WO2018097220A1 - Nucleic acid molecule and use thereof - Google Patents

Nucleic acid molecule and use thereof Download PDF

Info

Publication number
WO2018097220A1
WO2018097220A1 PCT/JP2017/042147 JP2017042147W WO2018097220A1 WO 2018097220 A1 WO2018097220 A1 WO 2018097220A1 JP 2017042147 W JP2017042147 W JP 2017042147W WO 2018097220 A1 WO2018097220 A1 WO 2018097220A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
acid molecule
polynucleotide
seq
gluten
Prior art date
Application number
PCT/JP2017/042147
Other languages
French (fr)
Japanese (ja)
Inventor
行大 白鳥
あすみ 稲熊
晃尚 清水
金子 直人
嘉仁 吉田
穣 秋冨
藤田 智子
克紀 堀井
巌 和賀
Original Assignee
Necソリューションイノベータ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necソリューションイノベータ株式会社 filed Critical Necソリューションイノベータ株式会社
Priority to JP2018552959A priority Critical patent/JPWO2018097220A1/en
Publication of WO2018097220A1 publication Critical patent/WO2018097220A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/115Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids

Definitions

  • the present invention relates to a nucleic acid molecule that binds to at least one of gluten and gliadin and use thereof.
  • Wheat is a food that is frequently consumed on a daily basis, but in recent years, the number of wheat allergic patients has increased and has been regarded as a problem. Since many processed foods use wheat, it is extremely important to analyze whether or not wheat is mixed as a raw material in processed foods and production lines thereof.
  • Allergic allergens are generally proteins and their degradation products (peptides), and analysis methods using antibodies using these as antigens are the mainstream.
  • cereals including wheat for example, gluten and gliadin, which is one of proteins constituting gluten, are known as allergens.
  • gluten and gliadin which is one of proteins constituting gluten
  • As an analysis method for gluten a method using an ELISA method has been reported (Non-Patent Document 1, Non-Patent Document 2).
  • an antibody is a protein and has a problem in stability, it is difficult to use the antibody for a simple test method at a low cost. Further, electrophoresis, blotting on a nitrocellulose membrane, and the like are necessary, and the operation is complicated. For this reason, in recent years, attention has been focused on nucleic acid molecules that specifically bind to antigens instead of antibodies.
  • an object of the present invention is to provide a new nucleic acid molecule that binds to at least one of gluten and gliadin.
  • the nucleic acid molecule of the present invention is a nucleic acid molecule that binds to at least one of gluten and gliadin, characterized in that it comprises a polynucleotide of either (a) or (b) below.
  • a polynucleotide comprising the nucleotide sequence of SEQ ID NO: 1, 8, or 10 or a partial sequence of the nucleotide sequence of SEQ ID NO: 1, 8, or 10
  • (b) 90% or more relative to the nucleotide sequence of (a) A polynucleotide that has the same nucleotide sequence and binds to at least one of gluten and gliadin
  • the detection reagent for gluten or gliadin of the present invention comprises the nucleic acid molecule of the present invention.
  • the nucleic acid molecule of the present invention or the detection reagent of the present invention is brought into contact with a sample, and gluten or gliadin in the sample is mixed with the nucleic acid molecule or the detection reagent.
  • the nucleic acid molecule of the present invention can bind to gluten or gliadin. Therefore, according to the nucleic acid molecule of the present invention, gluten and gliadin can be detected based on the presence or absence of binding to the allergen in the sample. Therefore, the nucleic acid molecule of the present invention can be said to be an extremely useful tool for detecting allergens derived from grains such as wheat, for example, in the fields of food production, food management, food distribution and the like.
  • FIG. 1 shows a presumed secondary structure of aptamer 1 in Example 1 of the present invention.
  • FIG. 2 is a graph showing the binding property of aptamer 1 to gliadin and gluten in Example 1 of the present invention.
  • FIG. 3 is a graph showing the binding property of aptamer 1 to gluten in Example 1 of the present invention.
  • FIG. 4 is a graph showing the binding property of aptamer 1 to gliadin in Example 1 of the present invention.
  • FIG. 5 shows the predicted secondary structures of aptamers 2 to 7 in Example 2 of the present invention.
  • FIG. 6 is a graph showing the binding property of each aptamer to gliadin in Example 2 of the present invention.
  • FIG. 7 is a graph showing the measurement results of the light emission amount in Example 3 of the present invention.
  • FIG. 8 shows the presumed secondary structures of aptamers 8 to 11 in Example 4 of the present invention.
  • FIG. 9 is a graph showing the binding properties of aptamers 8 and 9 to gliadin in Example 4 of the present invention.
  • FIG. 10 is a graph showing the binding properties of aptamers 10 and 11 to gliadin in Example 4 of the present invention.
  • FIG. 11 is a graph showing the binding properties of aptamers 8 and 9 to heated gliadin in Example 5 of the present invention.
  • FIG. 12 is a graph showing the binding properties of aptamers 10 and 11 to heated gliadin in Example 5 of the present invention.
  • FIG. 13 is a graph showing the binding properties of aptamers 8 to 11 to gluten and heated gluten in Example 6 of the present invention.
  • nucleic acid molecule of the present invention contains a polynucleotide of any one of the following (a) and (b) as described above, and is a nucleic acid molecule that binds to at least one of gluten and gliadin: It is.
  • A a polynucleotide comprising the nucleotide sequence of SEQ ID NO: 1, 8, or 10 or a partial sequence of the nucleotide sequence of SEQ ID NO: 1, 8, or 10
  • 90% or more relative to the nucleotide sequence of (a) A polynucleotide that has the same nucleotide sequence and binds to at least one of gluten and gliadin
  • the origin of gluten is not particularly limited, and examples thereof include grains such as wheat, rye, barley, and oats.
  • examples thereof include grains such as wheat, rye, barley, and oats.
  • commercially available gluten can be used as gluten for confirming the binding ability, and specific examples include wheat-derived gluten (073-00575, manufactured by Wako Pure Chemical Industries, Ltd.).
  • the gluten may be, for example, an unmodified allergen that has not been modified by heating or the like, or a modified allergen that has been modified by heating or the like.
  • the origin of gliadin is not particularly limited, and is the same as, for example, the origin of gluten described above.
  • gliadin for confirming the binding ability can be exemplified by wheat-derived gliadin protein comprising the amino acid sequence disclosed in GenBank Accession No. A27319.
  • the gliadin may be, for example, an unmodified allergen that has not been modified by heating or the like, or a modified allergen that has been modified by heating or the like.
  • the nucleic acid molecule of the present invention can bind to gluten or gliadin as described above.
  • binding to gluten means, for example, having binding property to gluten or having binding activity to gluten
  • binding to gliadin means, for example, It is said that it has binding property to gliadin or has binding activity to gliadin.
  • the binding between the nucleic acid molecule of the present invention and gluten or gliadin can be determined by, for example, surface plasmon resonance molecular interaction (SPR) analysis.
  • SPR surface plasmon resonance molecular interaction
  • BIACORE 3000 (trade name, GE Healthcare UK Ltd.) can be used. Since the nucleic acid molecule of the present invention binds to gluten or gliadin, it can be used, for example, for detection of gluten or gliadin.
  • the nucleic acid molecule of the present invention has a dissociation constant indicating a binding force to gliadin of, for example, 581 nmol / L or less, 132 nmol / L or less, 102 nmol / L or less, 23 nmol / L or less, 20 nmol / L or less.
  • the nucleic acid molecule of the present invention is also called a DNA molecule or a DNA aptamer.
  • the nucleic acid molecule of the present invention may be, for example, a molecule composed of the polynucleotide (a) or (b) or a molecule containing the polynucleotide.
  • the polynucleotide (a) may be, for example, a polynucleotide containing the base sequence of SEQ ID NO: 1, 8, or 10, or a polynucleotide comprising the base sequence of SEQ ID NO: 1, 8, or 10. Further, it may be a polynucleotide containing a partial sequence of the base sequence of SEQ ID NO: 1, 8, or 10 or a polynucleotide comprising the partial sequence.
  • the polynucleotides of SEQ ID NOs: 1, 8, and 10 are shown below.
  • Glu392BR8m4 (SEQ ID NO: 1) GGTATGGAGGCAAGTCCCAATTCG T G C AGAGAAA C G T G TCT G T A TTT A TT AA TC G TTTC AG CC AGA C AGGG TTT A T G Gli95_395TR8m1 (SEQ ID NO: 8) GGAAACGCCGCCTAGATCATTTG C G TCCTCCCT GG T GGGGA TT GG C GAAAA TT GA C A TCCTC AAG TTCCT G C GAAA T G Gli — 395BR8m2 (SEQ ID NO: 10) GGAAACGCCGCCTAGATCATTTGAAAA C G TT G TT A CCTC A CCT A TT A TCT A TT GA C A TCCTC AAG TTCCT G C GAAA T G Gli — 395BR8m2 (SEQ ID NO: 10) GGAAACGCCGCCTAGATCATTTGAAAA C G TT G TT A
  • the partial sequence of SEQ ID NO: 1 is not particularly limited, and examples thereof include base sequences of SEQ ID NOs: 2 to 7.
  • Glu392BR8m4_s59A (SEQ ID NO: 2) GGTATGGAGGCAAGTCCCAATTCG T G C AGAGAAA C G T G TCT G T A TTT A TT AA TC G TTTC Glu392BR8m4_s51 (SEQ ID NO: 3) GGCAAGTCCCAATTCG T G C AGAGAAA C G T G TCT G T A TTT A TT AA TC G TTTC Glu392BR8m4_s38 (SEQ ID NO: 4) TC G T G C AGAGAAA C G T G TCT G T A TTT A TT AA TC G TTTC Glu392BR8m4_s67 (SEQ ID NO: 5) GGTATGGAGGCAAGTCCCAATTCG T G C AGAGAAA C G T G TCT G T A TTT A TT AA TC G TTTC AG CC AGA C Glu392BR8m4_s59B (SEQ ID NO: 6) G
  • the partial sequence of SEQ ID NO: 8 is not particularly limited, and examples thereof include the base sequence of SEQ ID NO: 9.
  • Gli95_395TR8m1s50 (SEQ ID NO: 9) CGCCTAGATCATTTG C G TCCTCCCT GG T GGGGA TT GG C GAAAA TT GA C A T
  • the partial sequence of SEQ ID NO: 10 is not particularly limited, and examples thereof include the base sequence of SEQ ID NO: 11.
  • Gli — 395BR8m2s51 (SEQ ID NO: 11) GGAAACGCCGCCTAGATCATTTGAAAA C G TT G TT A CCTC A CCT A TT A TCT A
  • identity is not particularly limited, and may be any range as long as the polynucleotide of (b) binds to at least one of gluten and gliadin.
  • the identity is, for example, 80% or more, preferably 85% or more, more preferably 90% or more, further preferably 95% or more, 96% or more, 97% or more, particularly preferably 98% or more, and most preferably 99%. % Or more.
  • the identity can be calculated with default parameters using analysis software such as BLAST and FASTA (hereinafter the same).
  • the polynucleotide in the nucleic acid molecule of the present invention may be, for example, the polynucleotide (c) below.
  • the nucleic acid molecule of the present invention may be, for example, a molecule composed of the polynucleotide (c) or a molecule containing the polynucleotide.
  • C a polynucleotide comprising a base sequence complementary to a polynucleotide that hybridizes under stringent conditions to the polynucleotide comprising the base sequence of (a) and binding to at least one of gluten and gliadin
  • the “hybridizing polynucleotide” is not particularly limited, and is, for example, a polynucleotide that is completely or partially complementary to the base sequence of (a).
  • the hybridization can be detected by, for example, various hybridization assays.
  • the hybridization assay is not particularly limited, for example, Zanburuku (Sambrook) et al., Eds., "Molecular Cloning: A Laboratory Manual 2nd Edition (Molecular Cloning:. A Laboratory Manual 2 nd Ed) ,” [Cold Spring Harbor Laboratory Press (1989)] and the like can also be employed.
  • the “stringent conditions” may be, for example, any of low stringent conditions, medium stringent conditions, and high stringent conditions.
  • Low stringent conditions are, for example, conditions of 5 ⁇ SSC, 5 ⁇ Denhardt's solution, 0.5% SDS, 50% formamide, and 32 ° C.
  • Medium stringent conditions are, for example, 5 ⁇ SSC, 5 ⁇ Denhardt's solution, 0.5% SDS, 50% formamide, 42 ° C.
  • “High stringent conditions” are, for example, conditions of 5 ⁇ SSC, 5 ⁇ Denhardt's solution, 0.5% SDS, 50% formamide, 50 ° C.
  • the degree of stringency can be set by those skilled in the art by appropriately selecting conditions such as temperature, salt concentration, probe concentration and length, ionic strength, time, and the like.
  • “Stringent conditions” are, for example, Zanburuku previously described (Sambrook) et al., Eds., "Molecular Cloning: A Laboratory Manual 2nd Edition (Molecular Cloning:. A Laboratory Manual 2 nd Ed) ,” [Cold Spring Harbor Laboratory Press ( 1989)]] and the like.
  • the polynucleotide in the nucleic acid molecule of the present invention may be, for example, the polynucleotide (d) below.
  • the nucleic acid molecule of the present invention may be, for example, a molecule composed of the polynucleotide (d) or a molecule containing the polynucleotide.
  • D a polynucleotide comprising a base sequence in which one or several bases are deleted, substituted, inserted and / or added in the base sequence of (a), and binding to at least one of gluten and gliadin
  • “one or several” may be in the range where the polynucleotide in (d) binds to at least one of gluten and gliadin.
  • the “one or several” in the base sequence of (a) is, for example, 1 to 10, preferably 1 to 7, more preferably 1 to 5, further preferably 1 to 3, particularly preferably. Is one or two.
  • the polynucleotide in the nucleic acid molecule of the present invention may be, for example, the polynucleotide (e) below.
  • the nucleic acid molecule of the present invention may be, for example, a molecule composed of the polynucleotide (e) or a molecule containing the polynucleotide.
  • E consisting of a base sequence having 80% or more identity to the base sequence of (a), each of the base sequence of SEQ ID NO: 2 to 7, the base sequence of SEQ ID NO: 9, or the sequence A polynucleotide comprising the nucleotide sequence of No. 11 and binding to at least one of gluten and gliadin
  • the polynucleotide in the nucleic acid molecule of the present invention may be, for example, the polynucleotide (f) below.
  • the nucleic acid molecule of the present invention may be, for example, a molecule composed of the polynucleotide (f) or a molecule containing the polynucleotide.
  • F a base sequence having at least 80% identity to at least one base sequence selected from the group consisting of SEQ ID NOs: 1 to 11, and represented by formulas (I) to (XI), respectively.
  • a secondary structure means, for example, that the polynucleotide of (f) can form a stem structure and a loop structure in the above formula (the same applies hereinafter).
  • the stem structure and loop structure will be described later.
  • the polynucleotide in the nucleic acid molecule of the present invention may be, for example, the polynucleotide (g) below.
  • the nucleic acid molecule of the present invention may be, for example, a molecule composed of the polynucleotide (g) or a molecule containing the polynucleotide.
  • the nucleic acid molecule of the present invention may include, for example, one of the polynucleotide sequences (a) to (g) or a plurality of the polynucleotide sequences. In the latter case, it is preferable that a plurality of polynucleotide sequences are linked to form a single-stranded polynucleotide.
  • the sequences of the plurality of polynucleotides may be directly linked to each other or indirectly linked via a linker.
  • the polynucleotide sequences are preferably linked directly or indirectly at the respective ends.
  • the sequences of the plurality of polynucleotides may be the same or different, for example, but are preferably the same.
  • the number of the sequences is not particularly limited, and is, for example, 2 or more, preferably 2 to 12, more preferably 2 to 6, and further preferably 2. is there.
  • the linker is, for example, a polynucleotide, and the structural unit is, for example, a nucleotide residue.
  • the nucleotide residue include a ribonucleotide residue and a deoxyribonucleotide residue.
  • the length of the linker is not particularly limited, and is, for example, 1 to 24 bases long, preferably 12 to 24 bases long, more preferably 16 to 24 bases long, and further preferably 20 to 24 bases long. It is long.
  • the polynucleotide is preferably a single-stranded polynucleotide.
  • the single-stranded polynucleotide is preferably capable of forming a stem structure and a loop structure by, for example, self-annealing.
  • the polynucleotide is preferably capable of forming a stem loop structure, an internal loop structure, and / or a bulge structure, for example.
  • the nucleic acid molecule of the present invention may be, for example, double stranded.
  • one single-stranded polynucleotide is any one of the polynucleotides (a) to (g), and the other single-stranded polynucleotide is not limited.
  • the other single-stranded polynucleotide include a polynucleotide having a base sequence complementary to any one of the polynucleotides (a) to (g).
  • the nucleic acid molecule of the present invention is double-stranded, it is preferably dissociated into a single-stranded polynucleotide by denaturation or the like prior to use.
  • the dissociated single-stranded polynucleotide of any one of (a) to (g) preferably has a stem structure and a loop structure as described above, for example.
  • the stem structure and the loop structure can be formed means, for example, that the stem structure and the loop structure are actually formed, and even if the stem structure and the loop structure are not formed, the stem structure depending on the conditions. And the ability to form a loop structure.
  • a stem structure and a loop structure can be formed includes, for example, both experimental confirmation and prediction by a computer simulation.
  • the structural unit of the nucleic acid molecule of the present invention is, for example, a nucleotide residue.
  • the length of the nucleic acid molecule is not particularly limited, and the lower limit thereof is, for example, 15 base length, preferably 75 base length or 80 base length, and the upper limit thereof is, for example, 1000 base length, preferably Is 200 bases, 100 bases or 90 bases long.
  • nucleotide residue examples include deoxyribonucleotide residue and ribonucleotide residue.
  • nucleic acid molecule of the present invention examples include DNA composed only of deoxyribonucleotide residues, DNA containing one or several ribonucleotide residues, and the like. In the latter case, “1 or several” is not particularly limited, and is, for example, 1 to 3 in the polynucleotide.
  • the numerical range of numbers such as the number of bases and the number of sequences, for example, discloses all positive integers belonging to the range. That is, for example, the description “1 to 3 bases” means all disclosures of “1, 2, 3 bases” (hereinafter the same).
  • the polynucleotide includes, for example, at least one modified base.
  • the modified base is not particularly limited, and examples thereof include a base modified with a natural base (non-artificial base), and preferably has the same function as the natural base.
  • the natural base is not particularly limited, and examples thereof include a purine base having a purine skeleton and a pyrimidine base having a pyrimidine skeleton.
  • the purine base is not particularly limited, and examples thereof include adenine (a) and guanine (g).
  • the pyrimidine base is not particularly limited, and examples thereof include cytosine (c), thymine (t), uracil (u) and the like.
  • the base modification site is not particularly limited.
  • examples of the purine base modification site include the 7th and 8th positions of the purine skeleton.
  • examples of the modification site of the pyrimidine base include the 5th and 6th positions of the pyrimidine skeleton.
  • modified uracil or modified thymine when “ ⁇ O” is bonded to carbon at position 4 and a group other than “—CH 3 ” or “—H” is bonded to carbon at position 5, it is called modified uracil or modified thymine. Can do.
  • the modifying group of the modifying base is not particularly limited, and examples thereof include a methyl group, a fluoro group, an amino group, a thio group, a benzylaminocarbonyl group represented by the following formula (1), and a tryptaminocarbonyl represented by the following formula (2).
  • the modified base is not particularly limited.
  • modified adenine modified with adenine, modified thymine modified with thymine, modified guanine modified with guanine, modified cytosine modified with cytosine and modified modified with uracil examples include uracil and the like, and the modified thymine, the modified uracil and the modified cytosine are preferable.
  • modified adenine examples include 7'-deazaadenine and the like.
  • modified guanine examples include, for example, 7'-deazaguanine.
  • modified cytosine examples include 5'-methylcytosine.
  • modified uracil examples include 5'-benzylaminocarbonyluracil (BndU), 5'-tryptaminocarbonyluracil (TrpdU), 5'-isobutylaminocarbonyluracil and the like.
  • the number of the modified base is not particularly limited.
  • the number of the modified base is, for example, one or more.
  • the modified base is, for example, 1 to 80, preferably 1 to 70, more preferably 1 to 50, still more preferably 1 to 40, particularly preferably 1 to 30, and most preferably. 1 to 20 and all the bases may be the modified bases.
  • the number of the modified bases may be, for example, the number of any one of the modified bases or the total number of the two or more modified bases.
  • the ratio of the modified base is not particularly limited.
  • the ratio of the modified base is, for example, 1/100 or more, preferably 1/40 or more, more preferably 1/20 or more, still more preferably 1/10 or more, particularly preferably, of the total number of bases of the polynucleotide. 1/4 or more, most preferably 1/3 or more.
  • the ratio of the modified base in the entire length of the nucleic acid molecule containing the polynucleotide is not particularly limited, and is the same as the above range.
  • the total number of bases is, for example, the total number of natural bases and modified bases in the polynucleotide.
  • the ratio of the modified base is expressed as a fraction, and the total number of bases and the number of modified bases that satisfy this are positive integers.
  • the number of the modified thymine is not particularly limited.
  • natural thymine can be substituted for the modified thymine.
  • the number of the modified thymine is, for example, one or more.
  • the modified thymine is, for example, 1 to 80, preferably 1 to 70, more preferably 1 to 50, still more preferably 1 to 40, particularly preferably 1 to 30, and most preferably. 1 to 21 and all the thymines may be the modified thymines.
  • the ratio of the modified thymine is not particularly limited.
  • the ratio of the modified thymine is, for example, 1/100 or more, preferably 1/40 or more, more preferably 1/20 or more, further preferably 1 out of the total number of the natural thymine and the modified thymine. / 10 or more, particularly preferably 1/4 or more, and most preferably 1/3 or more.
  • the number of the modified uracil is not particularly limited.
  • natural thymine can be substituted for the modified uracil.
  • the number of the modified uracil is, for example, one or more.
  • the modified uracil is, for example, 1 to 80, preferably 1 to 70, more preferably 1 to 50, still more preferably 1 to 40, particularly preferably 1 to 30, and most preferably. 1 to 21 and all the uracils may be the modified uracils.
  • Examples of the number of the modified thymine and the modified uracil may be, for example, the total number of both.
  • the thymine indicated by the underline in each base sequence may be at least one of the modified thymine and the modified uracil.
  • the modified thymine and the modified uracil may be at least one of the modified thymine and the modified uracil.
  • 5'-benzylaminocarbonyluracil (BndU) may be used as the thymine indicated by the underline in any one of the nucleotide sequences of SEQ ID NOS: 1 to 7, 10 and 11.
  • the underlined thymine in any one of the nucleotide sequences of SEQ ID NOs: 8 and 9 may be 5'-tryptaminocarbonyluracil (TrpdU).
  • thymine other than thymine indicated by the underlined portion in each base sequence is, for example, a natural base.
  • the present invention is not limited to this, and thymine other than thymine shown by the underlined portion in each base sequence may be the modified base.
  • the number of the modified cytosines is not particularly limited.
  • natural cytosine can be substituted for the modified cytosine.
  • the number of the modified cytosines is, for example, one or more.
  • the modified cytosine is, for example, 1 to 80, preferably 1 to 70, more preferably 1 to 50, still more preferably 1 to 40, particularly preferably 1 to 30, and most preferably. 1 to 21 and all cytosines may be the modified cytosine.
  • the ratio of the modified cytosine is not particularly limited.
  • the ratio of the modified cytosine is, for example, 1/100 or more, preferably 1/40 or more, more preferably 1/20 or more, further preferably 1 out of the total number of the natural cytosine and the modified cytosine. / 10 or more, particularly preferably 1/4 or more, and most preferably 1/3 or more.
  • the cytosine indicated by the underline in each base sequence may be the modified cytosine.
  • the cytosine indicated by the underline in any of the nucleotide sequences of SEQ ID NOS: 1 to 11 may be 5'-methylcytosine.
  • a cytosine other than the cytosine indicated by the underlined portion in each base sequence is, for example, a natural base.
  • the present invention is not limited to this, and cytosine other than cytosine indicated by the underlined portion in each base sequence may be the modified base.
  • the modified base is the modified adenine or the modified guanine
  • cytosine and modified cytosine are referred to as “adenine” and “modified adenine” or “guanine” and It can be read as “modified guanine”.
  • natural adenine can be substituted with the modified adenine
  • natural guanine can be substituted with the modified guanine.
  • the nucleic acid molecule of the present invention may contain a modified nucleotide.
  • the modified nucleotide may be a nucleotide having the modified base described above, a nucleotide having a modified sugar in which a sugar residue is modified, or a nucleotide having the modified base and the modified sugar.
  • the sugar residue is not particularly limited, and examples thereof include deoxyribose residue or ribose residue.
  • the modification site in the sugar residue is not particularly limited, and examples thereof include the 2'-position and the 4'-position of the sugar residue, and both of them may be modified.
  • Examples of the modifying group of the modified sugar include a methyl group, a fluoro group, an amino group, and a thio group.
  • the base when the base is a pyrimidine base, for example, the 2'-position and / or the 4'-position of the sugar residue is preferably modified.
  • Specific examples of the modified nucleotide residue include, for example, a 2′-methylated-uracil nucleotide residue and a 2′-methylated-cytosine nucleotide residue in which the deoxyribose residue or the 2 ′ position of the ribose residue is modified.
  • the number of the modified nucleotides is not particularly limited.
  • the polynucleotide for example, 1 to 80, preferably 1 to 70, more preferably 1 to 50, still more preferably 1 to 40, particularly The number is preferably 1 to 30, and most preferably 1 to 21.
  • the modified nucleotides in the entire length of the nucleic acid molecule including the polynucleotide are not particularly limited, and are, for example, 1 to 80, 1 to 50, and 1 to 20, preferably in the same range as described above. It is.
  • the nucleic acid molecule of the present invention may contain, for example, one or several artificial nucleic acid monomer residues.
  • the “one or several” is not particularly limited, and for example, in the polynucleotide, for example, 1 to 80, preferably 1 to 70, more preferably 1 to 50, still more preferably 1 to 40 Particularly preferred is 1 to 30, most preferably 1 to 21.
  • the artificial nucleic acid monomer residue include PNA (peptide nucleic acid), LNA (Locked Nucleic Acid), ENA (2'-O, 4'-C-Ethylenebridged Nucleic Acids) and the like.
  • the nucleic acid in the monomer residue is the same as described above, for example.
  • the artificial nucleic acid monomer residue in the entire length of the nucleic acid molecule containing the polynucleotide is not particularly limited, and is, for example, 1 to 80, 1 to 50, or 1 to 20, preferably the above-mentioned Similar to range.
  • the nucleic acid molecule of the present invention is preferably nuclease resistant, for example.
  • the nucleic acid molecule of the present invention preferably has, for example, the modified nucleotide residue and / or the artificial nucleic acid monomer residue for nuclease resistance. Since the nucleic acid molecule of the present invention is nuclease resistant, for example, tens of kDa PEG (polyethylene glycol) or deoxythymidine may be bound to the 5 'end or 3' end.
  • the nucleic acid molecule of the present invention may further have an additional sequence, for example.
  • the additional sequence is preferably bound to, for example, at least one of the 5 'end and the 3' end of the nucleic acid molecule, and more preferably the 3 'end.
  • the additional sequence is not particularly limited.
  • the length of the additional sequence is not particularly limited, and is, for example, 1 to 200 bases long, preferably 1 to 50 bases long, more preferably 1 to 25 bases long, and further preferably 18 to 24 bases long. It is.
  • the structural unit of the additional sequence is, for example, a nucleotide residue, and examples thereof include a deoxyribonucleotide residue and a ribonucleotide residue.
  • the additional sequence is not particularly limited, and examples thereof include polynucleotides such as DNA consisting of deoxyribonucleotide residues and DNA containing ribonucleotide residues. Specific examples of the additional sequence include poly dT and poly dA.
  • the nucleic acid molecule of the present invention can be used, for example, immobilized on a carrier.
  • a carrier In the nucleic acid molecule of the present invention, for example, either the 5 'end or the 3' end can be immobilized.
  • the nucleic acid molecule may be immobilized directly or indirectly on the carrier. In the latter case, the nucleic acid molecule of the present invention is immobilized on the carrier, for example, via the additional sequence.
  • the carrier include beads, plates, filters, columns, substrates, containers and the like.
  • the nucleic acid molecule of the present invention may further have a labeling substance, and specifically, the labeling substance may be bound to the nucleic acid molecule.
  • the nucleic acid molecule to which the labeling substance is bound can also be referred to as a nucleic acid sensor of the present invention, for example.
  • the labeling substance may be bound to, for example, at least one of the 5 'end and the 3' end of the nucleic acid molecule.
  • the labeling with the labeling substance may be, for example, binding or chemical modification.
  • the labeling substance is not particularly limited, and examples thereof include enzymes, fluorescent substances, dyes, isotopes, drugs, toxins, and antibiotics. Examples of the enzyme include luciferase and NanoLuc luciferase.
  • the fluorescent substance examples include pyrene, TAMRA, fluorescein, Cy3 dye, Cy5 dye, FAM dye, rhodamine dye, Texas red dye, JOE, MAX, HEX, TYE and the like, and the dye includes, for example, And Alexa dyes such as Alexa 488 and Alexa 647.
  • the labeling substance may be linked directly to the nucleic acid molecule or indirectly via a linker, for example.
  • the linker is not particularly limited and is, for example, a polynucleotide linker.
  • the nucleic acid molecule of the present invention exhibits binding property to gluten as described above. For this reason, the use of the nucleic acid molecule of the present invention is not particularly limited as long as it uses the binding property to gluten.
  • the nucleic acid molecule of the present invention can be used in various methods in place of, for example, an antibody against gluten.
  • gluten can be detected.
  • the method for detecting gluten is not particularly limited, and can be performed by detecting the binding between gluten and the nucleic acid molecule.
  • the nucleic acid molecule of the present invention exhibits binding property to gliadin. For this reason, the nucleic acid molecule of the present invention can be used, for example, in applications utilizing the binding property to gliadin.
  • the nucleic acid molecule of the present invention can be used in various methods in place of, for example, an antibody against gliadin.
  • gliadin can be detected.
  • the method for detecting gliadin is not particularly limited, and can be performed by detecting the binding between gliadin and the nucleic acid molecule.
  • the detection reagent of the present invention is a detection reagent for gluten or gliadin, and includes the nucleic acid molecule of the present invention.
  • the detection reagent of this invention should just contain the nucleic acid molecule of the said this invention, and another structure is not restrict
  • the detection reagent of the present invention can be said to be a binder to gluten or a binder to gliadin, for example.
  • the detection reagent of the present invention may further have a labeling substance, for example, and the labeling substance may be bound to the nucleic acid molecule.
  • the labeling substance for example, the description in the nucleic acid molecule of the present invention can be used.
  • the detection reagent of the present invention may have, for example, a carrier, and the nucleic acid molecule may be immobilized on the carrier.
  • the carrier for example, the description in the nucleic acid molecule of the present invention can be incorporated.
  • the detection kit of the present invention includes the nucleic acid molecule of the present invention or the detection reagent of the present invention.
  • the detection kit of the present invention may further include other components, for example.
  • the constituent element include a buffer solution for preparing the sample, an instruction manual, and the like.
  • the detection kit of the present invention is, for example, A kit comprising a nucleic acid sensor and an allergen-labeled carrier (gluten-labeled carrier or gliadin-labeled carrier) can be provided.
  • the description of the nucleic acid molecule of the present invention can be used, and the nucleic acid molecule of the present invention and the detection method of the present invention described later can also be used for the method of use. .
  • the method for detecting gluten or gliadin of the present invention comprises contacting the nucleic acid molecule of the present invention or the detection reagent of the present invention with a sample, and then gluten or gliadin in the sample. And a step of forming a complex with the nucleic acid molecule or the detection reagent, and a step of detecting the complex.
  • the detection method of the present invention is characterized by using the nucleic acid molecule of the present invention or the detection reagent, and the other steps and conditions are not particularly limited.
  • the use of the nucleic acid molecule of the present invention will be described as an example, but the nucleic acid molecule of the present invention can be read as the detection reagent of the present invention.
  • the sample is not particularly limited.
  • the sample include foods, food materials, food additives, and the like.
  • Examples of the sample include a deposit in a food processing shop or a cooking place, a cleaning liquid after cleaning, and the like.
  • the sample may be, for example, a liquid sample or a solid sample.
  • the sample is preferably a liquid sample because it is easy to contact with the nucleic acid molecule and is easy to handle.
  • a mixed solution, an extract, a dissolved solution, and the like may be prepared using a solvent and used.
  • the solvent is not particularly limited, and examples thereof include water, physiological saline, and buffer solution.
  • the detection method of the present invention will be described by taking as an example a method for detecting gluten using the nucleic acid sensor of the present invention labeled with a labeling substance as the nucleic acid molecule of the present invention. Since gliadin is a constituent of gluten, detection of gluten can be read as detection of gliadin. In addition, this invention is not restrict
  • the detection step further includes, for example, a step of analyzing the presence or absence or amount of gluten in the sample based on the detection result of the complex.
  • the method for contacting the sample and the nucleic acid molecule is not particularly limited.
  • the contact between the sample and the nucleic acid molecule is preferably performed in a liquid, for example.
  • the liquid is not particularly limited, and examples thereof include water, physiological saline, and buffer solution.
  • the contact condition between the sample and the nucleic acid molecule is not particularly limited.
  • the contact temperature is, for example, 4 to 37 ° C., preferably 18 to 25 ° C.
  • the contact time is, for example, 10 to 120 minutes, preferably 30 to 60 minutes.
  • the nucleic acid molecule may be, for example, an immobilized nucleic acid molecule (solid phase carrier) immobilized on a carrier or an unfixed free nucleic acid molecule.
  • the sample is contacted in a container.
  • the carrier is not particularly limited, and examples thereof include a plate, a filter, a column, a substrate, a bead, and a container. Examples of the container include a microplate and a tube.
  • the nucleic acid molecule is immobilized as described above, for example.
  • the detection step is a step of detecting the binding between gluten in the sample and the nucleic acid molecule as described above.
  • the presence / absence of binding between the two for example, the presence / absence of gluten in the sample can be analyzed (qualitative), and by detecting the degree of binding (binding amount) between the two, for example, the sample
  • the amount of gluten can be analyzed (quantified).
  • the method for detecting the binding between gluten and the nucleic acid molecule is not particularly limited.
  • a conventionally known method for detecting binding between substances can be adopted, and specific examples thereof include the SPR described above.
  • the binding between gluten and the nucleic acid molecule cannot be detected, it can be determined that gluten is not present in the sample, and when the binding is detected, it can be determined that gluten is present in the sample.
  • a correlation between the concentration of gluten and the binding amount can be obtained in advance, and the concentration of gluten in the sample can be analyzed from the binding amount based on the correlation.
  • a method using a nucleic acid sensor in which a luciferase as a labeling substance is bound to the nucleic acid molecule and a gluten-labeled carrier will be described below.
  • the nucleic acid sensor and the sample are mixed.
  • the nucleic acid molecule in the nucleic acid sensor binds to gluten as a target.
  • the nucleic acid molecule in the nucleic acid sensor is not bound to the target.
  • the gluten-labeled carrier is removed.
  • the carrier include beads.
  • the nucleic acid sensor when the nucleic acid sensor is bound to gluten, the nucleic acid molecule in the nucleic acid sensor cannot bind to gluten in the gluten-labeled carrier. Therefore, when a luciferase substrate is added to the fraction from which the gluten-labeled carrier has been removed to perform a luminescence reaction, luminescence is generated by the luciferase catalytic reaction in the nucleic acid sensor.
  • the nucleic acid molecule in the nucleic acid sensor is bound to gluten in the gluten-labeled carrier.
  • the nucleic acid sensor is also removed while bound to the gluten-labeled carrier. For this reason, when the luciferase substrate is added to the fraction from which the gluten-labeled carrier has been removed and the luminescence reaction is performed, the nucleic acid sensor does not exist, and thus luminescence due to the luciferase catalytic reaction occurs. Absent. Therefore, the presence or absence of gluten in the sample can be analyzed (qualitative analysis) based on the presence or absence of luminescence.
  • the amount of gluten in the sample and the amount of the nucleic acid sensor remaining in the fraction after removing the gluten-labeled carrier have a correlation, so that the amount of gluten in the sample depends on the intensity of luminescence.
  • the amount can also be analyzed (quantitative analysis).
  • gluten or gliadin can be detected. According to the present invention, it is also possible to detect the presence or absence of wheat indirectly, for example, by detecting gluten or gliadin.
  • Example 1 About the aptamer of this invention, the binding property with respect to gluten and gliadin was confirmed by SPR analysis.
  • Aptamer Aptamer 1 of the following polynucleotide was synthesized as an aptamer of Examples.
  • the underlined “T” is a deoxyribonucleotide having 5′-benzylaminocarbonyluracil (BndU) substituted at the 5-position of thymine in place of natural thymine (T)
  • the underlined “C” is a deoxyribonucleotide residue having 5′-methylcytosine substituted at the 5-position of cytosine in place of natural cytosine (C).
  • Glu392BR8m4 (SEQ ID NO: 1) GGTATGGAGGCAAGTCCCAATTCG T G C AGAGAAA C G T G TCT G T A TTT A TT AA TC G TTTC AG CC AGA C AGGG TTT A T G
  • the estimated secondary structure of aptamer 1 is shown in FIG. However, it is not limited to this.
  • the aptamer was added with polydeoxyadenine (poly dA) having a length of 20 bases at the 3 'end and used as a poly dA added aptamer in SPR described later.
  • poly dA polydeoxyadenine
  • the poly dA-added aptamer used was heat-denatured at 95 ° C. for 5 minutes.
  • the composition of the SB1T buffer was 40 mmol / L HEPES, 125 mmol / L NaCl, 5 mmol / L KCl, 1 mmol / L MgCl 2 and 0.01% Tween (registered trademark) 20, and the pH was 7.5.
  • each sample was prepared from the materials shown below for confirmation of the cross-reaction of the aptamer.
  • the ⁇ -casein sample was prepared in the same manner as the gluten sample. Milk, eggs, and peanuts were crushed with a food processor, suspended in SB1T buffer, dissolved overnight, centrifuged (3000 g, 20 minutes, room temperature) and separated. The obtained extract was filtered as a sample.
  • a ProteON dedicated sensor chip a chip (trade name: ProteOn NLC Sensor Chip, BioRad) on which streptavidin was immobilized was set in the ProteON XPR36.
  • 1 ⁇ mol / L of biotinylated poly dT was injected into the flow cell of the sensor chip using ultrapure water (DDW) and allowed to bind until the signal intensity (RU: Resonance Unit) was about 900 RU.
  • the biotinylated poly dT was prepared by biotinylating the 5 ′ end of 20 base deoxythymidine.
  • FIG. 2 is a graph showing the binding property of aptamer 1 to gliadin and gluten, the horizontal axis represents each sample, and the vertical axis represents signal intensity (RU).
  • gliadin sample, gluten sample, lysozyme sample, egg sample, ⁇ -casein sample, milk sample, raw peanut sample, and roasted peanut sample are shown in order from the left.
  • the concentration (ppm) in each sample indicates the concentration of each protein for the gliadin sample, gluten sample, lysozyme sample, and ⁇ -casein sample, and for each egg sample, milk sample, raw peanut sample, and roast peanut sample The concentration of total protein contained in the sample is shown.
  • FIG. 1 is a graph showing the binding property of aptamer 1 to gliadin and gluten
  • the horizontal axis represents each sample
  • the vertical axis represents signal intensity (RU).
  • aptamer 1 showed binding properties to gliadin and gluten.
  • aptamer 1 has a signal intensity of 0.00 or less and exhibits no binding to lysozyme sample, egg sample, ⁇ -casein sample, milk sample, raw peanut sample, and roasted peanut sample. It was.
  • the binding analysis was performed in the same manner except that the gluten sample was used and the gluten concentration in the sample was changed to 3.7, 11, 33, 100, and 300 ppm.
  • FIG. 3 is a graph showing the binding property of aptamer 1 to gluten, the horizontal axis indicates the gluten concentration (ppm), and the vertical axis indicates the signal intensity (RU). As shown in FIG. 3, the signal intensity of the aptamer 1 increased as the concentration of gluten increased. From this result, it was found that the gluten concentration in the sample can be quantitatively analyzed by measuring the signal intensity using the aptamer of the present invention.
  • binding analysis was performed in the same manner except that the gliadin sample was used, and the gliadin concentration in the sample was changed to 0.25, 0.5, 1, 2, and 4 ⁇ mol / L.
  • the signal intensity at a predetermined time after the start of sample injection was determined.
  • FIG. 4 is a graph showing the binding property of aptamer 1 to gliadin, the horizontal axis indicates the elapsed time (seconds) after the start of injection of the sample, and the vertical axis indicates the signal intensity (RU). As shown in FIG. 4, the signal intensity of the aptamer 1 increased as the concentration of gliadin increased.
  • kinetic parameters were calculated from the results of the SPR analysis in FIG. As a result, it was found that the aptamer 1 has a dissociation constant (KD) for gliadin of 5.81 ⁇ 10 ⁇ 7 mol / L and excellent binding properties.
  • KD dissociation constant
  • Example 2 About the downsized aptamer of this invention, the binding property with respect to a gliadin was confirmed by SPR analysis.
  • the following polynucleotide aptamers 2 to 7 were synthesized as miniaturized aptamers of the examples.
  • Aptamers 2 to 7 are aptamers obtained by miniaturizing the aptamer 1 (SEQ ID NO: 1) of Example 1.
  • the underlined “T” is a deoxyribonucleotide residue having 5′-benzylaminocarbonyluracil (BndU) substituted at the 5-position of thymine in place of natural thymine (T)
  • the underlined “C” was a deoxyribonucleotide residue having 5′-methylcytosine substituted at the 5-position of cytosine in place of natural cytosine (C).
  • Glu392BR8m4_s59A (SEQ ID NO: 2) GGTATGGAGGCAAGTCCCAATTCG T G C AGAGAAA C G T G TCT G T A TTT A TT AA TC G TTTC
  • Aptamer 3 Glu392BR8m4_s51 (SEQ ID NO: 3) GGCAAGTCCCAATTCG T G C AGAGAAA C G T G TCT G T A TTT A TT AA TC G TTTC
  • Glu392BR8m4_s38 (SEQ ID NO: 4) TC G T G C AGAGAAA C G T G TCT G T A TTT A TT AA T CG TTTC
  • the estimated secondary structure of aptamers 2 to 7 is shown in FIG. However, it is not limited to this.
  • the aptamer 1 of Example 1 and the miniaturized aptamers 2 to 7 were used as aptamers, and the gliadin sample (4 ⁇ mol / L) and lysozyme sample (25 nmol / L or 100 nmol) prepared in Example 1 were used as samples. / L), and ⁇ casein sample (100 nmol / L or 400 nmol / L) were used in the same manner as in Example 1 to analyze binding by SPR.
  • FIG. 6 is a graph showing the binding of each aptamer to gliadin (4 ⁇ mol / L), lysozyme (25 nmol / L or 100 nmol / L), and ⁇ -casein (100 nmol / L or 400 nmol / L). Each sample is shown, and the vertical axis shows the signal intensity (RU). Each graph shows the downsized aptamer 2, the downsized aptamer 3, the downsized aptamer 4, the downsized aptamer 5, the downsized aptamer 6, the downsized aptamer 7, and the aptamer 1 in order from the left.
  • Example 3 A nucleic acid sensor in which a labeling substance luciferase was bound to the aptamer of the present invention was prepared, and the binding property of the nucleic acid sensor to gliadin and gluten was confirmed. The confirmation of the binding was performed using the target solid-phased beads on which the target gliadin or gluten was solid-phased and the nucleic acid sensor.
  • the nucleic acid molecule in the nucleic acid sensor cannot bind to gliadin or gluten immobilized on the target immobilized beads. .
  • luminescence is generated by the catalytic reaction of luciferase in the nucleic acid sensor.
  • the nucleic acid molecule in the nucleic acid sensor is bound to gliadin or gluten immobilized on the target immobilized beads.
  • the nucleic acid sensor is also removed while bound to the target-immobilized beads.
  • the luminescence due to the luciferase catalytic reaction is not caused by the absence of the nucleic acid sensor. Does not occur. Therefore, gliadin or gluten can be detected by detecting luminescence by luciferase using the nucleic acid sensor and the target solid-phased beads.
  • the nucleic acid sensor is prepared by using the fluorescent substance NanoLuc TM luciferase (manufactured by Promega) and labeling the 5 ′ end of the aptamer 1 (Glu392BR8m4) of Example 1 according to the instruction manual. did.
  • the sample As the sample, the gliadin sample or the gluten sample of Example 1 was used.
  • the target solid-phased beads were prepared using NHS-activated Sepharose 4 Fast Flow Lab Packs (manufactured by GE Healthcare) using the gliadin sample or the gluten sample as a target.
  • the binding property of the nucleic acid sensor to gliadin and gluten was confirmed as follows.
  • a filter plate manufactured by millipore, cat # MSGVN2250
  • the target solid-phased beads were added to each well of the U-bottom plate so as to be 50 ⁇ L / well.
  • the gliadin sample or the gluten sample final concentrations 0, 0.4, 1.235, 3.7, 11.1, 33.3, 100 ppm
  • 10 ⁇ L of the nucleic acid sensor 2 5 ⁇ 10 6 dilution
  • the U bottom plate was centrifuged at 3000 g for 2 minutes at room temperature, and the target solid-phased beads were removed by centrifugation.
  • the reaction solution that passed through the filter plate was collected from each well and subjected to measurement of the amount of luminescence.
  • Infinite M1000 Pro (TECAN) was used according to the instruction manual.
  • NanoGlo (trademark, manufactured by Promega, cat # N2012) was used as a substrate.
  • the same measurement was performed using the above-described egg, milk, and raw peanut instead of the gliadin sample and the gluten sample.
  • FIG. 7 shows the measurement results of light emission.
  • FIG. 7 is a graph showing the measurement results of the amount of luminescence when gliadin, gluten, eggs, milk, and raw peanuts are used as samples.
  • the horizontal axis indicates the concentration of each sample, and the vertical axis indicates the light emission amount (RLU).
  • RLU light emission amount
  • the detection limit (LOD) for gliadin and gluten of the nucleic acid sensor was 1.2 ppm, respectively. From this, it was found that the nucleic acid sensor can detect a small amount of gliadin and gluten.
  • Example 4 Regarding the aptamer of the present invention, the binding property to gliadin was confirmed by SPR analysis.
  • aptamers 8 and 9 were synthesized in the same manner as in Example 1.
  • Aptamer 9 is a miniaturized sequence of aptamer 8.
  • the underlined “T” has 5′-tryptaminocarbonyluracil (TrpdU) substituted at position 5 of thymine instead of natural thymine (T).
  • TrpdU 5′-tryptaminocarbonyluracil
  • a deoxyribonucleotide residue having a 5′-methylcytosine substituted at the 5-position of cytosine in place of natural cytosine (C) was designated as a deoxyribonucleotide residue.
  • Gli95_395TR8m1 (SEQ ID NO: 8) GGAAACGCCGCCTAGATCATTTG C G TCCTCCCT GG T GGGGA TT GG C GAAAA TT GA C
  • G Aptamer 9 Gli95_395TR8m1s50 (SEQ ID NO: 9) CGCCTAGATCATTTG C G TCCTCCCT GG T GGGGA TT GG C GAAAA TT GA C
  • Gli95_395TR8m1s50 (SEQ ID NO: 9) CGCCTAGATCATTTG C G TCCTCCCT GG T GGGGA TT GG C GAAAA TT GA C
  • aptamers 8 and 9 The presumed secondary structure of aptamers 8 and 9 is shown in FIG. However, it is not limited to this.
  • the gliadin sample was used as a sample, and the gliadin concentration in the sample was 50, 100, 200, and 400 nmol / L.
  • the signal intensity at a predetermined time after the start of injection of the sample was determined.
  • FIGS. 9A and 9B are graphs showing the binding properties of aptamers 8 and 9 to gliadin, respectively.
  • the horizontal axis represents the elapsed time (seconds) after the start of injection of the sample, and the vertical axis represents Shows the signal intensity (RU).
  • aptamer 8 and aptamer 9 which is a miniaturized sequence thereof, increased in signal intensity as the concentration of gliadin increased.
  • the aptamers 8 and 9 have dissociation constants (KD) with respect to gliadin of 19.4 ⁇ 10 ⁇ 9 mol / L and 22.7 ⁇ 10 ⁇ 9 mol / L, respectively. I found out.
  • aptamers 10 and 11 of the following polynucleotides were synthesized in the same manner as in Example 1.
  • Aptamer 11 is a miniaturized sequence of aptamer 10.
  • T indicated by underlining has 5′-benzylaminocarbonyluracil (BndU) substituted at the 5-position of thymine instead of natural thymine (T).
  • BndU 5′-benzylaminocarbonyluracil
  • a deoxyribonucleotide residue having a 5′-methylcytosine substituted at the 5-position of cytosine in place of natural cytosine (C) was designated as a deoxyribonucleotide residue.
  • Aptamer 10 Gli_395BR8m2 (SEQ ID NO: 10) GGAAACGCCGCCTAGATCATTTGAAAA C G TT G TT A CCTC A CCT A TT A TCT A TT GA C A TCCTC AAG TTCCT G C GAAA T G
  • Aptamer 11 Gli_395BR8m2s51 (SEQ ID NO: 11) GGAAACGCCGCCTAGATCATTTGAAAA C G TT G TT A CCTC A CCT A TT A TCT A
  • the estimated secondary structure of the aptamers 10 and 11 is shown in FIG. However, it is not limited to this.
  • the binding analysis was performed in the same manner except that aptamers 10 and 11 were used, the gliadin sample was used as a sample, and the gliadin concentration in the sample was 100, 200, 400, and 800 nmol / L.
  • the signal intensity at a predetermined time after the start of injection of the sample was determined.
  • FIGS. 10A and 10B are graphs showing the binding properties of aptamers 10 and 11 to gliadin, respectively.
  • the horizontal axis represents the elapsed time (seconds) after the start of injection of the sample, and the vertical axis represents Shows the signal intensity (RU).
  • the aptamer 10 and the aptamer 11 which is a miniaturized sequence thereof, increased in signal intensity as the concentration of gliadin increased.
  • the aptamers 10 and 11 have excellent dissociation properties with dissociation constants (KD) for gliadin of 132 ⁇ 10 ⁇ 9 mol / L and 102 ⁇ 10 ⁇ 9 mol / L, respectively. It was.
  • Example 5 About the aptamer of this invention, the binding property with respect to the heated gliadin was confirmed by SPR analysis.
  • the binding analysis was performed in the same manner as in Example 4 except that a heated gliadin sample was used as a sample, and the signal intensity at a predetermined time after the start of injection of the sample was obtained.
  • the heated gliadin sample was prepared by heat-treating the gliadin sample at 95 ° C. for 10 minutes, centrifuging at 12000 ⁇ g for 10 minutes, and then collecting the supernatant.
  • FIGS. 11A and 11B are graphs showing the binding properties of aptamers 8 and 9 to heated gliadin, the horizontal axis indicates the elapsed time (seconds) after the start of injection of the sample, and the vertical axis is Signal intensity (RU) is shown.
  • FIGS. 12A and 12B are graphs showing the binding properties of aptamers 10 and 11 to heated gliadin, the horizontal axis indicates the elapsed time (seconds) after the start of injection of the sample, and the vertical axis is Signal intensity (RU) is shown.
  • aptamers 8 to 11 have dissociation constants (KD) with respect to heated gliadin of 19.7 ⁇ 10 ⁇ 9 mol / L, 21.7 ⁇ 10 ⁇ 9 mol / L, and 134 ⁇ 10 ⁇ 9 mol / L, respectively.
  • KD dissociation constants
  • Example 6 Regarding the aptamer of the present invention, the binding property to gluten and heated gluten was confirmed by SPR analysis.
  • Bondability analysis was performed in the same manner as in Example 1 except that aptamers 8 to 11 were used as aptamers, and 100 ppm of the gluten sample and the heated gluten sample were used as samples.
  • the heated gluten sample was prepared by heating the gluten sample at 95 ° C. for 10 minutes, centrifuging at 12,000 ⁇ g for 10 minutes, and then collecting the supernatant.
  • binding analysis was performed in the same manner except that the egg sample, the milk sample, and the raw peanut sample were used.
  • FIG. 13 is a graph showing the binding properties of aptamers 8 to 11 to gluten and heated gluten.
  • the horizontal axis represents the type of aptamer, and the vertical axis represents signal intensity (RU).
  • aptamer 8, aptamer 10, aptamer 9, and aptamer 11 are shown in order from the left.
  • Each graph shows a gluten sample, a heated gluten sample, an egg sample, a milk sample, and a raw peanut sample in order from the left.
  • aptamers 8 to 11 showed binding properties to gluten and heated gluten.
  • the aptamers 8 to 11 had a signal intensity of 0.05 or less and showed no binding to egg samples, milk samples, and raw peanut samples.
  • the aptamer of the present invention specifically binds to gluten and heated gluten and can be detected by measurement, and according to the aptamer of the present invention, gluten in the sample and heated It was found that the amount of gluten could be analyzed.
  • the nucleic acid molecule of the present invention can bind to gluten or gliadin. Therefore, according to the nucleic acid molecule of the present invention, gluten and gliadin can be detected based on the presence or absence of binding to the allergen in the sample. Therefore, the nucleic acid molecule of the present invention can be said to be an extremely useful tool for detecting allergens derived from grains such as wheat, for example, in the fields of food production, food management, food distribution, and the like.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Plant Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Provided is a novel nucleic acid molecule capable of binding to gluten and/or gliadin. A nucleic acid molecule capable of binding to gluten and/or gliadin is a nucleic acid molecule comprising a polynucleotide (a) or (b): (a) a polynucleotide which comprises a nucleotide sequence represented by SEQ ID NO: 1, 8 or 10 or a partial sequence of the nucleotide sequence represented by SEQ ID NO: 1, 8 or 10; and (b) a polynucleotide which comprises a nucleotide sequence having an identity of 90% or higher with the nucleotide sequence for the polynucleotide (a) and can bind to gluten and/or gliadin.

Description

核酸分子およびその用途Nucleic acid molecules and uses thereof
 本発明は、グルテンおよびグリアジンの少なくとも一方に結合する核酸分子およびその用途に関する。 The present invention relates to a nucleic acid molecule that binds to at least one of gluten and gliadin and use thereof.
 小麦は、日常的に頻繁に摂取される食品であるが、近年、小麦アレルギーの患者が増加しており、問題視されている。加工食品等は、小麦を使用するものが多く存在するため、加工食品やその製造ライン等においては、原料として小麦が混入しているか否かを分析することは、極めて重要である。 小麦 Wheat is a food that is frequently consumed on a daily basis, but in recent years, the number of wheat allergic patients has increased and has been regarded as a problem. Since many processed foods use wheat, it is extremely important to analyze whether or not wheat is mixed as a raw material in processed foods and production lines thereof.
 アレルギーのアレルゲンは、一般的に、タンパク質やその分解物(ペプチド)であり、これらを抗原とする抗体を使用した分析方法が、主流である。小麦をはじめとする穀物に関しても、例えば、グルテン、および、グルテンを構成するタンパク質の1つであるグリアジンがアレルゲンとして知られている。グルテンに対する分析方法として、ELISA法を用いた方法が報告されている(非特許文献1、非特許文献2)。 Allergic allergens are generally proteins and their degradation products (peptides), and analysis methods using antibodies using these as antigens are the mainstream. Regarding cereals including wheat, for example, gluten and gliadin, which is one of proteins constituting gluten, are known as allergens. As an analysis method for gluten, a method using an ELISA method has been reported (Non-Patent Document 1, Non-Patent Document 2).
 しかし、抗体は、タンパク質であり、安定性に問題があるため、低コストで簡易な検査法に抗体を用いることが難しい。また、電気泳動やニトロセルロース膜へのブロッティング等が必要であり、操作が煩雑である。このため、近年、抗体に代えて、抗原と特異的に結合する核酸分子が注目されている。 However, since an antibody is a protein and has a problem in stability, it is difficult to use the antibody for a simple test method at a low cost. Further, electrophoresis, blotting on a nitrocellulose membrane, and the like are necessary, and the operation is complicated. For this reason, in recent years, attention has been focused on nucleic acid molecules that specifically bind to antigens instead of antibodies.
 そこで、本発明の目的は、グルテンおよびグリアジンの少なくとも一方に結合する新たな核酸分子を提供することにある。 Therefore, an object of the present invention is to provide a new nucleic acid molecule that binds to at least one of gluten and gliadin.
 本発明の核酸分子は、下記(a)または(b)のいずれかのポリヌクレオチドを含むことを特徴とする、グルテンおよびグリアジンの少なくとも一方に結合する核酸分子である。
(a)配列番号1、8、もしくは10の塩基配列または配列番号1、8、もしくは10の塩基配列の部分配列からなるポリヌクレオチド
(b)前記(a)の塩基配列に対して、90%以上の同一性を有する塩基配列からなり、グルテンおよびグリアジンの少なくとも一方に結合するポリヌクレオチド
The nucleic acid molecule of the present invention is a nucleic acid molecule that binds to at least one of gluten and gliadin, characterized in that it comprises a polynucleotide of either (a) or (b) below.
(A) a polynucleotide comprising the nucleotide sequence of SEQ ID NO: 1, 8, or 10 or a partial sequence of the nucleotide sequence of SEQ ID NO: 1, 8, or 10 (b) 90% or more relative to the nucleotide sequence of (a) A polynucleotide that has the same nucleotide sequence and binds to at least one of gluten and gliadin
 本発明のグルテンまたはグリアジンの検出試薬は、前記本発明の核酸分子を含むことを特徴とする。 The detection reagent for gluten or gliadin of the present invention comprises the nucleic acid molecule of the present invention.
 本発明のグルテンまたはグリアジンの検出方法は、前記本発明の核酸分子、または前記本発明の検出試薬と、試料とを接触させ、前記試料中のグルテンまたはグリアジンと、前記核酸分子または前記検出試薬との複合体を形成させる工程、および、
前記複合体を検出する工程を含むことを特徴とする。
In the method for detecting gluten or gliadin of the present invention, the nucleic acid molecule of the present invention or the detection reagent of the present invention is brought into contact with a sample, and gluten or gliadin in the sample is mixed with the nucleic acid molecule or the detection reagent. Forming a complex of:
A step of detecting the complex.
 本発明の核酸分子は、グルテンまたはグリアジンに結合可能である。このため、本発明の核酸分子によれば、試料中のアレルゲンとの結合の有無によって、グルテンやグリアジンを検出できる。したがって、本発明の核酸分子は、例えば、食品製造、食品管理、食品の流通等の分野において、例えば、小麦等の穀物に由来するアレルゲンの検出に、極めて有用なツールといえる。 The nucleic acid molecule of the present invention can bind to gluten or gliadin. Therefore, according to the nucleic acid molecule of the present invention, gluten and gliadin can be detected based on the presence or absence of binding to the allergen in the sample. Therefore, the nucleic acid molecule of the present invention can be said to be an extremely useful tool for detecting allergens derived from grains such as wheat, for example, in the fields of food production, food management, food distribution and the like.
図1は、本発明の実施例1における、アプタマー1の推定二次構造である。FIG. 1 shows a presumed secondary structure of aptamer 1 in Example 1 of the present invention. 図2は、本発明の実施例1における、グリアジンおよびグルテンに対するアプタマー1の結合性を示すグラフである。FIG. 2 is a graph showing the binding property of aptamer 1 to gliadin and gluten in Example 1 of the present invention. 図3は、本発明の実施例1における、グルテンに対するアプタマー1の結合性を示すグラフである。FIG. 3 is a graph showing the binding property of aptamer 1 to gluten in Example 1 of the present invention. 図4は、本発明の実施例1における、グリアジンに対するアプタマー1の結合性を示すグラフである。FIG. 4 is a graph showing the binding property of aptamer 1 to gliadin in Example 1 of the present invention. 図5は、本発明の実施例2における、アプタマー2~7の推定二次構造である。FIG. 5 shows the predicted secondary structures of aptamers 2 to 7 in Example 2 of the present invention. 図6は、本発明の実施例2における、グリアジンに対する各アプタマーの結合性を示すグラフである。FIG. 6 is a graph showing the binding property of each aptamer to gliadin in Example 2 of the present invention. 図7は、本発明の実施例3における、発光量の測定結果を示すグラフである。FIG. 7 is a graph showing the measurement results of the light emission amount in Example 3 of the present invention. 図8は、本発明の実施例4における、アプタマー8~11の推定二次構造である。FIG. 8 shows the presumed secondary structures of aptamers 8 to 11 in Example 4 of the present invention. 図9は、本発明の実施例4における、グリアジンに対するアプタマー8および9の結合性を示すグラフである。FIG. 9 is a graph showing the binding properties of aptamers 8 and 9 to gliadin in Example 4 of the present invention. 図10は、本発明の実施例4における、グリアジンに対するアプタマー10および11の結合性を示すグラフである。FIG. 10 is a graph showing the binding properties of aptamers 10 and 11 to gliadin in Example 4 of the present invention. 図11は、本発明の実施例5における、加熱グリアジンに対するアプタマー8および9の結合性を示すグラフである。FIG. 11 is a graph showing the binding properties of aptamers 8 and 9 to heated gliadin in Example 5 of the present invention. 図12は、本発明の実施例5における、加熱グリアジンに対するアプタマー10および11の結合性を示すグラフである。FIG. 12 is a graph showing the binding properties of aptamers 10 and 11 to heated gliadin in Example 5 of the present invention. 図13は、本発明の実施例6における、グルテンおよび加熱グルテンに対するアプタマー8~11の結合性を示すグラフである。FIG. 13 is a graph showing the binding properties of aptamers 8 to 11 to gluten and heated gluten in Example 6 of the present invention.
(1)核酸分子
 本発明の核酸分子は、前述のように、下記(a)または(b)のいずれかのポリヌクレオチドを含むことを特徴とする、グルテンおよびグリアジンの少なくとも一方に結合する核酸分子である。
(a)配列番号1、8、もしくは10の塩基配列または配列番号1、8、もしくは10の塩基配列の部分配列からなるポリヌクレオチド
(b)前記(a)の塩基配列に対して、90%以上の同一性を有する塩基配列からなり、グルテンおよびグリアジンの少なくとも一方に結合するポリヌクレオチド
(1) Nucleic acid molecule The nucleic acid molecule of the present invention contains a polynucleotide of any one of the following (a) and (b) as described above, and is a nucleic acid molecule that binds to at least one of gluten and gliadin: It is.
(A) a polynucleotide comprising the nucleotide sequence of SEQ ID NO: 1, 8, or 10 or a partial sequence of the nucleotide sequence of SEQ ID NO: 1, 8, or 10 (b) 90% or more relative to the nucleotide sequence of (a) A polynucleotide that has the same nucleotide sequence and binds to at least one of gluten and gliadin
 本発明において、グルテンの由来は、特に制限されず、例えば、小麦、ライ麦、大麦、えん麦等の穀物があげられる。本発明の核酸について、例えば、結合能を確認するためのグルテンとして、市販のグルテンが使用でき、具体例として、小麦由来のグルテン(073-00575、和光純薬社製)が例示できる。グルテンは、例えば、加熱等による変性が生じていない未変性アレルゲンでもよいし、加熱等による変性が生じた変性アレルゲンでもよい。 In the present invention, the origin of gluten is not particularly limited, and examples thereof include grains such as wheat, rye, barley, and oats. For the nucleic acid of the present invention, for example, commercially available gluten can be used as gluten for confirming the binding ability, and specific examples include wheat-derived gluten (073-00575, manufactured by Wako Pure Chemical Industries, Ltd.). The gluten may be, for example, an unmodified allergen that has not been modified by heating or the like, or a modified allergen that has been modified by heating or the like.
 本発明において、グリアジンの由来は、特に制限されず、例えば、前述したグルテンの由来と同様である。本発明の核酸について、例えば、結合能を確認するためのグリアジンとして、例えば、GenBankアクセッション番号A27319に開示されたアミノ酸配列からなる、小麦由来のグリアジンタンパク質が例示できる。グリアジンは、例えば、加熱等による変性が生じていない未変性アレルゲンでもよいし、加熱等による変性が生じた変性アレルゲンでもよい。 In the present invention, the origin of gliadin is not particularly limited, and is the same as, for example, the origin of gluten described above. Regarding the nucleic acid of the present invention, for example, gliadin for confirming the binding ability can be exemplified by wheat-derived gliadin protein comprising the amino acid sequence disclosed in GenBank Accession No. A27319. The gliadin may be, for example, an unmodified allergen that has not been modified by heating or the like, or a modified allergen that has been modified by heating or the like.
 本発明の核酸分子は、前述のように、グルテンまたはグリアジンに結合可能である。本発明において、「グルテンに結合する」とは、例えば、グルテンに対する結合性を有している、または、グルテンに対する結合活性を有しているともいい、「グリアジンに結合する」とは、例えば、グリアジンに対する結合性を有している、または、グリアジンに対する結合活性を有しているともいう。本発明の核酸分子とグルテンまたはグリアジンとの結合は、例えば、表面プラズモン共鳴分子相互作用(SPR;Surface Plasmon resonance)解析等により決定できる。前記解析は、例えば、BIACORE3000(商品名、GE Healthcare UK Ltd.)が使用できる。本発明の核酸分子は、グルテンまたはグリアジンに結合することから、例えば、グルテンまたはグリアジンの検出に使用できる。 The nucleic acid molecule of the present invention can bind to gluten or gliadin as described above. In the present invention, “binding to gluten” means, for example, having binding property to gluten or having binding activity to gluten, and “binding to gliadin” means, for example, It is said that it has binding property to gliadin or has binding activity to gliadin. The binding between the nucleic acid molecule of the present invention and gluten or gliadin can be determined by, for example, surface plasmon resonance molecular interaction (SPR) analysis. For the analysis, for example, BIACORE 3000 (trade name, GE Healthcare UK Ltd.) can be used. Since the nucleic acid molecule of the present invention binds to gluten or gliadin, it can be used, for example, for detection of gluten or gliadin.
 本発明の核酸分子は、グリアジンに対する結合力を示す解離定数が、例えば、581nmol/L以下、132nmol/L以下、102nmol/L以下、23nmol/L以下、20nmol/L以下である。 The nucleic acid molecule of the present invention has a dissociation constant indicating a binding force to gliadin of, for example, 581 nmol / L or less, 132 nmol / L or less, 102 nmol / L or less, 23 nmol / L or less, 20 nmol / L or less.
 本発明の核酸分子は、DNA分子、またはDNAアプタマーともいう。本発明の核酸分子は、例えば、前記(a)または(b)のポリヌクレオチドからなる分子でもよいし、前記ポリヌクレオチドを含む分子でもよい。 The nucleic acid molecule of the present invention is also called a DNA molecule or a DNA aptamer. The nucleic acid molecule of the present invention may be, for example, a molecule composed of the polynucleotide (a) or (b) or a molecule containing the polynucleotide.
 前記(a)のポリヌクレオチドは、例えば、前記配列番号1、8、または10の塩基配列を含むポリヌクレオチドでもよいし、前記配列番号1、8、または10の塩基配列からなるポリヌクレオチドでもよく、また、前記配列番号1、8、または10の塩基配列の部分配列を含むポリヌクレオチドでもよいし、前記部分配列からなるポリヌクレオチドでもよい。前記配列番号1、8、および10のポリヌクレオチドを以下に示す。 The polynucleotide (a) may be, for example, a polynucleotide containing the base sequence of SEQ ID NO: 1, 8, or 10, or a polynucleotide comprising the base sequence of SEQ ID NO: 1, 8, or 10. Further, it may be a polynucleotide containing a partial sequence of the base sequence of SEQ ID NO: 1, 8, or 10 or a polynucleotide comprising the partial sequence. The polynucleotides of SEQ ID NOs: 1, 8, and 10 are shown below.
Glu392BR8m4(配列番号1)
GGTATGGAGGCAAGTCCCAATTCGTGCAGAGAAACGTGTCTGTATTTATTAATCGTTTCAGCCAGACAGGGTTTATG
Gli95_395TR8m1(配列番号8)
GGAAACGCCGCCTAGATCATTTGCGTCCTCCCTGGTGGGGATTGGCGAAAATTGACATCCTCAAGTTCCTGCGAAATG
Gli_395BR8m2(配列番号10)
GGAAACGCCGCCTAGATCATTTGAAAACGTTGTTACCTCACCTATTATCTATTGACATCCTCAAGTTCCTGCGAAATG
Glu392BR8m4 (SEQ ID NO: 1)
GGTATGGAGGCAAGTCCCAATTCG T G C AGAGAAA C G T G TCT G T A TTT A TT AA TC G TTTC AG CC AGA C AGGG TTT A T G
Gli95_395TR8m1 (SEQ ID NO: 8)
GGAAACGCCGCCTAGATCATTTG C G TCCTCCCT GG T GGGGA TT GG C GAAAA TT GA C A TCCTC AAG TTCCT G C GAAA T G
Gli — 395BR8m2 (SEQ ID NO: 10)
GGAAACGCCGCCTAGATCATTTGAAAA C G TT G TT A CCTC A CCT A TT A TCT A TT GA C A TCCTC AAG TTCCT G C GAAA T G
 前記配列番号1の部分配列は、特に制限されないが、例えば、配列番号2~7の塩基配列があげられる。 The partial sequence of SEQ ID NO: 1 is not particularly limited, and examples thereof include base sequences of SEQ ID NOs: 2 to 7.
Glu392BR8m4_s59A(配列番号2)
GGTATGGAGGCAAGTCCCAATTCGTGCAGAGAAACGTGTCTGTATTTATTAATCGTTTC
Glu392BR8m4_s51(配列番号3)
GGCAAGTCCCAATTCGTGCAGAGAAACGTGTCTGTATTTATTAATCGTTTC
Glu392BR8m4_s38(配列番号4)
TCGTGCAGAGAAACGTGTCTGTATTTATTAATCGTTTC
Glu392BR8m4_s67(配列番号5)
GGTATGGAGGCAAGTCCCAATTCGTGCAGAGAAACGTGTCTGTATTTATTAATCGTTTCAGCCAGAC
Glu392BR8m4_s59B(配列番号6)
GGCAAGTCCCAATTCGTGCAGAGAAACGTGTCTGTATTTATTAATCGTTTCAGCCAGAC
Glu392BR8m4_s46(配列番号7)
TCGTGCAGAGAAACGTGTCTGTATTTATTAATCGTTTCAGCCAGAC
Glu392BR8m4_s59A (SEQ ID NO: 2)
GGTATGGAGGCAAGTCCCAATTCG T G C AGAGAAA C G T G TCT G T A TTT A TT AA TC G TTTC
Glu392BR8m4_s51 (SEQ ID NO: 3)
GGCAAGTCCCAATTCG T G C AGAGAAA C G T G TCT G T A TTT A TT AA TC G TTTC
Glu392BR8m4_s38 (SEQ ID NO: 4)
TC G T G C AGAGAAA C G T G TCT G T A TTT A TT AA TC G TTTC
Glu392BR8m4_s67 (SEQ ID NO: 5)
GGTATGGAGGCAAGTCCCAATTCG T G C AGAGAAA C G T G TCT G T A TTT A TT AA TC G TTTC AG CC AGA C
Glu392BR8m4_s59B (SEQ ID NO: 6)
GGCAAGTCCCAATTCG T G C AGAGAAA C G T G TCT G T A TTT A TT AA TC G TTTC AG CC AGA C
Glu392BR8m4_s46 (SEQ ID NO: 7)
TCGTGCAGAGAAACG T G TCT G T A TTT A TT AA TC G TTTC AG CC AGA C
 前記配列番号8の部分配列は、特に制限されないが、例えば、配列番号9の塩基配列があげられる。
Gli95_395TR8m1s50(配列番号9)
CGCCTAGATCATTTGCGTCCTCCCTGGTGGGGATTGGCGAAAATTGACAT
The partial sequence of SEQ ID NO: 8 is not particularly limited, and examples thereof include the base sequence of SEQ ID NO: 9.
Gli95_395TR8m1s50 (SEQ ID NO: 9)
CGCCTAGATCATTTG C G TCCTCCCT GG T GGGGA TT GG C GAAAA TT GA C A T
 前記配列番号10の部分配列は、特に制限されないが、例えば、配列番号11の塩基配列があげられる。
Gli_395BR8m2s51(配列番号11)
GGAAACGCCGCCTAGATCATTTGAAAACGTTGTTACCTCACCTATTATCTA
The partial sequence of SEQ ID NO: 10 is not particularly limited, and examples thereof include the base sequence of SEQ ID NO: 11.
Gli — 395BR8m2s51 (SEQ ID NO: 11)
GGAAACGCCGCCTAGATCATTTGAAAA C G TT G TT A CCTC A CCT A TT A TCT A
 前記(b)において、「同一性」は、特に制限されず、例えば、前記(b)のポリヌクレオチドが、グルテンおよびグリアジンの少なくとも一方に結合する範囲であればよい。前記同一性は、例えば、80%以上、好ましくは85%以上、より好ましくは90%以上、さらに好ましくは95%以上、96%以上、97%以上、特に好ましくは98%以上、最も好ましくは99%以上である。前記同一性は、例えば、BLAST、FASTA等の解析ソフトウェアを用いて、デフォルトのパラメータにより算出できる(以下、同様)。 In the above (b), “identity” is not particularly limited, and may be any range as long as the polynucleotide of (b) binds to at least one of gluten and gliadin. The identity is, for example, 80% or more, preferably 85% or more, more preferably 90% or more, further preferably 95% or more, 96% or more, 97% or more, particularly preferably 98% or more, and most preferably 99%. % Or more. The identity can be calculated with default parameters using analysis software such as BLAST and FASTA (hereinafter the same).
 本発明の核酸分子における前記ポリヌクレオチドは、例えば、下記(c)のポリヌクレオチドでもよい。この場合、本発明の核酸分子は、例えば、前記(c)のポリヌクレオチドからなる分子でもよいし、前記ポリヌクレオチドを含む分子でもよい。
(c)前記(a)の塩基配列からなるポリヌクレオチドに対して、ストリンジェントな条件下でハイブリダイズするポリヌクレオチドに相補的な塩基配列からなり、グルテンおよびグリアジンの少なくとも一方に結合するポリヌクレオチド
The polynucleotide in the nucleic acid molecule of the present invention may be, for example, the polynucleotide (c) below. In this case, the nucleic acid molecule of the present invention may be, for example, a molecule composed of the polynucleotide (c) or a molecule containing the polynucleotide.
(C) a polynucleotide comprising a base sequence complementary to a polynucleotide that hybridizes under stringent conditions to the polynucleotide comprising the base sequence of (a) and binding to at least one of gluten and gliadin
 前記(c)において、「ハイブリダイズするポリヌクレオチド」は、特に制限されず、例えば、前記(a)の塩基配列に対して、完全または部分的に相補的なポリヌクレオチドである。前記ハイブリダイズは、例えば、各種ハイブリダイゼーションアッセイにより検出できる。前記ハイブリダイゼーションアッセイは、特に制限されず、例えば、ザンブルーク(Sambrook)ら編「モレキュラー・クローニング:ア・ラボラトリーマニュアル第2版(Molecular Cloning: A Laboratory Manual 2nd Ed.)」〔Cold Spring Harbor Laboratory Press (1989)〕等に記載されている方法を採用することもできる。 In (c), the “hybridizing polynucleotide” is not particularly limited, and is, for example, a polynucleotide that is completely or partially complementary to the base sequence of (a). The hybridization can be detected by, for example, various hybridization assays. The hybridization assay is not particularly limited, for example, Zanburuku (Sambrook) et al., Eds., "Molecular Cloning: A Laboratory Manual 2nd Edition (Molecular Cloning:. A Laboratory Manual 2 nd Ed) ," [Cold Spring Harbor Laboratory Press (1989)] and the like can also be employed.
 前記(c)において、「ストリンジェントな条件」は、例えば、低ストリンジェントな条件、中ストリンジェントな条件、高ストリンジェントな条件のいずれでもよい。「低ストリンジェントな条件」は、例えば、5×SSC、5×デンハルト溶液、0.5%SDS、50%ホルムアミド、32℃の条件である。「中ストリンジェントな条件」は、例えば、5×SSC、5×デンハルト溶液、0.5%SDS、50%ホルムアミド、42℃の条件である。「高ストリンジェントな条件」は、例えば、5×SSC、5×デンハルト溶液、0.5%SDS、50%ホルムアミド、50℃の条件である。ストリンジェンシーの程度は、当業者であれば、例えば、温度、塩濃度、プローブの濃度および長さ、イオン強度、時間等の条件を適宜選択することで、設定可能である。「ストリンジェントな条件」は、例えば、前述したザンブルーク(Sambrook)ら編「モレキュラー・クローニング:ア・ラボラトリーマニュアル第2版(Molecular Cloning: A Laboratory Manual 2nd Ed.)」〔Cold Spring Harbor Laboratory Press (1989)〕等に記載の条件を採用することもできる。 In the above (c), the “stringent conditions” may be, for example, any of low stringent conditions, medium stringent conditions, and high stringent conditions. “Low stringent conditions” are, for example, conditions of 5 × SSC, 5 × Denhardt's solution, 0.5% SDS, 50% formamide, and 32 ° C. “Medium stringent conditions” are, for example, 5 × SSC, 5 × Denhardt's solution, 0.5% SDS, 50% formamide, 42 ° C. “High stringent conditions” are, for example, conditions of 5 × SSC, 5 × Denhardt's solution, 0.5% SDS, 50% formamide, 50 ° C. The degree of stringency can be set by those skilled in the art by appropriately selecting conditions such as temperature, salt concentration, probe concentration and length, ionic strength, time, and the like. "Stringent conditions" are, for example, Zanburuku previously described (Sambrook) et al., Eds., "Molecular Cloning: A Laboratory Manual 2nd Edition (Molecular Cloning:. A Laboratory Manual 2 nd Ed) ," [Cold Spring Harbor Laboratory Press ( 1989)]] and the like.
 本発明の核酸分子における前記ポリヌクレオチドは、例えば、下記(d)のポリヌクレオチドでもよい。この場合、本発明の核酸分子は、例えば、前記(d)のポリヌクレオチドからなる分子でもよいし、前記ポリヌクレオチドを含む分子でもよい。
(d)前記(a)の塩基配列において、1もしくは数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、グルテンおよびグリアジンの少なくとも一方に結合するポリヌクレオチド
The polynucleotide in the nucleic acid molecule of the present invention may be, for example, the polynucleotide (d) below. In this case, the nucleic acid molecule of the present invention may be, for example, a molecule composed of the polynucleotide (d) or a molecule containing the polynucleotide.
(D) a polynucleotide comprising a base sequence in which one or several bases are deleted, substituted, inserted and / or added in the base sequence of (a), and binding to at least one of gluten and gliadin
 前記(d)において、「1もしくは数個」は、例えば、前記(d)のポリヌクレオチドが、グルテンおよびグリアジンの少なくとも一方に結合する範囲であればよい。前記「1もしくは数個」は、前記(a)の塩基配列において、例えば、1~10個、好ましくは1~7個、より好ましくは1~5個、さらに好ましくは1~3個、特に好ましくは1または2個である。 In the above (d), “one or several” may be in the range where the polynucleotide in (d) binds to at least one of gluten and gliadin. The “one or several” in the base sequence of (a) is, for example, 1 to 10, preferably 1 to 7, more preferably 1 to 5, further preferably 1 to 3, particularly preferably. Is one or two.
 本発明の核酸分子における前記ポリヌクレオチドは、例えば、下記(e)のポリヌクレオチドでもよい。この場合、本発明の核酸分子は、例えば、前記(e)のポリヌクレオチドからなる分子でもよいし、前記ポリヌクレオチドを含む分子でもよい。
(e)前記(a)の塩基配列に対して、80%以上の同一性を有する塩基配列からなり、それぞれ、配列番号2~7のいずれかの塩基配列、配列番号9の塩基配列、または配列番号11の塩基配列を含む、グルテンおよびグリアジンの少なくとも一方に結合するポリヌクレオチド
The polynucleotide in the nucleic acid molecule of the present invention may be, for example, the polynucleotide (e) below. In this case, the nucleic acid molecule of the present invention may be, for example, a molecule composed of the polynucleotide (e) or a molecule containing the polynucleotide.
(E) consisting of a base sequence having 80% or more identity to the base sequence of (a), each of the base sequence of SEQ ID NO: 2 to 7, the base sequence of SEQ ID NO: 9, or the sequence A polynucleotide comprising the nucleotide sequence of No. 11 and binding to at least one of gluten and gliadin
 本発明の核酸分子における前記ポリヌクレオチドは、例えば、下記(f)のポリヌクレオチドでもよい。この場合、本発明の核酸分子は、例えば、前記(f)のポリヌクレオチドからなる分子でもよいし、前記ポリヌクレオチドを含む分子でもよい。
(f)配列番号1~11からなる群から選択された少なくとも一つの塩基配列に対して、80%以上の同一性を有する塩基配列からなり、それぞれ、式(I)~(XI)で表される二次構造を形成可能である、グルテンおよびグリアジンの少なくとも一方に結合するポリヌクレオチド
Figure JPOXMLDOC01-appb-C000012
 
Figure JPOXMLDOC01-appb-C000013
 
Figure JPOXMLDOC01-appb-C000014
 
Figure JPOXMLDOC01-appb-C000015
 
Figure JPOXMLDOC01-appb-C000016
 
Figure JPOXMLDOC01-appb-C000017
 
Figure JPOXMLDOC01-appb-C000018
 
Figure JPOXMLDOC01-appb-C000019
 
Figure JPOXMLDOC01-appb-C000020
 
Figure JPOXMLDOC01-appb-C000021
 
Figure JPOXMLDOC01-appb-C000022
 
The polynucleotide in the nucleic acid molecule of the present invention may be, for example, the polynucleotide (f) below. In this case, the nucleic acid molecule of the present invention may be, for example, a molecule composed of the polynucleotide (f) or a molecule containing the polynucleotide.
(F) a base sequence having at least 80% identity to at least one base sequence selected from the group consisting of SEQ ID NOs: 1 to 11, and represented by formulas (I) to (XI), respectively. A polynucleotide that binds to at least one of gluten and gliadin
Figure JPOXMLDOC01-appb-C000012

Figure JPOXMLDOC01-appb-C000013

Figure JPOXMLDOC01-appb-C000014

Figure JPOXMLDOC01-appb-C000015

Figure JPOXMLDOC01-appb-C000016

Figure JPOXMLDOC01-appb-C000017

Figure JPOXMLDOC01-appb-C000018

Figure JPOXMLDOC01-appb-C000019

Figure JPOXMLDOC01-appb-C000020

Figure JPOXMLDOC01-appb-C000021

Figure JPOXMLDOC01-appb-C000022
 前記(f)において、「二次構造を形成可能」とは、例えば、前記(f)のポリヌクレオチドが、前記式におけるステム構造およびループ構造を形成可能であることをいう(以下、同様)。ステム構造およびループ構造については、後述する。 In the above (f), “a secondary structure can be formed” means, for example, that the polynucleotide of (f) can form a stem structure and a loop structure in the above formula (the same applies hereinafter). The stem structure and loop structure will be described later.
 本発明の核酸分子における前記ポリヌクレオチドは、例えば、下記(g)のポリヌクレオチドでもよい。この場合、本発明の核酸分子は、例えば、前記(g)のポリヌクレオチドからなる分子でもよいし、前記ポリヌクレオチドを含む分子でもよい。
(g)配列番号1、8、および10からなる群から選択された少なくとも一つの塩基配列に対して、80%以上の同一性を有する塩基配列からなり、それぞれ、式(II)~(VII)のいずれか、式(IX)、および式(XI)で表される二次構造を形成可能である、グルテンおよびグリアジンの少なくとも一方に結合するポリヌクレオチド
The polynucleotide in the nucleic acid molecule of the present invention may be, for example, the polynucleotide (g) below. In this case, the nucleic acid molecule of the present invention may be, for example, a molecule composed of the polynucleotide (g) or a molecule containing the polynucleotide.
(G) consisting of a base sequence having 80% or more identity to at least one base sequence selected from the group consisting of SEQ ID NOs: 1, 8, and 10, each of formulas (II) to (VII) A polynucleotide that binds to at least one of gluten and gliadin, which is capable of forming a secondary structure represented by any one of formula (IX) and formula (XI):
 本発明の核酸分子は、例えば、前記(a)~(g)のいずれかのポリヌクレオチドの配列を1つ含んでもよいし、前記ポリヌクレオチドの配列を複数含んでもよい。後者の場合、複数のポリヌクレオチドの配列が連結して、一本鎖のポリヌクレオチドを形成していることが好ましい。前記複数のポリヌクレオチドの配列は、例えば、それぞれが直接的に連結してもよいし、リンカーを介して、それぞれが間接的に連結してもよい。前記ポリヌクレオチドの配列は、それぞれの末端において、直接的または間接的に連結していることが好ましい。前記複数のポリヌクレオチドの配列は、例えば、同じでもよいし、異なってもよいが、好ましくは同じである。前記ポリヌクレオチドの配列を複数含む場合、前記配列の数は、特に制限されず、例えば、2以上であり、好ましくは2~12であり、より好ましくは2~6であり、さらに好ましくは2である。 The nucleic acid molecule of the present invention may include, for example, one of the polynucleotide sequences (a) to (g) or a plurality of the polynucleotide sequences. In the latter case, it is preferable that a plurality of polynucleotide sequences are linked to form a single-stranded polynucleotide. For example, the sequences of the plurality of polynucleotides may be directly linked to each other or indirectly linked via a linker. The polynucleotide sequences are preferably linked directly or indirectly at the respective ends. The sequences of the plurality of polynucleotides may be the same or different, for example, but are preferably the same. When the polynucleotide includes a plurality of sequences, the number of the sequences is not particularly limited, and is, for example, 2 or more, preferably 2 to 12, more preferably 2 to 6, and further preferably 2. is there.
 前記リンカーは、例えば、ポリヌクレオチドがあげられ、その構成単位は、例えば、ヌクレオチド残基があげられる。前記ヌクレオチド残基は、例えば、リボヌクレオチド残基、デオキシリボヌクレオチド残基があげられる。前記リンカーの長さは、特に制限されず、例えば、1~24塩基長であり、好ましくは12~24塩基長であり、より好ましくは16~24塩基長であり、さらに好ましくは20~24塩基長である。 The linker is, for example, a polynucleotide, and the structural unit is, for example, a nucleotide residue. Examples of the nucleotide residue include a ribonucleotide residue and a deoxyribonucleotide residue. The length of the linker is not particularly limited, and is, for example, 1 to 24 bases long, preferably 12 to 24 bases long, more preferably 16 to 24 bases long, and further preferably 20 to 24 bases long. It is long.
 本発明の核酸分子において、前記ポリヌクレオチドは、一本鎖ポリヌクレオチドであることが好ましい。前記一本鎖ポリヌクレオチドは、例えば、自己アニーリングによりステム構造およびループ構造を形成可能であることが好ましい。前記ポリヌクレオチドは、例えば、ステムループ構造、インターナルループ構造および/またはバルジ構造等を形成可能であることが好ましい。 In the nucleic acid molecule of the present invention, the polynucleotide is preferably a single-stranded polynucleotide. The single-stranded polynucleotide is preferably capable of forming a stem structure and a loop structure by, for example, self-annealing. The polynucleotide is preferably capable of forming a stem loop structure, an internal loop structure, and / or a bulge structure, for example.
 本発明の核酸分子は、例えば、二本鎖でもよい。二本鎖の場合、例えば、一方の一本鎖ポリヌクレオチドは、前記(a)~(g)のいずれかのポリヌクレオチドであり、他方の一本鎖ポリヌクレオチドは、制限されない。前記他方の一本鎖ポリヌクレオチドは、例えば、前記(a)~(g)のいずれかのポリヌクレオチドに相補的な塩基配列からなるポリヌクレオチドがあげられる。本発明の核酸分子が二本鎖の場合、例えば、使用に先立って、変性等により、一本鎖ポリヌクレオチドに解離させることが好ましい。また、解離した前記(a)~(g)のいずれかの一本鎖ポリヌクレオチドは、例えば、前述のように、ステム構造およびループ構造を形成していることが好ましい。 The nucleic acid molecule of the present invention may be, for example, double stranded. In the case of a double strand, for example, one single-stranded polynucleotide is any one of the polynucleotides (a) to (g), and the other single-stranded polynucleotide is not limited. Examples of the other single-stranded polynucleotide include a polynucleotide having a base sequence complementary to any one of the polynucleotides (a) to (g). When the nucleic acid molecule of the present invention is double-stranded, it is preferably dissociated into a single-stranded polynucleotide by denaturation or the like prior to use. In addition, the dissociated single-stranded polynucleotide of any one of (a) to (g) preferably has a stem structure and a loop structure as described above, for example.
 本発明において、「ステム構造およびループ構造を形成可能」とは、例えば、実際にステム構造およびループ構造を形成すること、ならびに、ステム構造およびループ構造が形成されていなくても、条件によってステム構造およびループ構造を形成可能なことも含む。「ステム構造およびループ構造を形成可能」とは、例えば、実験的に確認した場合、および、コンピュータ等のシミュレーションで予測した場合の双方を含む。 In the present invention, “the stem structure and the loop structure can be formed” means, for example, that the stem structure and the loop structure are actually formed, and even if the stem structure and the loop structure are not formed, the stem structure depending on the conditions. And the ability to form a loop structure. “A stem structure and a loop structure can be formed” includes, for example, both experimental confirmation and prediction by a computer simulation.
 本発明の核酸分子の構成単位は、例えば、ヌクレオチド残基である。前記核酸分子の長さは、特に制限されず、その下限は、例えば、15塩基長であり、好ましくは75塩基長または80塩基長であり、その上限は、例えば、1000塩基長であり、好ましくは200塩基長、100塩基長または90塩基長である。 The structural unit of the nucleic acid molecule of the present invention is, for example, a nucleotide residue. The length of the nucleic acid molecule is not particularly limited, and the lower limit thereof is, for example, 15 base length, preferably 75 base length or 80 base length, and the upper limit thereof is, for example, 1000 base length, preferably Is 200 bases, 100 bases or 90 bases long.
 前記ヌクレオチド残基は、例えば、デオキシリボヌクレオチド残基およびリボヌクレオチド残基があげられる。本発明の核酸分子は、例えば、デオキシリボヌクレオチド残基のみから構成されるDNA、1もしくは数個のリボヌクレオチド残基を含むDNA等があげられる。後者の場合、「1もしくは数個」は、特に制限されず、例えば、前記ポリヌクレオチドにおいて、例えば、1~3個である。本発明において、塩基数および配列数等の個数の数値範囲は、例えば、その範囲に属する正の整数を全て開示するものである。つまり、例えば、「1~3塩基」との記載は、「1、2、3塩基」の全ての開示を意味する(以下、同様)。 Examples of the nucleotide residue include deoxyribonucleotide residue and ribonucleotide residue. Examples of the nucleic acid molecule of the present invention include DNA composed only of deoxyribonucleotide residues, DNA containing one or several ribonucleotide residues, and the like. In the latter case, “1 or several” is not particularly limited, and is, for example, 1 to 3 in the polynucleotide. In the present invention, the numerical range of numbers such as the number of bases and the number of sequences, for example, discloses all positive integers belonging to the range. That is, for example, the description “1 to 3 bases” means all disclosures of “1, 2, 3 bases” (hereinafter the same).
 前記ポリヌクレオチドは、例えば、少なくとも1個の修飾塩基を含む。前記修飾塩基は、特に制限されず、例えば、天然塩基(非人工塩基)が修飾された塩基があげられ、前記天然塩基と同様の機能を有することが好ましい。前記天然塩基は、特に制限されず、例えば、プリン骨格を有するプリン塩基、ピリミジン骨格を有するピリミジン塩基等があげられる。前記プリン塩基は、特に制限されず、例えば、アデニン(a)、グアニン(g)があげられる。前記ピリミジン塩基は、特に制限されず、例えば、シトシン(c)、チミン(t)、ウラシル(u)等があげられる。前記塩基の修飾部位は、特に制限されない。前記塩基がプリン塩基の場合、前記プリン塩基の修飾部位は、例えば、前記プリン骨格の7位および8位があげられる。前記塩基がピリミジン塩基の場合、前記ピリミジン塩基の修飾部位は、例えば、前記ピリミジン骨格の5位および6位があげられる。前記ピリミジン骨格において、4位の炭素に「=O」が結合し、5位の炭素に「-CH」または「-H」以外の基が結合している場合、修飾ウラシルまたは修飾チミンということができる。 The polynucleotide includes, for example, at least one modified base. The modified base is not particularly limited, and examples thereof include a base modified with a natural base (non-artificial base), and preferably has the same function as the natural base. The natural base is not particularly limited, and examples thereof include a purine base having a purine skeleton and a pyrimidine base having a pyrimidine skeleton. The purine base is not particularly limited, and examples thereof include adenine (a) and guanine (g). The pyrimidine base is not particularly limited, and examples thereof include cytosine (c), thymine (t), uracil (u) and the like. The base modification site is not particularly limited. When the base is a purine base, examples of the purine base modification site include the 7th and 8th positions of the purine skeleton. When the base is a pyrimidine base, examples of the modification site of the pyrimidine base include the 5th and 6th positions of the pyrimidine skeleton. In the pyrimidine skeleton, when “═O” is bonded to carbon at position 4 and a group other than “—CH 3 ” or “—H” is bonded to carbon at position 5, it is called modified uracil or modified thymine. Can do.
 前記修飾塩基の修飾基は、特に制限されず、例えば、メチル基、フルオロ基、アミノ基、チオ基、下記式(1)のベンジルアミノカルボニル基(benzylaminocarbonyl)、下記式(2)のトリプタミノカルボニル基(tryptaminocarbonyl)およびイソブチルアミノカルボニル基(isobutylaminocarbonyl)等があげられる。
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
The modifying group of the modifying base is not particularly limited, and examples thereof include a methyl group, a fluoro group, an amino group, a thio group, a benzylaminocarbonyl group represented by the following formula (1), and a tryptaminocarbonyl represented by the following formula (2). Group (tryptaminocarbonyl), isobutylaminocarbonyl group (isobutylaminocarbonyl) and the like.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
 前記修飾塩基は、特に制限されず、例えば、アデニンが修飾された修飾アデニン、チミンが修飾された修飾チミン、グアニンが修飾された修飾グアニン、シトシンが修飾された修飾シトシンおよびウラシルが修飾された修飾ウラシル等があげられ、前記修飾チミン、前記修飾ウラシルおよび前記修飾シトシンが好ましい。 The modified base is not particularly limited. For example, modified adenine modified with adenine, modified thymine modified with thymine, modified guanine modified with guanine, modified cytosine modified with cytosine and modified modified with uracil Examples include uracil and the like, and the modified thymine, the modified uracil and the modified cytosine are preferable.
 前記修飾アデニンの具体例としては、例えば、7’-デアザアデニン等があげられる。 Specific examples of the modified adenine include 7'-deazaadenine and the like.
 前記修飾グアニンの具体例としては、例えば、7’-デアザグアニン等があげられる。 Specific examples of the modified guanine include, for example, 7'-deazaguanine.
 前記修飾シトシンの具体例としては、例えば、5’-メチルシトシン等があげられる。 Specific examples of the modified cytosine include 5'-methylcytosine.
 前記修飾チミンの具体例としては、例えば、5’-ベンジルアミノカルボニルチミン、5’-トリプタミノカルボニルチミン、5’-イソブチルアミノカルボニルチミン等があげられる。 Specific examples of the modified thymine include 5'-benzylaminocarbonylthymine, 5'-tryptaminocarbonylthymine, 5'-isobutylaminocarbonylthymine and the like.
 前記修飾ウラシルの具体例としては、例えば、5’-ベンジルアミノカルボニルウラシル(BndU)、5’-トリプタミノカルボニルウラシル(TrpdU)および5’-イソブチルアミノカルボニルウラシル等があげられる。 Specific examples of the modified uracil include 5'-benzylaminocarbonyluracil (BndU), 5'-tryptaminocarbonyluracil (TrpdU), 5'-isobutylaminocarbonyluracil and the like.
 前記ポリヌクレオチドは、特に制限されず、例えば、いずれか1種類の前記修飾塩基のみを含んでもよいし、2種類以上の前記修飾塩基を含んでもよい。 The polynucleotide is not particularly limited, and may include, for example, only one type of the modified base, or may include two or more types of the modified base.
 前記修飾塩基の個数は、特に制限されない。前記ポリヌクレオチドにおいて、前記修飾塩基の個数は、例えば、1個以上である。前記修飾塩基は、前記ポリヌクレオチドにおいて、例えば、1~80個、好ましくは1~70個、より好ましくは1~50個、さらに好ましくは1~40個、特に好ましくは1~30個、最も好ましくは1~20個であり、また、全ての塩基が、前記修飾塩基でもよい。前記修飾塩基の個数は、例えば、いずれか1種類の前記修飾塩基の個数であってもよいし、2種類以上の前記修飾塩基の個数の合計であってもよい。また、前記ポリヌクレオチドを含む前記核酸分子の全長における前記修飾塩基も、特に制限されず、例えば、1~80個、1~50個、1~20個であり、好ましくは、前述の範囲と同様である。 The number of the modified base is not particularly limited. In the polynucleotide, the number of the modified base is, for example, one or more. In the polynucleotide, the modified base is, for example, 1 to 80, preferably 1 to 70, more preferably 1 to 50, still more preferably 1 to 40, particularly preferably 1 to 30, and most preferably. 1 to 20 and all the bases may be the modified bases. The number of the modified bases may be, for example, the number of any one of the modified bases or the total number of the two or more modified bases. In addition, the modified base in the entire length of the nucleic acid molecule containing the polynucleotide is not particularly limited, and is, for example, 1 to 80, 1 to 50, or 1 to 20, preferably in the same range as described above. It is.
 前記ポリヌクレオチドにおいて、前記修飾塩基の割合は、特に制限されない。前記修飾塩基の割合は、前記ポリヌクレオチドの全塩基数のうち、例えば、1/100以上、好ましくは1/40以上、より好ましくは1/20以上、さらに好ましくは1/10以上、特に好ましくは1/4以上、最も好ましくは1/3以上である。また、前記ポリヌクレオチドを含む前記核酸分子の全長における前記修飾塩基の割合も、特に制限されず、前述の範囲と同様である。ここで、前記全塩基数は、例えば、前記ポリヌクレオチドにおける天然塩基の個数と前記修飾塩基の個数の合計である。前記修飾塩基の割合を分数で示すが、これを満たす全塩基数と修飾塩基数とは、それぞれ正の整数である。 In the polynucleotide, the ratio of the modified base is not particularly limited. The ratio of the modified base is, for example, 1/100 or more, preferably 1/40 or more, more preferably 1/20 or more, still more preferably 1/10 or more, particularly preferably, of the total number of bases of the polynucleotide. 1/4 or more, most preferably 1/3 or more. Further, the ratio of the modified base in the entire length of the nucleic acid molecule containing the polynucleotide is not particularly limited, and is the same as the above range. Here, the total number of bases is, for example, the total number of natural bases and modified bases in the polynucleotide. The ratio of the modified base is expressed as a fraction, and the total number of bases and the number of modified bases that satisfy this are positive integers.
 前記ポリヌクレオチドにおける前記修飾塩基が、前記修飾チミンの場合、前記修飾チミンの個数は、特に制限されない。前記ポリヌクレオチドにおいて、例えば、天然チミンは、前記修飾チミンに置換できる。前記ポリヌクレオチドにおいて、前記修飾チミンの個数は、例えば、1個以上である。前記修飾チミンは、前記ポリヌクレオチドにおいて、例えば、1~80個、好ましくは1~70個、より好ましくは1~50個、さらに好ましくは1~40個、特に好ましくは1~30個、最も好ましくは1~21個であり、また、全てのチミンが、前記修飾チミンでもよい。 When the modified base in the polynucleotide is the modified thymine, the number of the modified thymine is not particularly limited. In the polynucleotide, for example, natural thymine can be substituted for the modified thymine. In the polynucleotide, the number of the modified thymine is, for example, one or more. In the polynucleotide, the modified thymine is, for example, 1 to 80, preferably 1 to 70, more preferably 1 to 50, still more preferably 1 to 40, particularly preferably 1 to 30, and most preferably. 1 to 21 and all the thymines may be the modified thymines.
 前記ポリヌクレオチドにおいて、前記修飾チミンの割合は、特に制限されない。前記修飾チミンの割合は、前記天然チミンの個数と前記修飾チミンの個数との合計のうち、例えば、1/100以上、好ましくは1/40以上、より好ましくは1/20以上、さらに好ましくは1/10以上、特に好ましくは1/4以上、最も好ましくは1/3以上である。 In the polynucleotide, the ratio of the modified thymine is not particularly limited. The ratio of the modified thymine is, for example, 1/100 or more, preferably 1/40 or more, more preferably 1/20 or more, further preferably 1 out of the total number of the natural thymine and the modified thymine. / 10 or more, particularly preferably 1/4 or more, and most preferably 1/3 or more.
 前記ポリヌクレオチドにおける前記修飾塩基が、前記修飾ウラシルの場合、前記修飾ウラシルの個数は、特に制限されない。前記ポリヌクレオチドにおいて、例えば、天然チミンは、前記修飾ウラシルに置換できる。前記ポリヌクレオチドにおいて、前記修飾ウラシルの個数は、例えば、1個以上である。前記修飾ウラシルは、前記ポリヌクレオチドにおいて、例えば、1~80個、好ましくは1~70個、より好ましくは1~50個、さらに好ましくは1~40個、特に好ましくは1~30個、最も好ましくは1~21個であり、また、全てのウラシルが、前記修飾ウラシルでもよい。 When the modified base in the polynucleotide is the modified uracil, the number of the modified uracil is not particularly limited. In the polynucleotide, for example, natural thymine can be substituted for the modified uracil. In the polynucleotide, the number of the modified uracil is, for example, one or more. In the polynucleotide, the modified uracil is, for example, 1 to 80, preferably 1 to 70, more preferably 1 to 50, still more preferably 1 to 40, particularly preferably 1 to 30, and most preferably. 1 to 21 and all the uracils may be the modified uracils.
 前記ポリヌクレオチドにおいて、前記修飾ウラシルの割合は、特に制限されない。前記修飾ウラシルの割合は、前記天然チミンの個数と前記修飾ウラシルの個数との合計のうち、例えば、1/100以上、好ましくは1/40以上、より好ましくは1/20以上、さらに好ましくは1/10以上、特に好ましくは1/4以上、最も好ましくは1/3以上である。 In the polynucleotide, the ratio of the modified uracil is not particularly limited. The ratio of the modified uracil is, for example, 1/100 or more, preferably 1/40 or more, more preferably 1/20 or more, and further preferably 1 out of the total number of the natural thymines and the number of the modified uracils. / 10 or more, particularly preferably 1/4 or more, and most preferably 1/3 or more.
 前記修飾チミンと前記修飾ウラシルの個数の例示は、例えば、両者をあわせた個数であってもよい。 Examples of the number of the modified thymine and the modified uracil may be, for example, the total number of both.
 前記ポリヌクレオチドにおいて、例えば、前記各塩基配列における下線部で示されるチミンが、前記修飾チミンおよび前記修飾ウラシルの少なくとも一方でもよい。具体的には、例えば、配列番号1~7、10および11のいずれかの塩基配列における下線部で示されるチミンが、5’-ベンジルアミノカルボニルウラシル(BndU)でもよい。また、例えば、配列番号8および9のいずれかの塩基配列における下線部で示されるチミンが、5’-トリプタミノカルボニルウラシル(TrpdU)でもよい。前記ポリヌクレオチドにおいて、前記各塩基配列における下線部で示されるチミン以外のチミンは、例えば、天然塩基である。ただし、これには限定されず、前記各塩基配列における下線部で示されるチミン以外のチミンは、前記修飾塩基でもよい。 In the polynucleotide, for example, the thymine indicated by the underline in each base sequence may be at least one of the modified thymine and the modified uracil. Specifically, for example, 5'-benzylaminocarbonyluracil (BndU) may be used as the thymine indicated by the underline in any one of the nucleotide sequences of SEQ ID NOS: 1 to 7, 10 and 11. Further, for example, the underlined thymine in any one of the nucleotide sequences of SEQ ID NOs: 8 and 9 may be 5'-tryptaminocarbonyluracil (TrpdU). In the polynucleotide, thymine other than thymine indicated by the underlined portion in each base sequence is, for example, a natural base. However, the present invention is not limited to this, and thymine other than thymine shown by the underlined portion in each base sequence may be the modified base.
 前記ポリヌクレオチドにおける前記修飾塩基が、前記修飾シトシンの場合、前記修飾シトシンの個数は、特に制限されない。前記ポリヌクレオチドにおいて、例えば、天然シトシンは、前記修飾シトシンに置換できる。前記ポリヌクレオチドにおいて、前記修飾シトシンの個数は、例えば、1個以上である。前記修飾シトシンは、前記ポリヌクレオチドにおいて、例えば、1~80個、好ましくは1~70個、より好ましくは1~50個、さらに好ましくは1~40個、特に好ましくは1~30個、最も好ましくは1~21個であり、であり、また、全てのシトシンが、前記修飾シトシンでもよい。 When the modified base in the polynucleotide is the modified cytosine, the number of the modified cytosines is not particularly limited. In the polynucleotide, for example, natural cytosine can be substituted for the modified cytosine. In the polynucleotide, the number of the modified cytosines is, for example, one or more. In the polynucleotide, the modified cytosine is, for example, 1 to 80, preferably 1 to 70, more preferably 1 to 50, still more preferably 1 to 40, particularly preferably 1 to 30, and most preferably. 1 to 21 and all cytosines may be the modified cytosine.
 前記ポリヌクレオチドにおいて、前記修飾シトシンの割合は、特に制限されない。前記修飾シトシンの割合は、前記天然シトシンの個数と前記修飾シトシンの個数との合計のうち、例えば、1/100以上、好ましくは1/40以上、より好ましくは1/20以上、さらに好ましくは1/10以上、特に好ましくは1/4以上、最も好ましくは1/3以上である。 In the polynucleotide, the ratio of the modified cytosine is not particularly limited. The ratio of the modified cytosine is, for example, 1/100 or more, preferably 1/40 or more, more preferably 1/20 or more, further preferably 1 out of the total number of the natural cytosine and the modified cytosine. / 10 or more, particularly preferably 1/4 or more, and most preferably 1/3 or more.
 前記ポリヌクレオチドにおいて、例えば、前記各塩基配列における下線部で示されるシトシンが、前記修飾シトシンでもよい。具体的には、例えば、配列番号1~11のいずれかの塩基配列における下線部で示されるシトシンが、5’-メチルシトシンでもよい。前記ポリヌクレオチドにおいて、前記各塩基配列における下線部で示されるシトシン以外のシトシンは、例えば、天然塩基である。ただし、これには限定されず、前記各塩基配列における下線部で示されるシトシン以外のシトシンは、前記修飾塩基でもよい。 In the polynucleotide, for example, the cytosine indicated by the underline in each base sequence may be the modified cytosine. Specifically, for example, the cytosine indicated by the underline in any of the nucleotide sequences of SEQ ID NOS: 1 to 11 may be 5'-methylcytosine. In the polynucleotide, a cytosine other than the cytosine indicated by the underlined portion in each base sequence is, for example, a natural base. However, the present invention is not limited to this, and cytosine other than cytosine indicated by the underlined portion in each base sequence may be the modified base.
 前記修飾塩基が、前記修飾アデニンまたは前記修飾グアニンの場合、前記修飾シトシンの個数および割合の説明において、「シトシン」および「修飾シトシン」を、それぞれ「アデニン」および「修飾アデニン」または「グアニン」および「修飾グアニン」に読み替えて援用できる。前記ポリヌクレオチドにおいて、例えば、天然アデニンは、前記修飾アデニンに置換でき、例えば、天然グアニンは、前記修飾グアニンに置換できる。 When the modified base is the modified adenine or the modified guanine, in the description of the number and ratio of the modified cytosine, “cytosine” and “modified cytosine” are referred to as “adenine” and “modified adenine” or “guanine” and It can be read as “modified guanine”. In the polynucleotide, for example, natural adenine can be substituted with the modified adenine, and for example, natural guanine can be substituted with the modified guanine.
 本発明の核酸分子は、修飾ヌクレオチドを含んでもよい。前記修飾ヌクレオチドは、前述の前記修飾塩基を有するヌクレオチドでもよいし、糖残基が修飾された修飾糖を有するヌクレオチドでもよいし、前記修飾塩基および前記修飾糖を有するヌクレオチドでもよい。 The nucleic acid molecule of the present invention may contain a modified nucleotide. The modified nucleotide may be a nucleotide having the modified base described above, a nucleotide having a modified sugar in which a sugar residue is modified, or a nucleotide having the modified base and the modified sugar.
 前記糖残基は、特に制限されず、例えば、デオキシリボース残基またはリボース残基があげられる。前記糖残基における修飾部位は、特に制限されず、例えば、前記糖残基の2’位または4’位があげられ、いずれか一方でも両方が修飾されてもよい。前記修飾糖の修飾基は、例えば、メチル基、フルオロ基、アミノ基、チオ基等があげられる。 The sugar residue is not particularly limited, and examples thereof include deoxyribose residue or ribose residue. The modification site in the sugar residue is not particularly limited, and examples thereof include the 2'-position and the 4'-position of the sugar residue, and both of them may be modified. Examples of the modifying group of the modified sugar include a methyl group, a fluoro group, an amino group, and a thio group.
 前記修飾ヌクレオチド残基において、塩基がピリミジン塩基の場合、例えば、前記糖残基の2’位および/または4’位が修飾されていることが好ましい。前記修飾ヌクレオチド残基の具体例は、例えば、デオキシリボース残基またはリボース残基の2’位が修飾された、2’-メチル化-ウラシルヌクレオチド残基、2’-メチル化-シトシンヌクレオチド残基、2’-フルオロ化-ウラシルヌクレオチド残基、2’-フルオロ化-シトシンヌクレオチド残基、2’-アミノ化-ウラシルヌクレオチド残基、2’-アミノ化-シトシンヌクレオチド残基、2’-チオ化-ウラシルヌクレオチド残基、2’-チオ化-シトシンヌクレオチド残基等があげられる。 In the modified nucleotide residue, when the base is a pyrimidine base, for example, the 2'-position and / or the 4'-position of the sugar residue is preferably modified. Specific examples of the modified nucleotide residue include, for example, a 2′-methylated-uracil nucleotide residue and a 2′-methylated-cytosine nucleotide residue in which the deoxyribose residue or the 2 ′ position of the ribose residue is modified. 2'-fluorinated-uracil nucleotide residues, 2'-fluorinated-cytosine nucleotide residues, 2'-aminated-uracil nucleotide residues, 2'-aminated-cytosine nucleotide residues, 2'-thiolated -Uracil nucleotide residue, 2'-thiolated-cytosine nucleotide residue and the like.
 前記修飾ヌクレオチドの個数は、特に制限されず、例えば、前記ポリヌクレオチドにおいて、例えば、1~80個、好ましくは1~70個、より好ましくは1~50個、さらに好ましくは1~40個、特に好ましくは1~30個、最も好ましくは1~21個である。また、前記ポリヌクレオチドを含む前記核酸分子の全長における前記修飾ヌクレオチドも、特に制限されず、例えば、1~80個、1~50個、1~20個であり、好ましくは、前述の範囲と同様である。 The number of the modified nucleotides is not particularly limited. For example, in the polynucleotide, for example, 1 to 80, preferably 1 to 70, more preferably 1 to 50, still more preferably 1 to 40, particularly The number is preferably 1 to 30, and most preferably 1 to 21. Further, the modified nucleotides in the entire length of the nucleic acid molecule including the polynucleotide are not particularly limited, and are, for example, 1 to 80, 1 to 50, and 1 to 20, preferably in the same range as described above. It is.
 本発明の核酸分子は、例えば、1もしくは数個の人工核酸モノマー残基を含んでもよい。前記「1もしくは数個」は、特に制限されず、例えば、前記ポリヌクレオチドにおいて、例えば、1~80個、好ましくは1~70個、より好ましくは1~50個、さらに好ましくは1~40個、特に好ましくは1~30個、最も好ましくは1~21個である。前記人工核酸モノマー残基は、例えば、PNA(ペプチド核酸)、LNA(Locked Nucleic Acid)、ENA(2’-O,4’-C-Ethylenebridged Nucleic Acids)等があげられる。前記モノマー残基における核酸は、例えば、前述と同様である。また、前記ポリヌクレオチドを含む前記核酸分子の全長における前記人工核酸モノマー残基も、特に制限されず、例えば、1~80個、1~50個、1~20個であり、好ましくは、前述の範囲と同様である。 The nucleic acid molecule of the present invention may contain, for example, one or several artificial nucleic acid monomer residues. The “one or several” is not particularly limited, and for example, in the polynucleotide, for example, 1 to 80, preferably 1 to 70, more preferably 1 to 50, still more preferably 1 to 40 Particularly preferred is 1 to 30, most preferably 1 to 21. Examples of the artificial nucleic acid monomer residue include PNA (peptide nucleic acid), LNA (Locked Nucleic Acid), ENA (2'-O, 4'-C-Ethylenebridged Nucleic Acids) and the like. The nucleic acid in the monomer residue is the same as described above, for example. In addition, the artificial nucleic acid monomer residue in the entire length of the nucleic acid molecule containing the polynucleotide is not particularly limited, and is, for example, 1 to 80, 1 to 50, or 1 to 20, preferably the above-mentioned Similar to range.
 本発明の核酸分子は、例えば、ヌクレアーゼ耐性であることが好ましい。本発明の核酸分子は、ヌクレアーゼ耐性のため、例えば、前記修飾ヌクレオチド残基および/または前記人工核酸モノマー残基を有することが好ましい。本発明の核酸分子は、ヌクレアーゼ耐性のため、例えば、5’末端または3’末端に、数10kDaのPEG(ポリエチレングリコール)またはデオキシチミジン等が結合してもよい。 The nucleic acid molecule of the present invention is preferably nuclease resistant, for example. The nucleic acid molecule of the present invention preferably has, for example, the modified nucleotide residue and / or the artificial nucleic acid monomer residue for nuclease resistance. Since the nucleic acid molecule of the present invention is nuclease resistant, for example, tens of kDa PEG (polyethylene glycol) or deoxythymidine may be bound to the 5 'end or 3' end.
 本発明の核酸分子は、例えば、さらに付加配列を有してもよい。前記付加配列は、例えば、前記核酸分子の5’末端および3’末端の少なくとも一方に結合していることが好ましく、より好ましくは3’末端である。前記付加配列は、特に制限されない。前記付加配列の長さは、特に制限されず、例えば、1~200塩基長であり、好ましくは1~50塩基長であり、より好ましくは1~25塩基長、さらに好ましくは18~24塩基長である。前記付加配列の構成単位は、例えば、ヌクレオチド残基であり、デオキシリボヌクレオチド残基およびリボヌクレオチド残基等があげられる。前記付加配列は、特に制限されず、例えば、デオキシリボヌクレオチド残基からなるDNA、リボヌクレオチド残基を含むDNA等のポリヌクレオチドがあげられる。前記付加配列の具体例として、例えば、ポリdT、ポリdA等があげられる。 The nucleic acid molecule of the present invention may further have an additional sequence, for example. The additional sequence is preferably bound to, for example, at least one of the 5 'end and the 3' end of the nucleic acid molecule, and more preferably the 3 'end. The additional sequence is not particularly limited. The length of the additional sequence is not particularly limited, and is, for example, 1 to 200 bases long, preferably 1 to 50 bases long, more preferably 1 to 25 bases long, and further preferably 18 to 24 bases long. It is. The structural unit of the additional sequence is, for example, a nucleotide residue, and examples thereof include a deoxyribonucleotide residue and a ribonucleotide residue. The additional sequence is not particularly limited, and examples thereof include polynucleotides such as DNA consisting of deoxyribonucleotide residues and DNA containing ribonucleotide residues. Specific examples of the additional sequence include poly dT and poly dA.
 本発明の核酸分子は、例えば、担体に固定化して使用できる。前記本発明の核酸分子は、例えば、5’末端および3’末端のいずれかを固定化することができる。本発明の核酸分子を固定化する場合、例えば、前記核酸分子は、前記担体に、直接的に固定化してもよいし、間接的に固定化してもよい。後者の場合、本発明の核酸分子は、例えば、前記担体に、例えば、前記付加配列を介して固定化する。前記担体は、例えば、ビーズ、プレート、フィルター、カラム、基板、容器等があげられる。 The nucleic acid molecule of the present invention can be used, for example, immobilized on a carrier. In the nucleic acid molecule of the present invention, for example, either the 5 'end or the 3' end can be immobilized. When immobilizing the nucleic acid molecule of the present invention, for example, the nucleic acid molecule may be immobilized directly or indirectly on the carrier. In the latter case, the nucleic acid molecule of the present invention is immobilized on the carrier, for example, via the additional sequence. Examples of the carrier include beads, plates, filters, columns, substrates, containers and the like.
 本発明の核酸分子は、例えば、さらに標識物質を有してもよく、具体的には、前記核酸分子に前記標識物質が結合してもよい。前記標識物質が結合した前記核酸分子は、例えば、本発明の核酸センサということもできる。前記標識物質は、例えば、前記核酸分子の5’末端および3’末端の少なくとも一方に結合させてもよい。前記標識物質による標識化は、例えば、結合でもよいし、化学修飾でもよい。前記標識物質は、特に制限されず、例えば、酵素、蛍光物質、色素、同位体、薬物、毒素および抗生物質等があげられる。前記酵素は、例えば、ルシフェラーゼ、NanoLucルシフェラーゼ等があげられる。前記蛍光物質は、例えば、ピレン、TAMRA、フルオレセイン、Cy3色素、Cy5色素、FAM色素、ローダミン色素、テキサスレッド色素、JOE、MAX、HEX、TYE等の蛍光団があげられ、前記色素は、例えば、Alexa488、Alexa647等のAlexa色素等があげられる。前記標識物質は、例えば、前記核酸分子に直接的に連結してもよいし、リンカーを介して、間接的に連結してもよい。前記リンカーは、特に制限されず、例えば、ポリヌクレオチドのリンカー等である。 For example, the nucleic acid molecule of the present invention may further have a labeling substance, and specifically, the labeling substance may be bound to the nucleic acid molecule. The nucleic acid molecule to which the labeling substance is bound can also be referred to as a nucleic acid sensor of the present invention, for example. The labeling substance may be bound to, for example, at least one of the 5 'end and the 3' end of the nucleic acid molecule. The labeling with the labeling substance may be, for example, binding or chemical modification. The labeling substance is not particularly limited, and examples thereof include enzymes, fluorescent substances, dyes, isotopes, drugs, toxins, and antibiotics. Examples of the enzyme include luciferase and NanoLuc luciferase. Examples of the fluorescent substance include pyrene, TAMRA, fluorescein, Cy3 dye, Cy5 dye, FAM dye, rhodamine dye, Texas red dye, JOE, MAX, HEX, TYE and the like, and the dye includes, for example, And Alexa dyes such as Alexa 488 and Alexa 647. The labeling substance may be linked directly to the nucleic acid molecule or indirectly via a linker, for example. The linker is not particularly limited and is, for example, a polynucleotide linker.
 本発明の核酸分子の製造方法は、特に制限されず、例えば、化学合成を利用した核酸合成方法、遺伝子工学的手法等の公知の方法等により合成できる。 The method for producing the nucleic acid molecule of the present invention is not particularly limited, and can be synthesized by, for example, a known method such as a nucleic acid synthesis method using chemical synthesis or a genetic engineering technique.
 本発明の核酸分子は、前述のように、グルテンに結合性を示す。このため、本発明の核酸分子の用途は、グルテンへの結合性を利用する用途であれば、特に制限されない。本発明の核酸分子は、例えば、グルテンに対する抗体に代えて、種々の方法に使用できる。 The nucleic acid molecule of the present invention exhibits binding property to gluten as described above. For this reason, the use of the nucleic acid molecule of the present invention is not particularly limited as long as it uses the binding property to gluten. The nucleic acid molecule of the present invention can be used in various methods in place of, for example, an antibody against gluten.
 本発明の核酸分子によれば、グルテンを検出できる。グルテンの検出方法は、特に制限されず、グルテンと前記核酸分子との結合を検出することによって行える。 According to the nucleic acid molecule of the present invention, gluten can be detected. The method for detecting gluten is not particularly limited, and can be performed by detecting the binding between gluten and the nucleic acid molecule.
 また、本発明の核酸分子は、前述のように、グリアジンに結合性を示す。このため、本発明の核酸分子は、例えば、グリアジンへの結合性を利用する用途にも使用できる。本発明の核酸分子は、例えば、グリアジンに対する抗体に代えて、種々の方法に使用できる。 Further, as described above, the nucleic acid molecule of the present invention exhibits binding property to gliadin. For this reason, the nucleic acid molecule of the present invention can be used, for example, in applications utilizing the binding property to gliadin. The nucleic acid molecule of the present invention can be used in various methods in place of, for example, an antibody against gliadin.
 本発明の核酸分子によれば、例えば、グリアジンを検出できる。グリアジンの検出方法は、特に制限されず、グリアジンと前記核酸分子との結合を検出することによって行える。 According to the nucleic acid molecule of the present invention, for example, gliadin can be detected. The method for detecting gliadin is not particularly limited, and can be performed by detecting the binding between gliadin and the nucleic acid molecule.
(2)検出試薬およびキット
 本発明の検出試薬は、前述のように、グルテンまたはグリアジンの検出試薬であって、前記本発明の核酸分子を含むことを特徴とする。本発明の検出試薬は、前記本発明の核酸分子を含んでいればよく、その他の構成は何ら制限されない。本発明の検出試薬を使用すれば、前述のように、例えば、グルテンまたはグリアジンの検出等を行うことができる。本発明の検出試薬は、例えば、グルテンへの結合剤またはグリアジンへの結合剤ともいえる。
(2) Detection reagent and kit As described above, the detection reagent of the present invention is a detection reagent for gluten or gliadin, and includes the nucleic acid molecule of the present invention. The detection reagent of this invention should just contain the nucleic acid molecule of the said this invention, and another structure is not restrict | limited at all. If the detection reagent of the present invention is used, for example, detection of gluten or gliadin can be performed as described above. The detection reagent of the present invention can be said to be a binder to gluten or a binder to gliadin, for example.
 本発明の検出試薬は、例えば、さらに、標識物質を有し、前記標識物質が、前記核酸分子に結合されてもよい。前記標識物質は、例えば、前記本発明の核酸分子における説明を援用できる。また、本発明の検出試薬は、例えば、担体を有し、前記担体に前記核酸分子が固定化されてもよい。前記担体は、例えば、前記本発明の核酸分子における説明を援用できる。 The detection reagent of the present invention may further have a labeling substance, for example, and the labeling substance may be bound to the nucleic acid molecule. For the labeling substance, for example, the description in the nucleic acid molecule of the present invention can be used. The detection reagent of the present invention may have, for example, a carrier, and the nucleic acid molecule may be immobilized on the carrier. For the carrier, for example, the description in the nucleic acid molecule of the present invention can be incorporated.
 本発明の検出キットは、前記本発明の核酸分子または前記本発明の検出試薬を含む。本発明の検出キットは、例えば、さらに、その他の構成要素を含んでもよい。前記構成要素は、例えば、前記試料を調製するための緩衝液、使用説明書等があげられる。また、後述する本発明の検出方法に示す、前記核酸分子に標識物質であるルシフェラーゼを結合させた核酸センサと、アレルゲン標識化担体とを用いる方法の場合、本発明の検出キットは、例えば、前記核酸センサと、アレルゲン標識化担体(グルテン標識化担体またはグリアジン標識化担体)を含むキットとすることができる。 The detection kit of the present invention includes the nucleic acid molecule of the present invention or the detection reagent of the present invention. The detection kit of the present invention may further include other components, for example. Examples of the constituent element include a buffer solution for preparing the sample, an instruction manual, and the like. In addition, in the case of a method using a nucleic acid sensor in which a luciferase that is a labeling substance is bound to the nucleic acid molecule and an allergen-labeled carrier shown in the detection method of the present invention described later, the detection kit of the present invention is, for example, A kit comprising a nucleic acid sensor and an allergen-labeled carrier (gluten-labeled carrier or gliadin-labeled carrier) can be provided.
 本発明の検出試薬および検出キットは、例えば、前記本発明の核酸分子の説明を援用でき、また、その使用方法についても、前記本発明の核酸分子および後述する前記本発明の検出方法を援用できる。 For the detection reagent and detection kit of the present invention, for example, the description of the nucleic acid molecule of the present invention can be used, and the nucleic acid molecule of the present invention and the detection method of the present invention described later can also be used for the method of use. .
(3)検出方法
 本発明のグルテンまたはグリアジンの検出方法は、前述のように、前記本発明の核酸分子、または前記本発明の検出試薬と、試料とを接触させ、前記試料中のグルテンまたはグリアジンと、前記核酸分子または前記検出試薬との複合体を形成させる工程、および、前記複合体を検出する工程を含むことを特徴とする。本発明の検出方法は、前記本発明の核酸分子または前記検出試薬を使用することが特徴であって、その他の工程および条件等は、特に制限されない。以下、本発明の核酸分子の使用を例にあげて説明するが、本発明の核酸分子は、本発明の検出試薬と読み替え可能である。
(3) Detection method As described above, the method for detecting gluten or gliadin of the present invention comprises contacting the nucleic acid molecule of the present invention or the detection reagent of the present invention with a sample, and then gluten or gliadin in the sample. And a step of forming a complex with the nucleic acid molecule or the detection reagent, and a step of detecting the complex. The detection method of the present invention is characterized by using the nucleic acid molecule of the present invention or the detection reagent, and the other steps and conditions are not particularly limited. Hereinafter, the use of the nucleic acid molecule of the present invention will be described as an example, but the nucleic acid molecule of the present invention can be read as the detection reagent of the present invention.
 本発明によれば、前記本発明の核酸分子が、グルテンまたはグリアジンに特異的に結合することから、例えば、グルテンまたはグリアジンと、前記核酸分子または前記検出試薬との結合を検出することによって、試料中のグルテンまたはグリアジンを特異的に検出可能である。具体的には、例えば、試料中のグルテンまたはグリアジンの量を分析可能であることから、定性分析または定量分析も可能といえる。 According to the present invention, since the nucleic acid molecule of the present invention specifically binds to gluten or gliadin, for example, by detecting the binding between gluten or gliadin and the nucleic acid molecule or the detection reagent, Gluten or gliadin can be specifically detected. Specifically, for example, since the amount of gluten or gliadin in a sample can be analyzed, it can be said that qualitative analysis or quantitative analysis is also possible.
 本発明において、前記試料は、特に制限されない。前記試料は、例えば、食品、食品原料、食品添加物等があげられる。また、前記試料は、例えば、食品加工場または調理場等における付着物、洗浄後の洗浄液等があげられる。 In the present invention, the sample is not particularly limited. Examples of the sample include foods, food materials, food additives, and the like. Examples of the sample include a deposit in a food processing shop or a cooking place, a cleaning liquid after cleaning, and the like.
 前記試料は、例えば、液体試料でもよいし、固体試料でもよい。前記試料は、例えば、前記核酸分子と接触させ易く、取扱いが簡便であることから、液体試料が好ましい。前記固体試料の場合、例えば、溶媒を用いて、混合液、抽出液、溶解液等を調製し、これを使用してもよい。前記溶媒は、特に制限されず、例えば、水、生理食塩水、緩衝液等があげられる。 The sample may be, for example, a liquid sample or a solid sample. For example, the sample is preferably a liquid sample because it is easy to contact with the nucleic acid molecule and is easy to handle. In the case of the solid sample, for example, a mixed solution, an extract, a dissolved solution, and the like may be prepared using a solvent and used. The solvent is not particularly limited, and examples thereof include water, physiological saline, and buffer solution.
 本発明の検出方法について、本発明の核酸分子として、標識物質で標識化された本発明の核酸センサを使用し、グルテンを検出する方法を例にあげて説明する。なお、グリアジンはグルテンの構成成分であることから、グルテンの検出は、グリアジンの検出として、読み替え可能である。なお、本発明は、これらの例示には制限されない。 The detection method of the present invention will be described by taking as an example a method for detecting gluten using the nucleic acid sensor of the present invention labeled with a labeling substance as the nucleic acid molecule of the present invention. Since gliadin is a constituent of gluten, detection of gluten can be read as detection of gliadin. In addition, this invention is not restrict | limited to these illustrations.
 前記検出工程は、例えば、さらに、前記複合体の検出結果に基づいて、前記試料中のグルテンの有無または量を分析する工程を含む。 The detection step further includes, for example, a step of analyzing the presence or absence or amount of gluten in the sample based on the detection result of the complex.
 前記複合体形成工程において、前記試料と前記核酸分子との接触方法は、特に制限されない。前記試料と前記核酸分子との接触は、例えば、液体中で行われることが好ましい。前記液体は、特に制限されず、例えば、水、生理食塩水、緩衝液等があげられる。 In the complex formation step, the method for contacting the sample and the nucleic acid molecule is not particularly limited. The contact between the sample and the nucleic acid molecule is preferably performed in a liquid, for example. The liquid is not particularly limited, and examples thereof include water, physiological saline, and buffer solution.
 前記複合体形成工程において、前記試料と前記核酸分子との接触条件は、特に制限されない。接触温度は、例えば、4~37℃であり、好ましくは18~25℃であり、接触時間は、例えば、10~120分であり、好ましくは30~60分である。 In the complex formation step, the contact condition between the sample and the nucleic acid molecule is not particularly limited. The contact temperature is, for example, 4 to 37 ° C., preferably 18 to 25 ° C., and the contact time is, for example, 10 to 120 minutes, preferably 30 to 60 minutes.
 前記複合体形成工程において、前記核酸分子は、例えば、担体に固定化された固定化核酸分子(固相担体)でもよいし、未固定の遊離した核酸分子でもよい。後者の場合、例えば、容器内で、前記試料と接触させる。前者の場合、前記担体は、特に制限されず、例えば、プレート、フィルター、カラム、基板、ビーズ、容器等があげられ、前記容器は、例えば、マイクロプレート、チューブ等があげられる。前記核酸分子の固定化は、例えば、前述の通りである。 In the complex formation step, the nucleic acid molecule may be, for example, an immobilized nucleic acid molecule (solid phase carrier) immobilized on a carrier or an unfixed free nucleic acid molecule. In the latter case, for example, the sample is contacted in a container. In the former case, the carrier is not particularly limited, and examples thereof include a plate, a filter, a column, a substrate, a bead, and a container. Examples of the container include a microplate and a tube. The nucleic acid molecule is immobilized as described above, for example.
 前記検出工程は、前述のように、前記試料中のグルテンと前記核酸分子との結合を検出する工程である。前記両者の結合の有無を検出することによって、例えば、前記試料中のグルテンの有無を分析(定性)でき、また、前記両者の結合の程度(結合量)を検出することによって、例えば、前記試料中のグルテンの量を分析(定量)できる。 The detection step is a step of detecting the binding between gluten in the sample and the nucleic acid molecule as described above. By detecting the presence / absence of binding between the two, for example, the presence / absence of gluten in the sample can be analyzed (qualitative), and by detecting the degree of binding (binding amount) between the two, for example, the sample The amount of gluten can be analyzed (quantified).
 グルテンと前記核酸分子との結合の検出方法は、特に制限されない。前記方法は、例えば、物質間の結合を検出する従来公知の方法が採用でき、具体例として、前述のSPR等があげられる。 The method for detecting the binding between gluten and the nucleic acid molecule is not particularly limited. As the method, for example, a conventionally known method for detecting binding between substances can be adopted, and specific examples thereof include the SPR described above.
 そして、グルテンと前記核酸分子との結合が検出できなかった場合は、前記試料中にグルテンは存在しないと判断でき、前記結合が検出された場合は、前記試料中にグルテンが存在すると判断できる。また、予め、グルテンの濃度と結合量との相関関係を求めておき、前記相関関係に基づいて、前記結合量から、前記試料中のグルテンの濃度を分析することもできる。 Then, when the binding between gluten and the nucleic acid molecule cannot be detected, it can be determined that gluten is not present in the sample, and when the binding is detected, it can be determined that gluten is present in the sample. In addition, a correlation between the concentration of gluten and the binding amount can be obtained in advance, and the concentration of gluten in the sample can be analyzed from the binding amount based on the correlation.
 グルテンと前記核酸分子との結合の検出について、一例として、前記核酸分子に標識物質であるルシフェラーゼを結合させた核酸センサと、グルテン標識化担体とを用いる方法を、以下に示す。 As an example of detection of the binding between gluten and the nucleic acid molecule, a method using a nucleic acid sensor in which a luciferase as a labeling substance is bound to the nucleic acid molecule and a gluten-labeled carrier will be described below.
 まず、前記核酸センサと前記試料とを混合する。これにより、前記試料中にグルテンが存在する場合、前記核酸センサにおける前記核酸分子は、ターゲットであるグルテンと結合する。他方、前記試料中にグルテンが存在しない場合、前記核酸センサにおける核酸分子は、ターゲットと未結合の状態となる。 First, the nucleic acid sensor and the sample are mixed. Thereby, when gluten is present in the sample, the nucleic acid molecule in the nucleic acid sensor binds to gluten as a target. On the other hand, when gluten is not present in the sample, the nucleic acid molecule in the nucleic acid sensor is not bound to the target.
 つぎに、前記混合物を、グルテン標識化担体に接触させた後、前記グルテン標識化担体を除去する。前記担体は、例えば、ビーズがあげられる。前記混合物において、前記核酸センサがグルテンと結合している場合、前記核酸センサにおける前記核酸分子は、前記グルテン標識化担体におけるグルテンとは結合できない。このため、前記グルテン標識化担体を除去した画分に対して、ルシフェラーゼの基質を添加して発光反応を行った場合、前記核酸センサにおけるルシフェラーゼの触媒反応によって、発光が生じる。他方、前記混合物において、前記核酸センサがグルテンと結合していない場合、前記核酸センサにおける前記核酸分子は、前記グルテン標識化担体におけるグルテンと結合する。このため、前記グルテン標識化担体の除去により、前記核酸センサも、前記グルテン標識化担体に結合した状態で除去されることになる。このため、前記グルテン標識化担体を除去した画分に対して、ルシフェラーゼの基質を添加して発光反応を行った場合、前記核酸センサが存在していないことから、ルシフェラーゼの触媒反応による発光は生じない。このため、発光の有無によって、試料中のグルテンの有無を分析(定性分析)することができる。また、試料中のグルテンの量と、前記グルテン標識化担体を除去した後の前記画分に残存する前記核酸センサの量とは、相関関係を有するため、発光の強弱によって、試料中のグルテンの量も分析(定量分析)することができる。 Next, after contacting the mixture with a gluten-labeled carrier, the gluten-labeled carrier is removed. Examples of the carrier include beads. In the mixture, when the nucleic acid sensor is bound to gluten, the nucleic acid molecule in the nucleic acid sensor cannot bind to gluten in the gluten-labeled carrier. Therefore, when a luciferase substrate is added to the fraction from which the gluten-labeled carrier has been removed to perform a luminescence reaction, luminescence is generated by the luciferase catalytic reaction in the nucleic acid sensor. On the other hand, in the mixture, when the nucleic acid sensor is not bound to gluten, the nucleic acid molecule in the nucleic acid sensor is bound to gluten in the gluten-labeled carrier. For this reason, by removing the gluten-labeled carrier, the nucleic acid sensor is also removed while bound to the gluten-labeled carrier. For this reason, when the luciferase substrate is added to the fraction from which the gluten-labeled carrier has been removed and the luminescence reaction is performed, the nucleic acid sensor does not exist, and thus luminescence due to the luciferase catalytic reaction occurs. Absent. Therefore, the presence or absence of gluten in the sample can be analyzed (qualitative analysis) based on the presence or absence of luminescence. In addition, the amount of gluten in the sample and the amount of the nucleic acid sensor remaining in the fraction after removing the gluten-labeled carrier have a correlation, so that the amount of gluten in the sample depends on the intensity of luminescence. The amount can also be analyzed (quantitative analysis).
 本発明によれば、前述のように、グルテンまたはグリアジンを検出できる。また、本発明によれば、グルテンまたはグリアジンの検出により、例えば、間接的に、小麦の有無を検出することも可能である。 According to the present invention, as described above, gluten or gliadin can be detected. According to the present invention, it is also possible to detect the presence or absence of wheat indirectly, for example, by detecting gluten or gliadin.
 つぎに、本発明の実施例について説明する。ただし、本発明は、下記実施例により制限されない。市販の試薬は、特に示さない限り、それらのプロトコルに基づいて使用した。 Next, examples of the present invention will be described. However, the present invention is not limited by the following examples. Commercial reagents were used based on those protocols unless otherwise indicated.
[実施例1]
 本発明のアプタマーについて、グルテンおよびグリアジンに対する結合性を、SPR解析により確認した。
[Example 1]
About the aptamer of this invention, the binding property with respect to gluten and gliadin was confirmed by SPR analysis.
(1)アプタマー
 下記ポリヌクレオチドのアプタマー1を、実施例のアプタマーとして合成した。下記配列番号1のポリヌクレオチドにおいて、下線部で示される「T」は、天然チミン(T)に代えて、チミンの5位が置換された5’-ベンジルアミノカルボニルウラシル(BndU)を有するデオキシリボヌクレオチド残基とし、下線部で示される「C」は、天然シトシン(C)に代えて、シトシンの5位が置換された5’-メチルシトシンを有するデオキシリボヌクレオチド残基とした。
 
(1) Aptamer Aptamer 1 of the following polynucleotide was synthesized as an aptamer of Examples. In the polynucleotide of SEQ ID NO: 1, the underlined “T” is a deoxyribonucleotide having 5′-benzylaminocarbonyluracil (BndU) substituted at the 5-position of thymine in place of natural thymine (T) The underlined “C” is a deoxyribonucleotide residue having 5′-methylcytosine substituted at the 5-position of cytosine in place of natural cytosine (C).
アプタマー1:Glu392BR8m4(配列番号1)
GGTATGGAGGCAAGTCCCAATTCGTGCAGAGAAACGTGTCTGTATTTATTAATCGTTTCAGCCAGACAGGGTTTATG
Aptamer 1: Glu392BR8m4 (SEQ ID NO: 1)
GGTATGGAGGCAAGTCCCAATTCG T G C AGAGAAA C G T G TCT G T A TTT A TT AA TC G TTTC AG CC AGA C AGGG TTT A T G
 アプタマー1の推定二次構造を、図1に示す。ただし、これには限定されない。 The estimated secondary structure of aptamer 1 is shown in FIG. However, it is not limited to this.
 前記アプタマーは、その3’末端に、20塩基長のポリデオキシアデニン(ポリdA)を付加し、ポリdA付加アプタマーとして、後述するSPRに使用した。前記ポリdA付加アプタマーは、95℃、5分の条件で熱変性させたものを使用した。 The aptamer was added with polydeoxyadenine (poly dA) having a length of 20 bases at the 3 'end and used as a poly dA added aptamer in SPR described later. The poly dA-added aptamer used was heat-denatured at 95 ° C. for 5 minutes.
(2)試料
 小麦由来のグルテン(073-00575、和光純薬社製)を、SB1Tバッファーに懸濁し、一晩溶解させた後、遠心(12,000rpm、15分、室温)し分離した。前記分離した上清を、未変性グルテンを含む抽出液として得た。これをグルテン試料とした。また、小麦由来のグリアジン(cat# 101778、MP Biomedicals社製)を使用し、同様にして、未変性グリアジンを含む抽出液を調製した。前記SB1Tバッファーの組成は、40mmol/L HEPES、125mmol/L NaCl、5mmol/L KCl、1mmol/L MgClおよび0.01% Tween(登録商標)20とし、pHは、7.5とした。
(2) Sample Wheat-derived gluten (073-00575, manufactured by Wako Pure Chemical Industries, Ltd.) was suspended in SB1T buffer, dissolved overnight, and then centrifuged (12,000 rpm, 15 minutes, room temperature) for separation. The separated supernatant was obtained as an extract containing native gluten. This was used as a gluten sample. In addition, using gliadin derived from wheat (cat # 101778, manufactured by MP Biomedicals), an extract containing unmodified gliadin was prepared in the same manner. The composition of the SB1T buffer was 40 mmol / L HEPES, 125 mmol / L NaCl, 5 mmol / L KCl, 1 mmol / L MgCl 2 and 0.01% Tween (registered trademark) 20, and the pH was 7.5.
 以下の結合性試験において、前記アプタマーの交差反応の確認のため、以下に示す材料から、それぞれの試料を調製した。αカゼイン試料の調製は、前記グルテン試料の調製と同様にして行った。牛乳、卵、およびピーナッツは、フードプロセッサで破砕後、SB1Tバッファーに懸濁し、一晩溶解させた後、遠心(3000g、20分、室温)し分離し、前記分離した上清を、0.8mmのフィルターでろ過し、得られた抽出液を、試料として使用した。
鶏卵の卵白由来リゾチーム(120-02674、和光純薬社製)
鶏卵の全卵
牛乳由来αカゼイン(C6780-19、SIGMA社製)
牛乳(足柄乳業株式会社製)
生ピーナッツ(インドカレーの店アールティー社製)
ローストピーナッツ(KFVフルーツ社製)
In the following binding test, each sample was prepared from the materials shown below for confirmation of the cross-reaction of the aptamer. The α-casein sample was prepared in the same manner as the gluten sample. Milk, eggs, and peanuts were crushed with a food processor, suspended in SB1T buffer, dissolved overnight, centrifuged (3000 g, 20 minutes, room temperature) and separated. The obtained extract was filtered as a sample.
Lysozyme derived from egg white of chicken egg (120-02674, manufactured by Wako Pure Chemical Industries, Ltd.)
Α-casein derived from whole egg milk of chicken eggs (C6780-19, manufactured by SIGMA)
Milk (made by Ashigara Dairy Co., Ltd.)
Raw peanuts (made by Indian curry shop Earl Tee)
Roasted peanut (KFV Fruit)
(3)SPRによる結合性の解析
 結合性の解析には、ProteON XPR36(BioRad社)を、その使用説明書にしたがって使用した。
(3) Analysis of binding by SPR For analysis of binding, ProteON XPR36 (BioRad) was used according to the instruction manual.
 まず、前記ProteON専用のセンサーチップとして、ストレプトアビジンが固定化されたチップ(商品名 ProteOn NLC Sensor Chip、BioRad社)を、前記ProteON XPR36にセットした。前記センサーチップのフローセルに、超純水(DDW)を用いて、1μmol/Lのビオチン化ポリdTをインジェクションし、シグナル強度(RU:Resonance Unit)が約900RUになるまで結合させた。前記ビオチン化ポリdTは、20塩基長のデオキシチミジンの5’末端をビオチン化して調製した。そして、前記チップの前記フローセルに、SB1Tバッファーを用いて、1μmol/Lの前記ポリdA付加アプタマーを、流速25μL/minで80秒間インジェクションし、シグナル強度が約800RUになるまで結合させた。続いて、所定濃度(500ppmまたは100ppm)の前記試料を、それぞれ、前記バッファーを用いて、流速25μL/minで240秒間インジェクションし、引き続き、同じ条件で、前記バッファーを流して、洗浄を行った。前記試料のインジェクション後、シグナル強度を測定し、前記試料のインジェクション開始を0秒として、295~315秒におけるシグナル強度(RU)の平均値(RU295-315)を求めた。そして、前記ビオチン化ポリdTに前記ポリdA付加アプタマーを結合させた時におけるRU値(RUimmob)とRU295-315との比(RU295-315/RUimmob)を算出した。 First, as a ProteON dedicated sensor chip, a chip (trade name: ProteOn NLC Sensor Chip, BioRad) on which streptavidin was immobilized was set in the ProteON XPR36. 1 μmol / L of biotinylated poly dT was injected into the flow cell of the sensor chip using ultrapure water (DDW) and allowed to bind until the signal intensity (RU: Resonance Unit) was about 900 RU. The biotinylated poly dT was prepared by biotinylating the 5 ′ end of 20 base deoxythymidine. Then, 1 μmol / L of the poly dA-added aptamer was injected into the flow cell of the chip at a flow rate of 25 μL / min for 80 seconds using SB1T buffer, and was bound until the signal intensity reached about 800 RU. Subsequently, the samples having a predetermined concentration (500 ppm or 100 ppm) were each injected with the buffer at a flow rate of 25 μL / min for 240 seconds, and then the buffer was flowed under the same conditions for washing. After the injection of the sample, the signal intensity was measured, and the average value (RU 295-315 ) of the signal intensity (RU) at 295 to 315 seconds was determined with the injection start of the sample being 0 second. Then, a ratio (RU 295-315 / RU immob ) between the RU value (RU immob ) and RU 295-315 when the poly dA-added aptamer was bound to the biotinylated poly dT was calculated.
 これらの結果を図2に示す。図2は、グリアジンおよびグルテンに対するアプタマー1の結合性を示すグラフであり、横軸は、各試料を示し、縦軸は、シグナル強度(RU)を示す。横軸において、左から順に、グリアジン試料、グルテン試料、リゾチーム試料、卵試料、αカゼイン試料、牛乳試料、生ピーナッツ試料、およびローストピーナッツ試料を示す。各試料における濃度(ppm)は、グリアジン試料、グルテン試料、リゾチーム試料、およびαカゼイン試料については、各タンパク質の濃度を示し、卵試料、牛乳試料、生ピーナッツ試料、およびローストピーナッツ試料については、各試料に含まれる全タンパク質の濃度を示す。図2に示すように、アプタマー1は、グリアジンおよびグルテンに対して、結合性を示した。一方、アプタマー1は、リゾチーム試料、卵試料、αカゼイン試料、牛乳試料、生ピーナッツ試料、およびローストピーナッツ試料に対しては、いずれも、シグナル強度が0.00以下であり、結合性を示さなかった。 These results are shown in FIG. FIG. 2 is a graph showing the binding property of aptamer 1 to gliadin and gluten, the horizontal axis represents each sample, and the vertical axis represents signal intensity (RU). On the horizontal axis, gliadin sample, gluten sample, lysozyme sample, egg sample, α-casein sample, milk sample, raw peanut sample, and roasted peanut sample are shown in order from the left. The concentration (ppm) in each sample indicates the concentration of each protein for the gliadin sample, gluten sample, lysozyme sample, and α-casein sample, and for each egg sample, milk sample, raw peanut sample, and roast peanut sample The concentration of total protein contained in the sample is shown. As shown in FIG. 2, aptamer 1 showed binding properties to gliadin and gluten. On the other hand, aptamer 1 has a signal intensity of 0.00 or less and exhibits no binding to lysozyme sample, egg sample, α-casein sample, milk sample, raw peanut sample, and roasted peanut sample. It was.
 つぎに、前記グルテン試料を使用し、前記試料におけるグルテンの濃度を、3.7、11、33、100、および300ppmとした以外は同様にして、結合性の解析を行った。 Next, the binding analysis was performed in the same manner except that the gluten sample was used and the gluten concentration in the sample was changed to 3.7, 11, 33, 100, and 300 ppm.
 この結果を図3に示す。図3は、グルテンに対するアプタマー1の結合性を示すグラフであり、横軸は、グルテンの濃度(ppm)を示し、縦軸は、シグナル強度(RU)を示す。図3に示すように、アプタマー1は、グルテンの濃度が増加するにつれて、シグナル強度が増加した。この結果から、本発明のアプタマーを用い、シグナル強度を測定することで、試料中のグルテン濃度を定量分析できることがわかった。 This result is shown in FIG. FIG. 3 is a graph showing the binding property of aptamer 1 to gluten, the horizontal axis indicates the gluten concentration (ppm), and the vertical axis indicates the signal intensity (RU). As shown in FIG. 3, the signal intensity of the aptamer 1 increased as the concentration of gluten increased. From this result, it was found that the gluten concentration in the sample can be quantitatively analyzed by measuring the signal intensity using the aptamer of the present invention.
 つぎに、前記グリアジン試料を使用し、前記試料におけるグリアジンの濃度を、0.25、0.5、1、2、および4μmol/Lとした以外は同様にして、結合性の解析を行い、前記試料のインジェクション開始後の所定時間におけるシグナル強度を求めた。 Next, binding analysis was performed in the same manner except that the gliadin sample was used, and the gliadin concentration in the sample was changed to 0.25, 0.5, 1, 2, and 4 μmol / L. The signal intensity at a predetermined time after the start of sample injection was determined.
 この結果を図4に示す。図4は、グリアジンに対するアプタマー1の結合性を示すグラフであり、横軸は、前記試料のインジェクション開始後の経過時間(秒)を示し、縦軸は、シグナル強度(RU)を示す。図4に示すように、アプタマー1は、グリアジンの濃度が増加するにつれて、シグナル強度が増加した。 This result is shown in FIG. FIG. 4 is a graph showing the binding property of aptamer 1 to gliadin, the horizontal axis indicates the elapsed time (seconds) after the start of injection of the sample, and the vertical axis indicates the signal intensity (RU). As shown in FIG. 4, the signal intensity of the aptamer 1 increased as the concentration of gliadin increased.
 さらに、前記図4のSPR解析の結果から、動態パラメータを算出した。この結果、アプタマー1は、グリアジンに対する解離定数(KD)が、5.81×10-7mol/Lであり、優れた結合性であることがわかった。 Further, kinetic parameters were calculated from the results of the SPR analysis in FIG. As a result, it was found that the aptamer 1 has a dissociation constant (KD) for gliadin of 5.81 × 10 −7 mol / L and excellent binding properties.
[実施例2]
 本発明の小型化アプタマーについて、グリアジンに対する結合性を、SPR解析により確認した。
[Example 2]
About the downsized aptamer of this invention, the binding property with respect to a gliadin was confirmed by SPR analysis.
 下記ポリヌクレオチドのアプタマー2~7を、実施例の小型化アプタマーとして合成した。アプタマー2~7は、前記実施例1のアプタマー1(配列番号1)を小型化したアプタマーである。下記ポリヌクレオチドにおいて、下線部で示される「T」は、天然チミン(T)に代えて、チミンの5位が置換された5’-ベンジルアミノカルボニルウラシル(BndU)を有するデオキシリボヌクレオチド残基とし、下線部で示される「C」は、天然シトシン(C)に代えて、シトシンの5位が置換された5’-メチルシトシンを有するデオキシリボヌクレオチド残基とした。 The following polynucleotide aptamers 2 to 7 were synthesized as miniaturized aptamers of the examples. Aptamers 2 to 7 are aptamers obtained by miniaturizing the aptamer 1 (SEQ ID NO: 1) of Example 1. In the following polynucleotide, the underlined “T” is a deoxyribonucleotide residue having 5′-benzylaminocarbonyluracil (BndU) substituted at the 5-position of thymine in place of natural thymine (T), The underlined “C” was a deoxyribonucleotide residue having 5′-methylcytosine substituted at the 5-position of cytosine in place of natural cytosine (C).
アプタマー2:Glu392BR8m4_s59A(配列番号2)
GGTATGGAGGCAAGTCCCAATTCGTGCAGAGAAACGTGTCTGTATTTATTAATCGTTTC
アプタマー3:Glu392BR8m4_s51(配列番号3)
GGCAAGTCCCAATTCGTGCAGAGAAACGTGTCTGTATTTATTAATCGTTTC
アプタマー4:Glu392BR8m4_s38(配列番号4)
TCGTGCAGAGAAACGTGTCTGTATTTATTAATCGTTTC
アプタマー5:Glu392BR8m4_s67(配列番号5)
GGTATGGAGGCAAGTCCCAATTCGTGCAGAGAAACGTGTCTGTATTTATTAATCGTTTCAGCCAGAC
アプタマー6:Glu392BR8m4_s59B(配列番号6)
GGCAAGTCCCAATTCGTGCAGAGAAACGTGTCTGTATTTATTAATCGTTTCAGCCAGAC
アプタマー7:Glu392BR8m4_s46(配列番号7)
TCGTGCAGAGAAACGTGTCTGTATTTATTAATCGTTTCAGCCAGAC
Aptamer 2: Glu392BR8m4_s59A (SEQ ID NO: 2)
GGTATGGAGGCAAGTCCCAATTCG T G C AGAGAAA C G T G TCT G T A TTT A TT AA TC G TTTC
Aptamer 3: Glu392BR8m4_s51 (SEQ ID NO: 3)
GGCAAGTCCCAATTCG T G C AGAGAAA C G T G TCT G T A TTT A TT AA TC G TTTC
Aptamer 4: Glu392BR8m4_s38 (SEQ ID NO: 4)
TC G T G C AGAGAAA C G T G TCT G T A TTT A TT AA T CG TTTC
Aptamer 5: Glu392BR8m4_s67 (SEQ ID NO: 5)
GGTATGGAGGCAAGTCCCAATTCG T G C AGAGAAA C G T G TCT G T A TTT A TT AA TC G TTTC AG CC AGA C
Aptamer 6: Glu392BR8m4_s59B (SEQ ID NO: 6)
GGCAAGTCCCAATTCG T G C AGAGAAA C G T G TCT G T A TTT A TT AA TC G TTTC AG CC AGA C
Aptamer 7: Glu392BR8m4_s46 (SEQ ID NO: 7)
TCGTGCAGAGAAACG T G TCT G T A TTT A TT AA TC G TTTC AG CC AGA C
 アプタマー2~7の推定二次構造を、図5に示す。ただし、これには限定されない。 The estimated secondary structure of aptamers 2 to 7 is shown in FIG. However, it is not limited to this.
 アプタマーとして、前記実施例1の前記アプタマー1と、前記小型化アプタマー2~7を使用し、試料として、前記実施例1で調製したグリアジン試料(4μmol/L)、リゾチーム試料(25nmol/Lまたは100nmol/L)、およびαカゼイン試料(100nmol/Lまたは400nmol/L)を使用した以外は、実施例1と同様にして、SPRによる結合性の解析を行った。 The aptamer 1 of Example 1 and the miniaturized aptamers 2 to 7 were used as aptamers, and the gliadin sample (4 μmol / L) and lysozyme sample (25 nmol / L or 100 nmol) prepared in Example 1 were used as samples. / L), and α casein sample (100 nmol / L or 400 nmol / L) were used in the same manner as in Example 1 to analyze binding by SPR.
 この結果を図6に示す。図6は、グリアジン(4μmol/L)、リゾチーム(25nmol/Lまたは100nmol/L)、およびαカゼイン(100nmol/Lまたは400nmol/L)に対する各アプタマーの結合性を示すグラフであり、横軸は、各試料を示し、縦軸は、シグナル強度(RU)を示す。各グラフは、左から順に、小型化アプタマー2、小型化アプタマー3、小型化アプタマー4、小型化アプタマー5、小型化アプタマー6、小型化アプタマー7、およびアプタマー1を示す。 This result is shown in FIG. FIG. 6 is a graph showing the binding of each aptamer to gliadin (4 μmol / L), lysozyme (25 nmol / L or 100 nmol / L), and α-casein (100 nmol / L or 400 nmol / L). Each sample is shown, and the vertical axis shows the signal intensity (RU). Each graph shows the downsized aptamer 2, the downsized aptamer 3, the downsized aptamer 4, the downsized aptamer 5, the downsized aptamer 6, the downsized aptamer 7, and the aptamer 1 in order from the left.
 図6に示すように、アプタマー1を小型化した小型化アプタマー2~7は、いずれも、アプタマー1と比較して、グリアジンに対して、より高い結合性を示した。また、アプタマー1~7は、リゾチームおよびαカゼインに対しては、いずれも、シグナル強度が0.00以下であり、結合性を示さなかった。これらの結果から、小型化アプタマー2~7は、グリアジンに対して優れた特異性で結合することがわかった。 As shown in FIG. 6, all of the miniaturized aptamers 2 to 7 in which the aptamer 1 was miniaturized showed higher binding to gliadin than the aptamer 1. Aptamers 1 to 7 showed no signal binding to lysozyme and α-casein, and the signal intensity was 0.00 or less. From these results, it was found that the miniaturized aptamers 2 to 7 bind to gliadin with excellent specificity.
[実施例3]
 本発明のアプタマーに標識物質ルシフェラーゼを結合させた核酸センサを作製し、前記核酸センサのグリアジンおよびグルテンに対する結合性を確認した。前記結合性の確認は、ターゲットであるグリアジンまたはグルテンが固相化されたターゲット固相化ビーズと、前記核酸センサとを用いて行った。
[Example 3]
A nucleic acid sensor in which a labeling substance luciferase was bound to the aptamer of the present invention was prepared, and the binding property of the nucleic acid sensor to gliadin and gluten was confirmed. The confirmation of the binding was performed using the target solid-phased beads on which the target gliadin or gluten was solid-phased and the nucleic acid sensor.
 前述のように、反応液において、前記核酸センサが前記ターゲットと結合している場合、前記核酸センサにおける前記核酸分子は、前記ターゲット固相化ビーズに固相化されたグリアジンまたはグルテンとは結合できない。このため、前記ターゲット固相化ビーズを除去した画分に対して発光反応を行った場合、前記核酸センサにおけるルシフェラーゼの触媒反応によって、発光が生じる。他方、前記反応液において、前記核酸センサが前記ターゲットと結合していない場合、前記核酸センサにおける前記核酸分子は、前記ターゲット固相化ビーズに固相化されたグリアジンまたはグルテンと結合する。このため、前記ターゲット固相化ビーズの除去により、前記核酸センサも、前記ターゲット固相化ビーズに結合した状態で除去されることになる。このため、前記ターゲット固相化ビーズを除去した画分に対して、ルシフェラーゼの基質を添加して発光反応を行った場合、前記核酸センサが存在していないことから、ルシフェラーゼの触媒反応による発光は生じない。このため、前記核酸センサと前記ターゲット固相化ビーズとを用いて、ルシフェラーゼによる発光を検出することで、グリアジンまたはグルテンを検出することができる。 As described above, in the reaction solution, when the nucleic acid sensor is bound to the target, the nucleic acid molecule in the nucleic acid sensor cannot bind to gliadin or gluten immobilized on the target immobilized beads. . For this reason, when a luminescence reaction is performed on the fraction from which the target solid-phased beads have been removed, luminescence is generated by the catalytic reaction of luciferase in the nucleic acid sensor. On the other hand, in the reaction solution, when the nucleic acid sensor is not bound to the target, the nucleic acid molecule in the nucleic acid sensor is bound to gliadin or gluten immobilized on the target immobilized beads. For this reason, by removing the target-immobilized beads, the nucleic acid sensor is also removed while bound to the target-immobilized beads. For this reason, when the luciferase substrate is added to the fraction from which the target solid-phased beads have been removed and the luminescence reaction is performed, the luminescence due to the luciferase catalytic reaction is not caused by the absence of the nucleic acid sensor. Does not occur. Therefore, gliadin or gluten can be detected by detecting luminescence by luciferase using the nucleic acid sensor and the target solid-phased beads.
 前記核酸センサは、蛍光物質NanoLuc(商標)ルシフェラーゼ(Promega社製)を使用し、その使用説明書にしたがって、前記実施例1のアプタマー1(Glu392BR8m4)の5’末端を標識化することにより、調製した。 The nucleic acid sensor is prepared by using the fluorescent substance NanoLuc ™ luciferase (manufactured by Promega) and labeling the 5 ′ end of the aptamer 1 (Glu392BR8m4) of Example 1 according to the instruction manual. did.
 試料として、前記実施例1の前記グリアジン試料または前記グルテン試料を使用した。 As the sample, the gliadin sample or the gluten sample of Example 1 was used.
 前記ターゲット固相化ビーズは、ターゲットとして前記グリアジン試料または前記グルテン試料を使用し、NHS-activated Sepharose 4 Fast Flow Lab Packs(GE Healthcare社製)を使用し、その使用説明書にしたがって調製した。 The target solid-phased beads were prepared using NHS-activated Sepharose 4 Fast Flow Lab Packs (manufactured by GE Healthcare) using the gliadin sample or the gluten sample as a target.
 そして、前記核酸センサおよび前記ターゲット固相化ビーズを用い、前記核酸センサのグリアジンおよびグルテンに対する結合性を、以下に示すようにして確認した。まず、96ウェルのU底プレートに、フィルタープレート(millipore社製、cat#MSGVN2250)をセットし、前記U底プレートの各ウェルに、50μL/ウェルとなるように前記ターゲット固相化ビーズを加えた。前記各ウェルに、90μLの前記グリアジン試料または前記グルテン試料(終濃度 0、0.4、1.235、3.7、11.1、33.3、100ppm)と、10μLの前記核酸センサ(2.5×10希釈)とを加え、1200rpm、5分、室温の条件で混合し、前記グリアジン試料または前記グルテン試料、前記ターゲット固相化ビーズ、および前記核酸センサを反応させた。その後、前記U底プレートを、3000g、2分、室温の条件で遠心分離し、前記ターゲット固相化ビーズを遠心除去した。前記遠心分離によって、前記フィルタープレートを通過した反応液を、前記各ウェルから回収し、発光量の測定に供した。前記発光量の測定には、Infinite M1000 Pro(TECAN社)を、その使用説明書にしたがって使用した。前記発光量の測定において、基質として、NanoGlo(商標、Promega社製、cat#N2012)を使用した。また、交差反応の確認のため、前記グリアジン試料および前記グルテン試料に代えて、前述した卵、牛乳、および生ピーナッツを使用して、同様の測定を行った。 Then, using the nucleic acid sensor and the target-immobilized beads, the binding property of the nucleic acid sensor to gliadin and gluten was confirmed as follows. First, a filter plate (manufactured by millipore, cat # MSGVN2250) was set on a 96-well U-bottom plate, and the target solid-phased beads were added to each well of the U-bottom plate so as to be 50 μL / well. . In each well, 90 μL of the gliadin sample or the gluten sample (final concentrations 0, 0.4, 1.235, 3.7, 11.1, 33.3, 100 ppm) and 10 μL of the nucleic acid sensor (2 5 × 10 6 dilution), and mixing at 1200 rpm for 5 minutes at room temperature to react the gliadin sample or the gluten sample, the target immobilized beads, and the nucleic acid sensor. Thereafter, the U bottom plate was centrifuged at 3000 g for 2 minutes at room temperature, and the target solid-phased beads were removed by centrifugation. By the centrifugation, the reaction solution that passed through the filter plate was collected from each well and subjected to measurement of the amount of luminescence. For the measurement of the light emission amount, Infinite M1000 Pro (TECAN) was used according to the instruction manual. In the measurement of the luminescence amount, NanoGlo (trademark, manufactured by Promega, cat # N2012) was used as a substrate. In addition, in order to confirm the cross-reaction, the same measurement was performed using the above-described egg, milk, and raw peanut instead of the gliadin sample and the gluten sample.
 発光量の測定結果を図7に示す。図7は、グリアジン、グルテン、卵、牛乳、および生ピーナッツを試料とした場合における、発光量の測定結果を示すグラフである。図7において、横軸は、各試料の濃度を示し、縦軸は、発光量(RLU)を示す。図7に示すように、グリアジン試料およびグルテン試料の場合、ルシフェラーゼの触媒反応による発光がみられた、前記グリアジン試料および前記グルテン試料のタンパク質濃度の増加に伴い、発光量が増加した。一方、前記卵試料、前記牛乳試料、および前記生ピーナッツ試料の場合は、いずれも、発光量は変化しなかった。 Fig. 7 shows the measurement results of light emission. FIG. 7 is a graph showing the measurement results of the amount of luminescence when gliadin, gluten, eggs, milk, and raw peanuts are used as samples. In FIG. 7, the horizontal axis indicates the concentration of each sample, and the vertical axis indicates the light emission amount (RLU). As shown in FIG. 7, in the case of the gliadin sample and the gluten sample, the amount of luminescence increased as the protein concentration of the gliadin sample and the gluten sample in which luminescence was observed due to the catalytic reaction of luciferase. On the other hand, in the case of the egg sample, the milk sample, and the raw peanut sample, the luminescence amount did not change.
 さらに、前記図7の測定結果から、3σ法により、前記核酸センサのグリアジンおよびグルテンに対する検出限界を算出した(n=3)。この結果、前記核酸センサのグリアジンおよびグルテンに対する検出限界(LOD)は、それぞれ、1.2ppmであった。このことから、前記核酸センサは、微量のグリアジンおよびグルテンを検出可能であることがわかった。 Furthermore, from the measurement results of FIG. 7, the detection limit for gliadin and gluten of the nucleic acid sensor was calculated by the 3σ method (n = 3). As a result, the detection limit (LOD) for gliadin and gluten of the nucleic acid sensor was 1.2 ppm, respectively. From this, it was found that the nucleic acid sensor can detect a small amount of gliadin and gluten.
[実施例4]
 本発明のアプタマーについて、グリアジンに対する結合性を、SPR解析により確認した。
[Example 4]
Regarding the aptamer of the present invention, the binding property to gliadin was confirmed by SPR analysis.
 下記ポリヌクレオチドのアプタマー8および9を、実施例1と同様にして、合成した。アプタマー9は、アプタマー8の小型化配列である。下記配列番号8および9のポリヌクレオチドにおいて、下線部で示される「T」は、天然チミン(T)に代えて、チミンの5位が置換された5’-トリプタミノカルボニルウラシル(TrpdU)を有するデオキシリボヌクレオチド残基とし、下線部で示される「C」は、天然シトシン(C)に代えて、シトシンの5位が置換された5’-メチルシトシンを有するデオキシリボヌクレオチド残基とした。 The following polynucleotide aptamers 8 and 9 were synthesized in the same manner as in Example 1. Aptamer 9 is a miniaturized sequence of aptamer 8. In the polynucleotides of SEQ ID NOs: 8 and 9, the underlined “T” has 5′-tryptaminocarbonyluracil (TrpdU) substituted at position 5 of thymine instead of natural thymine (T). A deoxyribonucleotide residue having a 5′-methylcytosine substituted at the 5-position of cytosine in place of natural cytosine (C) was designated as a deoxyribonucleotide residue.
アプタマー8:Gli95_395TR8m1(配列番号8)
GGAAACGCCGCCTAGATCATTTGCGTCCTCCCTGGTGGGGATTGGCGAAAATTGACATCCTCAAGTTCCTGCGAAATG
アプタマー9:Gli95_395TR8m1s50(配列番号9)
CGCCTAGATCATTTGCGTCCTCCCTGGTGGGGATTGGCGAAAATTGACAT
Aptamer 8: Gli95_395TR8m1 (SEQ ID NO: 8)
GGAAACGCCGCCTAGATCATTTG C G TCCTCCCT GG T GGGGA TT GG C GAAAA TT GA C A TCCTC AAG TTCCT G C GAAA T G
Aptamer 9: Gli95_395TR8m1s50 (SEQ ID NO: 9)
CGCCTAGATCATTTG C G TCCTCCCT GG T GGGGA TT GG C GAAAA TT GA C A T
 アプタマー8および9の推定二次構造を、図8(A)に示す。ただし、これには限定されない。 The presumed secondary structure of aptamers 8 and 9 is shown in FIG. However, it is not limited to this.
 アプタマー8および9を使用し、試料として、前記グリアジン試料を使用し、前記試料におけるグリアジンの濃度を、50、100、200、および400nmol/Lとした以外は実施例1と同様にして、結合性の解析を行い、前記試料のインジェクション開始後の所定時間におけるシグナル強度を求めた。 As in Example 1 except that aptamers 8 and 9 were used, the gliadin sample was used as a sample, and the gliadin concentration in the sample was 50, 100, 200, and 400 nmol / L. The signal intensity at a predetermined time after the start of injection of the sample was determined.
 この結果を図9に示す。図9(A)および(B)は、それぞれ、グリアジンに対するアプタマー8および9の結合性を示すグラフであり、横軸は、前記試料のインジェクション開始後の経過時間(秒)を示し、縦軸は、シグナル強度(RU)を示す。図9(A)および(B)に示すように、アプタマー8およびその小型化配列であるアプタマー9は、グリアジンの濃度が増加するにつれて、シグナル強度が増加した。 The result is shown in FIG. FIGS. 9A and 9B are graphs showing the binding properties of aptamers 8 and 9 to gliadin, respectively. The horizontal axis represents the elapsed time (seconds) after the start of injection of the sample, and the vertical axis represents Shows the signal intensity (RU). As shown in FIGS. 9A and 9B, aptamer 8 and aptamer 9, which is a miniaturized sequence thereof, increased in signal intensity as the concentration of gliadin increased.
 さらに、前記図9のSPR解析の結果から、動態パラメータを算出した。この結果、アプタマー8および9は、グリアジンに対する解離定数(KD)が、それぞれ、19.4×10-9mol/L、および22.7×10-9mol/Lであり、優れた結合性であることがわかった。 Furthermore, kinetic parameters were calculated from the results of the SPR analysis in FIG. As a result, the aptamers 8 and 9 have dissociation constants (KD) with respect to gliadin of 19.4 × 10 −9 mol / L and 22.7 × 10 −9 mol / L, respectively. I found out.
 つぎに、下記ポリヌクレオチドのアプタマー10および11を、実施例1と同様にして、合成した。アプタマー11は、アプタマー10の小型化配列である。下記配列番号10および11のポリヌクレオチドにおいて、下線部で示される「T」は、天然チミン(T)に代えて、チミンの5位が置換された5’-ベンジルアミノカルボニルウラシル(BndU)を有するデオキシリボヌクレオチド残基とし、下線部で示される「C」は、天然シトシン(C)に代えて、シトシンの5位が置換された5’-メチルシトシンを有するデオキシリボヌクレオチド残基とした。 Next, aptamers 10 and 11 of the following polynucleotides were synthesized in the same manner as in Example 1. Aptamer 11 is a miniaturized sequence of aptamer 10. In the polynucleotides of SEQ ID NOS: 10 and 11 below, “T” indicated by underlining has 5′-benzylaminocarbonyluracil (BndU) substituted at the 5-position of thymine instead of natural thymine (T). A deoxyribonucleotide residue having a 5′-methylcytosine substituted at the 5-position of cytosine in place of natural cytosine (C) was designated as a deoxyribonucleotide residue.
アプタマー10:Gli_395BR8m2(配列番号10)
GGAAACGCCGCCTAGATCATTTGAAAACGTTGTTACCTCACCTATTATCTATTGACATCCTCAAGTTCCTGCGAAATG
アプタマー11:Gli_395BR8m2s51(配列番号11)
GGAAACGCCGCCTAGATCATTTGAAAACGTTGTTACCTCACCTATTATCTA
Aptamer 10: Gli_395BR8m2 (SEQ ID NO: 10)
GGAAACGCCGCCTAGATCATTTGAAAA C G TT G TT A CCTC A CCT A TT A TCT A TT GA C A TCCTC AAG TTCCT G C GAAA T G
Aptamer 11: Gli_395BR8m2s51 (SEQ ID NO: 11)
GGAAACGCCGCCTAGATCATTTGAAAA C G TT G TT A CCTC A CCT A TT A TCT A
 アプタマー10および11の推定二次構造を、図8(B)に示す。ただし、これには限定されない。 The estimated secondary structure of the aptamers 10 and 11 is shown in FIG. However, it is not limited to this.
 アプタマー10および11を使用し、試料として、前記グリアジン試料を使用し、前記試料におけるグリアジンの濃度を、100、200、400、および800nmol/Lとした以外は同様にして、結合性の解析を行い、前記試料のインジェクション開始後の所定時間におけるシグナル強度を求めた。 The binding analysis was performed in the same manner except that aptamers 10 and 11 were used, the gliadin sample was used as a sample, and the gliadin concentration in the sample was 100, 200, 400, and 800 nmol / L. The signal intensity at a predetermined time after the start of injection of the sample was determined.
 この結果を図10に示す。図10(A)および(B)は、それぞれ、グリアジンに対するアプタマー10および11の結合性を示すグラフであり、横軸は、前記試料のインジェクション開始後の経過時間(秒)を示し、縦軸は、シグナル強度(RU)を示す。図10(A)および(B)に示すように、アプタマー10およびその小型化配列であるアプタマー11は、グリアジンの濃度が増加するにつれて、シグナル強度が増加した。 The result is shown in FIG. FIGS. 10A and 10B are graphs showing the binding properties of aptamers 10 and 11 to gliadin, respectively. The horizontal axis represents the elapsed time (seconds) after the start of injection of the sample, and the vertical axis represents Shows the signal intensity (RU). As shown in FIGS. 10A and 10B, the aptamer 10 and the aptamer 11, which is a miniaturized sequence thereof, increased in signal intensity as the concentration of gliadin increased.
 さらに、前記図10のSPR解析の結果から、動態パラメータを算出した。この結果、アプタマー10および11は、グリアジンに対する解離定数(KD)が、それぞれ、132×10-9mol/L、および102×10-9mol/Lであり、優れた結合性であることがわかった。 Furthermore, kinetic parameters were calculated from the results of the SPR analysis in FIG. As a result, the aptamers 10 and 11 have excellent dissociation properties with dissociation constants (KD) for gliadin of 132 × 10 −9 mol / L and 102 × 10 −9 mol / L, respectively. It was.
[実施例5]
 本発明のアプタマーについて、加熱したグリアジンに対する結合性を、SPR解析により確認した。
[Example 5]
About the aptamer of this invention, the binding property with respect to the heated gliadin was confirmed by SPR analysis.
 試料として、加熱グリアジン試料を使用した以外は実施例4と同様にして、結合性の解析を行い、前記試料のインジェクション開始後の所定時間におけるシグナル強度を求めた。前記加熱グリアジン試料は、前記グリアジン試料を、95℃、10分の条件で加熱処理し、12000×gで10分遠心した後、上清を回収することにより調製した。 The binding analysis was performed in the same manner as in Example 4 except that a heated gliadin sample was used as a sample, and the signal intensity at a predetermined time after the start of injection of the sample was obtained. The heated gliadin sample was prepared by heat-treating the gliadin sample at 95 ° C. for 10 minutes, centrifuging at 12000 × g for 10 minutes, and then collecting the supernatant.
 この結果を図11および12に示す。図11(A)および(B)は、加熱グリアジンに対するアプタマー8および9の結合性を示すグラフであり、横軸は、前記試料のインジェクション開始後の経過時間(秒)を示し、縦軸は、シグナル強度(RU)を示す。図11(A)および(B)に示すように、アプタマー8およびその小型化配列であるアプタマー9は、加熱グリアジンの濃度が増加するにつれて、シグナル強度が増加した。 The results are shown in FIGS. FIGS. 11A and 11B are graphs showing the binding properties of aptamers 8 and 9 to heated gliadin, the horizontal axis indicates the elapsed time (seconds) after the start of injection of the sample, and the vertical axis is Signal intensity (RU) is shown. As shown in FIGS. 11A and 11B, aptamer 8 and aptamer 9, which is a miniaturized sequence thereof, increased in signal intensity as the concentration of heated gliadin increased.
 図12(A)および(B)は、加熱グリアジンに対するアプタマー10および11の結合性を示すグラフであり、横軸は、前記試料のインジェクション開始後の経過時間(秒)を示し、縦軸は、シグナル強度(RU)を示す。図12(A)および(B)に示すように、アプタマー10およびその小型化配列であるアプタマー11は、加熱グリアジンの濃度が増加するにつれて、シグナル強度が増加した。 12 (A) and (B) are graphs showing the binding properties of aptamers 10 and 11 to heated gliadin, the horizontal axis indicates the elapsed time (seconds) after the start of injection of the sample, and the vertical axis is Signal intensity (RU) is shown. As shown in FIGS. 12A and 12B, the aptamer 10 and the aptamer 11, which is a miniaturized sequence thereof, increased in signal intensity as the concentration of heated gliadin increased.
 さらに、前記図11および12のSPR解析の結果から、動態パラメータを算出した。この結果、アプタマー8~11は、加熱グリアジンに対する解離定数(KD)が、それぞれ、19.7×10-9mol/L、21.7×10-9mol/L、134×10-9mol/L、および99.5×10-9mol/Lであり、優れた結合性であることがわかった。 Furthermore, kinetic parameters were calculated from the results of SPR analysis in FIGS. As a result, aptamers 8 to 11 have dissociation constants (KD) with respect to heated gliadin of 19.7 × 10 −9 mol / L, 21.7 × 10 −9 mol / L, and 134 × 10 −9 mol / L, respectively. L, and 99.5 × 10 −9 mol / L, which was found to be excellent binding properties.
[実施例6]
 本発明のアプタマーについて、グルテンおよび加熱グルテンに対する結合性を、SPR解析により確認した。
[Example 6]
Regarding the aptamer of the present invention, the binding property to gluten and heated gluten was confirmed by SPR analysis.
 アプタマーとして、アプタマー8~11を使用し、試料として、100ppmの前記グルテン試料、および加熱グルテン試料を使用した以外は実施例1と同様にして、結合性の解析を行った。前記加熱グルテン試料は、前記グルテン試料を、95℃、10分の条件で加熱処理し、12000×gで10分遠心した後、上清を回収することにより調製した。また、前記アプタマーの交差反応の確認のため、前記卵試料、前記牛乳試料、および前記生ピーナッツ試料を使用した以外は同様にして、結合性の解析を行った。 Bondability analysis was performed in the same manner as in Example 1 except that aptamers 8 to 11 were used as aptamers, and 100 ppm of the gluten sample and the heated gluten sample were used as samples. The heated gluten sample was prepared by heating the gluten sample at 95 ° C. for 10 minutes, centrifuging at 12,000 × g for 10 minutes, and then collecting the supernatant. In addition, in order to confirm the cross-reaction of the aptamer, binding analysis was performed in the same manner except that the egg sample, the milk sample, and the raw peanut sample were used.
 この結果を図13に示す。図13は、グルテンおよび加熱グルテンに対するアプタマー8~11の結合性を示すグラフであり、横軸は、アプタマーの種類を示し、縦軸は、シグナル強度(RU)を示す。横軸において、左から順に、アプタマー8、アプタマー10、アプタマー9、およびアプタマー11を示す。各グラフは、左から順に、グルテン試料、加熱グルテン試料、卵試料、牛乳試料、および生ピーナッツ試料を示す。図13に示すように、アプタマー8~11は、グルテンおよび加熱グルテンに対して、結合性を示した。一方、アプタマー8~11は、卵試料、牛乳試料、および生ピーナッツ試料に対しては、シグナル強度が0.05以下であり、結合性を示さなかった。 The result is shown in FIG. FIG. 13 is a graph showing the binding properties of aptamers 8 to 11 to gluten and heated gluten. The horizontal axis represents the type of aptamer, and the vertical axis represents signal intensity (RU). In the horizontal axis, aptamer 8, aptamer 10, aptamer 9, and aptamer 11 are shown in order from the left. Each graph shows a gluten sample, a heated gluten sample, an egg sample, a milk sample, and a raw peanut sample in order from the left. As shown in FIG. 13, aptamers 8 to 11 showed binding properties to gluten and heated gluten. On the other hand, the aptamers 8 to 11 had a signal intensity of 0.05 or less and showed no binding to egg samples, milk samples, and raw peanut samples.
 以上の結果から、本発明のアプタマーは、グルテンおよび加熱グルテンに特異的に結合し、それを測定により検出できること、および、本発明のアプタマーによれば、発光の強弱によって、試料中のグルテンおよび加熱グルテンの量を分析できることがわかった。 From the above results, the aptamer of the present invention specifically binds to gluten and heated gluten and can be detected by measurement, and according to the aptamer of the present invention, gluten in the sample and heated It was found that the amount of gluten could be analyzed.
 以上、実施形態および実施例を参照して本願発明を説明したが、本願発明は、上記実施形態および実施例に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解しうる様々な変更をできる。 As mentioned above, although this invention was demonstrated with reference to embodiment and an Example, this invention is not limited to the said embodiment and Example. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
 この出願は、2016年11月24に出願された日本出願特願2016-227865を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2016-227865 filed on November 24, 2016, the entire disclosure of which is incorporated herein.
 本発明の核酸分子は、グルテンまたはグリアジンに結合可能である。このため、本発明の核酸分子によれば、試料中のアレルゲンとの結合の有無によって、グルテンやグリアジンを検出できる。このため、本発明の核酸分子は、例えば、食品製造、食品管理、食品の流通等の分野において、例えば、小麦等の穀物に由来するアレルゲンの検出に、極めて有用なツールといえる。 The nucleic acid molecule of the present invention can bind to gluten or gliadin. Therefore, according to the nucleic acid molecule of the present invention, gluten and gliadin can be detected based on the presence or absence of binding to the allergen in the sample. Therefore, the nucleic acid molecule of the present invention can be said to be an extremely useful tool for detecting allergens derived from grains such as wheat, for example, in the fields of food production, food management, food distribution, and the like.

Claims (17)

  1. 下記(a)または(b)のいずれかのポリヌクレオチドを含むことを特徴とする、グルテンおよびグリアジンの少なくとも一方に結合する核酸分子。
    (a)配列番号1、8、もしくは10の塩基配列または配列番号1、8、もしくは10の塩基配列の部分配列からなるポリヌクレオチド
    (b)前記(a)の塩基配列に対して、90%以上の同一性を有する塩基配列からなり、グルテンおよびグリアジンの少なくとも一方に結合するポリヌクレオチド
    Glu392BR8m4(配列番号1)
    GGTATGGAGGCAAGTCCCAATTCGTGCAGAGAAACGTGTCTGTATTTATTAATCGTTTCAGCCAGACAGGGTTTATG
    Gli95_395TR8m1(配列番号8)
    GGAAACGCCGCCTAGATCATTTGCGTCCTCCCTGGTGGGGATTGGCGAAAATTGACATCCTCAAGTTCCTGCGAAATG
    Gli_395BR8m2(配列番号10)
    GGAAACGCCGCCTAGATCATTTGAAAACGTTGTTACCTCACCTATTATCTATTGACATCCTCAAGTTCCTGCGAAATG
    A nucleic acid molecule that binds to at least one of gluten and gliadin, comprising the polynucleotide of any one of (a) and (b) below:
    (A) a polynucleotide comprising the nucleotide sequence of SEQ ID NO: 1, 8, or 10 or a partial sequence of the nucleotide sequence of SEQ ID NO: 1, 8, or 10 (b) 90% or more relative to the nucleotide sequence of (a) A polynucleotide Glu392BR8m4 (SEQ ID NO: 1) that binds to at least one of gluten and gliadin.
    GGTATGGAGGCAAGTCCCAATTCG T G C AGAGAAA C G T G TCT G T A TTT A TT AA TC G TTTC AG CC AGA C AGGG TTT A T G
    Gli95_395TR8m1 (SEQ ID NO: 8)
    GGAAACGCCGCCTAGATCATTTG C G TCCTCCCT GG T GGGGA TT GG C GAAAA TT GA C A TCCTC AAG TTCCT G C GAAA T G
    Gli — 395BR8m2 (SEQ ID NO: 10)
    GGAAACGCCGCCTAGATCATTTGAAAA C G TT G TT A CCTC A CCT A TT A TCT A TT GA C A TCCTC AAG TTCCT G C GAAA T G
  2. 前記配列番号1、8、または10の塩基配列の部分配列が、それぞれ、配列番号2~7からなる群から選択された少なくとも一つの塩基配列、配列番号9の塩基配列、または配列番号11の塩基配列である、請求項1記載の核酸分子。
    Glu392BR8m4_s59A(配列番号2)
    GGTATGGAGGCAAGTCCCAATTCGTGCAGAGAAACGTGTCTGTATTTATTAATCGTTTC
    Glu392BR8m4_s51(配列番号3)
    GGCAAGTCCCAATTCGTGCAGAGAAACGTGTCTGTATTTATTAATCGTTTC
    Glu392BR8m4_s38(配列番号4)
    TCGTGCAGAGAAACGTGTCTGTATTTATTAATCGTTTC
    Glu392BR8m4_s67(配列番号5)
    GGTATGGAGGCAAGTCCCAATTCGTGCAGAGAAACGTGTCTGTATTTATTAATCGTTTCAGCCAGAC
    Glu392BR8m4_s59B(配列番号6)
    GGCAAGTCCCAATTCGTGCAGAGAAACGTGTCTGTATTTATTAATCGTTTCAGCCAGAC
    Glu392BR8m4_s46(配列番号7)
    TCGTGCAGAGAAACGTGTCTGTATTTATTAATCGTTTCAGCCAGAC
    Gli95_395TR8m1s50(配列番号9)
    CGCCTAGATCATTTGCGTCCTCCCTGGTGGGGATTGGCGAAAATTGACAT
    Gli_395BR8m2s51(配列番号11)
    GGAAACGCCGCCTAGATCATTTGAAAACGTTGTTACCTCACCTATTATCTA
    The partial sequence of the base sequence of SEQ ID NO: 1, 8, or 10 is each at least one base sequence selected from the group consisting of SEQ ID NOs: 2 to 7, the base sequence of SEQ ID NO: 9, or the base of SEQ ID NO: 11 2. The nucleic acid molecule of claim 1 which is a sequence.
    Glu392BR8m4_s59A (SEQ ID NO: 2)
    GGTATGGAGGCAAGTCCCAATTCG T G C AGAGAAA C G T G TCT G T A TTT A TT AA TC G TTTC
    Glu392BR8m4_s51 (SEQ ID NO: 3)
    GGCAAGTCCCAATTCG T G C AGAGAAA C G T G TCT G T A TTT A TT AA TC G TTTC
    Glu392BR8m4_s38 (SEQ ID NO: 4)
    TC G T G C AGAGAAA C G T G TCT G T A TTT A TT AA TC G TTTC
    Glu392BR8m4_s67 (SEQ ID NO: 5)
    GGTATGGAGGCAAGTCCCAATTCG T G C AGAGAAA C G T G TCT G T A TTT A TT AA TC G TTTC AG CC AGA C
    Glu392BR8m4_s59B (SEQ ID NO: 6)
    GGCAAGTCCCAATTCG T G C AGAGAAA C G T G TCT G T A TTT A TT AA TC G TTTC AG CC AGA C
    Glu392BR8m4_s46 (SEQ ID NO: 7)
    TCGTGCAGAGAAACG T G TCT G T A TTT A TT AA TC G TTTC AG CC AGA C
    Gli95_395TR8m1s50 (SEQ ID NO: 9)
    CGCCTAGATCATTTG C G TCCTCCCT GG T GGGGA TT GG C GAAAA TT GA C A T
    Gli — 395BR8m2s51 (SEQ ID NO: 11)
    GGAAACGCCGCCTAGATCATTTGAAAA C G TT G TT A CCTC A CCT A TT A TCT A
  3. 前記ポリヌクレオチドにおいて、少なくとも1個のチミンが、修飾塩基であり、前記チミンの修飾塩基が、修飾チミンおよび修飾ウラシルの少なくとも一方である、請求項1または2記載の核酸分子。 The nucleic acid molecule according to claim 1 or 2, wherein in the polynucleotide, at least one thymine is a modified base, and the modified base of the thymine is at least one of a modified thymine and a modified uracil.
  4. 前記ポリヌクレオチドにおいて、チミンの全塩基数のうち、20分の1以上が、修飾塩基であり、前記チミンの修飾塩基が、修飾チミンおよび修飾ウラシルの少なくとも一方である、請求項1から3のいずれか一項に記載の核酸分子。 4. The polynucleotide according to claim 1, wherein, in the polynucleotide, at least one-twentieth of the total number of bases of thymine is a modified base, and the modified base of thymine is at least one of modified thymine and modified uracil. The nucleic acid molecule according to claim 1.
  5. 前記ポリヌクレオチドにおいて、前記各塩基配列における下線部で示されるチミンが、修飾塩基であり、前記チミンの修飾塩基が、修飾チミンおよび修飾ウラシルの少なくとも一方である、請求項1から4のいずれか一項に記載の核酸分子。 In the said polynucleotide, the thymine shown by the underline part in each said base sequence is a modified base, The modified base of the said thymine is at least one of a modified thymine and a modified uracil. The nucleic acid molecule according to Item.
  6. 前記ポリヌクレオチドにおいて、少なくとも1個のシトシンが、修飾塩基である、請求項1から5のいずれか一項に記載の核酸分子。 The nucleic acid molecule according to any one of claims 1 to 5, wherein in the polynucleotide, at least one cytosine is a modified base.
  7. 前記ポリヌクレオチドにおいて、シトシンの全塩基数のうち、20分の1以上が、修飾塩基である、請求項1から6のいずれか一項に記載の核酸分子。 The nucleic acid molecule according to any one of claims 1 to 6, wherein in the polynucleotide, at least one-twentieth of the total number of bases of cytosine is a modified base.
  8. 前記ポリヌクレオチドにおいて、前記各塩基配列における下線部で示されるシトシンが、修飾塩基である、請求項1から7のいずれか一項に記載の核酸分子。 The nucleic acid molecule according to any one of claims 1 to 7, wherein in the polynucleotide, a cytosine indicated by an underline in each base sequence is a modified base.
  9. 前記ポリヌクレオチドが、DNAである、請求項1から8のいずれか一項に記載の核酸分子。 The nucleic acid molecule according to any one of claims 1 to 8, wherein the polynucleotide is DNA.
  10. 下記(e)のポリヌクレオチドを含むことを特徴とする、請求項1から9のいずれか一項に記載の核酸分子。
    (e)前記(a)の塩基配列に対して、80%以上の同一性を有する塩基配列からなり、それぞれ、配列番号2~7のいずれかの塩基配列、配列番号9の塩基配列、または配列番号11の塩基配列を含む、グルテンおよびグリアジンの少なくとも一方に結合するポリヌクレオチド
    The nucleic acid molecule according to any one of claims 1 to 9, which comprises the following polynucleotide (e):
    (E) consisting of a base sequence having 80% or more identity to the base sequence of (a), each of the base sequence of SEQ ID NO: 2 to 7, the base sequence of SEQ ID NO: 9, or the sequence A polynucleotide comprising the nucleotide sequence of No. 11 and binding to at least one of gluten and gliadin
  11. 下記(f)のポリヌクレオチドを含むことを特徴とする、請求項1から9のいずれか一項に記載の核酸分子。
    (f)配列番号1~11からなる群から選択された少なくとも一つの塩基配列に対して、80%以上の同一性を有する塩基配列からなり、それぞれ、式(I)~(XI)で表される二次構造を形成可能である、グルテンおよびグリアジンの少なくとも一方に結合するポリヌクレオチド
    Figure JPOXMLDOC01-appb-C000001
     
    Figure JPOXMLDOC01-appb-C000002
     
    Figure JPOXMLDOC01-appb-C000003
     
    Figure JPOXMLDOC01-appb-C000004
     
    Figure JPOXMLDOC01-appb-C000005
     
    Figure JPOXMLDOC01-appb-C000006
     
    Figure JPOXMLDOC01-appb-C000007
     
    Figure JPOXMLDOC01-appb-C000008
     
    Figure JPOXMLDOC01-appb-C000009
     
    Figure JPOXMLDOC01-appb-C000010
     
    Figure JPOXMLDOC01-appb-C000011
     
    The nucleic acid molecule according to any one of claims 1 to 9, comprising the following polynucleotide (f):
    (F) a base sequence having at least 80% identity to at least one base sequence selected from the group consisting of SEQ ID NOs: 1 to 11, and represented by formulas (I) to (XI), respectively. A polynucleotide that binds to at least one of gluten and gliadin
    Figure JPOXMLDOC01-appb-C000001

    Figure JPOXMLDOC01-appb-C000002

    Figure JPOXMLDOC01-appb-C000003

    Figure JPOXMLDOC01-appb-C000004

    Figure JPOXMLDOC01-appb-C000005

    Figure JPOXMLDOC01-appb-C000006

    Figure JPOXMLDOC01-appb-C000007

    Figure JPOXMLDOC01-appb-C000008

    Figure JPOXMLDOC01-appb-C000009

    Figure JPOXMLDOC01-appb-C000010

    Figure JPOXMLDOC01-appb-C000011
  12. 請求項1から11のいずれか一項に記載の核酸分子を含むことを特徴とする、グルテンまたはグリアジンの検出試薬。 A detection reagent for gluten or gliadin, comprising the nucleic acid molecule according to any one of claims 1 to 11.
  13. さらに、標識物質を有し、
    前記標識物質が、前記核酸分子に結合されている、請求項12記載の検出試薬。
    Furthermore, it has a labeling substance,
    The detection reagent according to claim 12, wherein the labeling substance is bound to the nucleic acid molecule.
  14. 前記標識物質が、酵素である、請求項13記載の検出試薬。 The detection reagent according to claim 13, wherein the labeling substance is an enzyme.
  15. 前記酵素が、ルシフェラーゼである、請求項14記載の検出試薬。 The detection reagent according to claim 14, wherein the enzyme is luciferase.
  16. 請求項1から11のいずれか一項に記載の核酸分子、または請求項12から15のいずれか一項に記載の検出試薬と、試料とを接触させ、前記試料中のグルテンまたはグリアジンと、前記核酸分子または前記検出試薬との複合体を形成させる工程、および、
    前記複合体を検出する工程を含むことを特徴とする、グルテンまたはグリアジンの検出方法。
    A nucleic acid molecule according to any one of claims 1 to 11 or a detection reagent according to any one of claims 12 to 15 and a sample are brought into contact, and gluten or gliadin in the sample, Forming a complex with a nucleic acid molecule or the detection reagent, and
    A method for detecting gluten or gliadin, comprising the step of detecting the complex.
  17. 前記検出が、定性分析または定量分析である、請求項16記載の検出方法。
     
    The detection method according to claim 16, wherein the detection is qualitative analysis or quantitative analysis.
PCT/JP2017/042147 2016-11-24 2017-11-24 Nucleic acid molecule and use thereof WO2018097220A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018552959A JPWO2018097220A1 (en) 2016-11-24 2017-11-24 Nucleic acid molecule and its use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016227865 2016-11-24
JP2016-227865 2016-11-24

Publications (1)

Publication Number Publication Date
WO2018097220A1 true WO2018097220A1 (en) 2018-05-31

Family

ID=62195486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042147 WO2018097220A1 (en) 2016-11-24 2017-11-24 Nucleic acid molecule and use thereof

Country Status (2)

Country Link
JP (1) JPWO2018097220A1 (en)
WO (1) WO2018097220A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012113072A1 (en) * 2011-02-27 2012-08-30 Neoventures Biotechnology Inc. A method for the selection of dna ligands for a molecular target
WO2013178844A1 (en) * 2012-05-31 2013-12-05 Universidad De Oviedo Specific aptamers against gluten and associated method for detecting gluten
WO2015045536A1 (en) * 2013-09-25 2015-04-02 Necソリューションイノベータ株式会社 Nucleic acid molecule which binds to clenbuterol, and use thereof
WO2015191419A2 (en) * 2014-06-09 2015-12-17 3M Innovative Properties Company Assay devices and method of detecting a target analyte
WO2017085767A1 (en) * 2015-11-16 2017-05-26 Necソリューションイノベータ株式会社 Wheat allergen-binding nucleic acid molecule and use thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012113072A1 (en) * 2011-02-27 2012-08-30 Neoventures Biotechnology Inc. A method for the selection of dna ligands for a molecular target
WO2013178844A1 (en) * 2012-05-31 2013-12-05 Universidad De Oviedo Specific aptamers against gluten and associated method for detecting gluten
WO2015045536A1 (en) * 2013-09-25 2015-04-02 Necソリューションイノベータ株式会社 Nucleic acid molecule which binds to clenbuterol, and use thereof
WO2015191419A2 (en) * 2014-06-09 2015-12-17 3M Innovative Properties Company Assay devices and method of detecting a target analyte
WO2017085767A1 (en) * 2015-11-16 2017-05-26 Necソリューションイノベータ株式会社 Wheat allergen-binding nucleic acid molecule and use thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AMAYA -GONZALEZ S ET AL.: "Aptamer Binding to Celiac Disease-Triggering Hydrophobic Proteins: A Sensitive Gluten Detection Approach", ANAL. CHEM., vol. 86, 2014, pages 2733 - 2739, XP055383534, DOI: doi:10.1021/ac404151n *
PINTO A ET AL.: "Label-free detection of gliadin food allergen mediated by real-time apta-PCR", ANAL. BIOANAL. CHEM., vol. 406, no. 1 - 6, 2014, pages 515 - 524, XP055383537, DOI: doi:10.1007/s00216-013-7475-z *

Also Published As

Publication number Publication date
JPWO2018097220A1 (en) 2019-06-27

Similar Documents

Publication Publication Date Title
Pinto et al. Label-free detection of gliadin food allergen mediated by real-time apta-PCR
JP6687618B2 (en) Detection of residual host cell proteins in recombinant protein preparations
CN104911186B (en) A kind of single strand dna oligonucleotide aptamer of specific recognition aflatoxin B1
JP6212136B2 (en) Nucleic acid molecules that bind to peanuts and uses thereof
JP6744028B2 (en) Nucleic acid molecule binding to α-amylase and use thereof
WO2018097220A1 (en) Nucleic acid molecule and use thereof
WO2018092915A1 (en) Nucleic acid molecule, and use thereof
JP6414907B2 (en) Nucleic acid molecules that bind to buckwheat allergens and uses thereof
JP6347498B2 (en) Nucleic acid molecules that bind to egg allergens and uses thereof
JP6687264B2 (en) Nucleic acid molecule and its use
JP6399611B2 (en) Nucleic acid molecules that bind to shrimp allergens and uses thereof
JP6598315B2 (en) Nucleic acid molecules that bind to wheat allergens and uses thereof
JP2018171035A (en) Nucleic acid molecule and use thereof
EP3406735B1 (en) Target analysis method and target analysis kit for use in said method
JP6963221B2 (en) Nucleic acid molecules and their uses
JP7405400B2 (en) Nucleic acid molecules and their uses
JP2020165818A (en) Target analysis method and analysis kit
JP2018170985A (en) Nucleic acid molecule and use thereof
JP2018171041A (en) Target analysis method and target analysis kit to be used for the same
JP2022106581A (en) Crp-binding nucleic acid molecule, crp detection sensor, crp detection reagent, crp detection method, and crp binding area
JP2020165819A (en) Wheat allergen analysis kit and analysis method
JP2020165820A (en) Milk allergen analysis kit and analysis method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17874425

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018552959

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17874425

Country of ref document: EP

Kind code of ref document: A1