WO2018097380A1 - Rtgc 제어 시스템 및 그 제어 방법 - Google Patents

Rtgc 제어 시스템 및 그 제어 방법 Download PDF

Info

Publication number
WO2018097380A1
WO2018097380A1 PCT/KR2016/014034 KR2016014034W WO2018097380A1 WO 2018097380 A1 WO2018097380 A1 WO 2018097380A1 KR 2016014034 W KR2016014034 W KR 2016014034W WO 2018097380 A1 WO2018097380 A1 WO 2018097380A1
Authority
WO
WIPO (PCT)
Prior art keywords
soc
battery
equal
target
current
Prior art date
Application number
PCT/KR2016/014034
Other languages
English (en)
French (fr)
Inventor
정봉기
Original Assignee
(주)세아에스에이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)세아에스에이 filed Critical (주)세아에스에이
Publication of WO2018097380A1 publication Critical patent/WO2018097380A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/22Control systems or devices for electric drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C19/00Cranes comprising trolleys or crabs running on fixed or movable bridges or gantries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C19/00Cranes comprising trolleys or crabs running on fixed or movable bridges or gantries
    • B66C19/007Cranes comprising trolleys or crabs running on fixed or movable bridges or gantries for containers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1415Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle with a generator driven by a prime mover other than the motor of a vehicle

Definitions

  • the present invention relates to an RTGC control system and a control method thereof, and more particularly, to include a battery for recycling energy generated when a crane such as RTGC puts down a load or decelerates, and the SOC of the battery selects a target SOC.
  • An RTGC control system for controlling charging or discharging of a battery based on a DC-BUS voltage to maintain and a control method thereof.
  • RTGC is an abbreviation of Rubber Tyred Gantry Crane, and is a type of crane for moving cargo such as a container unloaded from a ship to a yard.
  • the RTGC has its own generator for driving the RTGC and lifting cargo.
  • FIG. 1 is a block diagram of a conventional RTGC control system
  • Figure 2 is a view for explaining the DC-BUS voltage and the motor input voltage according to the movement of the conventional RTGC.
  • RTGC control system 100 is electrically parallel to the generator 110 for generating power, the motor 130, the motor 130 for moving the cargo using the power of the generator 110, It is connected to the generator 110, and has a DBU (Dynamic Braking Unit, 160) for exhausting the position or kinetic energy generated by the motor 130.
  • DBU Dynamic Braking Unit
  • the motor 130 performs a gantry operation for moving (driving) the RTGC itself back and forth, a hoist operation for vertically moving the cargo, and a trolley operation for horizontally moving the cargo.
  • the RTGC can move the cargo as desired in the x, y and z directions.
  • the distal end of the generator 110 includes a rectifier 120 for converting its output to direct current.
  • the motor 130 and the DBU 160 are electrically connected in parallel between the DC links 1 and 2 of the rectifier 120.
  • an inverter 140 for converting the DC power of the DC links 1 and 2 into an AC power and supplying the motor is provided.
  • the RTGC control system is to supply the power of the motor 130 for driving the crane in the generator (110). As shown in FIG. 2, the crane lifts the cargo during vertical operation while consuming power.
  • the motor 130 is a power generation operation during the movement to lower the cargo.
  • the generated power is driven by the DBU 160 while raising the voltage of the DC-BUS and burned with a resistor. As shown in FIG. 2, the electric power of the yellow area is burned by the resistance.
  • the potential energy generated when the load is lowered in the motor or the kinetic energy generated during deceleration is exhausted by the DBU 300. Therefore, the energy generated during loading or deceleration of the cargo is wasted as thermal energy in the DBU.
  • An object of the present invention is to provide an RTGC control system having a battery and a method of controlling the same in order to recycle energy generated when a crane such as RTGC puts down a load or decelerates.
  • Another object of the present invention is to provide an RTGC control system and a control method thereof for controlling charging or discharging of a battery based on a DC-BUS voltage such that the SOC of the battery maintains a target SOC.
  • a generator for generating power the rectifier is provided at the end of the output unit for outputting the power of the generator, the rectifier for converting the power of the generator into a direct current, the output of the rectifier
  • a battery a DC / DC converter provided between the battery and the DC link to convert a magnitude of a DC voltage
  • an inverter provided between the motor and the DC link to convert a DC power into an AC power source, the DC link.
  • RTGC control including a control unit for controlling the charging or discharging of the battery according to the measured DC-BUS voltage The system is provided.
  • the controller controls the charging or discharging of the battery based on the DC-BUS voltage and the SOC of the battery so that the SOC of the battery maintains the target SOC, and when the current SOC is not equal to the target SOC, You can reset the target SOC.
  • the controller obtains a target error obtained by subtracting the current SOC from the target SOC, and when the calculated target error exceeds '0', The product may be reset to the target SOC, and the target SOC may be maintained when the target error does not exceed '0'.
  • the control unit operates in the discharge operation mode when the DC-BUS voltage is equal to or higher than the charge start set voltage and equal to or lower than the discharge start set voltage, and the SOC of the battery is equal to or greater than the charged SOC set value and not equal to or smaller than the discharge completed SOC set value.
  • the battery may be operated in the charging operation mode to charge the battery.
  • step (a) controlling the charging or discharging of the battery based on the DC-BUS voltage and the SOC of the battery, measuring the current SOC, (b) the measured current SOC is the target SOC And (c) if the current SOC is not the same as the target SOC, resetting the target SOC, and performing step (b).
  • step (a) when the DC-BUS voltage is equal to or higher than the charge start set voltage and equal to or lower than the discharge start set voltage, and the SOC of the battery is equal to or higher than the charged SOC set value and not equal to or smaller than the discharged SOC set value, discharge operation is performed. Operating in a mode, discharging the battery, measuring a discharge current value, and measuring the current SOC when the measured discharge current value is less than or equal to a minimum charging current value.
  • step (a) when the DC-BUS voltage is equal to or higher than the charging start setting voltage and the SOC of the battery is not equal to or higher than the charging completion SOC setting value, operating in a charging operation mode to charge the battery, Measuring the current SOC.
  • the current SOC of the battery may be measured.
  • step (a) when the DC-BUS voltage is not greater than the charge start set voltage but is equal to or less than the discharge start set voltage, and the SOC of the battery is less than or equal to the discharge complete SOC set value, the current SOC of the battery is measured. Can be.
  • step (c) when the current SOC is not the same as the target SOC, the step of obtaining a target error obtained by subtracting the current SOC from the target SOC, and setting the charging current when the obtained target error exceeds '0'. And resetting the product of the value and the target error to the target SOC, and maintaining the target SOC when the target error does not exceed '0'.
  • the battery accelerates the cargo after charging the electric energy generated by the potential energy generated when the load is lowered with respect to the ground in the motor, or the kinetic energy generated during deceleration. By discharging them as they rise or rise, energy can be recycled, thereby reducing power consumption and increasing energy efficiency.
  • the DBU while driving between the DBU operating voltage and the DC-BUS lowest voltage section, the DBU does not operate to absorb surplus power, and the section requiring power can minimize the operating loss while the battery is discharged.
  • the SOC of the battery can be maintained at the target SOC.
  • FIG. 1 is a block diagram of a conventional RTGC control system.
  • FIG. 2 is a view for explaining the DC-BUS voltage and the motor input voltage according to the movement of the conventional RTGC.
  • FIG 3 illustrates an RTGC control system according to an embodiment of the present invention.
  • FIG. 4 is a flowchart illustrating a method of controlling an RTGC according to an embodiment of the present invention.
  • FIG 5 is a view for explaining a battery control region applied to the RTGC according to an embodiment of the present invention.
  • each component expressed below is only an example for implementing this invention. Thus, other implementations may be used in other implementations of the invention without departing from the spirit and scope of the invention.
  • each component may be implemented by purely hardware or software configurations, but may also be implemented by a combination of various hardware and software components that perform the same function.
  • two or more components may be implemented together by one hardware or software.
  • FIG 3 is a view showing an RTGC control system according to an embodiment of the present invention.
  • the RTGC control system 300 includes a generator 310 that generates power, a rectifier 320 that converts power of the generator 310 into a direct current, and a DC link 1, which is an output of the rectifier 320. 2) is electrically connected between, the motor 330 for moving the cargo using the power of the generator 310, is connected to the DC link (1, 2) in an electrically parallel form with respect to the motor 330, Battery 370 for charging and discharging the energy generated by the motor 330, DC / DC converter 380 is provided between the battery 370 and the DC link (1, 2) to convert the magnitude of the DC voltage, motor Inverter 340 provided between the 330 and the DC link (1,2) to convert the DC power to AC power, the charging of the battery 370 according to the DC-BUS voltage measured at the DC link (1,2) Or a control unit 390 for controlling the discharge.
  • a generator 310 that generates power
  • a rectifier 320 that converts power of the generator 310 into a direct current
  • a DC link 1 which
  • the RTGC control system 300 is connected to the generator 310 in an electrically parallel form with respect to the motor 330, and the dynamic braking unit (DBU) 360 for exhausting the position or kinetic energy generated by the motor 330 is provided. It further includes.
  • DBU dynamic braking unit
  • the distal end of the generator 310 includes a rectifier 320 for converting its output to direct current.
  • the motor 330, the DBU 360 and the battery 370 are electrically connected in parallel between the DC links 1 and 2 of the rectifier 320.
  • the motor 330 performs a gantry operation for moving (driving) the RTGC itself back and forth, a hoist operation for vertically moving the cargo, and a trolley operation for horizontally moving the cargo.
  • the RTGC can move the cargo as desired in the x, y and z directions.
  • the battery 370 is a motor 330, the electric power generated by the potential energy generated when the load is lowered to the ground by the hoist operation, or the kinetic energy generated when the RTGC itself or the load is decelerated Energy can be charged and discharged.
  • the energy charged in the battery 370 may drive the motor 330 by discharging the energy charged in the battery 370 when the motor performs a gantry operation, a hoist operation, a trolley operation, or the like to move cargo. have.
  • a smaller size generator 310 may be used. That is, since the electrical energy generated by the potential energy or the kinetic energy is recycled, the power consumption of the generator 310 can be reduced, so that a small engine-generator (half of the conventional size or less) can be reduced. ) Can be used. Therefore, miniaturization of the engine and the generator can reduce the no-load loss of the engine and the generator. In the case of RTGC, in particular, no-load operation reaches 50% of the total operation time, which can significantly improve fuel economy by reducing no-load loss. In addition, since the size of the engine is additionally reduced, pollution problems such as smoke and noise can be greatly improved.
  • a DC / DC converter 380 that can convert the voltage of the battery 370, which changes according to the energy charging and discharging to a DC link voltage.
  • the generator 310 supplies power to the motor 330 that drives the crane.
  • the movement of the crane to lift the cargo during vertical operation consumes power.
  • Motor 330 during the movement to lower the cargo is to drive the power generation.
  • the generated power is charged in the battery 370 to supply power when the motor 330 is driven.
  • an operation of managing the SOC of the battery 370 is essential, and the controller 390 performs an operation of managing the SOC of the battery 370.
  • the controller 390 controls the charging or discharging of the battery based on the DC-BUS voltage and the SOC of the battery 370 so that the SOC of the battery 370 maintains the target SOC, and the current SOC is equal to the target SOC. If not, reset the target SOC.
  • the current SOC refers to the current SOC value of the battery 370
  • the target SOC refers to the final target SOC value.
  • the controller 390 obtains the target SOC minus the current SOC as the target error, and when the obtained target error exceeds '0', the set value of the charging current and the target error Resets the product of to the target SOC, and maintains the target SOC if the target error does not exceed zero.
  • the controller 390 controls the charging or discharging of the battery 370 based on the DC-BUS voltage and the SOC of the battery 370. That is, the controller 390 discharges when the DC-BUS voltage is equal to or higher than the charge start setting voltage and equal to or lower than the discharge start setting voltage, and the SOC of the battery 370 is equal to or higher than the charged SOC set value and not equal to or lower than the discharged SOC set value.
  • the battery 370 is discharged by operating in the driving mode.
  • the controller 390 operates in the charging operation mode to charge the battery 370. .
  • the RTGC control system 300 configured as described above performs charging and discharging of the battery 370 according to the voltage level of the DC-Bus 350. While driving between the DBU 360 operating voltage and the DC-BUS lowest voltage section, the DBU 360 absorbs surplus power so that the DBU 360 does not operate, and the section requiring the power minimizes operating loss while the battery 370 discharges. do. In the non-driving section, the target SOC is maintained.
  • FIG. 4 is a flowchart illustrating a method for controlling an RTGC according to an embodiment of the present invention
  • FIG. 5 is a view for explaining a battery control region applied to an RTGC according to an embodiment of the present invention.
  • the RTGC control system measures a DC-BUS voltage to determine whether the DC-BUS voltage is greater than or equal to a charge start set voltage (S302).
  • the charging start setting voltage may be a preset voltage value.
  • step S302 determines whether the SOC is equal to or greater than the preset charge complete SOC set value (max charge SOC) (S304).
  • step S304 determines whether the DC-BUS voltage is equal to or less than the discharge start setting voltage (S306).
  • step S306 determines whether or not the SOC is equal to or less than the preset discharge completed SOC set value min discharge SOC (S308).
  • step S308 If the determination result of step S308 is not equal to or smaller than the discharge complete SOC set value, the RTGC control system operates in the discharge operation mode to discharge the power of the battery (S320).
  • the RTGC control system measures a discharge current value discharged from the battery and determines whether the measured discharge current value is less than or equal to a minimum charge current for stopping charging ( S322).
  • step S322 determines whether the current SOC is equal to the target SOC (S312).
  • the RTGC control system determines whether the target error exceeds '0' (S314).
  • the target error may be a value obtained by subtracting the current SOC from the target SOC.
  • step S3144 if the target error exceeds '0', the RTGC control system multiplies the charging current set value and the target error, and resets the multiplied value to the target SOC (S316).
  • the RTGC control system then performs step S312.
  • step S314 If the target error does not exceed '0' as a result of the determination in step S314, the RTGC control system maintains the target SOC (S318) and performs step S312.
  • the RTGC control system operates in the charging operation mode to charge the battery (S310) and performs step S312.
  • step S302 If the DC-BUS voltage is not greater than the charge start setting voltage as a result of the determination in step S302, the RTGC control system performs step S306.
  • step S306 If the DC-BUS voltage is not lower than the discharge start setting voltage as a result of the determination in step S306, the RTGC control system performs step S312.
  • the RTGC control system basically maintains the target SOC and the voltage of the DC-BUS will drop if the motor is operated while operating in the charging mode. At this time, it changes to discharge mode and controls the voltage of DC-BUS. When the discharge amount decreases during discharge, the mode changes to the charging mode again. Operating in charge mode, it charges the remaining power while controlling the SOC.
  • the battery operates in the hatched area as shown in FIG. 5 and maintains the DC-BUS voltage. At the same time maintaining the DC-BUS voltage, the battery is determined to be flexible, absorbing surplus power and replenishing insufficient power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

본 발명은 RTGC 제어 시스템 및 그 제어 방법에 관한 것으로서, 전력을 발생시키는 발전기, 상기 발전기의 전력을 출력하는 출력부의 말단에 구비되며, 상기 발전기의 전력을 직류로 변환시키는 정류기, 상기 정류기의 출력인 DC 링크 사이에 전기적으로 연결되어 있고, 상기 발전기의 전력을 이용하여 화물을 이동시키는 모터, 상기 모터에 대하여 전기적으로 병렬형태로 상기 DC 링크와 연결되며, 상기 모터에서 발생되는 에너지를 충전 및 방전시키는 배터리, 상기 배터리와 상기 DC 링크 사이에 구비되어, 직류 전압의 크기를 변환시키는 DC/DC 컨버터, 상기 모터와 상기 DC 링크 사이에 구비되어, 직류 전원을 교류 전원으로 변환시키는 인버터, 상기 DC 링크에서 측정된 DC-BUS 전압에 따라 상기 배터리의 충전 또는 방전을 제어하는 제어부를 포함한다.

Description

RTGC 제어 시스템 및 그 제어 방법
본 발명은 RTGC 제어 시스템 및 그 제어 방법에 관한 것으로서, 더욱 상세하게는 RTGC와 같은 크레인이 화물을 내려놓을 때 또는 감속 시 발생되는 에너지를 재활용하기 위하여 배터리를 구비하고, 배터리의 SOC가 목표 SOC를 유지하도록 DC-BUS 전압을 근거로 배터리의 충전 또는 방전을 제어하는 RTGC 제어 시스템 및 그 제어 방법에 관한 것이다.
RTGC는 러버 타이어드 갠트리 크레인(Rubber Tyred Gantry Crane)의 약칭으로서, 선박 등에서 하역된 컨테이너와 같은 화물을 야적장으로 이동시키기 위한 크레인의 한 종류이다.
RTGC에는 자체적으로 RTGC를 운전하고, 화물을 들어올리기 위한 발전기를 구비한다.
도 1은 종래의 RTGC 제어 시스템의 구성도, 도 2는 종래 RTGC의 움직임에 따른 DC-BUS 전압과 모터 입력 전압을 설명하기 위한 도면이다.
도 1을 참조하면, RTGC 제어 시스템(100)은 전력을 발생시키는 발전기(110), 발전기(110)의 전력을 이용하여 화물을 이동시키는 모터(130), 모터(130)에 대하여 전기적으로 병렬형태로서 발전기(110)와 연결되며, 모터(130)에서 발생되는 위치 또는 운동 에너지를 소진시키기 위한 DBU(Dynamic Braking Unit, 160)를 구비한다.
모터(130)는 RTGC 자체를 전후로 이동(운전)하는 갠트리(gantry) 동작, 화물을 수직 이동시키는 호이스트(Hoist) 동작, 및 화물을 수평 이동시키는 트롤리(Trolley) 동작을 수행한다. RTGC는 화물을 x, y 및 z방향으로 원하는 만큼 이동시킬 수 있다.
발전기(110)의 말단부에는 그의 출력을 직류로 변환시키기 위한 정류기(120)가 포함되어 있다. 모터(130), DBU(160)는 정류기(120)의 DC 링크(1, 2) 사이에 전기적으로 병렬형태로 연결된다. 모터(130)의 전단에는 DC 링크(1, 2)의 직류 전원을 교류 전원으로 변환시켜 모터에 공급하기 위한 인버터(140)가 구비되어 있다.
이러한 RTGC 제어 시스템은 발전기(110)에서 크레인을 구동시키는 모터(130)의 전력을 공급하게 된다. 도 2와 같이 크레인이 상하 운전 중 화물을 상승시키는 운동은 전력을 소비하여 움직이게 된다. 화물을 하강시키는 운동 시 모터(130)는 발전운전을 하게 된다. 발전 된 전력은 DC-BUS의 전압을 상승시키면서 DBU(160)를 동작시켜 저항으로 태우게 된다. 도 2와 같이 노란색 면적만큼의 전력은 저항으로 태워지게 된다.
종래의 RTGC 제어 시스템에 있어서, 모터에서 화물을 아래로 내려놓을 때 발생되는 위치에너지 또는 감속(Deceleration) 시 발생하는 는 운동에너지는 DBU(300)에 의하여 소진된다. 따라서, 화물을 내려놓거나 감속 시 발생되는 에너지가 DBU에서 열에너지로 낭비된다.
본 발명의 목적은 RTGC와 같은 크레인이 화물을 내려놓을 때 또는 감속 시 발생되는 에너지를 재활용하기 위하여 배터리를 구비하는 RTGC 제어 시스템 및 그 제어 방법을 제공함에 있다.
본 발명의 다른 목적은 배터리의 SOC가 목표 SOC를 유지하도록 DC-BUS 전압을 근거로 배터리의 충전 또는 방전을 제어하는 RTGC 제어 시스템 및 그 제어 방법을 제공함에 있다.
상술한 과제를 해결하기 위한 본 발명의 일 측면에 따르면, 전력을 발생시키는 발전기, 상기 발전기의 전력을 출력하는 출력부의 말단에 구비되며, 상기 발전기의 전력을 직류로 변환시키는 정류기, 상기 정류기의 출력인 DC 링크 사이에 전기적으로 연결되어 있고, 상기 발전기의 전력을 이용하여 화물을 이동시키는 모터, 상기 모터에 대하여 전기적으로 병렬형태로 상기 DC 링크와 연결되며, 상기 모터에서 발생되는 에너지를 충전 및 방전시키는 배터리, 상기 배터리와 상기 DC 링크 사이에 구비되어, 직류 전압의 크기를 변환시키는 DC/DC 컨버터, 상기 모터와 상기 DC 링크 사이에 구비되어, 직류 전원을 교류 전원으로 변환시키는 인버터, 상기 DC 링크에서 측정된 DC-BUS 전압에 따라 상기 배터리의 충전 또는 방전을 제어하는 제어부를 포함하는 RTGC 제어 시스템이 제공된다.
상기 제어부는 상기 배터리의 SOC가 목표 SOC를 유지하도록 하기 위해, 상기 DC-BUS 전압과 배터리의 SOC를 근거로 상기 배터리의 충전 또는 방전을 제어하고, 현재 SOC가 목표 SOC와 동일하지 않은 경우, 상기 목표 SOC를 재설정할 수 있다.
상기 제어부는 상기 현재 SOC가 목표 SOC와 동일하지 않은 경우, 상기 목표 SOC에서 현재 SOC를 뺀 값을 목표 오차로 구하고, 상기 구해진 목표 오차가 '0'을 초과하는 경우 충전전류 설정값과 목표오차의 곱을 목표 SOC로 재설정하며, 상기 목표 오차가 '0'을 초과하지 않은 경우 상기 목표 SOC를 유지할 수 있다.
상기 제어부는 상기 DC-BUS 전압이 충전 시작 설정 전압 이상이면서 방전 시작 설정 전압 이하이고, 상기 배터리의 SOC가 충전 완료 SOC 설정값 이상이면서 방전 완료 SOC 설정값 이하가 아닌 경우, 방전 운전 모드로 동작하여, 상기 배터리를 방전시키고, 상기 DC-BUS 전압이 충전 시작 설정 전압 이상이고, 배터리의 SOC가 충전 완료 SOC 설정값 이상이 아닌 경우, 충전 운전 모드로 동작하여, 배터리를 충전시킬 수 있다.
본 발명의 다른 측면에 따르면, (a) DC-BUS 전압과 배터리의 SOC를 근거로 상기 배터리의 충전 또는 방전을 제어하고, 현재 SOC를 측정하는 단계, (b) 상기 측정된 현재 SOC가 목표 SOC와 동일한지의 여부를 판단하는 단계, (c) 상기 현재 SOC가 목표 SOC와 동일하지 않은 경우, 상기 목표 SOC를 재설정하고, 상기 (b)단계를 수행하는 단계를 포함하는 RTGC 제어 방법이 제공된다.
상기 (a)단계는, 상기 DC-BUS 전압이 충전 시작 설정 전압 이상이면서 방전 시작 설정 전압 이하이고, 상기 배터리의 SOC가 충전 완료 SOC 설정값 이상이면서 방전 완료 SOC 설정값 이하가 아닌 경우, 방전 운전 모드로 동작하여, 상기 배터리를 방전시키고, 방전 전류값을 측정하는 단계, 상기 측정된 방전 전류값이 최소 충전 전류값 이하인 경우, 현재 SOC를 측정하는 단계를 포함할 수 있다.
상기 (a)단계는, 상기 DC-BUS 전압이 충전 시작 설정 전압 이상이고, 배터리의 SOC가 충전 완료 SOC 설정값 이상이 아닌 경우, 충전 운전 모드로 동작하여, 배터리를 충전시키는 단계, 상기 배터리의 현재 SOC를 측정하는 단계를 포함할 수 있다.
상기 (a)단계는, 상기 DC-BUS 전압이 충전 시작 설정 전압 이상이 아니면서, 방전 시작 설정 전압 이하가 아닌 경우, 상기 배터리의 현재 SOC를 측정할 수 있다.
상기 (a)단계는, 상기 DC-BUS 전압이 충전 시작 설정 전압 이상이 아니면서, 방전 시작 설정 전압 이하이고, 상기 배터리의 SOC가 방전 완료 SOC 설정값 이하인 경우, 상기 배터리의 현재 SOC를 측정할 수 있다.
상기 (c)단계는, 상기 현재 SOC가 목표 SOC와 동일하지 않은 경우, 상기 목표 SOC에서 현재 SOC를 뺀 값을 목표 오차로 구하는 단계, 상기 구해진 목표 오차가 '0'을 초과하는 경우 충전전류 설정값과 목표오차의 곱을 목표 SOC로 재설정하고, 상기 목표 오차가 '0'을 초과하지 않은 경우 상기 목표 SOC를 유지하는 단계를 포함할 수 있다.
본 발명에 따르면, RTGC 제어 시스템에서 배터리는 모터에서 화물을 지면에 대하여 아래방향으로 내려놓을 때 발생되는 위치에너지, 또는 감속 시 발생되는 운동에너지에 의하여 생성되는 전기에너지를 충전한 후, 화물을 가속하거나 상승시킬 때 이를 방전시킴으로써, 에너지를 재활용할 수 있고, 이를 통해 전력 소비를 감소시키고, 에너지 효율을 증가시킬 수 있다.
또한, DBU가 동작하는 전압과 DC-BUS 최저 전압 구간 사이에서 운전하면서, DBU가 동작하지 않게 잉여 전력을 흡수하고, 전력이 필요한 구간은 배터리가 방전 하면서 운전 손실을 최소화할 수 있다.
또한, DC-BUS 전압을 근거로 배터리의 충전 또는 방전을 제어함으로써, 배터리의 SOC가 목표 SOC를 유지하도록 할 수 있다.
도 1은 종래의 RTGC 제어 시스템의 구성도.
도 2는 종래 RTGC의 움직임에 따른 DC-BUS 전압과 모터 입력 전압을 설명하기 위한 도면.
도 3은 본 발명의 실시예에 따른 RTGC 제어 시스템을 나타낸 도면.
도 4는 본 발명의 실시예에 따른 RTGC 제어 방법을 나타낸 흐름도.
도 5는 본 발명의 실시예에 따른 RTGC에 적용된 배터리 제어 영역을 설명하기 위한 도면.
이하, 첨부된 도면들을 참조하여 본 발명에 따른 'RTGC 제어 시스템 및 그 제어 방법'을 상세하게 설명한다. 설명하는 실시 예들은 본 발명의 기술 사상을 당업자가 용이하게 이해할 수 있도록 제공되는 것으로 이에 의해 본 발명이 한정되지 않는다. 또한, 첨부된 도면에 표현된 사항들은 본 발명의 실시 예들을 쉽게 설명하기 위해 도식화된 도면으로 실제로 구현되는 형태와 상이할 수 있다.
한편, 이하에서 표현되는 각 구성부는 본 발명을 구현하기 위한 예일 뿐이다. 따라서, 본 발명의 다른 구현에서는 본 발명의 사상 및 범위를 벗어나지 않는 범위에서 다른 구성부가 사용될 수 있다. 또한, 각 구성부는 순전히 하드웨어 또는 소프트웨어의 구성만으로 구현될 수도 있지만, 동일 기능을 수행하는 다양한 하드웨어 및 소프트웨어 구성들의 조합으로 구현될 수도 있다. 또한, 하나의 하드웨어 또는 소프트웨어에 의해 둘 이상의 구성부들이 함께 구현될 수도 있다.
또한, 어떤 구성요소들을 '포함'한다는 표현은, '개방형'의 표현으로서 해당 구성요소들이 존재하는 것을 단순히 지칭할 뿐이며, 추가적인 구성요소들을 배제하는 것으로 이해되어서는 안 된다.
도 3은 본 발명의 실시예에 따른 RTGC 제어 시스템을 나타낸 도면이다.
도 3을 참조하면, RTGC 제어 시스템(300)은 전력을 발생시키는 발전기(310), 발전기(310)의 전력을 직류로 변환시키는 정류기(320), 정류기(320)의 출력인 DC 링크(1,2) 사이에 전기적으로 연결되어 있고, 발전기(310)의 전력을 이용하여 화물을 이동시키는 모터(330), 모터(330)에 대하여 전기적으로 병렬형태로 DC 링크(1,2)와 연결되며, 모터(330)에서 발생되는 에너지를 충전 및 방전시키는 배터리(370), 배터리(370)와 DC 링크(1,2) 사이에 구비되어 직류 전압의 크기를 변환시키는 DC/DC 컨버터(380), 모터(330)와 DC 링크(1,2) 사이에 구비되어 직류 전원을 교류 전원으로 변환시키는 인버터(340), DC 링크(1,2)에서 측정된 DC-BUS 전압에 따라 배터리(370)의 충전 또는 방전을 제어하는 제어부(390)를 포함한다.
RTGC 제어 시스템(300)은 모터(330)에 대하여 전기적으로 병렬형태로서 발전기(310)와 연결되며, 모터(330)에서 발생되는 위치 또는 운동 에너지를 소진시키기 위한 DBU(Dynamic Braking Unit)(360)를 더 포함한다.
발전기(310)의 말단부에는 그의 출력을 직류로 변환시키기 위한 정류기(320)가 포함되어 있다. 모터(330), DBU(360) 및 배터리(370)는 정류기(320)의 DC 링크(1, 2) 사이에 전기적으로 병렬형태로 연결되어 있다.
모터(330)는 RTGC 자체를 전후로 이동(운전)하는 갠트리(gantry) 동작, 화물을 수직 이동시키는 호이스트(Hoist) 동작, 및 화물을 수평 이동시키는 트롤리(Trolley) 동작을 수행한다. RTGC는 화물을 x, y 및 z방향으로 원하는 만큼 이동시킬 수 있다.
배터리(370)는 모터(330)에서, 호이스트 동작에 의하여 화물을 지면에 대하여 아랫방향으로 내려놓을 때 발생되는 위치에너지, 또는 RTGC 그 자체 또는 화물을 감속시킬 때 발생되는 운동에너지에 의하여 생성되는 전기에너지를 충전 및 방전시킬 수 있다. 배터리(370)에 충전된 에너지는 모터가 화물을 이동시키기 위하여 갠트리 동작, 호이스트 동작, 트롤리 동작 등을 수행하는 경우, 배터리(370)에 충전된 에너지를 방전시킴으로써, 모터(330)를 구동시킬 수 있다.
이와 같이, 본 발명에 따른 RTGC 제어 시스템(300)에서는 배터리(370)에 의하여 위치 및 운동 에너지를 재활용하기 때문에, 더 적은 규격의 발전기(310)를 사용할 수 있다. 즉, 위치에너지 또는 운동에너지에 의하여 생성된 전기에너지를 재활용하기 때문에, 발전기(310)의 소비 전력을 감소시킬 수 있어, 종래의 엔진 발전기에 비해 소형의 엔진-발전기(종래 크기의 1/2 이하)를 사용할 수 있다. 따라서 엔진과 발전기의 소형화를 통하여 엔진 및 발전기의 무부하 손실을 줄일 수 있다. 특히 RTGC의 경우 무부하 운전이 전체 운전 시간의 50%에 이르므로 무부하 손실을 줄임으로써 연비를 대폭 향상시킬 수 있다. 또한, 부수적으로 엔진의 크기가 줄어들기 때문에 매연, 소음 등의 공해 문제도 대폭 개선될 수 있다.
배터리(370)와 DC 링크(1, 2) 사이에는 에너지 충방전에 따라 변화하는 배터리(370)의 전압을 DC 링크전압으로 변환시킬 수 있는 DC/DC 컨버터(380)를 구비한다.
발전기(310)는 크레인을 구동시키는 모터(330)의 전력을 공급하게 된다. 크레인이 상하 운전 중 화물을 상승시키는 운동은 전력을 소비하여 움직이게 된다. 화물을 하강시키는 운동 시 모터(330)는 발전운전을 하게 된다. 발전된 전력은 배터리(370)에 충전되어 모터(330)가 구동될 때 전력을 공급한다. 이러한 운전에서는 배터리(370)의 SOC를 관리하는 동작이 필수적이고, 제어부(390)는 배터리(370)의 SOC를 관리하는 동작을 수행한다.
제어부(390)는 배터리(370)의 SOC가 목표 SOC를 유지하도록 하기 위해, DC-BUS 전압과 배터리(370)의 SOC를 근거로 배터리의 충전 또는 방전을 제어하고, 현재 SOC가 목표 SOC와 동일하지 않은 경우, 목표 SOC를 재설정한다. 여기서, 현재 SOC는 배터리(370)의 현재 SOC 값을 의미하고, 목표 SOC는 최종 목표 SOC 값을 의미한다. 즉, 제어부(390)는 현재 SOC가 목표 SOC와 동일하지 않은 경우, 목표 SOC에서 현재 SOC를 뺀 값을 목표 오차로 구하고, 구해진 목표 오차가 '0'을 초과하는 경우 충전전류 설정값과 목표오차의 곱을 목표 SOC로 재설정하며, 목표 오차가 '0'을 초과하지 않은 경우 목표 SOC를 유지한다.
제어부(390)는 DC-BUS 전압과 배터리(370)의 SOC를 근거로 배터리(370)의 충전 또는 방전을 제어한다. 즉, 제어부(390)는 DC-BUS 전압이 충전 시작 설정 전압 이상이면서 방전 시작 설정 전압 이하이고, 배터리(370)의 SOC가 충전 완료 SOC 설정값 이상이면서 방전 완료 SOC 설정값 이하가 아닌 경우, 방전 운전 모드로 동작하여, 배터리(370)를 방전시킨다. 또한, 제어부(390)는 DC-BUS 전압이 충전 시작 설정 전압 이상이고, 배터리(370)의 SOC가 충전 완료 SOC 설정값 이상이 아닌 경우, 충전 운전 모드로 동작하여, 배터리(370)를 충전시킨다.
상기와 같이 구성된 RTGC 제어 시스템(300)은 DC-Bus(350)의 전압 레벨(level)에 따라 배터리(370)의 충전과 방전을 시행한다. DBU(360)가 동작하는 전압과 DC-BUS 최저 전압 구간 사이에서 운전하면서, DBU(360)가 동작하지 않게 잉여 전력을 흡수하고, 전력이 필요한 구간은 배터리(370)가 방전하면서 운전 손실을 최소화한다. 운전하지 않는 구간에서는 목표 SOC를 유지하게 된다.
도 4는 본 발명의 실시예에 따른 RTGC 제어 방법을 나타낸 흐름도, 도 5는 본 발명의 실시예에 따른 RTGC에 적용된 배터리 제어 영역을 설명하기 위한 도면이다.
도 4를 참조하면, RTGC 제어 시스템은 DC-BUS 전압을 측정하여, DC-BUS 전압이 충전 시작 설정 전압(charge voltage) 이상인지의 여부를 판단한다(S302). 충전 시작 설정 전압은 미리 설정된 전압 값일 수 있다.
단계 S302의 판단결과 충전 시작 설정 전압 이상이면, RTGC 제어 시스템은 SOC가 기 설정된 충전 완료 SOC 설정값(max charge SOC) 이상인지의 여부를 판단한다(S304).
단계 S304의 판단결과 충전 완료 SOC 설정값 이상이면, RTGC 제어 시스템은 DC-BUS 전압이 방전 시작 설정 전압(discharge voltage) 이하인지의 여부를 판단한다(S306).
단계 S306의 판단결과 방전 시작 설정 전압 이하이면, RTGC 제어 시스템은 SOC가 기 설정된 방전 완료 SOC 설정값(min discharge SOC) 이하인지의 여부를 판단한다(S308).
단계 S308의 판단결과 방전 완료 SOC 설정값 이하가 아니면, RTGC 제어 시스템은 방전 운전 모드로 동작하여 배터리의 전력을 방전시킨다(S320).
그런 후, RTGC 제어 시스템은 배터리에서 방전되는 방전 전류값(discharge current ref)을 측정하고, 측정된 방전 전류값이 충전 정지를 위한 최소 충전 전류값(min charge current) 이하인지의 여부를 판단한다(S322).
단계 S322의 판단결과, 최소 충전 전류값 이하이면, RTGC 제어 시스템은 현재 SOC가 목표 SOC와 동일한지의 여부를 판단한다(S312).
단계 S312의 판단결과 현재 SOC가 목표 SOC와 동일하지 않으면, RTGC 제어 시스템은 목표 오차가 '0'을 초과하는지의 여부를 판단한다(S314). 여기서, 목표 오차는 목표 SOC에서 현재 SOC를 뺀 값일 수 있다.
단계 S314의 판단결과 목표 오차가 '0'을 초과하면, RTGC 제어 시스템은 충전전류 설정값과 목표오차를 곱하고, 그 곱해진 값을 목표 SOC로 재설정한다(S316).
그런 다음 RTGC 제어 시스템은 단계 S312를 수행한다.
만약, 단계 S314의 판단결과 목표 오차가 '0'을 초과하지 않으면, RTGC 제어 시스템은 목표 SOC를 유지하고(S318), 단계 S312를 수행한다.
만약, 단계 S304의 판단결과 SOC가 충전 완료 SOC 설정값 이상이 아니면, RTGC 제어 시스템은 충전 운전 모드로 동작하여 배터리를 충전시키고(S310), 단계 S312를 수행한다.
만약, 단계 S302의 판단결과 DC-BUS 전압이 충전 시작 설정 전압 이상이 아니면, RTGC 제어 시스템은 단계 S306을 수행한다.
단계 S306의 판단결과 DC-BUS 전압이 방전 시작 설정 전압 이하가 아니면, RTGC 제어 시스템은 단계 S312를 수행한다.
상기와 같이 RTGC 제어 시스템은 기본적으로 목표 SOC를 유지하며 충전모드로 운전 중 모터가 작동하게 되면 DC- BUS의 전압은 떨어지게 될 것이다. 이때 방전 모드로 변경되면서 DC-BUS의 전압을 제어한다. 방전 중 방전 량이 줄게 되면, 다시 충전 모드로 변경된다. 충전 모드로 운전되면서, SOC를 제어하면서 남는 전력을 충전하게 된다. 도 4와 같은 알고리즘을 적용하면, 도 5와 같이 빗금 영역에서 배터리는 동작하며, DC-BUS 전압을 유지시킨다. DC-BUS 전압을 유지시킴과 동시에 배터리는 유동적으로 판단하여, 잉여 전력은 흡수하고 모자란 전력은 보충해주게 된다.
이와 같이, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 등가개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (10)

  1. 전력을 발생시키는 발전기;
    상기 발전기의 전력을 출력하는 출력부의 말단에 구비되며, 상기 발전기의 전력을 직류로 변환시키는 정류기;
    상기 정류기의 출력인 DC 링크 사이에 전기적으로 연결되어 있고, 상기 발전기의 전력을 이용하여 화물을 이동시키는 모터;
    상기 모터에 대하여 전기적으로 병렬형태로 상기 DC 링크와 연결되며, 상기 모터에서 발생되는 에너지를 충전 및 방전시키는 배터리;
    상기 배터리와 상기 DC 링크 사이에 구비되어, 직류 전압의 크기를 변환시키는 DC/DC 컨버터;
    상기 모터와 상기 DC 링크 사이에 구비되어, 직류 전원을 교류 전원으로 변환시키는 인버터; 및
    상기 DC 링크에서 측정된 DC-BUS 전압에 따라 상기 배터리의 충전 또는 방전을 제어하는 제어부;
    를 포함하는 RTGC 제어 시스템.
  2. 제1항에 있어서,
    상기 제어부는 상기 배터리의 SOC가 목표 SOC를 유지하도록 하기 위해, 상기 DC-BUS 전압과 배터리의 SOC를 근거로 상기 배터리의 충전 또는 방전을 제어하고, 현재 SOC가 목표 SOC와 동일하지 않은 경우, 상기 목표 SOC를 재설정하는 것을 특징으로 하는 RTGC 제어 시스템.
  3. 제2항에 있어서,
    상기 제어부는 상기 현재 SOC가 목표 SOC와 동일하지 않은 경우, 상기 목표 SOC에서 현재 SOC를 뺀 값을 목표 오차로 구하고, 상기 구해진 목표 오차가 '0'을 초과하는 경우 충전전류 설정값과 목표오차의 곱을 목표 SOC로 재설정하며, 상기 목표 오차가 '0'을 초과하지 않은 경우 상기 목표 SOC를 유지하는 것을 특징으로 하는 RTGC 제어 시스템.
  4. 제1항에 있어서,
    상기 제어부는 상기 DC-BUS 전압이 충전 시작 설정 전압 이상이면서 방전 시작 설정 전압 이하이고, 상기 배터리의 SOC가 충전 완료 SOC 설정값 이상이면서 방전 완료 SOC 설정값 이하가 아닌 경우, 방전 운전 모드로 동작하여, 상기 배터리를 방전시키고, 상기 DC-BUS 전압이 충전 시작 설정 전압 이상이고, 배터리의 SOC가 충전 완료 SOC 설정값 이상이 아닌 경우, 충전 운전 모드로 동작하여, 배터리를 충전시키는 것을 특징으로 하는 RTGC 제어 시스템.
  5. (a) DC-BUS 전압과 배터리의 SOC를 근거로 상기 배터리의 충전 또는 방전을 제어하고, 현재 SOC를 측정하는 단계;
    (b) 상기 측정된 현재 SOC가 목표 SOC와 동일한지의 여부를 판단하는 단계; 및
    (c) 상기 현재 SOC가 목표 SOC와 동일하지 않은 경우, 상기 목표 SOC를 재설정하고, 상기 (b)단계를 수행하는 단계;
    를 포함하는 RTGC 제어 방법.
  6. 제5항에 있어서,
    상기 (a)단계는,
    상기 DC-BUS 전압이 충전 시작 설정 전압 이상이면서 방전 시작 설정 전압 이하이고, 상기 배터리의 SOC가 충전 완료 SOC 설정값 이상이면서 방전 완료 SOC 설정값 이하가 아닌 경우, 방전 운전 모드로 동작하여, 상기 배터리를 방전시키고, 방전 전류값을 측정하는 단계; 및
    상기 측정된 방전 전류값이 최소 충전 전류값 이하인 경우, 현재 SOC를 측정하는 단계를 포함하는 것을 특징으로 하는 RTGC 제어 방법.
  7. 제5항에 있어서,
    상기 (a)단계는,
    상기 DC-BUS 전압이 충전 시작 설정 전압 이상이고, 배터리의 SOC가 충전 완료 SOC 설정값 이상이 아닌 경우, 충전 운전 모드로 동작하여, 배터리를 충전시키는 단계;
    상기 배터리의 현재 SOC를 측정하는 단계를 포함하는 것을 특징으로 하는 RTGC 제어 방법.
  8. 제5항에 있어서,
    상기 (a)단계는,
    상기 DC-BUS 전압이 충전 시작 설정 전압 이상이 아니면서, 방전 시작 설정 전압 이하가 아닌 경우, 상기 배터리의 현재 SOC를 측정하는 것을 특징으로 하는 RTGC 제어 방법.
  9. 제5항에 있어서,
    상기 (a)단계는,
    상기 DC-BUS 전압이 충전 시작 설정 전압 이상이 아니면서, 방전 시작 설정 전압 이하이고, 상기 배터리의 SOC가 방전 완료 SOC 설정값 이하인 경우, 상기 배터리의 현재 SOC를 측정하는 것을 특징으로 하는 RTGC 제어 방법.
  10. 제5항에 있어서,
    상기 (c)단계는,
    상기 현재 SOC가 목표 SOC와 동일하지 않은 경우, 상기 목표 SOC에서 현재 SOC를 뺀 값을 목표 오차로 구하는 단계;
    상기 구해진 목표 오차가 '0'을 초과하는 경우 충전전류 설정값과 목표오차의 곱을 목표 SOC로 재설정하고, 상기 목표 오차가 '0'을 초과하지 않은 경우 상기 목표 SOC를 유지하는 단계를 포함하는 것을 특징으로 하는 RTGC 제어 방법.
PCT/KR2016/014034 2016-11-28 2016-12-01 Rtgc 제어 시스템 및 그 제어 방법 WO2018097380A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160159141A KR20180060076A (ko) 2016-11-28 2016-11-28 Rtgc 제어 시스템 및 그 제어 방법
KR10-2016-0159141 2016-11-28

Publications (1)

Publication Number Publication Date
WO2018097380A1 true WO2018097380A1 (ko) 2018-05-31

Family

ID=62195180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/014034 WO2018097380A1 (ko) 2016-11-28 2016-12-01 Rtgc 제어 시스템 및 그 제어 방법

Country Status (2)

Country Link
KR (1) KR20180060076A (ko)
WO (1) WO2018097380A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113013968A (zh) * 2021-04-07 2021-06-22 岳阳东瑞电气有限公司 一种数字式蓄电池充电系统及停电保磁控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060026638A (ko) * 2004-09-21 2006-03-24 재단법인서울대학교산학협력재단 수퍼커패시터를 사용하는 rtgc 제어 시스템
JP2014043354A (ja) * 2006-10-25 2014-03-13 Yaskawa Electric Corp クレーン装置及びその制御方法
KR20140033650A (ko) * 2012-09-10 2014-03-19 한국전기연구원 전력저장장치로 회생 에너지를 저장하여 이용하는 크레인 시스템
KR20160018246A (ko) * 2014-08-08 2016-02-17 주식회사 넥스트스퀘어 Rtgc 제어 시스템 및 그 제어 방법
KR101654891B1 (ko) * 2016-02-16 2016-09-22 주식회사 넥스트스퀘어 야드 크레인 회생 전력 관리 시스템

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100011039A (ko) 2008-07-24 2010-02-03 서호전기주식회사 엔진 발전기가 부착된 크레인의 전원 제어 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060026638A (ko) * 2004-09-21 2006-03-24 재단법인서울대학교산학협력재단 수퍼커패시터를 사용하는 rtgc 제어 시스템
JP2014043354A (ja) * 2006-10-25 2014-03-13 Yaskawa Electric Corp クレーン装置及びその制御方法
KR20140033650A (ko) * 2012-09-10 2014-03-19 한국전기연구원 전력저장장치로 회생 에너지를 저장하여 이용하는 크레인 시스템
KR20160018246A (ko) * 2014-08-08 2016-02-17 주식회사 넥스트스퀘어 Rtgc 제어 시스템 및 그 제어 방법
KR101654891B1 (ko) * 2016-02-16 2016-09-22 주식회사 넥스트스퀘어 야드 크레인 회생 전력 관리 시스템

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113013968A (zh) * 2021-04-07 2021-06-22 岳阳东瑞电气有限公司 一种数字式蓄电池充电系统及停电保磁控制方法

Also Published As

Publication number Publication date
KR20180060076A (ko) 2018-06-07

Similar Documents

Publication Publication Date Title
JPH11285165A (ja) クレーン用電源設備
CN101168426B (zh) 起重机装置及其控制方法
CN1189375C (zh) 电梯控制装置
CN1226175C (zh) 电梯控制装置
JP5240685B2 (ja) エレベータ
KR101214295B1 (ko) 전력 공급 장치 및 이를 구비한 고무 타이어 갠트리 크레인
JP5812976B2 (ja) 昇降機を備えた建物の電力システム
CN106241571B (zh) 电梯轿厢无线供电和通信装置及其供电方法
JP2011136838A (ja) 巻上機
CN105692462A (zh) 一种光伏供电的轮胎式龙门起重机
WO2010059139A1 (en) Power management in elevators during marginal quality power conditions
WO2018097380A1 (ko) Rtgc 제어 시스템 및 그 제어 방법
Oyarbide et al. Ultracapacitor-based plug & play energy-recovery system for elevator retrofit
JP5457332B2 (ja) 電源装置、機械式駐車装置、及び電源装置の制御方法
JP2013129471A (ja) エレベータ装置の駆動装置
CN106044556A (zh) 一种混合动力的rtg起重装置
KR20150071186A (ko) 배터리 방전장치
KR100722651B1 (ko) 수퍼커패시터를 사용하는 rtgc 제어 시스템
JP5277115B2 (ja) 駐車装置
CN104418192A (zh) 电梯控制装置
KR20160018246A (ko) Rtgc 제어 시스템 및 그 제어 방법
CN207790377U (zh) 用于电动汽车交流充电的充电装置
JP2014172668A (ja) エレベータシステム
JP7404495B1 (ja) エレベータシステムおよびエレベータの運転方法
CN205892672U (zh) 叉车专用电磁吊具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16922079

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16922079

Country of ref document: EP

Kind code of ref document: A1