WO2018099383A1 - 一种近红外光激发荧光染料及其制备方法与应用 - Google Patents

一种近红外光激发荧光染料及其制备方法与应用 Download PDF

Info

Publication number
WO2018099383A1
WO2018099383A1 PCT/CN2017/113466 CN2017113466W WO2018099383A1 WO 2018099383 A1 WO2018099383 A1 WO 2018099383A1 CN 2017113466 W CN2017113466 W CN 2017113466W WO 2018099383 A1 WO2018099383 A1 WO 2018099383A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared light
fluorescent dye
excited fluorescent
add
preparation
Prior art date
Application number
PCT/CN2017/113466
Other languages
English (en)
French (fr)
Inventor
车团结
徐进章
赵芳
Original Assignee
苏州百源基因技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州百源基因技术有限公司 filed Critical 苏州百源基因技术有限公司
Publication of WO2018099383A1 publication Critical patent/WO2018099383A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1022Heterocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • C09K2211/107Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms with other heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom

Definitions

  • the invention relates to the field of optical functional materials, in particular to a near-infrared light-excited fluorescent dye and a preparation method and application thereof.
  • the emission wavelength of the near-infrared light-excited fluorescent dye is 700-1200 nm. In this range, the biomolecule itself has weak fluorescence, which can avoid background interference and obtain high analytical sensitivity, and can also reduce damage to living bodies.
  • Near-infrared light-excited fluorescent dyes can be widely used in medical and biological fields as a safe, non-invasive imaging probe with broad application prospects.
  • the commonly used near-infrared light-exciting fluorescent dyes are cyanine dye indigo dyes and aza-BODIPY dyes.
  • the maximum absorption and emission wavelengths of cyanine dyes generally exceed 600 nm.
  • the enthalpy ion intercalation between NN atoms between conjugated systems is a chromophore of cyanine dyes.
  • the disadvantages of such cyanine dyes are poor light stability.
  • the structure of Jiachuan is easy to oxidize and break under the illumination, which leads to the decomposition of dyes, which affects the promotion of dyes in application;
  • the center of the indigo dye can accommodate metal atoms such as Zn, Ni, Pt, Pd, Al, Ge, etc., has two absorption bands, and has good stability to light, oxygen and heat, but such indigo dyes
  • the solubility is very poor, and the molecular volume is large, which has certain influence on the physiological activity of biomolecules in biological applications.
  • Aza-BODIPY-based fluorescent dyes are a new type of fluorescent compounds that have been developed and valued in recent decades.
  • the technical problem to be solved by the present invention is to overcome the poor light stability of the near-infrared light-excited fluorescent dye in the prior art, the complexity of the parent molecular synthesis step, and various defects in the field of biometrics.
  • a near-infrared light-excited fluorescent dye having a structure as shown in formula (I):
  • R 1 , R 2 , and R 3 are one selected from the group consisting of hydrogen, a C 1 -C 10 hydrocarbon group, an aryl group, or a heterocyclic ring.
  • R 1 , R 2 , and R 3 are selected from the group consisting of hydrogen, methyl, ethyl, phenyl, 2-thienyl, and 3-thienyl.
  • a method of preparing a near-infrared light-excited fluorescent dye comprising the steps of:
  • the amount ratio of 4-bromo-2,3-di(chloromethyl)-1H-pyrrole, chloroacetyl chloride and anhydrous aluminum chloride is 1: (3.0). ⁇ 4.0): (6 ⁇ 8).
  • a volume ratio of boron trifluoride diethyl ether and triethylamine is added (1.5 to 2.0):1.
  • the amount ratio of the benzene, the intermediate 2-I, and the anhydrous aluminum chloride is 1: (2.5-3.0): (6-8).
  • the ratio of the 1,2,4-benzenetriol substituted with R 1 , R 2 , and R 3 , the intermediate 3-I, and the anhydrous aluminum chloride is 1 : (3.0 to 3.5): (6 to 8).
  • the present invention also provides a method of inducing a fluorescent dye by near-infrared light in cell imaging, fluorescent probes, laser dyes, organic nonlinear optical materials, and optoelectronic functional devices.
  • the present invention also provides the use of the near-infrared light-exciting fluorescent dye for covalent fluorescent labeling of biological macromolecules, the macromolecule being a nucleic acid or a protein.
  • a near-infrared light-excited fluorescent dye provided by an embodiment of the present invention, which contains a benzene ring or a heterocyclic ring and has a conjugated double bond, and is excited when an unbonded electron of an O or N atom is in an excited state.
  • the large ⁇ bond of the organic fluorescent molecule is enlarged, and the conjugated system of the entire organic fluorescent molecule is enlarged to enhance the fluorescence of the organic molecule.
  • a near-infrared light-excited fluorescent dye provided by an embodiment of the invention, the fluorescent dye has simple synthesis process, good biocompatibility, low toxicity, long fluorescence emission and high quantum yield, which can be avoided.
  • BACKGROUND Fluorescence is used for the covalent fluorescent labeling of biological macromolecules such as nucleic acids or proteins in biological systems, and plays an important role in the study of the development, reproduction, and inheritance of diseases or organisms.
  • Figure 1 is an excitation and development of a near-infrared light-excited fluorescent dye in ethanol according to Example 1-4 of the present invention. Shot spectrum
  • the basic chemical raw materials such as reagents used in the embodiments of the present invention can be purchased in the domestic chemical product market, or can be customized in the relevant intermediate preparation factory.
  • the preparation method is as follows:
  • the detection and characterization data of the near-infrared light-excited fluorescent dye (II) of the present invention are as follows:
  • the preparation method is as follows:
  • the detection and characterization data of the near-infrared light-excited fluorescent dye (III) of the present invention are as follows:
  • the preparation method is as follows:
  • the detection and characterization data of the near-infrared light-excited fluorescent dye (IV) of the present invention are as follows:
  • the preparation method is as follows:
  • the detection and characterization data of the near-infrared light-excited fluorescent dye (V) of the present invention are as follows:
  • the fluorescence spectrum, the molar extinction coefficient and the fluorescence quantum yield are determined, and the specific determination methods of each parameter are as follows:
  • the compound to be determined was accurately weighed and prepared into a solution having a concentration of 1.0 ⁇ 10 -5 mol/L, and the absorption spectrum thereof was measured, as shown in Fig. 1.
  • the fluorescence spectrum was measured using the maximum absorption wavelength in the measured near-infrared spectrum as the excitation wavelength of the fluorescence spectrum.
  • the test compound was weighed, and an ethanol:water (50:50, v/v) solution having a concentration of 1.0 ⁇ 10 -6 mol/L was prepared, and its emission spectrum was measured, as shown in FIG.
  • A represents the absorption intensity
  • is the molar absorption coefficient
  • c is the concentration of the compound
  • l is the thickness of the quartz cell for detection.
  • the fluorescence quantum yield of the near-infrared light-excited fluorescent dye was measured at 20 ° C.
  • the quinine sulfate (0.1 M H 2 SO 4 solvent with a quantum yield of 0.56) was used as a reference to induce fluorescence by measuring near-infrared light.
  • the fluorescence quantum yield is calculated by the fluorescence integrated intensity obtained from the dilute solution of the dye and the reference material under the same excitation conditions and the ultraviolet absorption value at the excitation wavelength.
  • the product was dissolved in absolute ethanol.
  • is the quantum yield of the analyte
  • subscript R represents the reference.
  • I is the fluorescence integrated intensity
  • A is the ultraviolet absorption value.
  • is the solvent refractive index.
  • the absorbances A and A R are less than 0.1.
  • the near-infrared light-excited fluorescent dye (VII) described in Example 4 has the largest absorption wavelength, and corresponds to a maximum emission wavelength of 829 nm, a maximum molar absorption coefficient of 9.0, and a maximum fluorescence quantum yield of 89.86. %, in turn, indicates that such compounds have the advantage of being used for covalent fluorescent labeling of biological macromolecules such as nucleic acids or proteins.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Materials Engineering (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明涉及光功能材料领域,具体涉及一种近红外光激发荧光染料,具有如式(Ⅰ)所示的结构,近红外光激发荧光染料的发射波长为700~1200nm在该范围内生物分子自身荧光较弱,可避免背景干扰而获得较高的灵敏度,与生物大分子的结合方式为共价键结合,结构稳定,且光稳定性好,灵敏性高,可用于细胞成像、荧光探针、激光染料、荧光传感器等不同应用领域,表现出良好的实用性。本发明提供的制备方法原料成本低、无污染,工艺简单、产率高,制备的荧光染料结构新颖、性能优良,适于在生物、环境等领域的广泛应用。

Description

一种近红外光激发荧光染料及其制备方法与应用
交叉引用
本申请要求在2016年11月30日提交中国专利局、申请号为201611085863.9、发明名称为“一种近红外光激发荧光染料及其制备方法与应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及光功能材料领域,具体涉及一种近红外光激发荧光染料及其制备方法与应用。
背景技术
荧光检测技术在DNA杂交测试、免疫检测、基因重组检测等方面的广泛应用极大促进了近红外光激发荧光染料的发展,仅过去几年间就有大量文献和专利对这类功能性染料的研究及应用进行了报道。近红外光激发荧光染料的发射波长为700~1200nm,在该范围内生物分子自身荧光较弱,可避免背景干扰而获得较高的分析灵敏度,同时还能减少对生命体的损伤。近红外光激发荧光染料可以作为一种安全、非侵入性的成像探针广泛应用于医学和生物学领域,具有广泛的应用前景。目前常用的近红外光激发荧光染料有菁染料酞青类染料和氮杂BODIPY类染料等。菁染料的最大吸收和发射波长一般都超过了600nm共轭体系之间的N-N原子之间的脒离子插烯物是菁染料的发色团,然而这类菁染料的缺点是光稳定差,多甲川结构容易在光照下氧化断裂,导致染料分解,影响了染料在应用方面的推广; 酞青类染料的中心可容纳Zn、Ni、Pt、Pd、Al、Ge等金属原子,有两个吸收带,且对光、氧、热有较好的稳定性,但是这类酞青染料的溶解性很差,况且分子体积较大,在生物应用时会对生物分子的生理活性有一定影响;氮杂BODIPY类荧光染料是近几十年才发展起来并受重视的一类新型荧光化合物,具有较高的摩尔消光系数、很高的荧光量子产率、较高的光稳定性、低毒性、基本不受溶剂极性和pH值的影响等优点广发应用于荧光探针、生物分子标识与检测等领域,然而这类染料母体的合成往往比较困难,步骤复杂,而且原料难得,限制了在生化分析上的应用。
发明内容
因此,本发明的要解决的技术问题在于克服现有技术中的近红外光激发荧光染料光稳定性差、母体分子合成步骤复杂以及在生物识别领域存在的各种缺陷。
为了解决上述技术问题,本发明采用的技术方案如下:
根据本发明的一个方面,提供一种近红外光激发荧光染料,具有如式(Ⅰ)所示的结构:
Figure PCTCN2017113466-appb-000001
其中,
可选的,R1、R2、R3选自氢、C1-C10烃基、芳香基或杂环中的一种。
可选的,R1、R2、R3选自氢、甲基、乙基、苯基、2-噻吩基、3-噻吩基中的一种。
可选的,其结构式如(Ⅱ)(Ⅲ)(Ⅳ)(Ⅴ)所示:
Figure PCTCN2017113466-appb-000002
根据本发明的另一个方面,提供一种制备近红外光激发荧光染料的方法,包括如下步骤:
Figure PCTCN2017113466-appb-000003
(1)中间体1-Ⅰ制备
在茄型瓶中加入无水氯化铝,二氯甲烷,置于冰盐浴中,搅拌,降温至0℃~-3℃,加入4-溴-2,3-二(氯甲基)-1H-吡咯,继续降温至-7℃~-10℃,开始滴加氯乙酰氯,控制温度0℃~-4℃,反应10~12小时;将反应液缓慢倒入饱和碳素氢钠溶液中,加入去离子水,并采用碳酸钠调节pH值7.0~8.0,三氯甲烷萃取三次,收集有机相,采用无水硫酸镁干燥3小时,抽滤,蒸出有机溶剂,得中间体1-Ⅰ。
(2)中间体2-Ⅰ制备
将三氟化硼乙醚和三乙胺缓慢滴加到步骤(1)所得中间体1-Ⅰ的二氯甲烷溶液中,不断搅拌,控制温度在35℃~40℃,反应5~7小时,直接蒸出溶剂,得到油状物,采用乙酸乙酯和石油醚(体积比为1:8~1:10)重结晶得到类白色固体,即中间体2-Ⅰ。
(3)中间体3-Ⅰ制备
在茄型瓶中加入无水氯化铝,二氯甲烷,置于冰盐浴中,搅拌,降温至-2℃~-5℃,加入苯,继续降温至-7℃~-11℃,开始滴加中间体2-Ⅰ的二氯甲烷溶液,控制温度-6℃~-9℃,反应16~20小时;将反应液缓慢倒入饱和碳素氢钠溶液中,加入去离子水,并采用碳酸钠调节pH值7.0~8.0,三氯甲烷萃取三次,收集有机相,采用无水硫酸镁干燥3小时,抽滤,蒸出有机溶剂,得中间体3-Ⅰ。
(4)化合物Ⅰ制备
在茄型瓶中加入无水氯化铝,二氯甲烷,置于冰盐浴中,搅拌,降温至-4℃~-7℃,加入R1,R2,R3取代的1,2,4-苯三酚,继续降温至-10℃~-13℃,开始滴加中间体3-Ⅰ的二氯甲烷溶液,控制温度-8℃~-12℃,反应7~9小时;将反应液缓慢倒入饱和碳素氢钠溶液中,加入去离子水,并采用碳酸钠调节pH值7.0~8.0,三氯甲烷萃取三次,收集有机相,采用无水硫酸镁干燥3小时,抽滤,蒸出有机溶剂,得到黄色固体,即化合物Ⅰ。
可选的,所述步骤(1)中,加入4-溴-2,3-二(氯甲基)-1H-吡咯、氯乙酰氯、无水氯化铝物质的量比为1:(3.0~4.0):(6~8)。
可选的,所述步骤(2)中,加入三氟化硼乙醚、三乙胺体积比为(1.5~2.0):1。
可选的,所述步骤(3)中,加入苯、中间体2-Ⅰ、无水氯化铝物质的量比为1:(2.5~3.0):(6~8)。
可选的,所述步骤(4)中,加入R1,R2,R3取代的1,2,4-苯三酚、中间体3-Ⅰ、无水氯化铝物质的量比为1:(3.0~3.5):(6~8)。
根据本发明的另一个方面,本发明还提供近红外光激发荧光染料的方法在细胞成像、荧光探针、激光染料、有机非线性光学材料、光电功能器件中的应用。
根据本发明的另一个方面,本发明还提供所述近红外光激发荧光染料的应用,应用于生物大分子的共价荧光标记,所述大分子为核酸或蛋白质。
本发明的上述技术方案具有以下优点:
1.本发明实施例提供的一种近红外光激发荧光染料,由于含有苯环或杂环并带有共轭双键,由于O或N原子的非成键电子在激发态时,会被激发到π*键,表现为扩大了有机荧光分子的大π键,使整个有机荧光分子的共轭体系扩大,起到增强有机分子荧光作用。
2.本发明实施例提供的一种近红外光激发荧光染料,该荧光染料合成工艺简单,具有良好的生物相容性、低毒性、较长的荧光发射和较高的量子产率,可以避免背景荧光用于生物体系中生物大分子如核酸或蛋白质的共价荧光标记,对于研究疾病或者生物的发育、繁殖、遗传有很重要的作用。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例1-4近红外光激发荧光染料在乙醇中的激发和发 射光谱;
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。此外,下面所描述的本发明不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
本发明实施例所用的试剂等基础化工原料,均可在国内化工产品市场买到,或在有关中间体制备厂定做。
实施例1
本实施例提供的近红外光激发荧光染料(Ⅱ)的制备方法:
具有式(Ⅱ)结构:
Figure PCTCN2017113466-appb-000004
其制备方法如下:
Figure PCTCN2017113466-appb-000005
(1)中间体1-Ⅱ制备
在100ml茄型瓶中加入无水氯化铝0.06mol,二氯甲烷20ml,置于冰盐浴中,搅拌,降温至0℃,加入4-溴-2,3-二(氯甲基)-1H-吡咯0.01mol,继续降温至-10℃,开始滴加氯乙酰氯0.03mol,控制温度-4℃,反应12小时;将反应液缓慢倒入饱和碳素氢钠溶液中,加入去离子水25ml,并采用碳酸钠调节pH值8.0,三氯甲烷萃取三次,收集有机相,采用无水硫酸镁干燥3小时,抽滤,蒸出有机溶剂,得中间体1-Ⅱ。
(2)中间体2-Ⅱ制备
将三氟化硼乙醚30ml和三乙胺20ml缓慢滴加到步骤(1)所得中间体1-Ⅱ的二氯甲烷溶液20ml中,不断搅拌,控制温度在38℃~40℃,反应5小时,直接蒸出溶剂,得到油状物,采用乙酸乙酯和石油醚(体积比为1:8)重结晶得到类白色固体,即中间体2-Ⅱ。
(3)中间体3-Ⅱ制备
在250ml茄型瓶中加入无水氯化铝0.048mol,二氯甲烷15ml,置于冰盐浴中,搅拌,降温至-2℃,加入苯0.008mol,继续降温至-11℃,开始滴加中间体2-Ⅱ0.02mol的二氯甲烷20ml溶液,控制温度-9℃,反应16小时;将反应液缓慢倒入饱和碳素氢钠溶液中,加入去离子水20ml,并采用碳酸钠调节pH值7.0,三氯甲烷萃取三次,收集有机相,采用无水硫酸镁干燥3小时,抽滤,蒸出有机溶剂,得中间体3-Ⅱ。
(4)化合物Ⅱ制备
在250ml茄型瓶中加入无水氯化铝0.03mol,二氯甲烷10ml,置于冰盐浴中,搅拌,降温至-4℃,加入1,2,4-苯三酚0.005mol,继续降温至-10℃,开始滴加中间体3-Ⅱ 0.015mol的二氯甲烷10ml溶液,控制温度-8℃,反应7小时;将反应液缓慢倒入饱和碳素氢钠溶液中,加入去离子水,并采用碳酸钠调节pH值7.0,三氯甲烷萃取三次,收集有机相,采用无水硫酸镁干燥3小时,抽滤,蒸出有机溶剂,得到黄色固体,即化合物Ⅱ。
本实施例中,对本发明近红外光光激发荧光染料(Ⅱ)进行检测及表征数据如下:
元素分析计算值(CHBFNO):C36H26BF2N3O6
质谱(MS+):645.42(M+)
m/z:645.19(100.0%),646.19(40.6%),644.19(24.8%),645.20(9.8%),647.19(9.0%),646.20(2.2%),648.20(1.5%)
元素分析:C,66.99;H,4.06;B,1.68;F,5.89;N,6.51;O,14.87。
实施例2
本实施例提供的近红外光激发荧光染料(Ⅲ)的制备方法:
具有式(Ⅲ)结构:
Figure PCTCN2017113466-appb-000006
其制备方法如下:
Figure PCTCN2017113466-appb-000007
(1)中间体1-Ⅲ制备
在500ml茄型瓶中加入无水氯化铝0.4mol,二氯甲烷150ml,置于冰盐浴中,搅拌,降温至-3℃,加入4-溴-2,3-二(氯甲基)-1H-吡咯0.05mol,继续降温至-8℃,开始滴加氯乙酰氯0.2mol,控制温度-3℃,反应11小时;将反应液缓慢倒入饱和碳素氢钠溶液中,加入去离子水100ml,并采用碳酸钠调节pH值8.0,三氯甲烷萃取三次,收集有机相,采用无水硫酸镁干燥3小时,抽滤,蒸出有机溶剂,得中间体1-Ⅲ。
(2)中间体2-Ⅲ制备
将三氟化硼乙醚120ml和三乙胺60ml缓慢滴加到步骤(1)所得中间体1-Ⅲ的二氯甲烷溶液80ml中,不断搅拌,控制温度在37℃~38℃,反应7小时,直接蒸出溶剂,得到油状物,采用乙酸乙酯和石油醚(体积比为1:9)重结晶得到类白色固体,即中间体2-Ⅲ。
(3)中间体3-Ⅲ制备
在1000ml茄型瓶中加入无水氯化铝0.32mol,二氯甲烷150ml,置于冰盐浴中,搅拌,降温至-4℃,加入苯0.04mol,继续降温至-9℃,开始滴加中间体2-Ⅲ 0.04mol的二氯甲烷50ml溶液,控制温度-8℃,反应20小时;将反应液缓慢倒入饱和碳素氢钠溶液中,加入去离子水100ml,并采用碳酸钠调节pH值7.5,三氯甲烷萃取三次,收集有机相,采用无水硫酸镁干燥3小时,抽滤,蒸出有机溶剂,得中间体3-Ⅲ。
(4)化合物Ⅲ制备
在1000ml茄型瓶中加入无水氯化铝0.24mol,二氯甲烷100ml,置于冰盐浴中,搅拌,降温至-6℃,加入3-甲氧基-2-苯氧基苯酚0.03mol,继续降温至-11℃,开始滴加中间体3-Ⅲ0.105mol的二氯甲烷80ml溶液,控制 温度-10℃,反应8小时;将反应液缓慢倒入饱和碳素氢钠溶液中,加入去离子水,并采用碳酸钠调节pH值7.5,三氯甲烷萃取三次,收集有机相,采用无水硫酸镁干燥3小时,抽滤,蒸出有机溶剂,得到黄色固体,即化合物Ⅲ。
本实施例中,对本发明近红外光光激发荧光染料(Ⅲ)进行检测及表征数据如下:
元素分析计算值(CHBFNO):C50H38BF2N3O6
质谱(MS+):825.28(M+)
m/z:825.28(100.0%),826.29(58.6%),824.29(24.8%),827.29(16.1%),825.29(13.6%),828.29(3.4%),826.28(1.1%)
元素分析:C,72.73;H,4.64;B,1.31;F,4.60;N,5.09;O,11.63。
实施例3
本实施例提供的近红外光激发荧光染料(Ⅳ)的制备方法:
具有式(Ⅳ)结构:
Figure PCTCN2017113466-appb-000008
其制备方法如下:
Figure PCTCN2017113466-appb-000009
(1)中间体1-Ⅳ制备
在500ml茄型瓶中加入无水氯化铝0.28mol,二氯甲烷100ml,置于冰盐浴中,搅拌,降温至-2℃,加入4-溴-2,3-二(氯甲基)-1H-吡咯0.04mol,继续降温至-7℃,开始滴加氯乙酰氯0.14mol,控制温度0℃,反应10小时;将反应液缓慢倒入饱和碳素氢钠溶液中,加入去离子水100ml,并采用碳酸钠调节pH值7.0,三氯甲烷萃取三次,收集有机相,采用无水硫酸镁干燥3小时,抽滤,蒸出有机溶剂,得中间体1-Ⅳ。
(2)中间体2-Ⅳ制备
将三氟化硼乙醚130ml和三乙胺80ml缓慢滴加到步骤(1)所得中间体1-Ⅳ的二氯甲烷溶液100ml中,不断搅拌,控制温度在35℃~37℃,反 应7小时,直接蒸出溶剂,得到油状物,采用乙酸乙酯和石油醚(体积比为1:10)重结晶得到类白色固体,即中间体2-Ⅳ。
(3)中间体3-Ⅳ制备
在500ml茄型瓶中加入无水氯化铝0.21mol,二氯甲烷70ml,置于冰盐浴中,搅拌,降温至-5℃,加入苯0.03mol,继续降温至-7℃,开始滴加中间体2-Ⅳ0.03mol的二氯甲烷30ml溶液,控制温度-6℃,反应18小时;将反应液缓慢倒入饱和碳素氢钠溶液中,加入去离子水100ml,并采用碳酸钠调节pH值7.5,三氯甲烷萃取三次,收集有机相,采用无水硫酸镁干燥3小时,抽滤,蒸出有机溶剂,得中间体3-Ⅳ。
(4)化合物Ⅳ制备
在250ml茄型瓶中加入无水氯化铝0.14mol,二氯甲烷50ml,置于冰盐浴中,搅拌,降温至-7℃,加入3-乙氧基-2-(噻吩-2-基氧基)苯酚0.02mol,继续降温至-10℃,开始滴加中间体3-Ⅳ 0.065mol的二氯甲烷50ml溶液,控制温度-13℃,反应9小时;将反应液缓慢倒入饱和碳素氢钠溶液中,加入去离子水,并采用碳酸钠调节pH值8.0,三氯甲烷萃取三次,收集有机相,采用无水硫酸镁干燥3小时,抽滤,蒸出有机溶剂,得到黄色固体,即化合物Ⅳ。
本实施例中,对本发明近红外光光激发荧光染料(Ⅳ)进行检测及表征数据如下:
元素分析计算值(CHBFNOS):C48H38BF2N3O6S2
质谱(MS+):865.77(M+)
m/z:865.23(100.0%),866.23(50.2%),864.23(21.9%),867.23(15.2%), 867.22(8.0%),868.23(5.4%),866.24(3.0%),868.24(2.1%),869.23(1.2%)
元素分析:C,66.59;H,4.42;B,1.25;F,4.39;N,4.85;O,11.09;S,7.41。
实施例4
本实施例提供的近红外光激发荧光染料(Ⅴ)的制备方法:
具有式(Ⅴ)结构:
Figure PCTCN2017113466-appb-000010
其制备方法如下:
Figure PCTCN2017113466-appb-000011
(1)中间体1-Ⅴ制备
在1000ml茄型瓶中加入无水氯化铝0.7mol,二氯甲烷200ml,置于冰盐浴中,搅拌,降温至-2℃,加入4-溴-2,3-二(氯甲基)-1H-吡咯0.1mol,继续降温至-7℃,开始滴加氯乙酰氯0.3mol,控制温度-3℃,反应10小时;将反应液缓慢倒入饱和碳素氢钠溶液中,加入去离子水250ml,并采用碳酸钠调节pH值7.5,三氯甲烷萃取三次,收集有机相,采用无水硫酸镁干燥3小时,抽滤,蒸出有机溶剂,得中间体1-Ⅴ。
(2)中间体2-Ⅴ制备
将三氟化硼乙醚300ml和三乙胺200ml缓慢滴加到步骤(1)所得中间体1-Ⅴ的二氯甲烷溶液200ml中,不断搅拌,控制温度在37℃~39℃,反应6小时,直接蒸出溶剂,得到油状物,采乙酸乙酯和石油醚(体积比为1:9)重结晶得到类白色固体,即中间体2-Ⅴ。
(3)中间体3-Ⅴ制备
在1000ml茄型瓶中加入无水氯化铝0.48mol,二氯甲烷150ml,置于冰盐浴中,搅拌,降温至-3℃,加入苯0.08mol,继续降温至-7℃,开始滴加中间体2-Ⅴ 0.24mol的二氯甲烷200ml溶液,控制温度-6℃,反应18小时;将反应液缓慢倒入饱和碳素氢钠溶液中,加入去离子水200ml,并采用碳酸钠调节pH值8.0,三氯甲烷萃取三次,收集有机相,采用无水硫酸镁干燥3小时,抽滤,蒸出有机溶剂,得中间体3-Ⅴ。
(4)化合物Ⅴ制备
在250ml茄型瓶中加入无水氯化铝0.18mol,二氯甲烷100ml,置于冰盐浴中,搅拌,降温至-7℃,加入(3-乙氧基-2-(噻吩-3-基氧基)苯氧基)噻吩0.03mol,继续降温至-13℃,开始滴加中间体3-Ⅴ0.09mol的二氯甲烷70ml溶液,控制温度-12℃,反应9小时;将反应液缓慢倒入饱和碳素氢钠溶液中,加入去离子水,并采用碳酸钠调节pH值8.0,三氯甲烷萃取三次,收集有机相,采用无水硫酸镁干燥3小时,抽滤,蒸出有机溶剂,得到黄色固体,即化合物Ⅴ。
本实施例中,对本发明近红外光光激发荧光染料(Ⅴ)进行检测及表征数据如下:
元素分析计算值(CHBFNOS):C56H42BF2N3O6S4
质谱(MS+):1029.20(M+)
m/z:1029.20(100.0%),1030.21(66.0%),1028.21(24.6%),1031.20(23.4%),1031.21(19.9%),1029.21(15.1%),1032.20(11.9%),1030.20(8.7%),1032.21(6.1%),1033.20(4.1%),1033.19(1.2%)
元素分析:C,65.30;H,4.11;B,1.05;F,3.69;N,4.08;O,9.32;S,12.45。
实验例
为验证本发明所述的近红外光激发荧光染料的荧光性能,对其荧光光谱及摩尔消光系数、荧光量子产率进行测定,各参数的具体测定方法如下:
实验例1.近红外光激发荧光染料的吸收光谱测定
准确称取待测定化合物,配制成浓度为1.0×10-5mol/L的溶液,测定其吸收光谱,如图一所示。
实验例2.近红外光激发荧光染料的荧光光谱测定
利用测定的近红外光谱中的最大吸收波长,作为荧光光谱的激发波长,测定荧光光谱。称量待测化合物,配制浓度为1.0×10-6mol/L的乙醇:水(50:50,v/v)溶液,测定其发射光谱,如图一所示。
实验例3.近红外光激发荧光染料的摩尔消光系数测定
利用紫外可见吸收光谱测定化合物的摩尔消光系数。计算式如式(1)所示:
A=εcl    式(1)
其中,A代表吸收强度,ε为摩尔吸光系数,c是化合物的浓度,l为检测用的石英池的厚度。
实验例4.近红外光激发荧光染料的荧光量子产率测定
在20℃下测定近红外光激发荧光染料的荧光量子产率,以硫酸奎宁(溶剂为0.1M的H2SO4,量子产率为0.56)作为参比物,通过测量近红外光激 发荧光染料和参比物质的稀溶液在相同激发条件下得到的荧光积分强度和该激发波长下的紫外吸收值,来计算荧光量子产率。产物溶解于无水乙醇中。
计算公式如式(2)所示:
Figure PCTCN2017113466-appb-000012
其中,其中Φ为待测物的量子产率,下标R代表参比物。I为荧光积分强度,A为紫外吸收值。η为溶剂折射率。一般要求吸光度A、AR均小于0.1。
表1实施例1-6所述近红外光激发荧光染料的光谱学性质
Figure PCTCN2017113466-appb-000013
如表1所示,实施例4所述的近红外光激发荧光染料(Ⅶ)具有最大的吸收波长,同时对应着最大的发射波长829nm、最大的摩尔吸光系数9.0和最大的荧光量子产率89.86%,进而表明该类化合物具有用于生物大分子如核酸或蛋白质的共价荧光标记的优势。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可 以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (9)

  1. 一种近红外光激发荧光染料,其特征在于,具有如式(Ⅰ)结构:
    Figure PCTCN2017113466-appb-100001
    其中,
    R1、R2、R3选自氢、C1-C10烃基、芳香基或杂环中的一种。
  2. 根据权利要求1所述的一种近红外光激发荧光染料,其特征在于,R1、R2、R3选自氢、甲基、乙基、苯基、2-噻吩基、3-噻吩基中的一种。
  3. 根据权利要求1或2所述的一种近红外光激发荧光染料,其特征在于,其结构式如所示:
    Figure PCTCN2017113466-appb-100002
  4. 一种制备权利要求1-3任一项所述的一种近红外光激发荧光染料的方法,其特征在于,包括如下步骤:
    Figure PCTCN2017113466-appb-100003
    (1)中间体1-Ⅰ制备
    在茄型瓶中加入无水氯化铝,二氯甲烷,置于冰盐浴中,搅拌,降温至0℃~-3℃,加入4-溴-2,3-二(氯甲基)-1H-吡咯,继续降温至-7℃~-10℃,开始滴加氯乙酰氯,控制温度0℃~-4℃,反应10~12小时;将反应液缓慢倒入饱和碳素氢钠溶液中,加入去离子水,并采用碳酸钠调节pH值7.0~8.0,三氯甲烷萃取三次,收集有机相,采用无水硫酸镁干燥3小时,抽滤,蒸出有机溶剂,得中间体1-Ⅰ。
    (2)中间体2-Ⅰ制备
    将三氟化硼乙醚和三乙胺缓慢滴加到步骤(1)所得中间体1-Ⅰ的二氯甲烷溶液中,不断搅拌,控制温度在35℃~40℃,反应5~7小时,直接蒸出溶剂,得到油状物,采用乙酸乙酯和石油醚(体积比为1:8~1:10)重结晶得到类白色固体,即中间体2-Ⅰ。
    (3)中间体3-Ⅰ制备
    在茄型瓶中加入无水氯化铝,二氯甲烷,置于冰盐浴中,搅拌,降温至-2℃~-5℃,加入苯,继续降温至-7℃~-11℃,开始滴加中间体2-Ⅰ的二氯甲烷溶液,控制温度-6℃~-9℃,反应16~20小时;将反应液缓慢倒入饱和碳素氢钠溶液中,加入去离子水,并采用碳酸钠调节pH值7.0~8.0,三氯甲烷萃取三次,收集有机相,采用无水硫酸镁干燥3小时,抽滤,蒸出有机溶剂,得中间体3-Ⅰ。
    (4)化合物Ⅰ制备
    在茄型瓶中加入无水氯化铝,二氯甲烷,置于冰盐浴中,搅拌,降温至-4℃~-7℃,加入R1,R2,R3取代的1,2,4-苯三酚,继续降温至-10℃~-13℃,开始滴加中间体3-Ⅰ的二氯甲烷溶液,控制温度-8℃~-12℃,反应7~9小时;将反应液缓慢倒入饱和碳素氢钠溶液中,加入去离子水,并采用碳酸钠调节pH值7.0~8.0,三氯甲烷萃取三次,收集有机相,采用无水硫酸镁干燥3小时,抽滤,蒸出有机溶剂,得到黄色固体,即化合物Ⅰ。
  5. 根据权利要求1-4任一项所述的一种近红外光激发荧光染料的制备方法,其特征在于,所述步骤(1)中,加入4-溴-2,3-二(氯甲基)-1H-吡咯、氯乙酰氯、无水氯化铝物质的量比为1:(3.0~4.0):(6~8)。
  6. 根据权利要求1-5任一项所述的一种近红外光激发荧光染料的制备方法,其特征在于,所述步骤(2)中,加入三氟化硼乙醚、三乙胺体积比为(1.5~2.0):1。
  7. 根据权利要求1-6任一项所述的一种近红外光激发荧光染料的制备方法,其特征在于,所述步骤(3)中,加入苯、中间体2-Ⅰ、无水氯化铝物 质的量比为1:(2.5~3.0):(6~8)。
  8. 根据权利要求1-7任一项所述的一种近红外光激发荧光染料的制备方法,其特征在于,所述步骤(4)中,加入R1,R2,R3取代的1,2,4-苯三酚、中间体3-Ⅰ、无水氯化铝物质的量比为1:(3.0~3.5):(6~8)。
  9. 如权利要求1-4任一项所述的一种近红外光激发荧光染料的应用,其特征在于,应用于生物大分子的共价荧光标记,所述大分子为核酸或蛋白质。
PCT/CN2017/113466 2016-11-30 2017-11-29 一种近红外光激发荧光染料及其制备方法与应用 WO2018099383A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611085863.9 2016-11-30
CN201611085863.9A CN108130072A (zh) 2016-11-30 2016-11-30 一种近红外光激发荧光染料及其制备方法与应用

Publications (1)

Publication Number Publication Date
WO2018099383A1 true WO2018099383A1 (zh) 2018-06-07

Family

ID=62241173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/113466 WO2018099383A1 (zh) 2016-11-30 2017-11-29 一种近红外光激发荧光染料及其制备方法与应用

Country Status (2)

Country Link
CN (1) CN108130072A (zh)
WO (1) WO2018099383A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112174991A (zh) * 2020-09-23 2021-01-05 复旦大学 近红外区第二窗口激发和发射的荧光染料及其制备方法和应用
CN113522159A (zh) * 2021-07-19 2021-10-22 深圳建实科技有限公司 一种三联结构的表面活性剂及其制备方法
CN113913049A (zh) * 2021-11-25 2022-01-11 朱政轩 一种光触媒荧光墨水及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108913157A (zh) * 2018-06-21 2018-11-30 张楠楠 一种高荧光有机硼液晶新材料的制备方法
CN115746033B (zh) * 2022-09-09 2024-04-16 杭州师范大学 基于邻苯二酚修饰的aza-BODIPY及其与铁离子络合而成的纳米粒子和其生物应用
CN115611912B (zh) * 2022-09-20 2024-01-30 南京工业大学 一种近红外稠环芳烃分子及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006058448A1 (en) * 2004-11-30 2006-06-08 Eidgenössische Technische Hochschule Zürich Diode-laser compatible aza-dipyrromethene dyes and methods for their preparation
WO2013055640A2 (en) * 2011-10-11 2013-04-18 Eastman Kodak Company Infrared fluorescent composition having polyvinyl acetal binder
CN106117256A (zh) * 2016-06-21 2016-11-16 安徽师范大学 β‑菲并氮杂氟硼二吡咯染料及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006058448A1 (en) * 2004-11-30 2006-06-08 Eidgenössische Technische Hochschule Zürich Diode-laser compatible aza-dipyrromethene dyes and methods for their preparation
WO2013055640A2 (en) * 2011-10-11 2013-04-18 Eastman Kodak Company Infrared fluorescent composition having polyvinyl acetal binder
CN106117256A (zh) * 2016-06-21 2016-11-16 安徽师范大学 β‑菲并氮杂氟硼二吡咯染料及其制备方法和应用

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112174991A (zh) * 2020-09-23 2021-01-05 复旦大学 近红外区第二窗口激发和发射的荧光染料及其制备方法和应用
CN112174991B (zh) * 2020-09-23 2023-02-10 复旦大学 近红外区第二窗口激发和发射的荧光染料及其制备方法和应用
CN113522159A (zh) * 2021-07-19 2021-10-22 深圳建实科技有限公司 一种三联结构的表面活性剂及其制备方法
CN113522159B (zh) * 2021-07-19 2022-07-26 深圳建实科技有限公司 一种三联结构的表面活性剂及其制备方法
CN113913049A (zh) * 2021-11-25 2022-01-11 朱政轩 一种光触媒荧光墨水及其制备方法
CN113913049B (zh) * 2021-11-25 2023-08-29 河南京硕信息科技有限公司 一种光触媒荧光墨水及其制备方法

Also Published As

Publication number Publication date
CN108130072A (zh) 2018-06-08

Similar Documents

Publication Publication Date Title
WO2018099383A1 (zh) 一种近红外光激发荧光染料及其制备方法与应用
WO2018099382A1 (zh) 一种红光激发荧光染料及其制备方法与应用
US7598385B2 (en) Asymmetric cyanine fluorescent dyes
US9315465B2 (en) Photostable AIE luminogens for specific mitochondrial imaging and its method of manufacturing thereof
US20120276649A1 (en) Thiol detection
Peng et al. A novel fluorescent probe for selective detection of hydrogen sulfide in living cells
Čunderlı́ková et al. Solvent effects on photophysical properties of merocyanine 540
WO2011085532A1 (zh) 一类共轭链上β-位氮取代五甲川菁类荧光染料
CN113563351B (zh) 一类水溶性开环葫芦脲荧光探针及其应用
CN106085420A (zh) 一种多肽修饰的金纳米簇及其制备方法
Bora et al. Diazaoxatriangulenium: synthesis of reactive derivatives and conjugation to bovine serum albumin
WO2021088529A1 (zh) 基于偶氮苯-量子点的荧光探针及制备方法以及其在分子开关型荧光传感器中的应用
CN108219780B (zh) 一种近红外荧光探针及其制备方法和应用
CN114591632B (zh) 一类氮杂吲哚-半花菁染料、其合成方法及应用
Jin et al. Crystal structures, two-photon excited fluorescence and bioimaging of Zn (II) complexes based on an extended 2, 2′-bipyridine ligand
CN109796493B (zh) 一种具有双光子和近红外发光特性的亚硝酰氢荧光探针及其制备方法和应用
CN114113018B (zh) 一种以四硝基酞菁为试剂测定锌离子的荧光检测法
CN113603722B (zh) 一种极性荧光探针及其制备方法和应用
US20070259438A1 (en) Chromoionophore and method of determining calcium ions
CN112225743B (zh) 一种喹啉基近红外罗丹明荧光染料、比率荧光探针及其合成和应用
CN112480025B (zh) 具有聚集诱导发光功能的化合物及其制备方法和应用
WO2023015795A1 (zh) 一种比率型多硫化氢荧光探针及其制备方法和应用
CN110669350B (zh) 一种哌啶基bodipy类红光荧光染料及其制备方法和应用
CN114773875A (zh) 一类氮杂吲哚-方酸菁染料,其合成方法及应用
KR102637182B1 (ko) 형광 염료, 그 제조 방법 및 응용

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17876313

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17876313

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17876313

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20.03.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17876313

Country of ref document: EP

Kind code of ref document: A1