EP3540349B1/en
Priority to US16/464,845 priority patent/US11262127B2/en
Priority to CN201780073912.3A priority patent/CN110036252B/zh
Publication of WO2018101178A1 publication Critical patent/WO2018101178A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/06Controlling, e.g. regulating, parameters of gas supply
    • F26B21/08Humidity
    • F26B21/086Humidity by condensing the moisture in the drying medium, which may be recycled, e.g. using a heat pump cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/02Circulating air or gases in closed cycles, e.g. wholly within the drying enclosure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/02Circulating air or gases in closed cycles, e.g. wholly within the drying enclosure
    • F26B21/04Circulating air or gases in closed cycles, e.g. wholly within the drying enclosure partly outside the drying enclosure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/06Controlling, e.g. regulating, parameters of gas supply
    • F26B21/10Temperature; Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B23/00Heating arrangements
    • F26B23/001Heating arrangements using waste heat
    • F26B23/002Heating arrangements using waste heat recovered from dryer exhaust gases
    • F26B23/005Heating arrangements using waste heat recovered from dryer exhaust gases using a closed cycle heat pump system ; using a heat pipe system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B25/00Details of general application not covered by group F26B21/00 or F26B23/00
    • F26B25/005Treatment of dryer exhaust gases
    • F26B25/006Separating volatiles, e.g. recovering solvents from dryer exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B25/00Details of general application not covered by group F26B21/00 or F26B23/00
    • F26B25/06Chambers, containers, or receptacles

Definitions

  • the present invention relates to a coating drying method and apparatus for drying a coating film of a coated workpiece.
  • Patent Document 1 describes an example of a baking and drying furnace for a vehicle body after electrodeposition coating.
  • the outside air introduced from the outside air introduction path and the air taken out from the drying furnace are mixed, heated by a heater, and supplied to the drying furnace.
  • exhaust gas exhaust gas containing spear components and the like
  • the introduced outside air is preheated with high-temperature exhaust gas that has been subjected to purification and deodorization treatment.
  • Patent Document 1 a preheating furnace and a cooling zone are provided before and after the drying furnace, the preheating air is used as a heat radiation source, and the preheating air is heated and cooled by a heat pump using the cooling air as a heat absorption source. The cooling is described.
  • the present invention cools the air taken out from the drying furnace with a heat pump, condenses and removes moisture such as moisture and VOC in the air, and then heats it back to the drying furnace. I made it.
  • the coating drying method disclosed herein is a method of bringing a coated workpiece into a drying furnace, and drying the coating film of the workpiece in the drying oven, Extracting the air in the furnace from the drying furnace, and cooling the air so that at least a portion of the water and VOC in the air are condensed and removed; and Heating the cooled air and returning it to the drying furnace, A heat pump using the air taken out from the drying furnace as an endothermic source and the cooled air as a heat radiating source is provided, and the air is cooled and heated using the heat pump.
  • the air in the drying furnace is taken out and cooled, and the dried air after the moisture and VOC are condensed and removed is heated and returned to the drying furnace, the vapor pressure in the drying furnace is increased. It can be suppressed. As a result, since the evaporation rate of moisture and VOC in the coating film in the drying furnace increases, the coating film on the workpiece can be quickly and efficiently dried in the drying furnace, which is advantageous for quality improvement.
  • the above-mentioned cooling can condense and remove the spear component, thus preventing the spear component from adhering to the workpiece.
  • a plurality of the heat pumps are provided, and the air is cooled and heated stepwise using the plurality of heat pumps.
  • cooling and heating of air are performed in stages using a plurality of heat pumps.
  • a first heat pump using CO 2 as a refrigerant and a second heat pump using a CFC-based medium as a refrigerant are provided as the plurality of heat pumps, and the cooling of the air is performed from the first heat pump to the second heat pump.
  • the heating is performed step by step in the order of the heat pump, and the air is heated step by step in the order from the second heat pump to the first heat pump.
  • the first heat pump using CO 2 as a refrigerant is suitable for absorbing and releasing heat on the high temperature side
  • the second heat pump using the fluorocarbon medium as a refrigerant is suitable for absorbing and releasing heat on the low temperature side. Therefore, in this embodiment, the air is cooled stepwise from the first heat pump to the second heat pump, and the air is heated stepwise from the second heat pump to the first heat pump. It is a thing.
  • the air taken out from the drying furnace is precooled before being cooled by the heat pump.
  • the air heated by the heat pump is further heated and returned to the drying furnace.
  • the work is mounted on a transport hanger and carried into the drying furnace, and in the step of cooling the air, the dew point temperature of the air in the drying furnace is carried into the drying furnace.
  • the moisture in the air taken out from the drying furnace is condensed and removed so that the surface temperature of the hanger is equal to or lower.
  • the paint drying device for drying the coated film of the workpiece disclosed herein is A drying furnace in which the workpiece is carried; A cooler that cools the air so that furnace air is introduced from the drying furnace and at least a portion of moisture and VOC in the air is condensed and removed; A heater that introduces air cooled by the cooler and heats the air; A circulation path for circulating the air in the drying furnace so as to return from the cooler to the drying furnace via the heater; A heat pump that communicates the cooler with the heater, supplies the cooler with cold heat that cools the air by heat exchange, and supplies the heater with heat heat that heats the air by heat exchange; It is characterized by that.
  • the air in the furnace is taken out from the drying furnace, and the air is cooled by the heat pump so that at least a part of the water and VOC in the air are condensed and removed. It can be used to heat the cooled air and return it to the drying oven. Therefore, the increase in the vapor pressure in the drying furnace can be suppressed, and the coating film on the workpiece can be dried quickly and efficiently, and the exhaust for the VOC treatment and the installation of the catalytic oxidation apparatus are not required. It is possible to reduce the size of the oxidizer and reduce the amount of exhaust gas, which is advantageous for energy saving. Further, it is possible to prevent adhesion of the component due to leakage of the spear component.
  • a plurality of sets in which the cooler and the heater are connected by a heat pump are provided in the circulation path so that the air is cooled and heated stepwise.
  • a first set using a first heat pump using CO 2 as a refrigerant and a second set using a second heat pump using a fluorocarbon medium as a refrigerant are used as the plurality of sets.
  • the cooling of the air is performed in stages from the first heat pump to the second heat pump, and the heating of the air is performed in stages from the second heat pump to the first heat pump.
  • Both the first and second sets are provided in the circulation path.
  • air cooling and heating are performed by using the first heat pump using CO 2 refrigerant suitable for heat absorption / release on the high temperature side and the second heat pump using Freon refrigerant suitable for heat absorption / release on the low temperature side. Can be performed efficiently.
  • a pre-cooler is provided in the circulation path and cools the air taken out from the drying furnace and introduces it into the cooler.
  • a post heater is provided that is disposed in the circulation path and further heats the air heated by the heater to a predetermined temperature and returns the air to the drying furnace.
  • the post-heating device can accelerate the temperature increase of the drying furnace at the start of operation.
  • the work is mounted on a transport hanger and carried into the drying furnace, and the cooler has a dew point temperature of air in the drying furnace in the drying furnace. Moisture in the air taken out from the drying furnace is condensed and removed so that the surface temperature of the loaded hanger is equal to or lower.
  • the air taken out from the drying furnace is cooled to condense and remove at least a part of moisture and VOC in the air, and the cooled air is heated. Since it is returned to the drying furnace, it is possible to quickly and efficiently dry the coating film on the workpiece while suppressing an increase in the vapor pressure in the drying furnace, and it is unnecessary to install exhaust for the VOC treatment or to install a catalytic oxidation apparatus.
  • the catalytic oxidation apparatus can be reduced in size and the amount of exhaust gas can be reduced, which is advantageous for energy saving. Further, it is possible to prevent adhesion of the component to the work due to leakage of a spear component.
  • FIG. 1 is a block diagram illustrating a paint drying apparatus according to Embodiment 1.
  • FIG. Sectional drawing which shows the drying furnace of the same apparatus, a workpiece
  • reference numeral 1 denotes a drying furnace into which a coated workpiece 2 is carried. Outside the drying furnace 1, there are provided a heat pump 3 for heating after cooling the air taken out from the drying furnace 1, a post heater 4 for heating the air heated by the heat pump 3, and a circulation fan 5. ing.
  • the drying furnace 1, the heat pump 3, the post heater 4 and the circulation fan 5 return the air taken out from the drying furnace 1 to the drying furnace 1 through the heat pump 3, the post heater 4 and the circulation fan 5 in order. They are connected by a circulation path 6.
  • the heat pump 3 is a vapor compression type in which refrigerant is circulated in the order of compressor ⁇ condenser ⁇ expansion valve ⁇ evaporator, and CO 2 is used as the refrigerant.
  • the evaporator of the heat pump 3 constitutes a cooler that cools the air taken out from the drying furnace 1 by heat exchange so that at least moisture and a part of the VOC in the air are condensed and removed.
  • the condenser of the heat pump 3 constitutes a heater that heats the air cooled by the evaporator by heat exchange.
  • the heat pump 3 is a heat pump that uses the air taken out from the drying furnace 1 as a heat absorption source and uses the cooled air as a heat dissipation source.
  • a gas burner is used as the post heater 4, and gas fuel and outside air are supplied to the post heater 4.
  • This post-heater 4 is used as needed for early temperature rise of the air in the drying furnace 1 at the start of operation, temperature adjustment in the drying furnace 1, and the like.
  • the workpiece 2 of this example is an automobile body, and is loaded on the hanger 10 of the hanger type conveying apparatus (overhead conveyor) shown in FIG.
  • the hanger-type transport device includes a guide rail 11 extending along the painting line, and a front and rear trolley 13 that engages with the guide rail 11 by a roller 12 and moves along the guide rail 11. Is suspended.
  • the hanger 10 includes front and rear portal frames 15 that are suspended from a trolley 13 via a C-neck 14 for supporting the work 2 from both sides.
  • a work receiver 16 is provided at the lower end of the portal frame 15.
  • a nozzle box 18 that blows hot air supplied from the circulation path 6 toward the work 2 mounted on the hanger 10 is provided on the inner wall 17 facing the drying furnace 1.
  • An air suction port 19 for discharging the air in the drying furnace 1 to the circulation path is opened at the upper part of the inner wall 17.
  • a heat insulating material 8 is provided on the wall of the drying furnace 1.
  • the painted workpiece 2 is mounted on the hanger 10 and carried into the drying furnace 1.
  • the drying furnace 1 the coating film of the work 2 is dried while the work 2 is being conveyed.
  • the air in the drying furnace 1 is led from the air suction port 19 to the evaporator (cooler) of the heat pump 3 by the operation of the circulation fan 5 and cooled by the evaporator.
  • the cooled air from which moisture, VOC, and the like have been removed is guided to the condenser (heater) of the heat pump 3 and heated by the condenser.
  • the air heated by the condenser is further heated by the post heater 4 as necessary, and is returned from the nozzle box 18 of the drying furnace 1 into the drying furnace 1. That is, warm air blows into the drying furnace 1.
  • the paint drying apparatus does not require an exhaust facility that takes out the air in the drying furnace 1 and burns and removes the VOC by the catalytic combustion apparatus.
  • the moisture is removed and the humidity is lowered, that is, dried hot air is supplied to the drying furnace 1. Therefore, in the drying furnace 1, the evaporation rate of moisture and VOC from the coating film of the workpiece 2 is increased, and the coating film can be quickly dried and the quality can be improved. Further, by supplying the dry warm air to the drying furnace 1, the dew point temperature of the air in the drying furnace 1 is lowered, so that dew condensation on the hanger 10 is avoided, and therefore, the dew condensation water falls on the work 2. Reduced coating quality is avoided.
  • Embodiment 2 The principal part of the coating-drying apparatus which concerns on Embodiment 2 is shown in FIG. In the figure, only a part of the circulation path 6 is shown. Although illustration is omitted, the paint drying apparatus includes a drying furnace and a circulation fan as in the first embodiment.
  • the paint drying apparatus is for flash-off, and the circulation path 6 is provided in the same order as the first precooler 21, the second precooler 22, and the first embodiment in order from the upstream side toward the downstream side.
  • a cooler 24 using a heat pump 23 using CO 2 as a refrigerant, a pre-heater 25, a heater 26 using the heat pump 23, and a post-heater 4 similar to that of the first embodiment are provided. . Therefore, the air taken out from the drying furnace 1 is returned to the drying furnace 1 through the coolers 21, 22, 24 and the heaters 25, 26, 4 in order.
  • Each of the first pre-cooler 21 and the pre-heater 25 performs cooling and heating by heat exchange between the refrigerant and air, and the refrigerant is transferred between the first pre-cooler 21 and the pre-heater 25. It is configured to circulate.
  • the second precooler 22 cools the air sent from the first precooler 21 by heat exchange with cold water obtained by the cooling tower 27.
  • the cold water cooled by the evaporator 28 of the heat pump 23 is supplied to the cold water tank 29 by a water pump (not shown).
  • the cooler 24 cools the air sent from the second pre-cooler 22 by heat exchange with cold water sent from the cold water tank 29 by a water feed pump (not shown).
  • the condenser of the heat pump 23 constitutes the heater 26.
  • the cooler 24 is provided with a tank 7 for storing condensate generated by cooling the air.
  • the air taken out from the drying furnace is cooled in stages by the cooler 24 using the first precooler 21, the second precooler 22, and the heat pump 23.
  • the air taken out from the drying furnace is cooled by the first pre-cooler 21 using the cold heat of the air cooled by the cooler 24.
  • the air is cooled to about 60 ° C. by the first precooler 21.
  • the air cooled by the first precooler 21 is further cooled to, for example, about 40 ° C. by cold water obtained by the cooling tower 27 by the second precooler 22.
  • the air cooled by the second pre-cooler 22 is cooled by a cooler 24 using a heat pump 23 to a temperature at which moisture, VOC and spear components in the air are condensed, for example, about 20 ° C.
  • a part of the moisture in the air is condensed and removed, so that the absolute humidity of the air, which was 22 g / kg when taken out from the drying furnace, is reduced to about 15 g / kg.
  • the air cooled by the cooler 24 is heated stepwise by the preheater 25, the heater 26 using the heat pump 23, and the postheater 4. That is, the preheater 25 is heated to about 40 ° C., the heater 26 is heated to about 80 ° C., the postheater 4 is heated to about 100 ° C., and returned to the drying furnace. Since the absolute humidity of the air returned to the drying furnace is lowered to about 15 g / kg due to the previous cooling / coagulation, dry hot air is supplied to the drying furnace.
  • the surface temperature of the hanger carried into the drying furnace is about 27-28 ° C.
  • the dew point temperature of the drying furnace air is higher than the surface temperature of the hanger. Also lower. Therefore, condensation on the hanger (condensation water falling on the coating film) can be avoided.
  • the first precooler 21 and the preheater 25 are installed, and between the high temperature air taken out from the drying furnace and the low temperature air that has passed through the cooler 24. Since the heat exchange is performed, the thermal efficiency is increased. Further, when the driving energy of the heat pump 23 works to heat the circulating air, the cooling by the second pre-cooler 22 using the cooling tower 27 makes it easy to cool the air to a desired temperature.
  • Embodiment 3 The principal part of the coating drying apparatus which concerns on Embodiment 3 is shown in FIG. Although only a part of the circulation path 6 is shown in the drawing, the paint drying apparatus includes a drying furnace and a circulation fan as in the first embodiment.
  • the second heat pump 31 that uses a CFC-based medium as a refrigerant cools and heats the air. It is characterized by having used for. Other configurations are substantially the same as those of the second embodiment.
  • the second cooler 32 related to the second heat pump 31.
  • a second heater 33 are disposed. Similar to the first heat pump 23, the second heat pump 31 is a vapor compression type that circulates a fluorocarbon medium in the order of compressor ⁇ condenser ⁇ expansion valve ⁇ evaporator.
  • the cold water cooled by the evaporator of the second heat pump 31 is supplied to the cold water tank, and the second cooler 32 uses the air sent from the first cooler 24 as the cold water in the cold water tank. Cool by heat exchange. Note that the illustration of the cold water tank and the water pump is omitted.
  • the condenser of the second heat pump 31 constitutes the second heater 33. A condensate drain extends from the first cooler 24 and the second cooler 32 to the tank 7.
  • the first heat pump 23 using CO 2 as a refrigerant is connected to a first cooler 24 and a heater (hereinafter referred to as “first heater”) 26, and
  • a second heat pump 31 using a system medium as a refrigerant includes a second set in which the second cooler 32 and the second heater 33 are connected.
  • the first cooler 24 according to the first heat pump 23 the second cooler 32 according to the second heat pump 31, and the second heat pump.
  • the second heater 33 according to 31 and the first heater 26 according to the first heat pump 23 flow in this order.
  • the first heat pump 23 using a CO 2 medium suitable for absorbing and releasing heat on the high temperature side and the second heat pump 31 using a fluorocarbon medium suitable for absorbing and releasing heat on the low temperature side are used. Can be efficiently cooled and heated.
  • the coating film is flashed off.
  • the present invention can also be applied to drying for baking the coating film.
  • the present invention can be applied not only to drying a coating film on an automobile body but also to drying a coating film on other coated products.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Drying Of Solid Materials (AREA)
  • Coating Apparatus (AREA)

Abstract

ワーク2の塗膜を乾燥させる乾燥炉1から炉内空気を取り出し、該空気中の少なくとも水分及びVOC各々の一部が凝縮して除去されるように、該空気を冷却し、該冷却後の空気を加熱して乾燥炉1に戻す。乾燥炉1から取り出した空気を吸熱源とし、上記冷却後の空気を放熱源とするヒートポンプ3を設け、このヒートポンプ3を用いて上記空気の冷却及び加熱を行なう。

Description

塗装乾燥方法及びその装置
 本発明は、塗装されたワークの塗膜を乾燥させる塗装乾燥方法及びその装置に関する。
 塗装されたワークを乾燥炉に搬入して塗膜の乾燥(フラッシュオフ或いは焼付け)を行なうことは、車体塗装等の分野で一般に行なわれている。特許文献1には、電着塗装後の車体の焼付け乾燥炉の一例が記載されている。この例では、外気導入路からの導入外気と乾燥炉から取り出した空気を混合して加熱器で加熱して乾燥炉に供給するようにされている。また、乾燥炉からの排ガス(ヤニ成分等を含む排ガス)を触媒酸化装置に導いて浄化脱臭処理した後、大気中に放出するようにされている。さらに、浄化脱臭処理済みの高温排ガスにて上記導入外気を予熱するようにされている。
 また、上記特許文献1には、乾燥炉の前後に予熱炉と冷却ゾーンを設け、予熱用空気を放熱源とし、冷却用空気を吸熱源とするヒートポンプにより、予熱用空気の加熱と冷却用空気の冷却を行なうことが記載されている。
特開2011-58081号公報
 上記乾燥炉では、塗膜に含まれる水分やVOCの蒸発によって乾燥炉内の蒸気圧が高くなり、それに伴って、蒸発速度が低下する(乾燥に時間がかかる)という問題がある。
 また、VOCを触媒酸化装置によって処理する(燃焼分解させる)ためにはエネルギーが必要である。さらに、触媒酸化装置を通過した排ガスの熱は熱交換によって導入外気の加熱に利用されるものの、排ガスは熱交換後であっても温度が比較的高いから、その排出によるエネルギーロスがある。
 さらに、乾燥炉から炉内空気が冷却ゾーンにリークしてヤニ成分が凝縮し、ワークに付着するという問題もある。
 本発明は、上記課題の解決のために、乾燥炉から取り出した空気をヒートポンプによって冷却し、該空気中の水分、VOC等の蒸気を凝縮させて除去した後、加熱して乾燥炉に戻すようにした。
 ここに開示する塗装乾燥方法は、塗装されたワークを乾燥炉に搬入し、該乾燥炉において該ワークの塗膜を乾燥させる方法であって、
 上記乾燥炉から炉内空気を取り出し、該空気中の少なくとも水分及びVOC各々の一部が凝縮して除去されるように、該空気を冷却する工程と、
 上記冷却後の空気を加熱して上記乾燥炉に戻す工程とを備え、
 上記乾燥炉から取り出した空気を吸熱源とし、上記冷却後の空気を放熱源とするヒートポンプを設け、該ヒートポンプを用いて上記空気の冷却及び加熱を行なうことを特徴とする。
 これによれば、乾燥炉内の空気を取り出して冷却し、水分及びVOCを凝縮させて除去した後の乾燥した空気が加熱されて乾燥炉に戻されるから、乾燥炉内の蒸気圧の上昇が抑えられる。その結果、乾燥炉における塗膜中の水分やVOCの蒸発速度が高くなるため、ワークの塗膜を乾燥炉において速やかに効率良く乾燥させることができ、品質向上に有利になる。
 また、上記冷却によってVOCが除去されるから、VOC処理のための排気や触媒酸化装置の設置が不要になり、若しくは、触媒酸化装置を設ける場合でも、その小型化及び排気量の低減が可能になる。さらに、上記空気の冷却及び加熱にヒートポンプを利用するから、エネルギーロスが少なくなる。よって、省エネに有利になる。
 また、上記冷却によって、ヤニ成分の凝縮除去が図れるから、ヤニ成分のリークによるワークへの付着も防止される。
 一実施形態では、上記ヒートポンプを複数設け、該複数のヒートポンプを用いて、上記空気の冷却及び加熱を段階的に行なう。
 単段冷却では、乾燥炉から取り出した空気の温度を水分及びVOCが凝縮する温度まで下げることが難しいところ、当該実施形態によれば、複数のヒートポンプを用いて空気の冷却及び加熱を段階的に行なうから、空気を所期の温度まで冷却し、次いで、ワークの塗膜の乾燥に適した温度まで上昇させることが容易になる。
 一実施形態では、上記複数のヒートポンプとして、COを冷媒とする第1ヒートポンプと、フロン系媒体を冷媒とする第2ヒートポンプとを設け、上記空気の冷却は、上記第1ヒートポンプから上記第2ヒートポンプの順で段階的に行ない、上記空気の加熱は上記第2ヒートポンプから上記第1ヒートポンプの順で段階的に行なう。
 COを冷媒とする第1ヒートポンプは高温側での吸放熱に適し、フロン系媒体を冷媒とする第2ヒートポンプは低温側での吸放熱に適する。そこで、当該実施形態では、空気の冷却は、上記第1ヒートポンプから上記第2ヒートポンプの順で段階的に行ない、空気の加熱は上記第2ヒートポンプから上記第1ヒートポンプの順で段階的に行なうようにしたものである。
 一実施形態では、上記乾燥炉から取り出した空気を、上記ヒートポンプによる冷却前に予備冷却する。
 ヒートポンプによる冷却では、圧縮機の駆動等に伴って熱が発生するが、当該実施形態によれば、予備冷却により、空気をヒートポンプによって所期の温度まで冷却することが容易になる。
 一実施形態では、上記ヒートポンプによって加熱された空気をさらに加熱して上記乾燥炉に戻す。
 ヒートポンプによって加熱された空気をさらに加熱することにより、乾燥炉に戻す空気を所期の温度に調整することが容易になる。
 一実施形態では、上記ワークは、搬送用ハンガーに搭載されて上記乾燥炉に搬入されるものであり、上記空気を冷却する工程では、上記乾燥炉内の空気の露点温度が該乾燥炉に搬入される上記ハンガーの表面温度以下になるように、上記乾燥炉から取り出した空気中の水分を凝縮させて除去する。
 これにより、乾燥炉内においてハンガーに結露することが防止され、その結果、結露水がワークに滴下して塗膜品質が低下することが避けられる。
 ここに開示する塗装されたワークの塗膜を乾燥させる塗装乾燥装置は、
 上記ワークが搬入される乾燥炉と、
 上記乾燥炉から炉内空気が導入され、該空気中の少なくとも水分及びVOCの一部が凝縮して除去されるように、該空気を冷却する冷却器と、
 上記冷却器によって冷却された空気が導入され、該空気を加熱する加熱器と、
 上記乾燥炉内の空気を上記冷却器から上記加熱器を経て上記乾燥炉に戻るように循環させる循環路と、
 上記冷却器と上記加熱器を連絡し、上記冷却器に上記空気を冷却する冷熱を熱交換によって供給し、上記加熱器に上記空気を加熱する温熱を熱交換によって供給するヒートポンプとを備えていることを特徴とする。
 この装置によれば、乾燥炉から炉内空気を取り出し、該空気中の少なくとも水分及びVOC各々の一部が凝縮して除去されるように、該空気をヒートポンプによって冷却し、さらに、該ヒートポンプを用いて冷却後の空気を加熱して乾燥炉に戻すことができる。よって、乾燥炉内の蒸気圧の上昇を抑えて、ワークの塗膜を速やかに効率良く乾燥させることができるとともに、VOC処理のための排気や触媒酸化装置の設置が不要になり、或いは、触媒酸化装置の小型化及び排気量の低減が可能になって、省エネに有利になり、さらに、ヤニ成分のリークによるワークへの付着防止も図れる。
 塗装乾燥装置の一実施形態では、上記空気の冷却及び加熱が段階的に行なわれるように、上記冷却器と上記加熱器をヒートポンプで連絡してなるセットが上記循環路に複数設けられている。
 これによれば、乾燥炉から取り出した空気を所期の温度まで冷却し、次いで、ワークの塗膜の乾燥に適した温度まで上昇させることが容易になる。
 塗装乾燥装置の一実施形態では、上記複数のセットとして、COを冷媒とする第1ヒートポンプを用いた第1セットと、フロン系媒体を冷媒とする第2ヒートポンプを用いた第2セットとを備え、上記空気の冷却が上記第1ヒートポンプから上記第2ヒートポンプの順で段階的に行なわれ、上記空気の加熱が上記第2ヒートポンプから上記第1ヒートポンプの順で段階的に行なわれるように、上記第1及び第2の両セットが上記循環路に設けられている。
 これによれば、高温側での吸放熱に適したCO冷媒による第1ヒートポンプと、低温側での吸放熱に適したフロン系冷媒による第2ヒートポンプとを利用して、空気の冷却及び加熱を効率良く行なうことができる。
 塗装乾燥装置の一実施形態では、上記循環路に配設され、上記乾燥炉から取り出された空気を冷却して上記冷却器に導入する前置冷却器を備えている。
 これによれば、前置冷却器による予備冷却により、空気をヒートポンプによって所期の温度まで冷却することが容易になる。
 塗装乾燥装置の一実施形態では、上記循環路に配設され、上記加熱器によって加熱された空気をさらに所定温度に加熱して上記乾燥炉に戻す後置加熱器を備えている。
 後置加熱器による加熱により、乾燥炉に戻す空気を所期の温度に調整することが容易になる。また、後置加熱器により、操業開始時の乾燥炉の昇温を早めることができる。
 塗装乾燥装置の一実施形態では、上記ワークは、搬送用ハンガーに搭載されて上記乾燥炉に搬入されるものであり、上記冷却器は、上記乾燥炉内の空気の露点温度が該乾燥炉に搬入される上記ハンガーの表面温度以下になるように、上記乾燥炉から取り出した空気中の水分を凝縮させて除去する。
 従って、乾燥炉内においてハンガーに結露することが防止され、その結果、結露水がワークに滴下して塗膜品質が低下することが避けられる。
 本発明によれば、ヒートポンプを利用して、乾燥炉から取り出した空気を冷却して該空気中の少なくとも水分及びVOC各々の一部を凝縮させて除去し、この冷却後の空気を加熱して上記乾燥炉に戻すから、乾燥炉内の蒸気圧の上昇を抑えて、ワークの塗膜を速やかに効率良く乾燥させることができるとともに、VOC処理のための排気や触媒酸化装置の設置が不要になり、或いは、触媒酸化装置の小型化及び排気量の低減が可能になって、省エネに有利になり、さらに、ヤニ成分のリークによるワークへの付着防止も図れる。
実施形態1に係る塗装乾燥装置を示すブロック図。 同装置の乾燥炉、ワーク及び搬送用ハンガーを示す断面図。 実施形態2に係る塗装乾燥装置の冷却・加熱システムを示す図。 実施形態3に係る塗装乾燥装置の冷却・加熱システムを示す図。
 以下、本発明を実施するための形態を図面に基づいて説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。
 <実施形態1>
 図1に示す塗装乾燥装置において、1は塗装されたワーク2が搬入される乾燥炉である。乾燥炉1の外部に、乾燥炉1から取り出した空気を冷却した後、加熱するためのヒートポンプ3、ヒートポンプ3で加熱された空気を加熱する後置加熱器4、並びに循環用ファン5が設けられている。乾燥炉1、ヒートポンプ3,後置加熱器4及び循環用ファン5は、乾燥炉1から取り出した空気を、ヒートポンプ3,後置加熱器4及び循環用ファン5を順に通して乾燥炉1に戻す循環路6によって接続されている。
 ヒートポンプ3は、圧縮機→凝縮器→膨張弁→蒸発器の順に冷媒を循環させる蒸気圧縮式であり、COを冷媒とする。ヒートポンプ3の蒸発器が、乾燥炉1から取り出した空気を、該空気中の少なくとも水分及びVOCの一部が凝縮して除去されるように、熱交換によって冷却する冷却器を構成している。また、ヒートポンプ3の凝縮器が、上記蒸発器で冷却された空気を熱交換によって加熱する加熱器を構成している。換言すれば、ヒートポンプ3は、乾燥炉1から取り出した空気を吸熱源とし、上記冷却後の空気を放熱源とするヒートポンプになっている。
 後置加熱器4としてはガスバーナーが用いられており、該後置加熱器4にガス燃料及び外気が供給される。この後置加熱器4は、操業開始時の乾燥炉1内の空気の早期昇温や乾燥炉1内の温度調整等の必要に応じて利用される。
 本例のワーク2は、自動車ボディであり、図2に示すハンガー式搬送装置(オーバーヘッドコンベア)のハンガー10に搭載されて乾燥炉1に搬入される。
 ハンガー式搬送装置は、塗装ラインに沿って延びるガイドレール11と、このガイドレール11にローラ12によって係合し該ガイドレール11に沿って移動する前後のトロリー13とを備え、トロリー13にハンガー10が吊り下げられている。ハンガー10は、ワーク2を両側から支持するための、トロリー13にCネック14を介して吊り下げられた前後の門型フレーム15を備えている。門型フレーム15の下端部にはワーク受け16が設けられている。
 乾燥炉1の相対する内側壁17には、循環路6から供給される温風をハンガー10に搭載されたワーク2に向けて吹き出すノズルボックス18が設けられている。内側壁17の上部には、乾燥炉1内の空気を循環路に排出するエア吸込み口19が開口している。乾燥炉1の壁には断熱材8が設けられている。
 上記構成において、塗装されたワーク2はハンガー10に搭載されて乾燥炉1に搬入される。乾燥炉1において、ワーク2を搬送しながら、ワーク2の塗膜の乾燥を行なう。乾燥炉1内の空気は、循環用ファン5の作動により、エア吸込み口19からヒートポンプ3の蒸発器(冷却器)に導かれ、該蒸発器によって冷却される。
 これにより、乾燥炉1から取り出された空気中の水分の一部が凝縮する。同時に、その空気中に含まれるVOCや、塗料成分の酸化分解等によって生ずるヤニ成分も一部凝縮する。この空気の冷却によって生じた凝縮液がタンク7に貯留される。このタンク7の凝縮液からVOCが回収されて再利用される。
 水分やVOC等が除去された冷却後の空気は、ヒートポンプ3の凝縮器(加熱器)に導かれ、該凝縮器で加熱される。凝縮器で加熱された空気は、必要に応じて後置加熱器4でさらに加熱されて、乾燥炉1のノズルボックス18から乾燥炉1内に戻される。すなわち、温風が乾燥炉1内に吹き出す。
 上述の如く、乾燥炉1から取り出された空気がヒートポンプ3によって冷却されることで、該空気中の水分だけでなく、VOCの一部が除去される。そのため、当該塗装乾燥装置では、乾燥炉1内の空気を取り出して触媒燃焼装置でVOCを燃焼除去する排気設備は不要になっている。
 そうして、乾燥炉1には、上記水分が除去されて湿度が低くなった、すなわち、乾燥された温風が供給されることになる。よって、乾燥炉1においては、ワーク2の塗膜からの水分及びVOCの蒸発速度が高くなり、塗膜の速やかな乾燥及び品質向上が図れる。また、乾燥炉1に乾燥した温風が供給されることにより、乾燥炉1の空気の露点温度が低くなり、ハンガー10への結露が避けられ、従って、その結露水のワーク2への落下による塗膜の品質低下が避けられる。
 <実施形態2>
 実施形態2に係る塗装乾燥装置の要部を図3に示す。同図には、循環路6の一部のみを示す。図示は省略するが、当該塗装乾燥装置は、実施形態1と同じく、乾燥炉及び循環用ファンを備えている。
 塗装乾燥装置は、フラッシュオフ用であって、その循環路6には、上流側から下流側に向かって順に、第1前置冷却器21、第2前置冷却器22、実施形態1と同じくCOを冷媒とするヒートポンプ23を用いた冷却器24、前置加熱器25、ヒートポンプ23を用いた加熱器26、並びに実施形態1のものと同様の後置加熱器4が配設されている。従って、乾燥炉1から取り出された空気は、冷却器21,22,24及び加熱器25,26,4を順に通って乾燥炉1に戻される。
 第1前置冷却器21及び前置加熱器25各々は、冷媒と空気の熱交換によって冷却及び加熱を行なうものであり、第1前置冷却器21と前置加熱器25の間で冷媒を循環させるように構成されている。第2前置冷却器22は、第1前置冷却器21から送られる空気をクーリングタワー27で得られる冷水との熱交換によって冷却する。
 ヒートポンプ23の蒸発器28で冷却された冷水は送水ポンプ(図示省略)によって冷水タンク29に供給される。冷却器24は、第2前置冷却器22から送られる空気を、冷水タンク29から送水ポンプ(図示省略)によって送られる冷水との熱交換によって冷却する。このヒートポンプ23の凝縮器が加熱器26を構成している。冷却器24には、空気の冷却によって生じた凝縮液を貯留するタンク7が付設されている。
 上記構成において、乾燥炉から取り出された空気は、第1前置冷却器21、第2前置冷却器22及びヒートポンプ23を用いた冷却器24によって段階的に冷却される。
 すなわち、乾燥炉から取り出された空気は、第1前置冷却器21により、冷却器24によって冷却された空気の冷熱を用いて冷却される。例えば、乾燥炉から取り出された空気の温度が80℃であるとき、その空気が第1前置冷却器21によって60℃程度まで冷却される。第1前置冷却器21で冷却された空気は、第2前置冷却器22により、クーリングタワー27で得られる冷水によって例えば40℃程度までさらに冷却される。
 第2前置冷却器22で冷却された空気は、ヒートポンプ23を用いた冷却器24によって、該空気中の水分、VOC及びヤニ成分が凝縮する温度、例えば20℃程度まで冷却される。この冷却によって空気中の水分の一部が凝縮して除去されることにより、乾燥炉から取り出されたときに例えば22g/kgであった空気の重量絶対湿度が15g/kg程度まで下がる。
 冷却器24で冷却された空気は、前置加熱器25、ヒートポンプ23を用いた加熱器26及び後置加熱器4により段階的に加熱される。すなわち、前置加熱器25によって40℃程度にまで加熱され、加熱器26によって80℃程度にまで加熱され、後置加熱器4によって100℃程度にまで加熱されて乾燥炉に戻される。この乾燥炉に戻される空気は、先の冷却・凝集によって絶対湿度が15g/kg程度まで下がっているから、乾燥炉には乾燥した温風が供給されることになる。
 乾燥炉に搬入されるハンガーの表面温度は27~28℃程度であるところ、絶対湿度15g/kg程度の空気が乾燥炉に供給されると、乾燥炉の空気の露点温度はハンガーの表面温度よりも低くなる。よって、ハンガーへの結露(結露水の塗膜への落下)が避けられる。
 また、本実施形態によれば、第1前置冷却器21と前置加熱器25を設置して、乾燥炉から取り出された高温の空気と冷却器24を通過した低温の空気との間で熱交換するようにしたから、熱効率が高くなる。また、ヒートポンプ23の駆動エネルギーが循環する空気の加熱に働くところ、クーリングタワー27を利用した第2前置冷却器22による冷却によって、当該空気を所期の温度まで冷却することが容易になる。
 <実施形態3>
 実施形態3に係る塗装乾燥装置の要部を図4に示す。同図には、循環路6の一部のみを示すが、当該塗装乾燥装置は、実施形態1と同じく、乾燥炉及び循環用ファンを備えている。
 本実施形態は、実施形態2のCOを冷媒とするヒートポンプ(以下、「第1ヒートポンプ」という。)23に加えて、フロン系媒体を冷媒とする第2ヒートポンプ31を上記空気の冷却及び加熱に利用したことを特徴とする。他の構成は実施形態2と実質的に同じである。
 すなわち、循環路6には、COを冷媒とする第1ヒートポンプ23に係る冷却器(以下、「第1冷却器」という。)24に続いて、第2ヒートポンプ31に係る第2冷却器32と第2加熱器33とが配設されている。第2ヒートポンプ31は、第1ヒートポンプ23と同じく、圧縮機→凝縮器→膨張弁→蒸発器の順にフロン系媒体を循環させる蒸気圧縮式である。
 第1ヒートポンプ23の場合と同じく、第2ヒートポンプ31の蒸発器で冷却された冷水が冷水タンクに供給され、第2冷却器32は、第1冷却器24から送られる空気を冷水タンクの冷水との熱交換によって冷却する。なお、冷水タンク及び送水ポンプの図示は省略している。一方、第2ヒートポンプ31の凝縮器が第2加熱器33を構成している。また、第1冷却器24及び第2冷却器32各々からタンク7に凝縮液用ドレンが延設されている。
 要するに、本実施形態は、COを冷媒とする第1ヒートポンプ23で第1冷却器24と加熱器(以下、「第1加熱器」という。)26を連絡してなる第1セットと、フロン系媒体を冷媒とする第2ヒートポンプ31で第2冷却器32と第2加熱器33を連絡してなる第2セットとを備えている。
 従って、乾燥炉から取り出された空気は、前置冷却器21,2を通過した後、第1ヒートポンプ23に係る第1冷却器24、第2ヒートポンプ31に係る第2冷却器32、第2ヒートポンプ31に係る第2加熱器33及び第1ヒートポンプ23に係る第1加熱器26の順で流れることになる。
 本実施形態によれば、高温側での吸放熱に適したCO媒体による第1ヒートポンプ23と、低温側での吸放熱に適したフロン系媒体による第2ヒートポンプ31とを利用して、空気の冷却及び加熱を効率良く行なうことができる。
 <その他>
 上記実施形態2,3は塗膜のフラッシュオフを行なうものであるが、本発明は塗膜の焼付けのための乾燥にも適用することできる。
 また、本発明は、自動車ボディの塗膜の乾燥に限らず、他の塗装品の塗膜の乾燥にも適用することができる。
  1  乾燥炉
  2  ワーク
  3  ヒートポンプ(冷却器,加熱器)
  4  後置加熱器
  6  循環路
  7  タンク
 10  ハンガー
 21  前置冷却器
 22  前置冷却器
 23  ヒートポンプ(COを冷媒とする第1ヒートポンプ)
 24  冷却器(第1冷却器)
 26  加熱器(第1加熱器)
 31  フロン系媒体を冷媒とする第2ヒートポンプ
 32  第2冷却器
 33  第2加熱器

Claims (12)

  1.  塗装されたワークを乾燥炉に搬入し、該乾燥炉において該ワークの塗膜を乾燥させる塗装乾燥方法であって、
     上記乾燥炉から炉内空気を取り出し、該空気中の少なくとも水分及びVOC各々の一部が凝縮して除去されるように、該空気を冷却する工程と、
     上記冷却後の空気を加熱して上記乾燥炉に戻す工程とを備え、
     上記乾燥炉から取り出した空気を吸熱源とし、上記冷却後の空気を放熱源とするヒートポンプを設け、該ヒートポンプを用いて上記空気の冷却及び加熱を行なうことを特徴とする塗装乾燥方法。
  2.  請求項1において、
     上記ヒートポンプを複数設け、該複数のヒートポンプを用いて、上記空気の冷却及び加熱を段階的に行なうことを特徴とする塗装乾燥方法。
  3.  請求項2において、
     上記複数のヒートポンプとして、COを冷媒とする第1ヒートポンプと、フロン系媒体を冷媒とする第2ヒートポンプとを設け、
     上記空気の冷却は、上記第1ヒートポンプから上記第2ヒートポンプの順で段階的に行ない、上記空気の加熱は上記第2ヒートポンプから上記第1ヒートポンプの順で段階的に行なうことを特徴とする塗装乾燥方法。
  4.  請求項1乃至請求項3のいずれか一において、
     上記乾燥炉から取り出した空気を、上記ヒートポンプによる冷却前に予備冷却することを特徴とする塗装乾燥方法。
  5.  請求項1乃至請求項4のいずれか一において、
     上記ヒートポンプによって加熱された空気をさらに加熱して上記乾燥炉に戻すことを特徴とする塗装乾燥方法。
  6.  請求項1乃至請求項5のいずれか一において、
     上記ワークは、搬送用ハンガーに搭載されて上記乾燥炉に搬入されるものであり、
     上記空気を冷却する工程では、上記乾燥炉内の空気の露点温度が該乾燥炉に搬入される上記ハンガーの表面温度以下になるように、上記乾燥炉から取り出した空気中の水分を凝縮させて除去することを特徴とする塗装乾燥方法。
  7.  塗装されたワークの塗膜を乾燥させる塗装乾燥装置であって、
     上記ワークが搬入される乾燥炉と、
     上記乾燥炉から炉内空気が導入され、該空気中の少なくとも水分及びVOCの一部が凝縮して除去されるように、該空気を冷却する冷却器と、
     上記冷却器によって冷却された空気が導入され、該空気を加熱する加熱器と、
     上記乾燥炉内の空気を上記冷却器から上記加熱器を経て上記乾燥炉に戻るように循環させる循環路と、
     上記冷却器と上記加熱器を連絡し、上記冷却器に上記空気を冷却する冷熱を熱交換によって供給し、上記加熱器に上記空気を加熱する温熱を熱交換によって供給するヒートポンプとを備えていることを特徴とする塗装乾燥装置。
  8.  請求項7において、
     上記空気の冷却及び加熱が段階的に行なわれるように、上記冷却器と上記加熱器をヒートポンプで連絡してなるセットが上記循環路に複数設けられていることを特徴とする塗装乾燥装置。
  9.  請求項8において、
     上記複数のセットとして、COを冷媒とする第1ヒートポンプを用いた第1セットと、フロン系媒体を冷媒とする第2ヒートポンプを用いた第2セットとを備え、
     上記空気の冷却が上記第1ヒートポンプから上記第2ヒートポンプの順で段階的に行なわれ、上記空気の加熱が上記第2ヒートポンプから上記第1ヒートポンプの順で段階的に行なわれるように、上記第1及び第2の両セットが上記循環路に設けられていることを特徴とする塗装乾燥装置。
  10.  請求項7乃至請求項9のいずれか一において、
     上記循環路に配設され、上記乾燥炉から取り出された空気を冷却して上記冷却器に導入する前置冷却器を備えていることを特徴とする塗装乾燥装置。
  11.  請求項7乃至請求項10のいずれか一において、
     上記循環路に配設され、上記加熱器によって加熱された空気をさらに加熱して上記乾燥炉に戻す後置加熱器を備えていることを特徴とする塗装乾燥装置。
  12.  請求項7乃至請求項11のいずれか一において、
     上記ワークは、搬送用ハンガーに搭載されて上記乾燥炉に搬入されるものであり、
     上記冷却器は、上記乾燥炉内の空気の露点温度が該乾燥炉に搬入される上記ハンガーの表面温度以下になるように、上記乾燥炉から取り出した空気中の水分を凝縮させて除去することを特徴とする塗装乾燥装置。
PCT/JP2017/042295 2016-11-30 2017-11-24 塗装乾燥方法及びその装置 WO2018101178A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
MX2019006350A MX2019006350A (es) 2016-11-30 2017-11-24 Metodo para secar recubrimientos y dispositivo para el mismo.
EP17875268.9A EP3540349B1 (en) 2016-11-30 2017-11-24 Coating drying method and device therefor
US16/464,845 US11262127B2 (en) 2016-11-30 2017-11-24 Coating drying method and device therefor
CN201780073912.3A CN110036252B (zh) 2016-11-30 2017-11-24 涂装干燥方法及其装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016232366A JP6428750B2 (ja) 2016-11-30 2016-11-30 塗装乾燥方法及びその装置
JP2016-232366 2016-11-30

Publications (1)

Publication Number Publication Date
WO2018101178A1 true WO2018101178A1 (ja) 2018-06-07

Family

ID=62241529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042295 WO2018101178A1 (ja) 2016-11-30 2017-11-24 塗装乾燥方法及びその装置

Country Status (6)

Country Link
US (1) US11262127B2 (ja)
EP (1) EP3540349B1 (ja)
JP (1) JP6428750B2 (ja)
CN (1) CN110036252B (ja)
MX (1) MX2019006350A (ja)
WO (1) WO2018101178A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3712547A1 (de) * 2018-06-25 2020-09-23 Eisenmann SE Temperiervorrichtung zum temperieren von gegenständen
CN113329823A (zh) * 2019-01-15 2021-08-31 马自达汽车株式会社 挥发性有机化合物的回收装置及回收方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58130983A (ja) * 1982-01-29 1983-08-04 大日エンジニアリング株式会社 木材の乾燥方法とその装置
JPH05277421A (ja) * 1992-03-31 1993-10-26 Trinity Ind Corp 乾燥炉
JPH06509268A (ja) * 1991-07-24 1994-10-20 ヘルマン,ヨハネス 塗装、乾燥用ブース
JPH074845A (ja) * 1993-06-11 1995-01-10 Mayekawa Mfg Co Ltd ヒートポンプ利用の塗型乾燥方法及び装置
WO1998019124A1 (de) * 1996-10-28 1998-05-07 Hellmann-Hygrex Luft- Und Klimatechnik Gmbh Verfahren zum trocknen von dünnen schichten sowie vorrichtung zur durchführung des verfahrens
US20020038521A1 (en) * 2000-06-21 2002-04-04 Hans-Joachim Speck Method and appliance for the non-thermal drying of motor vehicle bodies, freshly painted with a water-based paint
JP2009022856A (ja) * 2007-07-18 2009-02-05 Nippon Paint Co Ltd 塗装セッティング装置
CN101504247A (zh) * 2009-02-26 2009-08-12 东莞市康源节能科技有限公司 一种空气源高温热泵除湿干燥设备
JP2011058081A (ja) 2009-09-14 2011-03-24 Taikisha Ltd 電着塗装設備
KR20110068615A (ko) * 2009-12-16 2011-06-22 (주)에프티이앤이 건조 장치

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4775623B2 (ja) * 2004-10-26 2011-09-21 株式会社日立プラントテクノロジー 除湿システム
CN101487661B (zh) * 2008-01-16 2012-01-04 凌建军 废热循环利用型高效节能烘干机
CN101487662B (zh) 2008-01-16 2012-01-04 凌建军 废热循环利用型高效节能烘干机
US7566409B1 (en) 2008-01-24 2009-07-28 Mainstream Engineering Corporation Replacement solvents having improved properties for refrigeration flushes
JPWO2010044392A1 (ja) 2008-10-14 2012-03-15 本田技研工業株式会社 塗装設備
JP5351707B2 (ja) 2009-10-21 2013-11-27 株式会社大気社 塗装設備
WO2016091237A1 (de) 2014-12-08 2016-06-16 Stela Laxhuber Gmbh Trocknungsanlage mit einem trocknungsbereich
KR101613966B1 (ko) * 2014-12-29 2016-04-20 엘지전자 주식회사 의류처리장치

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58130983A (ja) * 1982-01-29 1983-08-04 大日エンジニアリング株式会社 木材の乾燥方法とその装置
JPH06509268A (ja) * 1991-07-24 1994-10-20 ヘルマン,ヨハネス 塗装、乾燥用ブース
JPH05277421A (ja) * 1992-03-31 1993-10-26 Trinity Ind Corp 乾燥炉
JPH074845A (ja) * 1993-06-11 1995-01-10 Mayekawa Mfg Co Ltd ヒートポンプ利用の塗型乾燥方法及び装置
WO1998019124A1 (de) * 1996-10-28 1998-05-07 Hellmann-Hygrex Luft- Und Klimatechnik Gmbh Verfahren zum trocknen von dünnen schichten sowie vorrichtung zur durchführung des verfahrens
US20020038521A1 (en) * 2000-06-21 2002-04-04 Hans-Joachim Speck Method and appliance for the non-thermal drying of motor vehicle bodies, freshly painted with a water-based paint
JP2009022856A (ja) * 2007-07-18 2009-02-05 Nippon Paint Co Ltd 塗装セッティング装置
CN101504247A (zh) * 2009-02-26 2009-08-12 东莞市康源节能科技有限公司 一种空气源高温热泵除湿干燥设备
JP2011058081A (ja) 2009-09-14 2011-03-24 Taikisha Ltd 電着塗装設備
KR20110068615A (ko) * 2009-12-16 2011-06-22 (주)에프티이앤이 건조 장치

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3712547A1 (de) * 2018-06-25 2020-09-23 Eisenmann SE Temperiervorrichtung zum temperieren von gegenständen
US11235737B2 (en) 2018-06-25 2022-02-01 Eisenmann Se Temperature control apparatus for controlling the temperature of objects
CN113329823A (zh) * 2019-01-15 2021-08-31 马自达汽车株式会社 挥发性有机化合物的回收装置及回收方法
CN113329823B (zh) * 2019-01-15 2023-02-17 马自达汽车株式会社 挥发性有机化合物的回收装置及回收方法
JP7447946B2 (ja) 2019-01-15 2024-03-12 マツダ株式会社 揮発性有機化合物の回収装置及び回収方法

Also Published As

Publication number Publication date
US20190323772A1 (en) 2019-10-24
EP3540349A4 (en) 2019-09-18
EP3540349A1 (en) 2019-09-18
CN110036252B (zh) 2021-01-01
CN110036252A (zh) 2019-07-19
JP6428750B2 (ja) 2018-11-28
US11262127B2 (en) 2022-03-01
MX2019006350A (es) 2019-08-14
EP3540349B1 (en) 2021-04-14
JP2018091492A (ja) 2018-06-14

Similar Documents

Publication Publication Date Title
EP3717851B1 (en) Sheet drying method and arrangement
JP7447946B2 (ja) 揮発性有機化合物の回収装置及び回収方法
WO2018101178A1 (ja) 塗装乾燥方法及びその装置
US20090130332A1 (en) Coating film drying method and coating film drying apparatus
RU2009123437A (ru) Кондиционирующее устройство для потока приточного воздуха сушильной кабины лакировальной установки и способ кондиционирования потока приточного воздуха
JP6302372B2 (ja) 塗装システム及び塗装システムの運転方法
JP6576323B2 (ja) 塗装用乾燥設備
JP2009099721A (ja) 基板冷却方法および基板冷却装置
WO2013153791A1 (ja) 焼鈍炉内雰囲気ガスの露点低減方法、その装置及び冷延焼鈍鋼板の製造方法
JP2004050021A (ja) 自動車ボディの加熱冷却装置及び方法
US6135765A (en) Pyrocleaning furnace and thermal oxidizer system
JP5274417B2 (ja) 電着塗装設備
CN111356889A (zh) 用于处理工件的处理设备和方法
US20110132572A1 (en) Heat exchange and waste heat recovery
KR101102564B1 (ko) 방청피막 처리장치
CN207170172U (zh) 柔性喷涂烘干生产线
WO2024202427A1 (ja) 乾燥装置
JP2005138037A (ja) 塗装乾燥炉の換気方法、塗装乾燥炉
CN108139155A (zh) 用于控制物体温度的设备以及用于对控制物体温度的设备进行控制的方法
JP2003211054A (ja) 塗装用フラッシュオフ装置
WO2020120471A1 (en) Timber drying process
RU165396U1 (ru) Сушильная установка
KR200188080Y1 (ko) 농산물 건조용 제습 열풍 공급장치
JP2009019819A (ja) 基板乾燥装置
WO2024141504A3 (en) Oven for air drying with energy saving

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17875268

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017875268

Country of ref document: EP

Effective date: 20190611