WO2018098855A1 - 一种中心可配搅拌桨轴的石墨换热块 - Google Patents

一种中心可配搅拌桨轴的石墨换热块 Download PDF

Info

Publication number
WO2018098855A1
WO2018098855A1 PCT/CN2016/110255 CN2016110255W WO2018098855A1 WO 2018098855 A1 WO2018098855 A1 WO 2018098855A1 CN 2016110255 W CN2016110255 W CN 2016110255W WO 2018098855 A1 WO2018098855 A1 WO 2018098855A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
heat exchange
exchange block
central
transverse
Prior art date
Application number
PCT/CN2016/110255
Other languages
English (en)
French (fr)
Inventor
姚松年
朱燕
严加高
肖杰
李萍
Original Assignee
南通山剑石墨设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通山剑石墨设备有限公司 filed Critical 南通山剑石墨设备有限公司
Publication of WO2018098855A1 publication Critical patent/WO2018098855A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0013Controlling the temperature of the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/0066Stirrers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/02Constructions of heat-exchange apparatus characterised by the selection of particular materials of carbon, e.g. graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00076Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements inside the reactor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0022Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for chemical reactors

Definitions

  • the invention belongs to the technical field of graphite equipment, in particular to a graphite heat exchange block which can be equipped with a stirring paddle shaft at the center.
  • the YKA type has a through hole in the center, but is used for circulating cooling water or water vapor, and cannot be installed in the reaction vessel.
  • a graphite heat exchange block has a central through hole in a shaft center of the heat exchange block, and a transverse hole, a longitudinal hole and a flow passage are further formed on the heat exchange block, wherein the longitudinal hole parallel heat exchange block axis runs through the heat exchange block
  • the axis of the transverse hole is perpendicular to the axis of the heat exchange block, the transverse hole and the longitudinal hole are not in communication, the longitudinal hole and the central passage are parallel, and the transverse hole, the longitudinal hole and the overcurrent channel are not in communication with the central through hole;
  • the lateral hole includes a first lateral hole and a second lateral hole.
  • the first lateral hole is opened through the heat exchange block, the first transverse hole and the overflow passage are not communicated, and the first lateral hole is located at two sides of the second transverse hole,
  • the two transverse holes are located on opposite sides of the central through hole, and the second transverse hole communicates the outer side of the heat exchange block with the overflow passage, and the second transverse holes located at both sides of the central through hole communicate with each other through the overflow passage.
  • the overcurrent channel is located on the outer circumference of the central through hole and is formed in a circular shape.
  • the heat exchange block is installed in the reaction kettle, the stirring paddle shaft is disposed through the central through hole, the transverse hole is used as the heat exchange medium hole, the heat exchange medium is cooling water or water vapor, the longitudinal hole is used as the material hole, and flows through the second lateral direction.
  • the heat exchange medium of the hole does not flow into the central through hole, but flows into the second lateral hole on the opposite side through the overflow passage and then flows out, thereby improving the heat exchange effect and the material utilization rate.
  • the heat exchange block is provided with a groove
  • the groove cover is provided with an end cover for sealing the groove
  • the passage formed between the groove and the end cover is an overflow passage.
  • the groove is an annular groove disposed around the central through hole, that is, the flow passage is an annular passage.
  • the groove comprises two arcuate grooves, the two arcuate grooves are located on opposite sides of the central through hole, and the two arcuate grooves are not in communication, that is, the through flow channels are two curved channels.
  • the groove is a C-shaped groove, and the C-shaped groove is disposed around the central through hole, that is, the overflow passage is a C-shaped passage.
  • a grooved member comprising an annular plate and a cylindrical member, the cylindrical member being disposed coaxially with the annular plate, and the cylindrical member sealingly bonding with the annular plate, the longitudinal section of the grooved member
  • the shape of the heat exchange block is provided with a stepped hole, the stepped hole is opened through the heat exchange block, the grooved member is disposed in the stepped hole, and the lower end of the tubular member is sealingly bonded with the stepped surface of the stepped hole, the annular plate Sealed and bonded to the edge of the stepped hole, the passage formed between the grooved member and the stepped hole is a flow passage, and the central hole formed by the cylindrical member is a central through hole.
  • the stepped hole and the grooved structure are easier to operate and the processing process is simple.
  • a partition is disposed on the outer wall of the tubular member, and the partition partitions the overflow passage to make the overflow passage C-shaped.
  • the outer wall of the tubular member is oppositely provided with two partitions, and the two partitions divide the overflow passage into two curved passages.
  • the transverse hole acts as a heat exchange medium hole
  • the longitudinal hole serves as a material hole
  • the heat exchange medium flowing through the second transverse hole does not flow into the center through hole, but flows into the second lateral hole on the opposite side through the flow passage.
  • the outflow does not cause the heat exchange medium to open, which improves the heat exchange effect and material utilization rate.
  • FIG. 1 is a schematic view showing the structure of a graphite heat exchange block which can be equipped with a stirring paddle shaft according to the present invention.
  • Fig. 2 is a cross-sectional view taken along line C-C of Fig. 1;
  • Fig. 3 is an enlarged view of a portion A of Fig. 2;
  • Fig. 4 is an enlarged view of a portion B of Fig. 1;
  • Fig. 5 is a schematic structural view of the second embodiment.
  • Fig. 6 is a schematic structural view of the third embodiment.
  • Fig. 7 is a schematic structural view of the fourth embodiment.
  • Fig. 8 is a schematic structural view of a grooved member.
  • Fig. 9 is an enlarged view of a portion A of the fifth embodiment.
  • Figure 10 is a schematic view showing the structure of the grooved member of the fifth embodiment.
  • Figure 11 is a schematic view showing the structure of the six-groove member of the embodiment.
  • Figure 12 is an enlarged view of a portion B of the sixth embodiment.
  • Figure 13 is a schematic view showing the structure of the grooved member of the seventh embodiment.
  • Figure 14 is an enlarged view of a portion B of the seventh embodiment.
  • the heat exchange medium is cooling water or water vapor.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • a graphite heat exchange block with a center of the stirring paddle is provided.
  • the center of the heat exchange block is provided with a central through hole 1.
  • the heat exchange block is also provided with a transverse hole, a longitudinal hole 2 and an over-circulation.
  • Lane 3 wherein the longitudinal hole 2 is opened through the heat exchange block, the axis of the transverse hole is perpendicular to the axis of the annular through hole 1, the axis of the longitudinal hole 2 is parallel to the axis of the heat exchange block, and the transverse hole and the longitudinal hole are not in communication, the longitudinal hole 2 and the overcurrent channel 3 are not in communication, and the transverse hole, the longitudinal hole 2, the overcurrent channel 3 and the central through hole 1 are not in communication;
  • the transverse hole includes a first transverse hole 5 and a second lateral hole 4, the first transverse hole is opened through the heat exchange block, the first transverse hole 5 and the overflow passage 3 are not in communication, and the first transverse hole 5 is located in the second transverse hole
  • the two lateral holes 4 are located on opposite sides of the central through hole 1, and the second lateral hole 4 communicates the outside of the heat exchange block with the overflow passage 3 and makes the second lateral direction on both sides of the central through hole 1.
  • the holes 4 are connected by the overflow passage 3.
  • the heat exchange block has a cylindrical shape
  • the central through hole 1 is a circular hole
  • the heat exchange block is provided with a groove
  • the groove upper cover is provided with an end cover 6 for sealing the groove
  • the groove and The passage formed between the end caps 6 is the center passage 3.
  • the groove is an annular groove provided around the center through hole 1, as shown in FIGS. 2, 3, and 4.
  • the heat exchange block is installed in the reaction kettle, the stirring shaft is disposed through the central through hole, the transverse hole serves as a cooling water hole, the longitudinal hole 2 serves as a material hole, and the cooling water flowing through the second lateral hole 4 does not flow into the central through hole 1 Instead, the second lateral hole 4 flowing into the opposite side through the overflow passage 3 flows out again, which does not cause the cooling water to be broken, thereby improving the heat exchange effect and the material utilization rate.
  • the arrows in the figure indicate the direction in which the cooling water flows.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the groove includes two arc-shaped grooves, and the two arc-shaped grooves are located on opposite sides of the central through hole 1, and the two curved grooves are formed between the end cover and the end cover.
  • the channel is the over-current channel 3, and the two arc-shaped grooves are not connected to prevent cold water convection and affect the cooling effect.
  • the other parts are the same as in the first embodiment.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the groove is a C-shaped groove
  • the C-shaped groove is disposed around the central through hole 1
  • the passage formed between the C-shaped groove and the end cover is the overflow passage 3 .
  • the other parts are the same as in the first embodiment.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • a graphite heat exchange block has the same main structural features as the first embodiment except that the central through hole and the overcurrent passage are formed slightly differently.
  • a grooved member is further included, the grooved member includes an annular plate 8 and a cylindrical member 7, the cylindrical member 7 is disposed coaxially with the annular plate 8, and the cylindrical member 7 is sealingly connected with the annular plate 8.
  • the longitudinal section of the grooved member is a dome shape; the center of the heat exchange block blank is provided with a stepped hole, the stepped hole is opened through the heat exchange block, the grooved member is disposed in the stepped hole, and the lower end of the tubular member and the stepped hole are The step surface is sealed and bonded, and the annular plate 8 is sealingly bonded to the edge of the stepped hole.
  • the passage formed between the grooved member and the stepped hole is the overflow passage 3, and the central hole of the cylindrical member 7 is the central through hole 1. It is easier to process the stepped hole than to open the groove on the heat exchange block.
  • the heat exchange block has a cylindrical shape, and the central through hole 1 is a circular hole.
  • the cylindrical member 7 in the grooved member is formed separately from the annular plate 8, the grooved member is made of graphite, and the grooved member and the heat exchange block are bonded by phenolic resin.
  • the heat exchange block is installed in the reaction kettle, the stirring shaft is disposed through the center through hole 1, the transverse hole serves as a cooling water hole, the longitudinal hole 2 serves as a material hole, and the cooling water flowing through the second lateral hole 4 does not flow into the center through hole 1, but through the overflow passage 3 into the second lateral hole 4 on the opposite side and then flow out, without causing the cooling water to open, improving the heat exchange effect and material utilization.
  • the arrows in the figure indicate the direction in which the cooling water flows.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • the lower end of the tubular member is provided with a protrusion 9, and a stepped surface of the stepped hole of the heat exchange block is provided with a slot, and the grooved member is disposed in the stepped hole, convex 9 is inserted into the slot to ensure that the tubular member 7 is fixedly connected to the heat exchange block to prevent relative movement between the two.
  • the other parts are the same as in the fourth embodiment.
  • the tubular member 7 is integrally formed with the annular plate 8.
  • a partition 10 is disposed on the outer wall of the tubular member 7, and the partition 10 separates the flow passage 3 so that the overflow passage 3 has a C shape.
  • the other parts are the same as in the fourth embodiment.
  • the outer wall of the tubular member 7 is oppositely provided with two partitions 10 which divide the overflow passage 3 into two arcuate passages.
  • the other parts are the same as in the fourth embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

一种中心可配搅拌桨轴的石墨换热块,换热块上开设有中心通孔(1),换热块上还开设有横向孔、纵向孔(2)和过流通道(3),其中,纵向孔(2)贯穿换热块开设,横向孔与换热块的轴线垂直,纵向孔(2)及中心通孔(1)与换热块轴线平行,横向孔和纵向孔(2)不相通。横向孔包括第一横向孔(5)和第二横向孔(4),第一横向孔(5)位于第二横向孔(4)的两侧,第二横向孔(4)位于中心通孔(1)相对的两侧,位于中心通孔(1)两侧的第二横向孔(4)通过过流通道(3)连通。将该换热块安装在反应釜中,搅拌轴穿过中心通孔(1)设置,横向孔作为冷却水孔,纵向孔(2)作为料孔,流经第二横向孔(4)的冷却水不流入中心通孔(1),而是通过过流通道(3)流入到对侧的第二横向孔(4)再流出,不造成冷却水短路,提高了换热效果和材料利用率。

Description

一种中心可配搅拌桨轴的石墨换热块 技术领域
本发明属于石墨设备技术领域,具体地说是一种中心可配搅拌桨轴的石墨换热块。
背景技术
传统的YKD型换热块中心没有开设通孔,不能用于带搅拌的反应釜中,因为搅拌轴无法穿过换热块。而YKA型虽中心开有通孔,但用于流通冷却水或水蒸汽,更不能安装于反应釜内。
发明内容
本发明的目的在于提供一种中心可配搅拌桨轴的石墨换热块,以使其中心可安装搅拌轴,从而可用于带搅拌的反应釜中。
为了解决上述技术问题,本发明通过以下技术方案实现:
一种石墨换热块,换热块的轴心开设有中心通孔,换热块上还开设有横向孔、纵向孔和过流通道,其中,纵向孔平行换热块轴线贯穿换热块开设,横向孔的轴线与换热块轴线垂直,横向孔和纵向孔不相通,纵向孔和中心通道平行,横向孔、纵向孔和过流通道与中心通孔均不相通;
所述横向孔包括第一横向孔和第二横向孔,第一横向孔贯穿换热块开设,第一横向孔和过流通道不相通,第一横向孔位于第二横向孔的两侧,第二横向孔位于中心通孔相对的两侧,第二横向孔将换热块外侧与过流通道连通,位于中心通孔两侧的第二横向孔通过过流通道连通。所述过流通道位于中心通孔的外周,成圆环形。
将该换热块安装在反应釜中,搅拌桨轴穿过中心通孔设置,横向孔作为换热介质孔,换热介质为冷却水或水蒸汽,纵向孔作为料孔,流经第二横向孔的换热介质不流入中心通孔,而是通过过流通道流入到对侧的第二横向孔再流出,提高了换热效果和材料利用率。
进一步改进,所述换热块上开设有凹槽,凹槽上盖设有用于密封凹槽的端盖,凹槽与端盖之间形成的通道为过流通道。通过设置端盖,防止料进入过流通道中,同时防止换热介质进入反应釜中。
进一步改进,所述凹槽为环绕中心通孔设置的环形槽,即过流通道为环形通道。
进一步改进,所述凹槽包括两个弧形槽,两个弧形槽位于中心通孔相对的两侧,且两个弧形槽不相通,即过流通道为两个弧形通道。
进一步改进,所述凹槽为C形槽,C形凹槽围绕中心通孔设置,即过流通道为C形通道。
进一步改进,还包括成槽构件,所述成槽构件包括环形板和筒状件,筒状件与环形板垂直同轴设置,且筒状件与环形板密封粘结,成槽构件的纵向截面为∏形;所述换热块的中心开设有阶梯孔,阶梯孔贯穿换热块开设,成槽构件设置在阶梯孔中,筒状件的下端与阶梯孔的台阶面密封粘结,环形板与阶梯孔的边缘密封粘结,成槽构件与阶梯孔之间形成的通道为过流通道,筒状件构成的中心孔为中心通孔。相对于在换热块上直接开设深的凹槽,开设阶梯孔和加工成槽构更容易操作、加工工艺简单。
进一步改进,还包括成槽构件,所述筒状件与环形板一体成型。
进一步改进,还包括成槽构件,所述筒状件与环形板分体成型。
进一步改进,所述筒状件的外壁上设置一个隔板,隔板将过流通道隔开,使过流通道呈C形。
进一步改进,所述筒状件的外壁上相对设置有两个隔板,两个隔板将过流通道隔开为两个弧形通道。
与现有技术相比,本发明的有益效果是:
在使用中,横向孔作为换热介质孔,纵向孔作为料孔,流经第二横向孔的换热介质不流入中心通孔,而是通过过流通道流入到对侧的第二横向孔再流出,不造成换热介质断路,提高了换热效果和材料利用率。
附图说明
图1是本发明一种中心可配搅拌桨轴的石墨换热块的结构示意图。
图2是图1的C-C剖视图。
图3是图2的A部放大视图。
图4是图1的B部放大视图。
图5是实施例二的结构示意图。
图6是实施例三的结构示意图。
图7是实施例四的结构示意图。
图8是成槽构件的结构示意图。
图9是实施例五的A部放大视图。
图10是实施例五的成槽构件的结构示意图。
图11是实施例六成槽构件的结构示意图。
图12是实施例六的B部放大视图。
图13是实施例七成槽构件的结构示意图。
图14是实施例七的B部放大视图。
具体实施方式
为使本发明的目的和技术方案更加清楚,下面结合实施例对本发明的技术方案进行清楚、完整地描述。本发明中换热介质为冷却水或水蒸汽。
实施例一:
如图1-4所示,一种中心可配搅拌桨轴的石墨换热块,换热块的中心开设有中心通孔1,换热块上还开设有横向孔、纵向孔2和过流通道3,其中,纵向孔2贯穿换热块开设,横向孔的轴线与环形通孔1的轴线垂直,纵向孔2的轴线与换热块的轴线平行,横向孔和纵向孔不相通,纵向孔2和过流通道3不相通,横向孔、纵向孔2和过流通道3及中心通孔1均不相通;
所述横向孔包括第一横向孔5和第二横向孔4,第一横向孔贯穿换热块开设,第一横向孔5和过流通道3不相通,第一横向孔5位于第二横向孔4的两侧,第二横向孔4位于中心通孔1相对的两侧,第二横向孔4将换热块外侧与过流通道3连通,并使位于中心通孔1两侧的第二横向孔4通过过流通道3连通。
在本实施例中,换热块呈圆柱状,中心通孔1为圆孔,所述换热块上开设有凹槽,凹槽上盖设有用于密封凹槽的端盖6,凹槽与端盖6之间形成的通道为中心通道3。通过设置端盖6,防止料进入过流通道3中,同时防止冷却水进入反应釜中,所述端盖6为环形石墨板。端盖6与换热块与之间通过酚醛树脂粘结。
在本实施例中,所述凹槽为环绕中心通孔1设置的环形槽,如图2、3、4所示。
将该换热块安装在反应釜中,搅拌轴穿过中心通孔设置,横向孔作为冷却水孔,纵向孔2作为料孔,流经第二横向孔4的冷却水不流入中心通孔1,而是通过过流通道3流入到对侧的第二横向孔4再流出,不造成冷却水断路,提高了换热效果和材料利用率。图中箭头表示冷却水流动的方向。
实施例二:
如图5所示,在本实施例中,所述凹槽包括两个弧形槽,两个弧形槽位于中心通孔1相对的两侧,两个弧形槽与端盖之间形成的通道即为过流通道3,两个弧形槽不相通,防止冷取水对流,影响冷却效果。其他部分与实施例一相同。
实施例三:
如图6所示,在本实施例中,所述凹槽为C形槽,C形凹槽围绕中心通孔1设置,C形槽与端盖之间形成的通道即为过流通道3,其他部分与实施例一相同。
实施例四:
如图7、8所示,一种石墨换热块,其主要结构特点与实施例一相同,只是中心通孔与过流通道的形成略有不同。
在本实施例中,还包括成槽构件,所述成槽构件包括环形板8和筒状件7,筒状件7与环形板8垂直同轴设置,筒状件7与环形板8密封连接,成槽构件的纵向截面为∏形;所述换热块坯料的中心开设有阶梯孔,阶梯孔贯穿换热块开设,成槽构件设置在阶梯孔中,筒状件的下端与阶梯孔的台阶面密封粘结,环形板8与阶梯孔的边缘密封粘结,成槽构件与阶梯孔之间形成的通道为过流通道3,筒状件7的中心孔为中心通孔1。相对于在换热块上开设凹槽,开设阶梯孔更容易加工。在本实施例中,换热块呈圆柱状,中心通孔1为圆孔,
在本实施例中,成槽构件中的筒状件7与环形板8分体成型,所述成槽构件为石墨材质,成槽构件与换热块与之间通过酚醛树脂粘结。
将该换热块安装在反应釜中,搅拌轴穿过中心通孔1设置,横向孔作为冷却水孔,纵向孔2作为料孔,流经第二横向孔4的冷却水不流入中心通孔1,而是通过过流通道3流入到对侧的第二横向孔4再流出,不造成冷却水断路,提高了换热效果和材料利用率。图中箭头表示冷却水流动的方向。
实施例五:
如图9、10所示,在本实施例中,筒状件的下端设置有凸起9,换热块的阶梯孔的阶梯面上开设有插槽,成槽构件设置在阶梯孔中,凸起9插入插槽中,保证筒状件7与换热块固定连接,防止二者之间发生相对移动。其他部分与实施例四相同。
实施例六:
如图11、12所示,在本实施例中,筒状件7与环形板8一体成型。
在本实施例中,所述筒状件7的外壁上设置一个隔板10,隔板10将过流通道3隔开,使过流通道3呈C形。其他部分与实施例四相同。
实施例七:
如图13、14所示,在本实施例中,所述筒状件7的外壁上相对设置有两个隔板10,两个隔板将过流通道3隔开为两个弧形通道。其他部分如实施例四相同。
本发明中未做特别说明的均为现有技术或者通过现有技术即可实现,而且本发明中所述具体实施案例仅为本发明的较佳实施案例而已,并非用来限定本发明的实施范围。即凡依本发明申请专利范围的内容所作的等效变化与修饰,都应作为本发明的技术范畴。

Claims (10)

  1. 一种中心可配搅拌桨轴的石墨换热块,其特征在于,换热块的中心开设有中心通孔,换热块上还开设有横向孔、纵向孔和过流通道,其中,纵向孔贯穿换热块开设,横向孔的轴线与换热块的轴线垂直,纵向孔的轴线及中心通孔的轴线与换热块轴线平行,横向孔和纵向孔不相通,纵向孔和过流通道不相通,横向孔、纵向孔和过流通道与中心通孔均不相通;
    所述横向孔包括第一横向孔和第二横向孔,第一横向孔贯穿换热块开设,第一横向孔和过流通道不相通,第一横向孔位于第二横向孔的两侧,第二横向孔位于中心通孔相对的两侧,第二横向孔远离中心通孔的一端穿出换热块的侧壁,位于中心通孔两侧的第二横向孔通过过流通道连通。
  2. 根据权利要求1中所述的中心可配搅拌桨轴的石墨换热块,其特征在于,所述换热块上开设有凹槽,凹槽上盖设有用于密封凹槽的端盖,凹槽与端盖之间形成的通道为过流通道。
  3. 根据权利要求2中所述的中心可配搅拌桨轴的石墨换热块,其特征在于,所述凹槽为环绕中心通孔设置的环形槽,即过流通道为环形通道。
  4. 根据权利要求2中所述的中心可配搅拌桨轴的石墨换热块,其特征在于,所述凹槽包括两个弧形槽,两个弧形槽位于中心通孔相对的两侧,且两个弧形槽不相通,即过流通道为两个弧形通道。
  5. 根据权利要求2中所述的中心可配搅拌桨轴的石墨换热块,其特征在于,所述凹槽为C形槽,C形凹槽围绕中心通孔设置,即过流通道为C形通道。
  6. 根据权利要求1中所述的中心可配搅拌桨轴的石墨换热块,其特征在于,还包括成槽构件,所述成槽构件包括环形板和筒状件,筒状件与环形板垂直同轴设置,且筒状件的上端面与环形板内孔边缘密封粘结,成槽构件的纵向截面为∏形;
    所述换热块的中心开设有阶梯孔,阶梯孔贯穿换热块开设,成槽构件设置在阶梯孔中,成槽构件由筒状件与环形板组成,筒状件的下端与阶梯孔的台阶面密封粘结,环形板与阶梯孔的边缘密封粘结,成槽构件与阶梯孔之间形成的通道为过流通道,筒状件与阶梯孔构成的中心孔为中心通孔。
  7. 根据权利要求6中所述的中心可配搅拌桨轴的石墨换热块,其特征在于,所述筒状件与环形板一体成型。
  8. 根据权利要求6中所述的中心可配搅拌桨轴的石墨换热块,其特征在于,所述筒状件与环形板分体成型。
  9. 根据权利要求7或8中所述的中心可配搅拌桨轴的石墨换热块,其特征在于,所述筒状件上设置一个隔板,隔板将过流通道隔开,使过流通道呈C形。
  10. 根据权利要求7或8中所述的中心可配搅拌桨轴的石墨换热块,其特征在于,所述筒状件上相对设置有两个隔板,两个隔板将过流通道隔开为两个弧形通道。
PCT/CN2016/110255 2016-11-30 2016-12-16 一种中心可配搅拌桨轴的石墨换热块 WO2018098855A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611086323.2A CN106423028B (zh) 2016-11-30 2016-11-30 一种中心可配搅拌桨轴的石墨换热块
CN201611086323.2 2016-11-30

Publications (1)

Publication Number Publication Date
WO2018098855A1 true WO2018098855A1 (zh) 2018-06-07

Family

ID=58224117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/110255 WO2018098855A1 (zh) 2016-11-30 2016-12-16 一种中心可配搅拌桨轴的石墨换热块

Country Status (2)

Country Link
CN (1) CN106423028B (zh)
WO (1) WO2018098855A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112815764A (zh) * 2021-01-18 2021-05-18 南通山剑防腐科技有限公司 一种高效的块孔式石墨换热器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107892274A (zh) * 2017-11-30 2018-04-10 南通星球石墨设备有限公司 一种合成炉底盘流道改进系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2624163Y (zh) * 2003-05-18 2004-07-07 南通华耐特化工设备有限公司 三流道石墨换热块
CN203810970U (zh) * 2013-12-20 2014-09-03 贵州远盛钾业科技有限公司 一种玻璃钢换热器
US20160238330A1 (en) * 2015-02-08 2016-08-18 Ronald Keith Cummins Reinforced cross drilled block
CN106512900A (zh) * 2016-11-30 2017-03-22 南通山剑石墨设备有限公司 一种釜内有换热块传热的石墨反应釜
CN206240480U (zh) * 2016-11-30 2017-06-13 南通山剑石墨设备有限公司 一种中心可配搅拌桨轴的石墨换热块
CN206424934U (zh) * 2016-11-30 2017-08-22 南通山剑石墨设备有限公司 一种釜内有换热块传热的石墨反应釜

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2624163Y (zh) * 2003-05-18 2004-07-07 南通华耐特化工设备有限公司 三流道石墨换热块
CN203810970U (zh) * 2013-12-20 2014-09-03 贵州远盛钾业科技有限公司 一种玻璃钢换热器
US20160238330A1 (en) * 2015-02-08 2016-08-18 Ronald Keith Cummins Reinforced cross drilled block
CN106512900A (zh) * 2016-11-30 2017-03-22 南通山剑石墨设备有限公司 一种釜内有换热块传热的石墨反应釜
CN206240480U (zh) * 2016-11-30 2017-06-13 南通山剑石墨设备有限公司 一种中心可配搅拌桨轴的石墨换热块
CN206424934U (zh) * 2016-11-30 2017-08-22 南通山剑石墨设备有限公司 一种釜内有换热块传热的石墨反应釜

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112815764A (zh) * 2021-01-18 2021-05-18 南通山剑防腐科技有限公司 一种高效的块孔式石墨换热器
CN112815764B (zh) * 2021-01-18 2021-12-28 南通山剑防腐科技有限公司 一种高效的块孔式石墨换热器

Also Published As

Publication number Publication date
CN106423028A (zh) 2017-02-22
CN106423028B (zh) 2019-01-18

Similar Documents

Publication Publication Date Title
WO2018098855A1 (zh) 一种中心可配搅拌桨轴的石墨换热块
US20080121384A1 (en) Liquid cooled heat dissipator
US20220232733A1 (en) Cooling device for heat exchange of cpu radiator
CN106512900B (zh) 一种釜内有换热块传热的石墨反应釜
CN206240480U (zh) 一种中心可配搅拌桨轴的石墨换热块
CN106735010B (zh) 一种适用于非晶宽带制备的冷却辊
CN207622585U (zh) 一种高效管式冷凝器
CN206424934U (zh) 一种釜内有换热块传热的石墨反应釜
CN108869802A (zh) 一种冷热水阀
CN102623889A (zh) 应用于半导体激光器的液体制冷器的制备方法及其制冷装置
CN102620592B (zh) 应用于半导体激光器的液体制冷器的制备方法及其制冷装置
CN107964487A (zh) 一种循环冷却式酿酒装置
CN109302083A (zh) 堆叠式逆变器
CN204987977U (zh) 整体密封的碳化硅换热器
CN208458294U (zh) 均衡布水缓流器以及蓄热水箱
CN206349357U (zh) 一种循环散热系统
CN108120323A (zh) 一种双管板换热器
CN204459348U (zh) 混合水龙头本体
CN207335503U (zh) 冷媒冷却式散热器
CN206830905U (zh) 改进型面盆混合龙头
TWI376470B (en) Screw nut having a cooling passage
CN108534379A (zh) 均衡布水缓流器以及蓄热水箱
CN208366102U (zh) 一种塔顶冷凝器
CN202678715U (zh) 半导体激光器液体制冷装置
CN218616221U (zh) 一种新型水箱散热器主板结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16922648

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16922648

Country of ref document: EP

Kind code of ref document: A1