WO2018099180A1 - 基于霍尔摇杆的电动轮椅控制方法及电动轮椅 - Google Patents

基于霍尔摇杆的电动轮椅控制方法及电动轮椅 Download PDF

Info

Publication number
WO2018099180A1
WO2018099180A1 PCT/CN2017/104822 CN2017104822W WO2018099180A1 WO 2018099180 A1 WO2018099180 A1 WO 2018099180A1 CN 2017104822 W CN2017104822 W CN 2017104822W WO 2018099180 A1 WO2018099180 A1 WO 2018099180A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis offset
axis
command value
rocker
offset
Prior art date
Application number
PCT/CN2017/104822
Other languages
English (en)
French (fr)
Inventor
暨绵浩
Original Assignee
广州视源电子科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州视源电子科技股份有限公司 filed Critical 广州视源电子科技股份有限公司
Publication of WO2018099180A1 publication Critical patent/WO2018099180A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G5/00Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs
    • A61G5/04Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs motor-driven
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G5/00Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs
    • A61G5/10Parts, details or accessories
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0259Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G2203/00General characteristics of devices
    • A61G2203/10General characteristics of devices characterised by specific control means, e.g. for adjustment or steering
    • A61G2203/14Joysticks

Definitions

  • the invention relates to the field of automatic control, in particular to an electric wheelchair control method based on a Hall rocker and an electric wheelchair.
  • Electric wheelchairs are an ideal means of transport for the elderly or disabled. It is a battery-powered, motor-driven wheelchair. It has the advantages of simple operation, stable speed and no pollution. Compared with manual wheelchairs, it has a wide range of activities and powerful functions.
  • the electric lever of the electric wheelchair is an important part of the user's operation of the electric wheelchair.
  • the commonly used Hall effect joystick is based on the Hall effect principle, so that the position change of the joystick corresponds to the output voltage value of the Hall effect sensor.
  • Hall effect sensors have the advantages of small size, high sensitivity, and low power
  • Hall effect rockers are widely used.
  • the Hall rocker section of the conventional electric wheelchair is divided into four sections by the X-axis and the Y-axis, which respectively correspond to the forward, backward, left-turn and right-turn. This division is too simple, so that when the wheelchair is turned It can be clumsy and cannot achieve zero-radius turns.
  • the object of the embodiments of the present invention is to provide an electric wheelchair control method based on a Hall rocker and an electric wheelchair, which can solve the problem that the driving method of the electric wheelchair in the prior art is too simple, and the driving of the wheelchair is more flexible and more humanized.
  • an embodiment of the present invention provides an electric wheelchair control method based on a Hall rocker. Law, including steps:
  • Cartesian coordinate system is a first reference line extending in a left-right direction of the Hall rocker as an X-axis, and a second reference line extending in a front-rear direction of the Hall rocker is a Y-axis;
  • the X coordinate of the Hall rocker is subtracted from the X coordinate of the center point of the Cartesian coordinate system to obtain the X axis. Offset, and subtracting the Y coordinate of the Hall rocker from the Y coordinate of the center point of the Cartesian coordinate system to obtain a Y-axis offset;
  • the left motor is preset to correspond to the X-axis and the right motor corresponds to the Y-axis
  • the steering of the left motor determines the steering of the right motor based on the positive and negative of the second command value.
  • the Hall rocker-based electric wheelchair control method disclosed by the present invention obtains a first command value by adding a Y-axis offset by an X-axis offset, and the Y-axis is biased.
  • the X-axis and Y-axis divide the plane into four sections to determine the driving style is too simple to meet the needs of the user's diversity and comfort, making the wheelchair more flexible and more functional.
  • the absolute value of the Y-axis offset is smaller than a preset start command value of the Y direction
  • the absolute value of the X-axis offset is smaller than a preset start command of the X direction.
  • the PWM values of the left and right motors are respectively cleared to zero; wherein the absolute value of the Y-axis offset is smaller than a preset start command value in the Y direction, and the X-axis offset
  • the initial command value whose absolute value is smaller than the preset X direction does not belong to the preset range of the X-axis offset and the Y-axis offset.
  • the method further comprises the steps of:
  • the left motor is preset to correspond to the Y-axis and the right motor corresponds to the X-axis
  • the steering of the right motor obtains the steering of the left motor according to the positive and negative of the second command value.
  • the PWM value of the left motor determines the rotational speed of the left motor
  • the PWM value of the right motor determines the rotational speed of the right motor
  • the steering of the left motor and the right motor determines the forward, reverse, left turn, and right turn of the electric wheelchair.
  • the first command value and the second command value determine the manner in which the electric wheelchair travels.
  • Setting m and n to 1 is the same for the eight intervals, which is more advantageous for the user's operation.
  • the PWM values of the left and right motors are both absolute values of the X-axis offset of 2 times; wherein the Y-axis offset Zero is a preset range that does not belong to the X-axis offset and the Y-axis offset.
  • the PWM values of the left and right motors are the same, that is, the left and right motors have no speed difference, and the left and right motors are turned oppositely, and the zero radius left/right turn of the electric wheelchair is realized.
  • the PWM values of the left and right motors are respectively cleared; wherein the X-axis
  • the sum of the squares of the offset and the Y-axis offset is less than a preset threshold that does not belong to a preset range of the X-axis offset and the Y-axis offset. It does not respond to the shaking of a certain range of the Hall rocker, and can prevent misoperation, and can also achieve small vibration during the turning process, and obtain better stability.
  • the PWM values of the left and right motor operations are all set to an absolute value of the Y-axis offset of 2 times; wherein the sum of squares of the X-axis offset and the Y-axis offset is greater than a preset threshold, and The absolute value of the X-axis offset amount in which the absolute value of the Y-axis offset is greater than 10 times does not belong to the preset range of the X-axis offset and the Y-axis offset.
  • This step further adds four intervals in which the left motor and the right motor have no speed difference, which ensures the linear forward and backward performance of the electric wheelchair, and makes the electric wheelchair more stable and flexible.
  • An embodiment of the present invention further provides an electric wheelchair using the Hall rocker-based electric wheelchair control method according to any one of claims 1-9.
  • the electric wheelchair disclosed in the embodiment of the invention can realize various driving modes of multiple sections of the Hall rocker by adopting the above-mentioned electric rocker control method based on the Hall rocker, including realizing small angle large radius left/right turn, large Angle small radius left/right turn and zero radius left/right turn for more flexibility and improved user Comfort.
  • Embodiment 1 is a flow chart showing a method of controlling an electric wheelchair based on a Hall rocker in Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram showing the division of an electric wheelchair control method based on a Hall rocker in Embodiment 1 of the present invention.
  • FIG. 3 is a schematic diagram of a Hall rocker output signal in Embodiment 1 of the present invention.
  • FIG. 4 is a flow chart showing a method of controlling an electric wheelchair based on a Hall rocker in Embodiment 2 of the present invention.
  • Fig. 5 is a flow chart showing a method of controlling an electric wheelchair based on a Hall rocker in Embodiment 3 of the present invention.
  • FIG. 6 is a flow chart showing a method of controlling an electric wheelchair based on a Hall rocker in Embodiment 4 of the present invention.
  • FIG. 7 is a flow chart showing a method of controlling an electric wheelchair based on a Hall rocker in Embodiment 5 of the present invention.
  • Figure 8 is a flow chart showing a method of controlling an electric wheelchair based on a Hall rocker in Embodiment 6 of the present invention.
  • FIG. 9 is a schematic diagram showing the division of an electric wheelchair control method based on a Hall rocker in Embodiment 6 of the present invention.
  • FIG. 1 it is a schematic diagram of a method for controlling an electric wheelchair based on a Hall rocker according to Embodiment 1 of the present invention.
  • the electric joystick control method based on the Hall rocker shown in FIG. 1 includes the steps of:
  • the X coordinate of the Hall rocker is subtracted from the X coordinate of the center point of the Cartesian coordinate system.
  • the preset range of the X-axis offset and the Y-axis offset includes a case where the X-axis offset and the Y-axis offset are arbitrary values.
  • Embodiment 2 is a schematic diagram of a method for controlling an electric wheelchair based on a Hall rocker according to Embodiment 2 of the present invention. This embodiment further includes the steps on the basis of Embodiment 1:
  • FIG. 3 it is a schematic diagram of a method for controlling an electric wheelchair based on a Hall rocker according to Embodiment 3 of the present invention. This embodiment further includes the steps on the basis of Embodiment 1:
  • the absolute value of the Y-axis offset is smaller than a preset start command value of the Y direction, and the absolute value of the X-axis offset is smaller than a preset start command value of the X direction. Clearing the PWM values of the left and right motors respectively; wherein the absolute value of the Y-axis offset is less than a preset start command value in the Y direction, and the absolute value of the X-axis offset The start command value smaller than the preset X direction does not belong to the preset range of the X-axis offset and the Y-axis offset.
  • the preset range of the X-axis offset and the Y-axis offset does not include the initial value of the Y-axis offset being smaller than the preset Y-direction start command value, and The case where the absolute value of the X-axis offset is smaller than the preset start command value in the X direction.
  • the Hall rocker outputs an X-direction and a Y-direction analog signal, and obtains an X coordinate and a Y coordinate of the Hall rocker after performing AD conversion by the analog signal, and when determining the Hall rocker
  • the X coordinate and the Y coordinate are within the set normal range
  • the X-axis offset and the Y-axis offset are obtained with respect to the center point;
  • the first command value is obtained by adding the X-axis offset of the Y-axis offset by m times, and the X-axis offset is subtracted by n times from the Y-axis offset to obtain the second command.
  • the Hall rocker when the Hall rocker is in the interval 1, 8, the first command value and the second command value are both positive, that is, the left and right motors are all rotating forward, and the wheelchair is in a forward state;
  • the Hall rocker is in the interval 4, 5
  • the first command value and the second command value are both negative, that is, the left and right motors are reverse mounted, and the wheelchair is in a backward state;
  • the Hall rocker when the Hall rocker is in the interval 2, 3, the first The command value is positive, and the second command value is negative, that is, the left motor rotates forward, the right motor reverses, and the wheelchair is in a right turn state;
  • the Hall rocker when the Hall rocker is in the interval 6, 7
  • the command value is negative, and the second command value is positive, that is, the left motor is reversed, the right motor is rotating forward, and the wheelchair is in a left turn state.
  • the absolute value of the first command value is greater than the absolute value of the second command value, that is, the PWM value of the left motor is greater than the PWM value of the right motor, so that the rotational speed of the left motor is greater than The rotation speed of the right motor realizes a right turn of a small angle and a large radius of the wheelchair;
  • the absolute value of the first command value is smaller than the absolute value of the second command value, that is, the PWM of the left motor
  • the value is smaller than the PWM value of the right motor, so that the rotation speed of the left motor is smaller than the rotation speed of the right motor, and the wheelchair has a large angle and a small radius right turn.
  • the absolute value of the first command value is greater than the absolute value of the second command value, that is, the PWM value of the left motor is greater than the PWM value of the right motor, so that the rotational speed of the left motor More than the rotational speed of the right motor, a left turn of a small angle and a large radius of the wheelchair is realized; in the interval 7, the absolute value of the first command value is smaller than the absolute value of the second command value, that is, the left motor The PWM value is smaller than the PWM value of the right motor, so that the rotation speed of the left motor is smaller than the rotation speed of the right motor, and the wheelchair has a large angle and a small radius left turn.
  • the absolute value of the Y-axis offset is less than a preset start command value of the Y direction
  • the absolute value of the X-axis offset is less than a preset start command value of the X direction
  • the two-dimensional Hall rocker in the above several embodiments is powered by DC5V, the two analog output terminals are 0-5V, the output signal is shown in FIG. 5, and the X axis represents the left and right direction of the rocker, the Y axis. Indicates the front and rear direction of the rocker.
  • the X-axis output When the joystick is pushed to the far left, the X-axis output is 0V; when the joystick is pushed to the far right, X The shaft output is 5V; when the rocker is pushed to the lowermost side, the Y-axis output is 0V; when the rocker is pushed to the uppermost side, the Y-axis output is 5V; when the rocker is in the middle, both the X-axis and the Y-axis are 2.5V, these two analog quantities can be directly read through the AD port of the microcontroller.
  • the above several embodiments are described only by using a two-dimensional Hall rocker with DC5V power supply.
  • the method of controlling the electric rocker based on the Hall rocker provided by the present invention is not limited to 5V power supply to the two-dimensional Hall rocker.
  • FIG. 6 is a schematic diagram of a method for controlling an electric wheelchair based on a Hall rocker according to Embodiment 4 of the present invention.
  • This embodiment further includes the steps on the basis of Embodiment 1:
  • the difference between the embodiment of the present invention and the embodiment is that the left motor corresponds to the Y axis, and the right motor corresponds to the X axis.
  • the specific working process and working principle can refer to the implementation process of Embodiment 1, and no longer Narration.
  • Embodiment 5 a schematic diagram of a method for controlling an electric wheelchair based on a Hall rocker according to Embodiment 5 of the present invention is shown. This embodiment further includes the steps on the basis of Embodiment 1:
  • the PWM values of the left and right motors are both absolute values of the X-axis offset of 2 times, that is, when the Hall rocker swings left and right along the X-axis direction
  • the left and right motors have no speed difference and the rotational speeds are opposite, the wheelchair zero radius left/right turn is realized.
  • the embodiment of the present invention is not described here.
  • FIG. 8 is a schematic diagram of a method for controlling an electric wheelchair based on a Hall rocker according to Embodiment 6 of the present invention. This embodiment further includes the steps on the basis of Embodiment 1:
  • the plane of the Hall rocker is increased by five intervals, which are respectively a, b, c, d, and e intervals, wherein the e interval is the origin. A circular area that is the center of the circle.
  • the Hall rocker is in the interval e, the PWM values of the left and right motors are cleared, which can ensure that the wheelchair eliminates small vibrations during the turning process, obtains better stability, and improves user comfort. And experience.
  • the PWM values of the left and right motors are designed to be the absolute value of the Y-axis offset of 2 times, and the left and right motors have no speed difference. It ensures the straight forward and straight back of the wheelchair.
  • the embodiment of the present invention is not described here.
  • the embodiment of the invention further provides an electric wheelchair, which adopts the electric rocker control method based on the Hall rocker described in the above embodiments.
  • the electric wheelchair can realize various driving modes of multiple sections of the Hall rocker by adopting the above-mentioned electric rocker control method based on the Hall rocker, including realizing small angle large radius left/right turn, large angle small radius left/ Right turn and zero-radius left/right turn for greater flexibility and increased user comfort.
  • an embodiment of the present invention discloses an electric wheelchair control method based on a Hall rocker and an electric wheelchair, which obtains a first command value by adding an X-axis offset of the Y-axis offset by m times.
  • the second command value is obtained by subtracting n times the X-axis offset from the Y-axis offset, the first command value is used to determine the PWM value of the left motor and the steering, and the second command value is used to determine the right motor
  • the X-axis and Y-axis of the Hall rocker divide the plane into four sections to determine that the driving style is too simple to meet the needs of the user's variety and comfort, making the wheelchair more flexible and more functional.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Electromagnetism (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Handcart (AREA)

Abstract

一种基于霍尔摇杆的电动轮椅控制方法,通过将霍尔摇杆的Y轴偏移量加上m倍的X轴偏移量获得第一命令值,将Y轴偏移量减去n倍的X轴偏移量获得第二命令值,第一命令值用于确定左电机的PWM值和转向,第二命令值用于确定右电机的PWM值和转向,也就是,基于霍尔摇杆的X轴,Y轴,Y=-mX,Y=nX将平面划分为八个区间来决定电动轮椅的行驶方式,解决了现有技术采用霍尔摇杆的X轴和Y轴将平面划分为四个区间来决定行驶方式过于简单而不能满足用户多样化和舒适度的需求的问题,使得轮椅行驶更灵活,功能更完善。

Description

基于霍尔摇杆的电动轮椅控制方法及电动轮椅 技术领域
本发明涉及自动控制领域,尤其涉及一种基于霍尔摇杆的电动轮椅控制方法及电动轮椅。
背景技术
随着电子技术及能源技术的发展,电动车技术获得了飞速的发展,并大规模应用到我们的日常生活中。电动轮椅,对于老年人群或残疾人群来说,是一种理想的代步工具。它是一种以电池为能源,由电动机驱动的轮椅车,具有操作简单、车速平稳、无污染等优点,相比于手动轮椅,活动范围广,功能强大。
其中,电动轮椅的操纵杆作为重要组成部分,是使用者操作电动轮椅的桥梁。常用的霍尔效应操纵杆,是根据霍尔效应原理,使得操纵杆的位置变化与霍尔效应传感器的输出电压值成对应关系。因为霍尔效应传感器具有体积小、灵敏度高、功率小邓优点,霍尔效应摇杆得到广泛应用。目前传统电动轮椅的霍尔摇杆区间划分方式是由X轴和Y轴将平面划分为四个区间,分别对应前进、后退、左转和右转,这种划分方式过于简单,使得轮椅转弯时会显得笨拙,而且无法实现零半径转弯。
发明内容
本发明实施例的目的是提供一种基于霍尔摇杆的电动轮椅控制方法及电动轮椅,能解决现有技术电动轮椅行驶方式过于简单的问题,使得轮椅的行驶更加灵活,更人性化。
为实现上述目的,本发明实施例提供了一种基于霍尔摇杆的电动轮椅控制方 法,包括步骤:
基于预设的直角坐标系,获取所述霍尔摇杆分别在X方向和Y方向的模拟量,并将所述X方向和Y方向的模拟量进行AD转换获得所述霍尔摇杆的X坐标和Y坐标;其中,所述直角坐标系以霍尔摇杆的左右方向延伸的第一基准线作为X轴、所述霍尔摇杆的前后方向延伸的第二基准线作为Y轴;
当判断所述霍尔摇杆的X坐标、Y坐标在设定的正常范围内时,将所述霍尔摇杆的X坐标减去所述直角坐标系的中心点的X坐标后获得X轴偏移量,以及将所述霍尔摇杆的Y坐标减去所述直角坐标系的中心点的Y坐标以获得Y轴偏移量;
将所述Y轴偏移量加上m倍的X轴偏移量获得第一命令值,将所述Y轴偏移量减去n倍的X轴偏移量获得第二命令值;其中,所述0<m<10,0<n<10;
当所述X轴偏移量和Y轴偏移量在预设的范围内时,在预设所述左电机对应所述X轴、所述右电机对应所述Y轴的情况下,将所述第一命令值的绝对值作为所述左电机的PWM值,将所述第二命令值的绝对值作为所述右电机的PWM值,且根据所述第一命令值的正负确定所述左电机的转向,根据所述第二命令值的正负确定所述右电机的转向。
与现有技术相比,本发明公开的基于霍尔摇杆的电动轮椅控制方法通过将Y轴偏移量加上m倍的X轴偏移量获得第一命令值,将所述Y轴偏移量减去n倍的X轴偏移量获得第二命令值,所述第一命令值用于确定左电机的PWM值和转向,所述第二命令值用于确定右电机的PWM值和转向,也就是,基于霍尔摇杆的X轴,Y轴,Y=-mX,Y=nX将平面划分为八个区间来决定电动轮椅的行驶方式,解决了现有技术采用霍尔摇杆的X轴和Y轴将平面划分为四个区间来决定行驶方式过于简单而不能满足用户多样化和舒适度的需求,使得轮椅行驶更灵活,功能更完善。
作为上述方案的改进,当判断所述霍尔摇杆的X坐标、Y坐标不在设定的正常范围内时,分别将所述左、右电机的PWM值清零。该步骤可避免霍尔摇杆的摇摆范围超出正常范围,而发生电动轮椅会超速行驶的情况。
作为上述方案的改进,在所述Y轴偏移量的绝对值小于预设的Y方向的起始命令值,且所述X轴偏移量的绝对值小于预设的X方向的起始命令值的情况下,分别将所述左、右电机的PWM值清零;其中,所述Y轴偏移量的绝对值小于预设的Y方向的起始命令值,且所述X轴偏移量的绝对值小于预设的X方向的起始命令值不属于所述X轴偏移量和Y轴偏移量的预设的范围。预设X方向和Y方向的其实命令值,可以避免霍尔摇杆误操作导致轻微摆动而发生电动轮椅误行驶的情况。
作为上述方案的改进,所述方法还包括步骤:
当所述X轴偏移量和Y轴偏移量在预设的范围内时,在预设所述左电机对应所述Y轴、所述右电机对应所述X轴的情况下,获得所述第一命令值的绝对值作为所述右电机的PWM值,获得所述第二命令值的绝对值作为所述左电机的PWM值,且根据所述第一命令值的正负获得所述右电机的转向,根据所述第二命令值的正负获得所述左电机的转向。所述左电机的PWM值决定左电机的转速,所述右电机的PWM值决定右电机的转速,所述左电机和右电机的转向决定电动轮椅的前进、后退、左转和右转。因此所述第一命令值和第二命令值可确定电动轮椅的行驶方式。
作为上述方案的改进,在预设所述左电机对应所述X轴、所述右电机对应所述Y轴的情况下,根据所述第一命令值的正负确定所述左电机的转向,根据所述第二命令值的正负确定所述右电机的转向具体为:
所述当所述第一命令值为正,所述左电机正转,当第二命令值为正时,所述右电机正转;当所述第一命令值为负时,所述左电机反转,当第二命令值为负时,所述右电机反转。使命令值的正、负分别对应正转、反转,更符合用户关于摇杆 的转向和轮椅行驶的方向对应关系。
作为上述方案的改进,所述m=1,所述n=1。将m和n设定为1,所述八个区间范围相同,更有利于用户的操作。
作为上述方案的改进,当所述Y轴偏移量为零时,所述左、右电机的PWM值均为2倍的X轴偏移量的绝对值;其中,所述Y轴偏移量为零不属于所述X轴偏移量和Y轴偏移量的预设的范围。所述左、右电机的PWM值相同,也就是左、右电机没有速度差,且所述左、右电机转向相反,实现了电动轮椅的零半径左/右转弯。
作为上述方案的改进,当所述X轴偏移量和Y轴偏移量的平方和小于预设的阈值时,分别将所述左、右电机的PWM值清零;其中,所述X轴偏移量和Y轴偏移量的平方和小于预设的阈值不属于所述X轴偏移量和Y轴偏移量的预设的范围。不响应所述霍尔摇杆的一定范围内的摇动,可以防止误操作,也可以转弯过程中小的震动,获得比较好的平稳性。
当所述X轴偏移量和Y轴偏移量的平方和大于预设的阈值,且所述Y轴偏移量的绝对值大于10倍的X轴偏移量的绝对值时,所述左、右电机运行的PWM值均设定为2倍的Y轴偏移量的绝对值;其中,所述X轴偏移量和Y轴偏移量的平方和大于预设的阈值,且所述Y轴偏移量的绝对值大于10倍的X轴偏移量的绝对值不属于所述X轴偏移量和Y轴偏移量的预设的范围。该步骤进一步增加了四个区间,在这四个区间内,所述左电机和右电机没有速度差,保证了电动轮椅直线前进和后退的性能,使电动轮椅的行驶更稳定,更灵活。
本发明实施例还提供了一种电动轮椅,采用如权利要求1-9任意一项基于霍尔摇杆的电动轮椅控制方法。
本发明实施例公开的电动轮椅,通过采用上述基于霍尔摇杆的电动轮椅控制方法,可以实现霍尔摇杆多个区间的多种行驶方式,包括实现小角度大半径左/右转弯、大角度小半径左/右转弯以及零半径左/右转弯,更灵活,提高了用户的 舒适度。
附图说明
图1是本发明实施例1中一种基于霍尔摇杆的电动轮椅控制方法的流程图。
图2是本发明实施例1中一种基于霍尔摇杆的电动轮椅控制方法的区间划分示意图。
图3是本发明实施例1中一种霍尔摇杆输出信号示意图。
图4是本发明实施例2中一种基于霍尔摇杆的电动轮椅控制方法的流程图。
图5是本发明实施例3中一种基于霍尔摇杆的电动轮椅控制方法的流程图。
图6是本发明实施例4中一种基于霍尔摇杆的电动轮椅控制方法的流程图。
图7是本发明实施例5中一种基于霍尔摇杆的电动轮椅控制方法的流程图。
图8是本发明实施例6中一种基于霍尔摇杆的电动轮椅控制方法的流程图。
图9是本发明实施例6中一种基于霍尔摇杆的电动轮椅控制方法的区间划分示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
参见图1,是本发明实施例1提供的一种基于霍尔摇杆的电动轮椅控制方法的示意图。如图1所示的基于霍尔摇杆的电动轮椅控制方法包括步骤:
S11、基于预设的直角坐标系,获取所述霍尔摇杆分别在X方向和Y方向的模拟量,并将所述X方向和Y方向的模拟量进行AD转换获得所述霍尔摇杆的X坐标和Y坐标;其中,所述直角坐标系以霍尔摇杆的左右方向延伸的第一基准线 作为X轴、所述霍尔摇杆的前后方向延伸的第二基准线作为Y轴;
S12、当判断所述霍尔摇杆的X坐标、Y坐标在设定的正常范围内时,将所述霍尔摇杆的X坐标减去所述直角坐标系的中心点的X坐标后获得X轴偏移量,以及将所述霍尔摇杆的Y坐标减去所述直角坐标系的中心点的Y坐标以获得Y轴偏移量;
S13、将所述Y轴偏移量加上m倍的X轴偏移量获得第一命令值,将所述Y轴偏移量减去n倍的X轴偏移量获得第二命令值;其中,所述0<m<10,0<n<10;
S14、当所述X轴偏移量和Y轴偏移量在预设的范围内时,在预设所述左电机对应所述X轴、所述右电机对应所述Y轴的情况下,将所述第一命令值的绝对值作为所述左电机的PWM值,将所述第二命令值的绝对值作为所述右电机的PWM值,且根据所述第一命令值的正负确定所述左电机的转向,根据所述第二命令值的正负确定所述右电机的转向。
其中,在本实施例中,所述X轴偏移量和Y轴偏移量的预设的范围包括X轴偏移量和Y轴偏移量为任意值的情况。
其中,所述当所述第一命令值为正,所述左电机正转,当第二命令值为正时,所述右电机正转;当所述第一命令值为负时,所述左电机反转,当第二命令值为负时,所述右电机反转。
参见图2,是本发明实施例2提供的一种基于霍尔摇杆的电动轮椅控制方法的示意图。本实施例在实施例1的基础上还包括步骤:
S22、当判断所述霍尔摇杆的X坐标、Y坐标不在设定的正常范围内时,分别将所述左、右电机的PWM值清零。
当所述霍尔摇杆的X坐标、Y坐标超出设定的正常范围,将左、右电机的PWM值清零,可以避免发生电动轮椅会超速行驶而影响用户安全的情况。
参见图3,是本发明实施例3提供的一种基于霍尔摇杆的电动轮椅控制方法的示意图。本实施例在实施例1的基础上还包括步骤:
S33、在所述Y轴偏移量的绝对值小于预设的Y方向的起始命令值,且所述X轴偏移量的绝对值小于预设的X方向的起始命令值的情况下,分别将所述左、右电机的PWM值清零;其中,所述Y轴偏移量的绝对值小于预设的Y方向的起始命令值,且所述X轴偏移量的绝对值小于预设的X方向的起始命令值不属于所述X轴偏移量和Y轴偏移量的预设的范围。
在本实施例中,所述X轴偏移量和Y轴偏移量的预设的范围不包括所述Y轴偏移量的绝对值小于预设的Y方向的起始命令值,且所述X轴偏移量的绝对值小于预设的X方向的起始命令值的情况。
当所述霍尔摇杆由于外界不可控因素发生轻微的震动时,即,当所述Y轴偏移量的绝对值小于预设的Y方向的起始命令值,且所述X轴偏移量的绝对值小于预设的X方向的起始命令值时,所述左、右电机的PWM值清零,可以防止轮椅因为外界因素而发生震动的情况,保证用户获得良好的体验和舒适度。
下面,将详细描述上述几个实施例的基于霍尔摇杆的电动轮椅控制方法。
为方便说明,仅以m=n=1对上述几个实施例的技术方案进行描述,本发明提供的LED显示屏控制电路中的开关管并不限于m=n=1。具体实施时,所述霍尔摇杆输出X方向、Y方向模拟信号,经所述模拟信号进行AD转换后获得所述霍尔摇杆的X坐标、Y坐标,当判断所述霍尔摇杆的X坐标、Y坐标在设定的正常范围内时,获得相对中心点的X轴偏移量、Y轴偏移量;当所述X轴偏移量和Y轴偏移量在预设的范围内时,将所述Y轴偏移量加上m倍的X轴偏移量获得第一命令值,将所述Y轴偏移量减去n倍的X轴偏移量获得第二命令值。如图4所示,所述霍尔摇杆在区间1、8时,所述第一命令值和第二命令值均为正,即所述左、右电机均正转,轮椅处于前进状态;所述霍尔摇杆在区间4、5 时,所述第一命令值和第二命令值均为负,即所述左、右电机均反装,轮椅处于后退状态;所述霍尔摇杆在区间2、3时,所述第一命令值为正,第二命令值为负,即所述左电机正转,所述右电机反转,轮椅处于右转状态;所述霍尔摇杆在区间6、7时,所述第一命令值为负,第二命令值为正,即所述左电机反转,所述右电机正转,轮椅处于左转状态。具体的,在区间2,所述第一命令值的绝对值大于所述第二命令值的绝对值,即是,所述左电机的PWM值大于右电机的PWM值,从而左电机的转速大于右电机的转速,实现了轮椅小角度大半径的右转弯;在区间3,所述述第一命令值的绝对值小于所述第二命令值的绝对值,即是,所述左电机的PWM值小于右电机的PWM值,从而左电机的转速小于右电机的转速,实现了轮椅大角度小半径右转弯。另一方面,在区间6,所述第一命令值的绝对值大于所述第二命令值的绝对值,即是,所述左电机的PWM值大于右电机的PWM值,从而左电机的转速大于右电机的转速,实现了轮椅小角度大半径的左转弯;在区间7,所述述第一命令值的绝对值小于所述第二命令值的绝对值,即是,所述左电机的PWM值小于右电机的PWM值,从而左电机的转速小于右电机的转速,实现了轮椅大角度小半径左转弯。
另一方面,当所述霍尔摇杆的X坐标、Y坐标超出设定的正常范围,将左、右电机的PWM值清零,可以避免发生电动轮椅因为异常情况超速行驶而影响用户安全的情况。
进一步地,当所述Y轴偏移量的绝对值小于预设的Y方向的起始命令值,且所述X轴偏移量的绝对值小于预设的X方向的起始命令值时,所述左、右电机的PWM值清零,可以防止轮椅因为摇杆轻微震动而摇晃的情况,保证用户获得良好的体验和舒适度。
优选地,上述几个实施例中的二维霍尔摇杆采用DC5V供电,两个模拟量输出端为0~5V,输出信号如图5所示,X轴表示摇杆的左右方向,Y轴表示摇杆的前后方向。当摇杆推到最左侧时,X轴输出为0V;当摇杆推到最右侧时,X 轴输出为5V;当摇杆推到最下侧时,Y轴输出为0V;当摇杆推到最上侧时,Y轴输出为5V;当摇杆处于中间时,X轴和Y轴都为2.5V,可通过单片机AD端口直接读取这两个模拟量。
上述几个实施例仅以二维霍尔摇杆采用DC5V供电进行描述,本发明提供的基于霍尔摇杆的电动轮椅控制方法并不限于5V给二维霍尔摇杆供电。
参见图6,是本发明实施例4提供的一种基于霍尔摇杆的电动轮椅控制方法的示意图。本实施例在实施例1的基础上还包括步骤:
S44、当所述X轴偏移量和Y轴偏移量在预设的范围内时,在预设所述左电机对应所述Y轴、所述右电机对应所述X轴的情况下,获得所述第一命令值的绝对值作为所述右电机的PWM值,获得所述第二命令值的绝对值作为所述左电机的PWM值,且根据所述第一命令值的正负获得所述右电机的转向,根据所述第二命令值的正负获得所述左电机的转向。
本发明实施例与实施例的不同在于所述左电机对应所述Y轴、所述右电机对应所述X轴,具体的工作过程和工作原理可参考实施例1的实施过程,在此不再赘述。
参见图7,是本发明实施例5提供的一种基于霍尔摇杆的电动轮椅控制方法的示意图。本实施例在实施例1的基础上还包括步骤:
S55、当所述Y轴偏移量为零时,所述左、右电机的PWM值均为2倍的X轴偏移量的绝对值;其中,所述Y轴偏移量为零不属于所述X轴偏移量和Y轴偏移量的预设的范围。
当所述Y轴偏移量为零时,所述左、右电机的PWM值均为2倍的X轴偏移量的绝对值,即,当所述霍尔摇杆沿X轴方向左右摆动时,所述左、右电机没有速度差且转速相反,从而实现轮椅零半径左/右转弯。本实施例中所述霍尔摇杆在区间1-8时轮椅的行驶方式可参考实施例1,在此不再赘述。
参见图8,是本发明实施例6提供的一种基于霍尔摇杆的电动轮椅控制方法的示意图。本实施例在实施例1的基础上还包括步骤:
S65、当所述X轴偏移量和Y轴偏移量的平方和小于预设的阈值时,分别将所述左、右电机的PWM值清零;其中,所述X轴偏移量和Y轴偏移量的平方和小于预设的阈值不属于所述X轴偏移量和Y轴偏移量的预设的范围。
S66、当所述X轴偏移量和Y轴偏移量的平方和大于预设的阈值,且所述Y轴偏移量的绝对值大于10倍的X轴偏移量的绝对值时,所述左、右电机运行的PWM值均设定为2倍的Y轴偏移量的绝对值;其中,所述X轴偏移量和Y轴偏移量的平方和大于预设的阈值,且所述Y轴偏移量的绝对值大于10倍的X轴偏移量的绝对值不属于所述X轴偏移量和Y轴偏移量的预设的范围。
下面为方便说明,仅以m=n=1对本发明实施例的技术方案进行描述,本发明提供的LED显示屏控制电路中的开关管并不限于m=n=1。具体实施时,如图9所示,在实施例1的基础上,所述霍尔摇杆的平面增加了5个区间,分别为a、b、c、d、e区间,其中e区间为原点为圆心的圆形区域。当所述霍尔摇杆在区间e时,所述左、右电机的PWM值清零,可保证所述轮椅在转弯过程中消除小的震动,获得较好的平稳性,提高用户的舒适度和体验感。而所述霍尔摇杆在区间a、b、c、d时,所述左、右电机的PWM值设计为2倍的Y轴偏移量的绝对值,所述左、右电机没有速度差,保证了轮椅的直线前进和直线后退。本实施例中所述霍尔摇杆在区间1-8时轮椅的行驶方式可参考实施例1,在此不再赘述。
本发明实施例还对应提供了一种电动轮椅,采用以上实施例所述的基于霍尔摇杆的电动轮椅控制方法。所述电动轮椅通过采用上述基于霍尔摇杆的电动轮椅控制方法,可以实现霍尔摇杆多个区间的多种行驶方式,包括实现小角度大半径左/右转弯、大角度小半径左/右转弯以及零半径左/右转弯,更灵活,提高了用户的舒适度。
综上,本发明实施例公开了一种基于霍尔摇杆的电动轮椅控制方法及电动轮椅,通过将Y轴偏移量加上m倍的X轴偏移量获得第一命令值,将所述Y轴偏移量减去n倍的X轴偏移量获得第二命令值,所述第一命令值用于确定左电机的PWM值和转向,所述第二命令值用于确定右电机的PWM值和转向,也就是,基于霍尔摇杆的X轴,Y轴,Y=-mX,Y=nX将平面划分为八个区间来决定电动轮椅的行驶方式,解决了现有技术采用霍尔摇杆的X轴和Y轴将平面划分为四个区间来确定行驶方式过于简单而不能满足用户多样化和舒适度的需求,使得轮椅行驶更灵活,功能更完善。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (10)

  1. 一种基于霍尔摇杆的电动轮椅控制方法,其特征在于,包括步骤:
    基于预设的直角坐标系,获取所述霍尔摇杆分别在X方向和Y方向的模拟量,并将所述X方向和Y方向的模拟量进行AD转换获得所述霍尔摇杆的X坐标和Y坐标;其中,所述直角坐标系以霍尔摇杆的左右方向延伸的第一基准线作为X轴、所述霍尔摇杆的前后方向延伸的第二基准线作为Y轴;
    当判断所述霍尔摇杆的X坐标、Y坐标在设定的正常范围内时,将所述霍尔摇杆的X坐标减去所述直角坐标系的中心点的X坐标后获得X轴偏移量,以及将所述霍尔摇杆的Y坐标减去所述直角坐标系的中心点的Y坐标以获得Y轴偏移量;
    将所述Y轴偏移量加上m倍的X轴偏移量获得第一命令值,将所述Y轴偏移量减去n倍的X轴偏移量获得第二命令值;其中,所述0<m<10,0<n<10;
    当所述X轴偏移量和Y轴偏移量在预设的范围内时,在预设所述左电机对应所述X轴、所述右电机对应所述Y轴的情况下,将所述第一命令值的绝对值作为所述左电机的PWM值,将所述第二命令值的绝对值作为所述右电机的PWM值,且根据所述第一命令值的正负确定所述左电机的转向,根据所述第二命令值的正负确定所述右电机的转向。
  2. 如权利要求1所述的基于霍尔摇杆的电动轮椅控制方法,其特征在于,所述方法还包括步骤:
    当判断所述霍尔摇杆的X坐标、Y坐标不在设定的正常范围内时,分别将所述左、右电机的PWM值清零。
  3. 如权利要求1所述的基于霍尔摇杆的电动轮椅控制方法,其特征在于,所述方法还包括步骤:
    在所述Y轴偏移量的绝对值小于预设的Y方向的起始命令值,且所述X轴偏移量的绝对值小于预设的X方向的起始命令值的情况下,分别将所述左、右电机的PWM值清零;其中,所述Y轴偏移量的绝对值小于预设的Y方向的起始命令值,且所述X轴偏移量的绝对值小于预设的X方向的起始命令值不属于所述X轴偏移量和Y轴偏移量的预设的范围。
  4. 如权利要求1所述的基于霍尔摇杆的电动轮椅控制方法,其特征在于,所述方法还包括步骤:
    当所述X轴偏移量和Y轴偏移量在预设的范围内时,在预设所述左电机对应所述Y轴、所述右电机对应所述X轴的情况下,获得所述第一命令值的绝对值作为所述右电机的PWM值,获得所述第二命令值的绝对值作为所述左电机的PWM值,且根据所述第一命令值的正负获得所述右电机的转向,根据所述第二命令值的正负获得所述左电机的转向。
  5. 如权利要求1所述的基于霍尔摇杆的电动轮椅控制方法,其特征在于,在预设所述左电机对应所述X轴、所述右电机对应所述Y轴的情况下,根据所述第一命令值的正负确定所述左电机的转向,根据所述第二命令值的正负确定所述右电机的转向具体为:
    所述当所述第一命令值为正,所述左电机正转,当第二命令值为正时,所述右电机正转;当所述第一命令值为负时,所述左电机反转,当第二命令值为负时,所述右电机反转。
  6. 如权利要求1所述的基于霍尔摇杆的电动轮椅控制方法,其特征在于,所述m=1,所述n=1。
  7. 如权利要求1所述的基于霍尔摇杆的电动轮椅控制方法,其特征在于,当所述Y轴偏移量为零时,所述左、右电机的PWM值均为2倍的X轴偏移量的绝对值;其中,所述Y轴偏移量为零不属于所述X轴偏移量和Y轴偏移量的预设的范围。
  8. 如权利要求1所述的基于霍尔摇杆的电动轮椅控制方法,其特征在于,当所述X轴偏移量和Y轴偏移量的平方和小于预设的阈值时,分别将所述左、右电机的PWM值清零;其中,所述X轴偏移量和Y轴偏移量的平方和小于预设的阈值不属于所述X轴偏移量和Y轴偏移量的预设的范围。
  9. 如权利要求8所述的基于霍尔摇杆的电动轮椅控制方法,其特征在于,所述方法还包括步骤:
    当所述X轴偏移量和Y轴偏移量的平方和大于预设的阈值,且所述Y轴偏移量的绝对值大于10倍的X轴偏移量的绝对值时,所述左、右电机运行的PWM值均设定为2倍的Y轴偏移量的绝对值;其中,所述X轴偏移量和Y轴偏移量的平方和大于预设的阈值,且所述Y轴偏移量的绝对值大于10倍的X轴偏移量的绝对值不属于所述X轴偏移量和Y轴偏移量的预设的范围。
  10. 一种电动轮椅,其特征在于,采用如权利要求1-9任意一项基于霍尔摇杆的电动轮椅控制方法。
PCT/CN2017/104822 2016-11-29 2017-09-30 基于霍尔摇杆的电动轮椅控制方法及电动轮椅 WO2018099180A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611080062.3 2016-11-29
CN201611080062.3A CN106580573A (zh) 2016-11-29 2016-11-29 基于霍尔摇杆的电动轮椅控制方法及电动轮椅

Publications (1)

Publication Number Publication Date
WO2018099180A1 true WO2018099180A1 (zh) 2018-06-07

Family

ID=58594393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/104822 WO2018099180A1 (zh) 2016-11-29 2017-09-30 基于霍尔摇杆的电动轮椅控制方法及电动轮椅

Country Status (2)

Country Link
CN (1) CN106580573A (zh)
WO (1) WO2018099180A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106580573A (zh) * 2016-11-29 2017-04-26 广州视源电子科技股份有限公司 基于霍尔摇杆的电动轮椅控制方法及电动轮椅
CN112274345B (zh) * 2020-11-02 2023-07-21 南京康尼智控技术有限公司 一种二维霍尔摇杆装置及校准方法
CN114041934A (zh) * 2021-10-25 2022-02-15 中国科学院自动化研究所 一种电动轮椅的控制方法及控制器
CN114415687A (zh) * 2022-01-21 2022-04-29 北谷电子有限公司 一种单手柄控制器的控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1754527A (zh) * 2004-09-30 2006-04-05 三洋电机株式会社 电动车和电动车驱动用控制程序
CN1830413A (zh) * 2005-03-08 2006-09-13 中国科学院自动化研究所 一种嵌入式智能轮椅控制系统及方法
CN101059706A (zh) * 2006-04-17 2007-10-24 梁在宇 使用单个霍尔传感器的万向联轴器结构的无触点电子操纵杆
CN104161630A (zh) * 2014-08-14 2014-11-26 宁波市鄞州恒泰机电有限公司 电动轮椅
WO2016163035A1 (ja) * 2015-04-07 2016-10-13 株式会社Doog 移動筐体制御インタフェース
CN106580573A (zh) * 2016-11-29 2017-04-26 广州视源电子科技股份有限公司 基于霍尔摇杆的电动轮椅控制方法及电动轮椅

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201564700U (zh) * 2009-12-15 2010-09-01 游先慧 简易型电动轮椅

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1754527A (zh) * 2004-09-30 2006-04-05 三洋电机株式会社 电动车和电动车驱动用控制程序
CN1830413A (zh) * 2005-03-08 2006-09-13 中国科学院自动化研究所 一种嵌入式智能轮椅控制系统及方法
CN101059706A (zh) * 2006-04-17 2007-10-24 梁在宇 使用单个霍尔传感器的万向联轴器结构的无触点电子操纵杆
CN104161630A (zh) * 2014-08-14 2014-11-26 宁波市鄞州恒泰机电有限公司 电动轮椅
WO2016163035A1 (ja) * 2015-04-07 2016-10-13 株式会社Doog 移動筐体制御インタフェース
CN106580573A (zh) * 2016-11-29 2017-04-26 广州视源电子科技股份有限公司 基于霍尔摇杆的电动轮椅控制方法及电动轮椅

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LV , HAO ET AL.: "Design of DC Motor Control Algorithm", ELECTRONIC MEASUREMENT TECHNOLOGY, vol. 33, no. 7, 31 July 2010 (2010-07-31) *

Also Published As

Publication number Publication date
CN106580573A (zh) 2017-04-26

Similar Documents

Publication Publication Date Title
WO2018099180A1 (zh) 基于霍尔摇杆的电动轮椅控制方法及电动轮椅
CN103717172B (zh) 牙科用机头的控制装置
CN105460130B (zh) 一种平衡车
ATE397747T1 (de) Mehrachsen spannfutter
US7974753B2 (en) Direction and speed control device for an electronic wheelchair
JP2011010379A (ja) モータ制御装置および電動パワーステアリング装置
JPH07120196B2 (ja) 移動車の進行方向制御方式
JP2019131013A (ja) 操舵制御装置
CN106385209B (zh) 电机角度控制方法、系统及无人机
EP1331156A3 (en) Power steering system
CN116617013B (zh) 轮椅助行器一体机控制方法及系统
JP5952710B2 (ja) ワイパ制御装置及びワイパ制御方法
US20230048445A1 (en) Orientation sensing for a lawnmower
JP6192460B2 (ja) ワイパ制御方法及びワイパ制御装置
CN109591879A (zh) 后轮转向系统、方法及车辆
JP2011046326A (ja) 同軸二輪車及びその制御方法
JP2017007599A (ja) 電動機付自転車
JP6133758B2 (ja) ワイパ装置
CN2838427Y (zh) 一种婴童摇椅的驱动结构
CN104161630B (zh) 电动轮椅
CN202345539U (zh) 一种智能后视镜控制装置
JP6454132B2 (ja) ワイパシステム
JPS5944619A (ja) 電気車用アクセルレ−タ装置
CN106685277A (zh) 一种自动增强稳定控制系统中无刷电机的驱动方法
WO2010087054A1 (ja) 電動工具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17875966

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17875966

Country of ref document: EP

Kind code of ref document: A1