WO2018092915A1 - Nucleic acid molecule, and use thereof - Google Patents

Nucleic acid molecule, and use thereof Download PDF

Info

Publication number
WO2018092915A1
WO2018092915A1 PCT/JP2017/041869 JP2017041869W WO2018092915A1 WO 2018092915 A1 WO2018092915 A1 WO 2018092915A1 JP 2017041869 W JP2017041869 W JP 2017041869W WO 2018092915 A1 WO2018092915 A1 WO 2018092915A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
casein
polynucleotide
acid molecule
milk
Prior art date
Application number
PCT/JP2017/041869
Other languages
French (fr)
Japanese (ja)
Inventor
行大 白鳥
あすみ 稲熊
晃尚 清水
金子 直人
嘉仁 吉田
穣 秋冨
藤田 智子
克紀 堀井
巌 和賀
Original Assignee
Necソリューションイノベータ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necソリューションイノベータ株式会社 filed Critical Necソリューションイノベータ株式会社
Priority to JP2018551723A priority Critical patent/JPWO2018092915A1/en
Publication of WO2018092915A1 publication Critical patent/WO2018092915A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/115Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids

Definitions

  • the present invention relates to nucleic acid molecules that bind to milk-derived ⁇ -casein and uses thereof.
  • Milk is a food that is frequently consumed on a daily basis, but in recent years, the number of patients with milk allergies has increased and has been regarded as a problem. Many processed foods such as cheese, butter, and yogurt use milk, so it is extremely difficult to analyze whether processed milk or its production line contains milk as a raw material. is important.
  • Allergic allergens are generally proteins and their degradation products (peptides), and analysis methods using antibodies using these as antigens are the mainstream.
  • milk for example, ⁇ -casein, which is a milk protein, is known as an allergen.
  • ⁇ -casein As an analysis method for ⁇ -casein, a method using an ELISA method has been reported (Non-patent Document 1).
  • an antibody is a protein and has a problem in stability, it is difficult to use the antibody for a simple test method at a low cost. Further, electrophoresis, blotting on a nitrocellulose membrane, and the like are necessary, and the operation is complicated. For this reason, in recent years, attention has been focused on nucleic acid molecules that specifically bind to antigens instead of antibodies.
  • an object of the present invention is to provide a new nucleic acid molecule that binds to milk-derived ⁇ -casein.
  • the nucleic acid molecule of the present invention is a nucleic acid molecule that binds to milk-derived ⁇ -casein, which comprises any of the following polynucleotides (a) or (b).
  • the milk-derived ⁇ -casein detection reagent of the present invention includes the nucleic acid molecule of the present invention.
  • the nucleic acid molecule of the present invention or the detection reagent of the present invention is brought into contact with a sample, and the milk-derived ⁇ -casein in the sample is mixed with the nucleic acid molecule or the detection. Forming a complex with the reagent, and A step of detecting the complex.
  • the nucleic acid molecule of the present invention can bind to milk-derived ⁇ -casein. For this reason, according to the nucleic acid molecule of the present invention, milk-derived ⁇ -casein can be detected based on the presence or absence of binding to the allergen in the sample. Therefore, the nucleic acid molecule of the present invention can be said to be an extremely useful tool for detecting allergens derived from milk, for example, in the fields of food production, food management, food distribution and the like.
  • FIG. 1 shows a presumed secondary structure of aptamer 1 in Example 1 of the present invention.
  • FIG. 2 is a graph showing the binding property of aptamer 1 to milk-derived ⁇ -casein in Example 1 of the present invention.
  • FIG. 3 is a graph showing aptamer 1 binding to a milk sample in Example 1 of the present invention.
  • FIG. 4 is a graph showing aptamer 1 binding to ⁇ -casein in Example 1 of the present invention.
  • FIG. 5 is a graph showing the measurement result of the light emission amount in Example 2 of the present invention.
  • FIG. 6 is a graph showing the measurement result of the light emission amount in Example 2 of the present invention.
  • FIG. 7 is a graph showing aptamer 1 binding to a heated milk sample in Example 3 of the present invention.
  • FIG. 8 shows the presumed secondary structures of aptamers 2 to 5 in Example 4 of the present invention.
  • FIG. 9 is a graph showing the binding properties of aptamers 2 and 3 to ⁇ -casein in Example 4 of the present invention.
  • FIG. 10 is a graph showing the binding properties of aptamers 4 and 5 to ⁇ -casein in Example 4 of the present invention.
  • FIG. 11 is a graph showing the binding properties of aptamers 2 and 3 to heated ⁇ -casein in Example 5 of the present invention.
  • FIG. 12 is a graph showing the binding properties of aptamers 4 and 5 to heated ⁇ -casein in Example 5 of the present invention.
  • FIG. 13 is a graph showing the binding properties of aptamers 2 to 5 to milk samples in Example 6 of the present invention.
  • FIG. 14 is a putative secondary structure of aptamers 6 and 7 in Example 7 of the present invention.
  • FIG. 15 is a graph showing the binding properties of aptamers 6 and 7 to ⁇ -casein in Example 7 of the present invention.
  • FIG. 16 is a putative secondary structure of aptamers 8 and 9 in Example 8 of the present invention.
  • FIG. 17 is a graph showing the binding properties of aptamers 8 and 9 to ⁇ -casein in Example 8 of the present invention.
  • nucleic acid molecule of the present invention is a nucleic acid molecule that binds to milk-derived ⁇ -casein, characterized in that it comprises a polynucleotide of either (a) or (b) below.
  • a polynucleotide comprising the nucleotide sequence of SEQ ID NO: 1, 2 or 4 or a partial sequence of the nucleotide sequence of SEQ ID NO: 1, 2 or 4
  • 90% or more identical to the nucleotide sequence of (a) A polynucleotide comprising a base sequence having sex and binding to milk-derived ⁇ -casein
  • the target is ⁇ -casein derived from milk.
  • the origin of the milk is, for example, cows and goats.
  • Milk-derived ⁇ -casein is, for example, milk-derived ⁇ -casein.
  • commercially available ⁇ -casein can be used as ⁇ -casein for confirming the binding ability, and specific examples include ⁇ -casein derived from milk (C6780-19, manufactured by SIGMA).
  • Alpha casein is, for example, a native allergen.
  • milk-derived ⁇ -casein is also simply referred to as ⁇ -casein.
  • the nucleic acid molecule of the present invention can bind to ⁇ -casein.
  • binding to ⁇ -casein means, for example, having binding property to ⁇ -casein or having binding activity to ⁇ -casein.
  • the binding between the nucleic acid molecule of the present invention and ⁇ -casein can be determined by, for example, surface plasmon resonance molecular interaction (SPR) analysis.
  • SPR surface plasmon resonance molecular interaction
  • BIACORE 3000 (trade name, GE Healthcare UK Ltd.) can be used. Since the nucleic acid molecule of the present invention binds to ⁇ -casein, it can be used, for example, for detection of ⁇ -casein.
  • the nucleic acid molecule of the present invention has a dissociation constant indicating the binding force to ⁇ -casein, for example, 20 nmol / L or less, 17 nmol / L or less, 13 nmol / L or less, 9 nmol / L or less, 7 nmol / L or less.
  • the nucleic acid molecule of the present invention is also called a DNA molecule or a DNA aptamer.
  • the nucleic acid molecule of the present invention may be, for example, a molecule composed of the polynucleotide (a) or (b) or a molecule containing the polynucleotide.
  • the polynucleotide of (a) may be, for example, a polynucleotide containing the base sequence of SEQ ID NO: 1, 2, or 4, may be a polynucleotide consisting of the base sequence of SEQ ID NO: 1, 2, or 4,
  • the polynucleotide may include a partial sequence of the base sequence of SEQ ID NO: 1, 2, or 4 or may be a polynucleotide comprising the partial sequence.
  • the partial sequence is not particularly limited, and may be, for example, a sequence in which at least one of the 5 'end and 3' end is deleted from the original sequence, or a sequence in which an intermediate region sequence is deleted.
  • the polynucleotide of SEQ ID NO: 1, 2 or 4 is shown below.
  • aCas392BR8m2 (SEQ ID NO: 1) GGTATGGAGGCAAGTCCCAATTC T AAGAAG T GGAG T AGG T GGG TTT AAGGA T A C G TTTC AG CC AGA C AGGG TTT A T G aCas757BR8m3 (SEQ ID NO: 2) GGATAGCAGCAGGGACCTCTTATACG TC GG T G CT GG T G TT G T A T AGA CCCCCTT A T A TT A T AA CC GAA T GA TTT G CCC G CT A C GA T A T G aCas757BR8m4 (SEQ ID NO: 4) GGATAGCAGCAGGGACCTCTTATAC CT GAG C GG CTC A TT A CCCTTCC GA CT GG TC G CCC G CTT A CC GAA T GA TTT G CCC G CT A C GA T A T G aCas757BR8m4 (SEQ ID NO: 4)
  • the partial sequence of SEQ ID NO: 2 is not particularly limited, and examples thereof include the base sequences of SEQ ID NOs: 3, 6, 8, and 9.
  • the base sequence of SEQ ID NO: 6 is a sequence obtained by further miniaturizing the base sequence of SEQ ID NO: 3.
  • aCas757BR8m3s69 (SEQ ID NO: 3) GGATAGCAGCAGGGACCTCTTATACG TC GG T G CT GG T G TT G T A T AGA CCCCCTT A T A TT A T AA CC GAA T aCas757BR8m3s63 (SEQ ID NO: 6) GGATAGCAGCAGGGACCTCTTATACG TC GG T G CT GG T G TT G T A T AGA CCCCCTT A T A TT A T AA aCas757BR8m3s63b (SEQ ID NO: 8) GGATAGACCTCTTATACG TCT G TT G T A T AGA CCCCCTT A T A TT A T AA aCas757BR8m3s63c (SEQ ID NO: 9) GGATAGCAGCACTCTTATAC T G CT GG T G TT G T A T AGA CCCCCTT A T A TT A T A AA
  • the partial sequence of SEQ ID NO: 4 is not particularly limited, and examples thereof include the nucleotide sequences of SEQ ID NOs: 5 and 7. aCas757BR8m4s62 (SEQ ID NO: 5) GGATAGCAGCAGGGACCTCTTATAC CT GAG C GG CTC A TT A CCCTTCC GA CT GG TC G CCC G CT aCas757BR8m4s44 (SEQ ID NO: 7) TTATAC CT GAG C GG CTC A TT A CCCTTCC GA CT GG TC G CCC G CTC
  • the “identity” is not particularly limited, and may be any range as long as the polynucleotide (b) binds to ⁇ -casein.
  • the identity is, for example, 80% or more, preferably 85% or more, more preferably 90% or more, further preferably 95% or more, 96% or more, 97% or more, particularly preferably 98% or more, and most preferably 99%. % Or more.
  • the identity can be calculated with default parameters using analysis software such as BLAST and FASTA (hereinafter the same).
  • the polynucleotide in the nucleic acid molecule of the present invention may be, for example, the polynucleotide (c) below.
  • the nucleic acid molecule of the present invention may be, for example, a molecule composed of the polynucleotide (c) or a molecule containing the polynucleotide.
  • C a polynucleotide comprising a base sequence complementary to a polynucleotide that hybridizes under stringent conditions to the polynucleotide comprising the base sequence of (a) and binding to milk-derived ⁇ -casein
  • the “hybridizing polynucleotide” is not particularly limited, and is, for example, a polynucleotide that is completely or partially complementary to the base sequence of (a).
  • the hybridization can be detected by, for example, various hybridization assays.
  • the hybridization assay is not particularly limited, for example, Zanburuku (Sambrook) et al., Eds., "Molecular Cloning: A Laboratory Manual 2nd Edition (Molecular Cloning:. A Laboratory Manual 2 nd Ed) ,” [Cold Spring Harbor Laboratory Press (1989)] and the like can also be employed.
  • the “stringent conditions” may be, for example, any of low stringent conditions, medium stringent conditions, and high stringent conditions.
  • Low stringent conditions are, for example, conditions of 5 ⁇ SSC, 5 ⁇ Denhardt's solution, 0.5% SDS, 50% formamide, and 32 ° C.
  • Medium stringent conditions are, for example, 5 ⁇ SSC, 5 ⁇ Denhardt's solution, 0.5% SDS, 50% formamide, 42 ° C.
  • “High stringent conditions” are, for example, conditions of 5 ⁇ SSC, 5 ⁇ Denhardt's solution, 0.5% SDS, 50% formamide, 50 ° C.
  • the degree of stringency can be set by those skilled in the art by appropriately selecting conditions such as temperature, salt concentration, probe concentration and length, ionic strength, time, and the like.
  • “Stringent conditions” are, for example, Zanburuku previously described (Sambrook) et al., Eds., "Molecular Cloning: A Laboratory Manual 2nd Edition (Molecular Cloning:. A Laboratory Manual 2 nd Ed) ,” [Cold Spring Harbor Laboratory Press ( 1989)]] and the like.
  • the polynucleotide in the nucleic acid molecule of the present invention may be, for example, the polynucleotide (d) below.
  • the nucleic acid molecule of the present invention may be, for example, a molecule composed of the polynucleotide (d) or a molecule containing the polynucleotide.
  • D a polynucleotide comprising a base sequence in which one or several bases are deleted, substituted, inserted and / or added in the base sequence of (a), and which binds to milk-derived ⁇ -casein
  • “one or several” may be in the range where the polynucleotide in (d) is bound to milk-derived ⁇ -casein, for example.
  • the “one or several” in the base sequence of (a) is, for example, 1 to 10, preferably 1 to 7, more preferably 1 to 5, further preferably 1 to 3, particularly preferably. Is one or two.
  • the polynucleotide in the nucleic acid molecule of the present invention may be, for example, the polynucleotide (e) below.
  • the nucleic acid molecule of the present invention may be, for example, a molecule composed of the polynucleotide (e) or a molecule containing the polynucleotide. (E) consisting of a base sequence having 80% or more identity to the base sequence of SEQ ID NO: 2 or 4, wherein either one of SEQ ID NOs: 3 and 6, or any one of 5 and 7, respectively
  • a polynucleotide comprising a base sequence and binding to ⁇ -casein derived from milk
  • identity is not particularly limited, and is the same as (b), for example.
  • the polynucleotide in the nucleic acid molecule of the present invention may be, for example, the polynucleotide (f) below.
  • the nucleic acid molecule of the present invention may be, for example, a molecule composed of the polynucleotide (f) or a molecule containing the polynucleotide.
  • F a base sequence having 80% or more identity to at least one base sequence selected from the group consisting of SEQ ID NOs: 1 to 9, and represented by formulas (I) to (IX), respectively.
  • “identity” is not particularly limited, and is the same as (b), for example.
  • “can form a secondary structure” means, for example, that the polynucleotide of (f) can form a stem structure and a loop structure in the above formula. The stem structure and loop structure will be described later.
  • the polynucleotide in the nucleic acid molecule of the present invention may be, for example, the polynucleotide (g) below.
  • the nucleic acid molecule of the present invention may be, for example, a molecule composed of the polynucleotide (g) or a molecule containing the polynucleotide.
  • G consisting of a base sequence having 80% or more identity to at least one base sequence selected from the group consisting of SEQ ID NOs: 2 and 4, respectively represented by formulas (III) and (VI), and formula A polynucleotide capable of forming a secondary structure represented by (V) and formula (VII) and binding to milk-derived ⁇ -casein
  • the polynucleotide in the nucleic acid molecule of the present invention may be, for example, the polynucleotide (h) below.
  • the nucleic acid molecule of the present invention may be, for example, a molecule composed of the polynucleotide (h) or a molecule containing the polynucleotide.
  • H Binds to milk-derived ⁇ -casein comprising a base sequence having 80% or more identity to the base sequence of SEQ ID NO: 2, 3, or 4 and comprising the base sequence of SEQ ID NO: 6 or 7, respectively.
  • the polynucleotide in the nucleic acid molecule of the present invention may be, for example, the following polynucleotide (i).
  • the nucleic acid molecule of the present invention may be, for example, a molecule comprising the polynucleotide (i) or a molecule containing the polynucleotide.
  • (I) It consists of a base sequence having 80% or more identity to the base sequence of SEQ ID NO: 2, 3, or 4, and has a secondary structure represented by formula (VI) or formula (VII), respectively.
  • the nucleic acid molecule of the present invention may contain, for example, one of the polynucleotide sequences (a) to (i) or a plurality of the polynucleotide sequences. In the latter case, it is preferable that a plurality of polynucleotide sequences are linked to form a single-stranded polynucleotide.
  • the sequences of the plurality of polynucleotides may be directly linked to each other or indirectly linked via a linker.
  • the polynucleotide sequences are preferably linked directly or indirectly at the respective ends.
  • the sequences of the plurality of polynucleotides may be the same or different, for example, but are preferably the same.
  • the number of the sequences is not particularly limited, and is, for example, 2 or more, preferably 2 to 12, more preferably 2 to 6, and further preferably 2. is there.
  • the linker is, for example, a polynucleotide, and the structural unit is, for example, a nucleotide residue.
  • the nucleotide residue include a ribonucleotide residue and a deoxyribonucleotide residue.
  • the length of the linker is not particularly limited, and is, for example, 1 to 24 bases long, preferably 12 to 24 bases long, more preferably 16 to 24 bases long, and further preferably 20 to 24 bases long. It is long.
  • the polynucleotide is preferably a single-stranded polynucleotide.
  • the single-stranded polynucleotide is preferably capable of forming a stem structure and a loop structure by, for example, self-annealing.
  • the polynucleotide is preferably capable of forming a stem loop structure, an internal loop structure, and / or a bulge structure, for example.
  • the nucleic acid molecule of the present invention may be, for example, double stranded.
  • one single-stranded polynucleotide is any one of the polynucleotides (a) to (i), and the other single-stranded polynucleotide is not limited.
  • the other single-stranded polynucleotide include a polynucleotide having a base sequence complementary to any one of the polynucleotides (a) to (i).
  • the nucleic acid molecule of the present invention is double-stranded, it is preferably dissociated into a single-stranded polynucleotide by denaturation or the like prior to use.
  • the dissociated single-stranded polynucleotide of any one of (a) to (i) preferably has a stem structure and a loop structure as described above, for example.
  • the stem structure and the loop structure can be formed means, for example, that the stem structure and the loop structure are actually formed, and even if the stem structure and the loop structure are not formed, the stem structure depending on the conditions. And the ability to form a loop structure.
  • a stem structure and a loop structure can be formed includes, for example, both experimental confirmation and prediction by a computer simulation.
  • the structural unit of the nucleic acid molecule of the present invention is, for example, a nucleotide residue.
  • the length of the nucleic acid molecule is not particularly limited, and the lower limit thereof is, for example, 15 base length, preferably 75 base length or 80 base length, and the upper limit thereof is, for example, 1000 base length, preferably Is 200 bases, 100 bases or 90 bases long.
  • nucleotide residue examples include deoxyribonucleotide residue and ribonucleotide residue.
  • nucleic acid molecule of the present invention examples include DNA composed only of deoxyribonucleotide residues, DNA containing one or several ribonucleotide residues, and the like. In the latter case, “1 or several” is not particularly limited, and is, for example, 1 to 3 in the polynucleotide.
  • the numerical range of numbers such as the number of bases and the number of sequences, for example, discloses all positive integers belonging to the range. That is, for example, the description “1 to 3 bases” means all disclosures of “1, 2, 3 bases” (hereinafter the same).
  • the polynucleotide includes, for example, at least one modified base.
  • the modified base is not particularly limited, and examples thereof include a base modified with a natural base (non-artificial base), and preferably has the same function as the natural base.
  • the natural base is not particularly limited, and examples thereof include a purine base having a purine skeleton and a pyrimidine base having a pyrimidine skeleton.
  • the purine base is not particularly limited, and examples thereof include adenine (a) and guanine (g).
  • the pyrimidine base is not particularly limited, and examples thereof include cytosine (c), thymine (t), uracil (u) and the like.
  • the base modification site is not particularly limited.
  • examples of the purine base modification site include the 7th and 8th positions of the purine skeleton.
  • examples of the modification site of the pyrimidine base include the 5th and 6th positions of the pyrimidine skeleton.
  • modified uracil or modified thymine when “ ⁇ O” is bonded to carbon at position 4 and a group other than “—CH 3 ” or “—H” is bonded to carbon at position 5, it is called modified uracil or modified thymine. Can do.
  • the modifying group of the modifying base is not particularly limited, and examples thereof include a methyl group, a fluoro group, an amino group, a thio group, a benzylaminocarbonyl group represented by the following formula (1), and a tryptaminocarbonyl represented by the following formula (2).
  • the modified base is not particularly limited.
  • modified adenine modified with adenine, modified thymine modified with thymine, modified guanine modified with guanine, modified cytosine modified with cytosine and modified modified with uracil examples include uracil and the like, and the modified thymine, the modified uracil and the modified cytosine are preferable.
  • modified adenine examples include 7'-deazaadenine and the like.
  • modified guanine examples include, for example, 7'-deazaguanine.
  • modified cytosine examples include 5'-methylcytosine.
  • modified thymine examples include 5'-benzylaminocarbonylthymine, 5'-tryptaminocarbonylthymine, 5'-isobutylaminocarbonylthymine and the like.
  • modified uracil examples include 5'-benzylaminocarbonyluracil (BndU), 5'-tryptaminocarbonyluracil (TrpdU), 5'-isobutylaminocarbonyluracil and the like.
  • the polynucleotide is not particularly limited, and may include, for example, only one type of the modified base, or may include two or more types of the modified base.
  • the number of the modified base is not particularly limited.
  • the number of the modified base is, for example, one or more.
  • the modified base is, for example, 1 to 80, preferably 1 to 70, more preferably 1 to 50, still more preferably 1 to 40, particularly preferably 1 to 30, and most preferably. 1 to 20 and all the bases may be the modified bases.
  • the number of the modified bases may be, for example, the number of any one of the modified bases or the total number of the two or more modified bases.
  • the modified base in the entire length of the nucleic acid molecule containing the polynucleotide is not particularly limited, and is, for example, 1 to 80, 1 to 50, or 1 to 20, preferably in the same range as described above. It is.
  • the ratio of the modified base is not particularly limited.
  • the ratio of the modified base is, for example, 1/100 or more, preferably 1/40 or more, more preferably 1/20 or more, still more preferably 1/10 or more, particularly preferably, of the total number of bases of the polynucleotide. 1/4 or more, most preferably 1/3 or more.
  • the ratio of the modified base in the entire length of the nucleic acid molecule containing the polynucleotide is not particularly limited, and is the same as the above range.
  • the total number of bases is, for example, the total number of natural bases and modified bases in the polynucleotide.
  • the ratio of the modified base is expressed as a fraction, and the total number of bases and the number of modified bases that satisfy this are positive integers.
  • the number of the modified thymine is not particularly limited.
  • natural thymine can be substituted for the modified thymine.
  • the number of the modified thymine is, for example, one or more.
  • the modified thymine is, for example, 1 to 80, preferably 1 to 70, more preferably 1 to 50, still more preferably 1 to 40, particularly preferably 1 to 30, and most preferably. 1 to 21 and all the thymines may be the modified thymines.
  • the ratio of the modified thymine is not particularly limited.
  • the ratio of the modified thymine is, for example, 1/100 or more, preferably 1/40 or more, more preferably 1/20 or more, further preferably 1 out of the total number of the natural thymine and the modified thymine. / 10 or more, particularly preferably 1/4 or more, and most preferably 1/3 or more.
  • the number of the modified uracil is not particularly limited.
  • natural thymine can be substituted for the modified uracil.
  • the number of the modified uracil is, for example, one or more.
  • the modified uracil is, for example, 1 to 80, preferably 1 to 70, more preferably 1 to 50, still more preferably 1 to 40, particularly preferably 1 to 30, and most preferably. 1 to 21 and all the uracils may be the modified uracils.
  • the ratio of the modified uracil is not particularly limited.
  • the ratio of the modified uracil is, for example, 1/100 or more, preferably 1/40 or more, more preferably 1/20 or more, and further preferably 1 out of the total number of the natural thymines and the number of the modified uracils. / 10 or more, particularly preferably 1/4 or more, and most preferably 1/3 or more.
  • Examples of the number of the modified thymine and the modified uracil may be, for example, the total number of both.
  • the thymine indicated by the underline in each base sequence may be at least one of the modified thymine and the modified uracil.
  • the modified thymine and the modified uracil may be used as the thymine indicated by the underline in any of the nucleotide sequences of SEQ ID NOS: 1 to 9.
  • the number of the modified cytosines is not particularly limited.
  • natural cytosine can be substituted for the modified cytosine.
  • the number of the modified cytosines is, for example, one or more.
  • the modified cytosine is, for example, 1 to 80, preferably 1 to 70, more preferably 1 to 50, still more preferably 1 to 40, particularly preferably 1 to 30, and most preferably. 1 to 21 and all cytosines may be the modified cytosine.
  • the ratio of the modified cytosine is not particularly limited.
  • the ratio of the modified cytosine is, for example, 1/100 or more, preferably 1/40 or more, more preferably 1/20 or more, further preferably 1 out of the total number of the natural cytosine and the modified cytosine. / 10 or more, particularly preferably 1/4 or more, and most preferably 1/3 or more.
  • the cytosine indicated by the underline in each base sequence may be the modified cytosine.
  • the cytosine indicated by the underline in any one of the nucleotide sequences of SEQ ID NOS: 1 to 9 may be 5'-methylcytosine.
  • the modified base is the modified adenine or the modified guanine
  • cytosine and modified cytosine are referred to as “adenine” and “modified adenine” or “guanine” and It can be read as “modified guanine”.
  • natural adenine can be substituted with the modified adenine
  • natural guanine can be substituted with the modified guanine.
  • the nucleic acid molecule of the present invention may contain a modified nucleotide.
  • the modified nucleotide may be a nucleotide having the modified base described above, a nucleotide having a modified sugar in which a sugar residue is modified, or a nucleotide having the modified base and the modified sugar.
  • the sugar residue is not particularly limited, and examples thereof include deoxyribose residue or ribose residue.
  • the modification site in the sugar residue is not particularly limited, and examples thereof include the 2'-position and the 4'-position of the sugar residue, and both of them may be modified.
  • Examples of the modifying group of the modified sugar include a methyl group, a fluoro group, an amino group, and a thio group.
  • the base when the base is a pyrimidine base, for example, the 2'-position and / or the 4'-position of the sugar residue is preferably modified.
  • Specific examples of the modified nucleotide residue include, for example, a 2′-methylated-uracil nucleotide residue and a 2′-methylated-cytosine nucleotide residue in which the deoxyribose residue or the 2 ′ position of the ribose residue is modified.
  • the number of the modified nucleotides is not particularly limited.
  • the polynucleotide for example, 1 to 80, preferably 1 to 70, more preferably 1 to 50, still more preferably 1 to 40, particularly The number is preferably 1 to 30, and most preferably 1 to 21.
  • the modified nucleotides in the entire length of the nucleic acid molecule including the polynucleotide are not particularly limited, and are, for example, 1 to 80, 1 to 50, and 1 to 20, preferably in the same range as described above. It is.
  • the nucleic acid molecule of the present invention may contain, for example, one or several artificial nucleic acid monomer residues.
  • the “one or several” is not particularly limited, and for example, in the polynucleotide, for example, 1 to 80, preferably 1 to 70, more preferably 1 to 50, still more preferably 1 to 40 Particularly preferred is 1 to 30, most preferably 1 to 21.
  • the artificial nucleic acid monomer residue include PNA (peptide nucleic acid), LNA (Locked Nucleic Acid), ENA (2'-O, 4'-C-Ethylenebridged Nucleic Acids) and the like.
  • the nucleic acid in the monomer residue is the same as described above, for example.
  • the artificial nucleic acid monomer residue in the entire length of the nucleic acid molecule containing the polynucleotide is not particularly limited, and is, for example, 1 to 80, 1 to 50, or 1 to 20, preferably the above-mentioned Similar to range.
  • the nucleic acid molecule of the present invention is preferably nuclease resistant, for example.
  • the nucleic acid molecule of the present invention preferably has, for example, the modified nucleotide residue and / or the artificial nucleic acid monomer residue for nuclease resistance. Since the nucleic acid molecule of the present invention is nuclease resistant, for example, tens of kDa PEG (polyethylene glycol) or deoxythymidine may be bound to the 5 'end or 3' end.
  • the nucleic acid molecule of the present invention may further have an additional sequence, for example.
  • the additional sequence is preferably bound to, for example, at least one of the 5 'end and the 3' end of the nucleic acid molecule, and more preferably the 3 'end.
  • the additional sequence is not particularly limited.
  • the length of the additional sequence is not particularly limited, and is, for example, 1 to 200 bases long, preferably 1 to 50 bases long, more preferably 1 to 25 bases long, and further preferably 18 to 24 bases long. It is.
  • the structural unit of the additional sequence is, for example, a nucleotide residue, and examples thereof include a deoxyribonucleotide residue and a ribonucleotide residue.
  • the additional sequence is not particularly limited, and examples thereof include polynucleotides such as DNA consisting of deoxyribonucleotide residues and DNA containing ribonucleotide residues. Specific examples of the additional sequence include poly dT and poly dA.
  • the nucleic acid molecule of the present invention can be used, for example, immobilized on a carrier.
  • a carrier In the nucleic acid molecule of the present invention, for example, either the 5 'end or the 3' end can be immobilized.
  • the nucleic acid molecule may be immobilized directly or indirectly on the carrier. In the latter case, the nucleic acid molecule of the present invention is immobilized on the carrier, for example, via the additional sequence.
  • the carrier include beads, plates, filters, columns, substrates, containers and the like.
  • the nucleic acid molecule of the present invention may further have a labeling substance, and specifically, the labeling substance may be bound to the nucleic acid molecule.
  • the nucleic acid molecule to which the labeling substance is bound can also be referred to as a nucleic acid sensor of the present invention, for example.
  • the labeling substance may be bound to, for example, at least one of the 5 'end and the 3' end of the nucleic acid molecule.
  • the labeling with the labeling substance may be, for example, binding or chemical modification.
  • the labeling substance is not particularly limited, and examples thereof include enzymes, fluorescent substances, dyes, isotopes, drugs, toxins, and antibiotics. Examples of the enzyme include luciferase and NanoLuc luciferase.
  • the fluorescent substance examples include pyrene, TAMRA, fluorescein, Cy3 dye, Cy5 dye, FAM dye, rhodamine dye, Texas red dye, JOE, MAX, HEX, TYE and the like, and the dye includes, for example, And Alexa dyes such as Alexa 488 and Alexa 647.
  • the labeling substance may be linked directly to the nucleic acid molecule or indirectly via a linker, for example.
  • the linker is not particularly limited and is, for example, a polynucleotide linker.
  • the method for producing the nucleic acid molecule of the present invention is not particularly limited, and can be synthesized by, for example, a known method such as a nucleic acid synthesis method using chemical synthesis or a genetic engineering technique.
  • the nucleic acid molecule of the present invention exhibits binding to ⁇ -casein.
  • the use of the nucleic acid molecule of the present invention is not particularly limited as long as it uses the binding to ⁇ -casein.
  • the nucleic acid molecule of the present invention can be used in various methods in place of, for example, an antibody against ⁇ -casein.
  • ⁇ -casein can be detected.
  • the method for detecting ⁇ -casein is not particularly limited, and can be performed by detecting the binding between ⁇ -casein and the nucleic acid molecule.
  • the detection reagent of the present invention is a detection reagent for milk-derived ⁇ -casein, and includes the nucleic acid molecule of the present invention.
  • the detection reagent of this invention should just contain the nucleic acid molecule of the said this invention, and another structure is not restrict
  • milk-derived ⁇ -casein can be detected as described above.
  • the detection reagent of the present invention can be said to be a binder to milk-derived ⁇ -casein, for example.
  • the detection reagent of the present invention may further have a labeling substance, for example, and the labeling substance may be bound to the nucleic acid molecule.
  • the labeling substance for example, the description in the nucleic acid molecule of the present invention can be used.
  • the detection reagent of the present invention may have, for example, a carrier, and the nucleic acid molecule may be immobilized on the carrier.
  • the carrier for example, the description in the nucleic acid molecule of the present invention can be incorporated.
  • the detection kit of the present invention includes the nucleic acid molecule of the present invention or the detection reagent of the present invention.
  • the detection kit of the present invention may further include other components, for example.
  • the constituent element include a buffer solution for preparing the sample, an instruction manual, and the like.
  • the detection kit of the present invention includes A kit containing a nucleic acid sensor and an allergen-labeled carrier ( ⁇ -casein-labeled carrier) can be obtained.
  • the description of the nucleic acid molecule of the present invention can be used, and the nucleic acid molecule of the present invention and the detection method of the present invention described later can also be used for the method of use. .
  • the method for detecting milk-derived ⁇ -casein of the present invention is a method in which the nucleic acid molecule of the present invention or the detection reagent of the present invention is brought into contact with the sample, and the milk in the sample is derived.
  • the method includes a step of forming a complex of ⁇ -casein with the nucleic acid molecule or the detection reagent, and a step of detecting the complex.
  • the detection method of the present invention is characterized by using the nucleic acid molecule of the present invention or the detection reagent, and the other steps and conditions are not particularly limited.
  • the use of the nucleic acid molecule of the present invention will be described as an example, but the nucleic acid molecule of the present invention can be read as the detection reagent of the present invention.
  • the nucleic acid molecule of the present invention specifically binds to ⁇ -casein, for example, by detecting the binding between ⁇ -casein and the nucleic acid molecule or the detection reagent, ⁇ -casein can be specifically detected. Specifically, for example, since the amount of ⁇ -casein in a sample can be analyzed, it can be said that qualitative analysis or quantitative analysis is also possible.
  • the sample is not particularly limited.
  • the sample include foods, food materials, food additives, and the like.
  • Examples of the sample include a deposit in a food processing shop or a cooking place, a cleaning liquid after cleaning, and the like.
  • the sample may be, for example, a liquid sample or a solid sample.
  • the sample is preferably a liquid sample because it is easy to contact with the nucleic acid molecule and is easy to handle.
  • a mixed solution, an extract, a dissolved solution, and the like may be prepared using a solvent and used.
  • the solvent is not particularly limited, and examples thereof include water, physiological saline, and buffer solution.
  • the detection method of the present invention will be described with reference to an example of a method for detecting ⁇ -casein using the nucleic acid sensor of the present invention labeled with a labeling substance as the nucleic acid molecule of the present invention.
  • this invention is not restrict
  • the detection step further includes, for example, a step of analyzing the presence or amount of ⁇ -casein in the sample based on the detection result of the complex.
  • the method for contacting the sample and the nucleic acid molecule is not particularly limited.
  • the contact between the sample and the nucleic acid molecule is preferably performed in a liquid, for example.
  • the liquid is not particularly limited, and examples thereof include water, physiological saline, and buffer solution.
  • the contact condition between the sample and the nucleic acid molecule is not particularly limited.
  • the contact temperature is, for example, 4 to 37 ° C., preferably 18 to 25 ° C.
  • the contact time is, for example, 10 to 120 minutes, preferably 30 to 60 minutes.
  • the nucleic acid molecule may be, for example, an immobilized nucleic acid molecule (solid phase carrier) immobilized on a carrier or an unfixed free nucleic acid molecule.
  • the sample is contacted in a container.
  • the carrier is not particularly limited, and examples thereof include a plate, a filter, a column, a substrate, a bead, and a container. Examples of the container include a microplate and a tube.
  • the nucleic acid molecule is immobilized as described above, for example.
  • the detection step is a step of detecting the binding between ⁇ -casein in the sample and the nucleic acid molecule as described above.
  • detecting the presence or absence of binding between the two for example, the presence or absence of ⁇ -casein in the sample can be analyzed (qualitative), and by detecting the degree of binding (binding amount) between the two, for example, The amount of ⁇ -casein in the sample can be analyzed (quantified).
  • the method for detecting the binding between ⁇ -casein and the nucleic acid molecule is not particularly limited.
  • a conventionally known method for detecting binding between substances can be adopted, and specific examples thereof include the SPR described above.
  • the binding between ⁇ -casein and the nucleic acid molecule cannot be detected, it can be determined that ⁇ -casein is not present in the sample, and when the binding is detected, ⁇ -casein is present in the sample. I can judge.
  • the correlation between the concentration of ⁇ -casein and the binding amount can be obtained in advance, and the concentration of ⁇ -casein in the sample can be analyzed from the binding amount based on the correlation.
  • a method using a nucleic acid sensor in which a luciferase as a labeling substance is bound to the nucleic acid molecule and a milk-derived ⁇ -casein labeling carrier will be described below.
  • the nucleic acid sensor and the sample are mixed.
  • the nucleic acid molecule in the nucleic acid sensor binds to the target milk-derived ⁇ -casein.
  • the nucleic acid molecules in the nucleic acid sensor are not bound to the target.
  • the mixture is brought into contact with the milk-derived ⁇ -casein labeled carrier, and then the ⁇ -casein labeled carrier is removed.
  • the carrier include beads.
  • the nucleic acid molecule in the nucleic acid sensor cannot bind to milk-derived ⁇ -casein in the ⁇ -casein labeled carrier.
  • a luciferase substrate is added to the fraction from which the ⁇ -casein labeled carrier has been removed to perform a luminescence reaction, luminescence is generated by the catalytic reaction of luciferase in the nucleic acid sensor.
  • the nucleic acid molecule in the nucleic acid sensor binds to milk-derived ⁇ -casein in the ⁇ -casein labeled carrier. For this reason, by removing the ⁇ -casein labeled carrier, the nucleic acid sensor is also removed while bound to the ⁇ -casein labeled carrier. For this reason, when the luciferase substrate is added to the fraction from which the ⁇ -casein labeled carrier has been removed and the luminescence reaction is performed, the luminescence due to the luciferase catalytic reaction does not occur because the nucleic acid sensor does not exist. Does not occur.
  • the presence or absence of milk-derived ⁇ -casein in the sample can be analyzed (qualitative analysis) based on the presence or absence of luminescence.
  • the amount of milk-derived ⁇ -casein in the sample and the amount of the nucleic acid sensor remaining in the fraction after removing the ⁇ -casein-labeled carrier have a correlation, depending on the intensity of light emission,
  • the amount of ⁇ -casein derived from milk can also be analyzed (quantitative analysis).
  • milk-derived ⁇ -casein which is an allergen
  • the presence or absence of milk can also be detected indirectly, for example, by detecting milk-derived ⁇ -casein, which is the allergen.
  • Example 1 About the aptamer of this invention, the binding property with respect to milk origin (alpha) casein was confirmed by SPR analysis.
  • Aptamer Aptamer 1 of the following polynucleotide was synthesized as an aptamer of Examples.
  • the underlined “T” is a deoxyribonucleotide residue having 5′-benzylaminocarbonyluracil (BndU) substituted at the 5-position of thymine in place of natural thymine (T)
  • the underlined “C” was a deoxyribonucleotide residue having 5′-methylcytosine substituted at the 5-position of cytosine in place of natural cytosine (C).
  • Aptamer 1 aCas392BR8m2 (SEQ ID NO: 1) GGTATGGAGGCAAGTCCCAATTC T AAGAAG T GGAG T AGG T GGG TTT AAGGA T A C G TTTC AG CC AGA C AGGG TTT A T G
  • the estimated secondary structure of aptamer 1 is shown in FIG. However, it is not limited to this.
  • the aptamer was added with polydeoxyadenine (poly dA) having a length of 20 bases at the 3 'end and used as a poly dA added aptamer in SPR described later.
  • poly dA polydeoxyadenine
  • the poly dA-added aptamer used was heat-denatured at 95 ° C. for 5 minutes.
  • the composition of the SB1T buffer was 40 mmol / L HEPES, 125 mmol / L NaCl, 5 mmol / L KCl, 1 mmol / L MgCl 2 and 0.01% Tween (registered trademark) 20, and the pH was 7.5.
  • each sample was prepared from the materials shown below for confirmation of the cross-reaction of the aptamer.
  • the preparation of the gliadin sample, the gluten sample, and the lysozyme sample was performed in the same manner as the preparation of the ⁇ -casein sample.
  • Egg samples, raw peanut samples, and roasted peanut samples were separated from the materials shown below after being crushed with a food processor, suspended in SB1T buffer, dissolved overnight, and centrifuged (3000 g, 20 minutes, room temperature). The separated supernatant was filtered with a 0.8 mm filter, and the resulting extract was used as a sample.
  • Gliadin (101778, manufactured by MP Biomedicals) Wheat-derived gluten (073-00575, manufactured by Wako Pure Chemical Industries, Ltd.) Lysozyme derived from egg white of chicken egg (120-02674, manufactured by Wako Pure Chemical Industries, Ltd.) Whole egg peanuts from chicken eggs (made by Indian tea curry shop R-Tea) Roasted peanut (KFV Fruit)
  • a ProteON dedicated sensor chip a chip (trade name: ProteOn NLC Sensor Chip, BioRad) on which streptavidin was immobilized was set in the ProteON XPR36.
  • 1 ⁇ mol / L of biotinylated poly dT was injected into the flow cell of the sensor chip using ultrapure water (DDW) and allowed to bind until the signal intensity (RU: Resonance Unit) was about 900 RU.
  • the biotinylated poly dT was prepared by biotinylating the 5 ′ end of 20 base deoxythymidine.
  • FIG. 2 is a graph showing the binding property of aptamer 1 to milk-derived ⁇ -casein.
  • the horizontal axis represents each sample, and the vertical axis represents signal intensity (RU).
  • RU signal intensity
  • an ⁇ -casein sample, a milk sample, a gliadin sample, a gluten sample, a lysozyme sample, an egg sample, a raw peanut sample, and a roasted peanut sample are shown in order from the left.
  • Concentration (ppm) in each sample indicates the concentration of each protein for ⁇ -casein sample, gliadin sample, gluten sample, and lysozyme sample, and each for milk sample, egg sample, raw peanut sample, and roasted peanut sample The concentration of total protein contained in the sample is shown.
  • aptamer 1 showed binding properties to ⁇ -casein samples and milk samples. Since aptamer 1 selectively binds to milk-derived ⁇ -casein, it can be said that the ability to bind to a milk sample showed binding to milk-derived ⁇ -casein contained in the milk sample.
  • the aptamer 1 Since about 80% of the protein contained in milk is ⁇ casein, it can be said that most of the milk-derived ⁇ casein contained in the milk sample was detected by the aptamer 1. On the other hand, the aptamer 1 showed no signal intensity to the gliadin sample, gluten sample, lysozyme sample, egg sample, raw peanut sample, and roasted peanut sample, and showed no binding.
  • the binding analysis was performed in the same manner except that the milk sample was used and the protein concentration in the sample was changed to 0.37, 1.1, 3.3, 10 and 30 ppm.
  • FIG. 3 is a graph showing the binding property of aptamer 1 to a milk sample, the horizontal axis indicates the concentration (ppm) of the milk extract, and the vertical axis indicates the signal intensity (RU).
  • the signal intensity of the aptamer 1 increased as the protein concentration in the milk sample increased. From this result, it was found that the ⁇ -casein concentration in the milk sample can be quantitatively analyzed by measuring the signal intensity using the aptamer of the present invention.
  • the binding analysis was performed in the same manner except that the ⁇ -casein concentration in the sample was 12.5, 25, 50, 100, and 200 nmol / L.
  • the signal intensity at a predetermined time after the start of sample injection was determined.
  • FIG. 4 is a graph showing the binding property of aptamer 1 to ⁇ -casein, the horizontal axis indicates the elapsed time (seconds) after the start of injection of the sample, and the vertical axis indicates the signal intensity (RU). As shown in FIG. 4, the signal intensity of aptamer 1 increased as the ⁇ -casein concentration increased.
  • the aptamer 1 has a dissociation constant (KD) in the ⁇ -casein sample of 8.95 ⁇ 10 ⁇ 9 M, which indicates that the aptamer 1 has excellent binding properties.
  • Example 2 A nucleic acid sensor in which a labeling substance luciferase was bound to the aptamer of the present invention was prepared, and the binding property of the nucleic acid sensor to milk-derived ⁇ -casein was confirmed. The confirmation of the binding was performed using target solid-phased beads on which milk-derived ⁇ -casein as a target was solid-phased and the nucleic acid sensor.
  • the nucleic acid molecule in the nucleic acid sensor cannot bind to ⁇ -casein immobilized on the target immobilized beads. For this reason, when a luminescence reaction is performed on the fraction from which the target solid-phased beads have been removed, luminescence is generated by the catalytic reaction of luciferase in the nucleic acid sensor. On the other hand, in the reaction solution, when the nucleic acid sensor is not bound to the target, the nucleic acid molecule in the nucleic acid sensor binds to ⁇ -casein immobilized on the target immobilized beads.
  • the nucleic acid sensor is also removed while bound to the target-immobilized beads.
  • the luminescence due to the luciferase catalytic reaction is not caused by the absence of the nucleic acid sensor. Does not occur. Therefore, milk-derived ⁇ -casein can be detected by detecting luminescence by luciferase using the nucleic acid sensor and the target solid-phased beads.
  • the nucleic acid sensor was prepared by labeling the 5 ′ end of the aptamer 1 of Example 1 (aCas392BR8m2) using the fluorescent substance NanoLuc TM luciferase (manufactured by Promega) according to the instruction manual. .
  • Example 1 As the sample, the ⁇ casein sample of Example 1 was used.
  • the target-immobilized beads were prepared using the ⁇ -casein sample as a target and NHS-activated Sepharose 4 Fast Flow Lab Packs (manufactured by GE Healthcare) according to the instructions for use.
  • the binding property of the nucleic acid sensor to ⁇ -casein was confirmed as follows. First, a filter plate (manufactured by millipore, cat # MSGVN2250) was set on a 96-well U-bottom plate, and the target solid-phased beads were added to each well of the U-bottom plate so as to be 50 ⁇ L / well. . After removing the buffer by centrifugation, 50 ⁇ L of the ⁇ -casein sample (final concentration 0, 0.03, 0.12, 0.47, 1.9, 7.5, 30 ppm) and 50 ⁇ L of the ⁇ -casein sample were added to each well.
  • a nucleic acid sensor (4 ⁇ 10 5 fold dilution) was added and mixed at room temperature for 5 minutes to react the ⁇ -casein sample, the target solid-phased beads, and the nucleic acid sensor. Thereafter, the U bottom plate was centrifuged at 3000 g for 2 minutes at room temperature, and the target solid-phased beads were removed by centrifugation. By the centrifugation, the reaction solution that passed through the filter plate was collected from each well and subjected to measurement of the amount of luminescence. For the measurement of the light emission amount, Infinite M1000 Pro (TECAN) was used according to the instruction manual. In the measurement of the luminescence amount, NanoGlo (trademark, manufactured by Promega, cat # N2012) was used as a substrate.
  • FIG. 5 shows the measurement results of the luminescence amount.
  • FIG. 5 is a graph showing the measurement results of the luminescence amount for the ⁇ -casein sample.
  • the horizontal axis indicates the concentration of the ⁇ casein sample
  • the vertical axis indicates the light emission amount (RLU).
  • RLU light emission amount
  • the detection limit (LOD) for the milk-derived ⁇ -casein of the nucleic acid sensor was 0.12 ppm. From this, it was found that the nucleic acid sensor can detect a small amount of milk-derived ⁇ -casein.
  • Example 1 the milk sample prepared in Example 1 and the egg sample, gluten sample, and raw peanut sample (final concentration) prepared in Example 1 were used for confirmation of the cross reaction. 0, 0.032, 0.16, 0.8, 4 ppm), and the same measurement was performed.
  • FIG. 6 is a graph showing the measurement results of the amount of luminescence when milk, eggs, gluten, and raw peanuts are used as samples.
  • the horizontal axis indicates the concentration of each sample, and the vertical axis indicates the light emission amount (RLU).
  • RLU light emission amount
  • the detection limit (LOD) of the nucleic acid sensor in the milk sample was 0.16 ppm. From this, it was found that the nucleic acid sensor can sufficiently detect the milk-derived ⁇ -casein in the milk sample.
  • the aptamer of the present invention specifically binds to milk-derived ⁇ casein and can be detected by measurement, and according to the aptamer of the present invention, the milk-derived ⁇ It was found that the amount of casein can be analyzed.
  • Example 3 Using the nucleic acid sensor, the binding property to the heated milk sample was confirmed.
  • the binding property of the nucleic acid sensor to the sample was confirmed in the same manner as in Example 2 except that the sample shown below was used as the sample.
  • Example 1 The milk sample of Example 1 was processed at 95 ° C. for 10 minutes to prepare a heated milk sample. The heated milk sample was further centrifuged at 12000 rpm for 10 minutes at room temperature, and the resulting supernatant was used as a heated supernatant sample. As a control, the milk sample of Example 1 was used.
  • FIG. 7 is a graph showing the measurement results of the amount of luminescence regarding the milk sample, the heated milk sample, and the heated supernatant sample.
  • the horizontal axis indicates each sample, and the vertical axis indicates the light emission amount (RLU).
  • Each graph shows the total protein concentration (ppm) in each sample, and shows 0 ppm and 100 ppm in order from the left.
  • ppm total protein concentration
  • FIG. 4 compared to 0 ppm, at 100 ppm, both the heated milk sample and the heated supernatant sample showed an increase in the amount of luminescence comparable to that of the milk sample.
  • the aptamer of the present invention also binds to heated milk-derived ⁇ -casein and can be detected by measurement.
  • Example 4 About the aptamer of this invention, the binding property with respect to milk origin (alpha) casein was confirmed by SPR analysis.
  • aptamers 2 and 3 were synthesized in the same manner as in Example 1.
  • Aptamer 3 is a miniaturized sequence of aptamer 2.
  • the underlined “T” has 5′-benzylaminocarbonyluracil (BndU) substituted at the 5-position of thymine in place of natural thymine (T)
  • BndU 5′-benzylaminocarbonyluracil
  • a deoxyribonucleotide residue having a 5′-methylcytosine substituted at the 5-position of cytosine in place of natural cytosine (C) was designated as a deoxyribonucleotide residue.
  • Aptamer 2 aCas757BR8m3 (SEQ ID NO: 2) GGATAGCAGCAGGGACCTCTTATACG TC GG T G CT GG T G TT G T A T AGA CCCCCTT A T A TT A T AA CC GAA T GA TTT G CCC G CT A C GA T A T G
  • Aptamer 3 aCas757BR8m3s69 (SEQ ID NO: 3) GGATAGCAGCAGGGACCTCTTATACG TC GG T G CT GG T G TT G T A T AGA CCCCCTT A T A TT A T AA CC GAA T
  • the presumed secondary structure of aptamers 2 and 3 is shown in FIG. However, it is not limited to this.
  • the ⁇ -casein sample was used as a sample, and the ⁇ -casein concentration in the sample was 50, 100, and 200 nmol / L.
  • the signal intensity at a predetermined time after the start of injection of the sample was determined.
  • FIGS. 9A and 9B are graphs showing the binding properties of aptamers 2 and 3 to ⁇ -casein, respectively, and the horizontal axis represents the elapsed time (seconds) after the start of injection of the sample, and the vertical axis Indicates signal intensity (RU).
  • aptamer 2 and aptamer 3 which is a miniaturized sequence thereof, increased in signal intensity as the ⁇ -casein concentration increased.
  • aptamers 2 and 3 have dissociation constants (KD) for ⁇ -casein of 19.1 ⁇ 10 ⁇ 9 mol / L and 6.2 ⁇ 10 ⁇ 9 mol / L, respectively, and excellent binding properties I found out that
  • aptamers 4 and 5 of the following polynucleotides were synthesized in the same manner as in Example 1.
  • Aptamer 5 is a miniaturized sequence of aptamer 4.
  • the underlined “T” has 5′-benzylaminocarbonyluracil (BndU) substituted at the 5-position of thymine in place of natural thymine (T).
  • BndU 5′-benzylaminocarbonyluracil
  • a deoxyribonucleotide residue having a 5′-methylcytosine substituted at the 5-position of cytosine in place of natural cytosine (C) was designated as a deoxyribonucleotide residue.
  • Aptamer 4 aCas757BR8m4 (SEQ ID NO: 4) GGATAGCAGCAGGGACCTCTTATAC CT GAG C GG CTC A TT A CCCTTCC GA CT GG TC G CCC G CTT A CC GAA T GA TTT G CCC G CT A C GA T A T G
  • Aptamer 5 aCas757BR8m4s62 (SEQ ID NO: 5) GGATAGCAGCAGGGACCTCTTATAC CT GAG C GG CTC A TT A CCCTTCC GA CT GG TC G CCC G CT
  • the estimated secondary structure of aptamers 4 and 5 is shown in FIG. However, it is not limited to this.
  • the ⁇ casein sample was used as a sample, and the ⁇ casein concentration in the sample was 50, 100, 200, and 400 nmol / L.
  • the signal intensity at a predetermined time after the start of injection of the sample was determined.
  • FIGS. 10 (A) and (B) are graphs showing the binding properties of aptamers 4 and 5 to ⁇ -casein, respectively.
  • the horizontal axis represents the elapsed time (seconds) after the start of injection of the sample, and the vertical axis Indicates signal intensity (RU).
  • aptamer 4 and aptamer 5 which is a miniaturized sequence thereof, increased in signal intensity as the ⁇ -casein concentration increased.
  • aptamers 4 and 5 have dissociation constants (KD) for ⁇ -casein of 12.3 ⁇ 10 ⁇ 9 mol / L and 16.7 ⁇ 10 ⁇ 9 mol / L, respectively, and excellent binding properties I found out that
  • Example 5 About the aptamer of this invention, the binding property with respect to the heated alpha casein was confirmed by SPR analysis.
  • the binding analysis was performed in the same manner as in Example 4 except that a heated ⁇ -casein sample was used as a sample, and the signal intensity at a predetermined time after the start of injection of the sample was obtained.
  • the heated ⁇ -casein sample was prepared by heat-treating the ⁇ -casein sample at 95 ° C. for 10 minutes.
  • FIGS. 11 (A) and (B) are graphs showing the binding properties of aptamers 2 and 3 to heated ⁇ -casein, the horizontal axis indicates the elapsed time (seconds) after the start of injection of the sample, and the vertical axis is Shows the signal intensity (RU).
  • aptamer 2 and aptamer 3 which is a miniaturized sequence thereof, increased in signal intensity as the concentration of heated ⁇ -casein increased.
  • FIGS. 12A and 12B are graphs showing the binding properties of aptamers 4 and 5 to heated ⁇ -casein, the horizontal axis indicates the elapsed time (seconds) after the start of injection of the sample, and the vertical axis is Shows the signal intensity (RU).
  • aptamer 4 and aptamer 5 which is a miniaturized sequence thereof, increased in signal intensity as the concentration of heated ⁇ -casein increased.
  • aptamers 2 to 5 have dissociation constants (KD) for heated ⁇ -casein of 21.3 ⁇ 10 ⁇ 9 mol / L, 8.29 ⁇ 10 ⁇ 9 mol / L, and 14.7 ⁇ 10 ⁇ , respectively. It was 9 mol / L, and 22.2 ⁇ 10 ⁇ 9 mol / L, which was found to be excellent binding properties.
  • Example 6 About the aptamer of this invention, the binding property with respect to a milk sample was confirmed by SPR analysis.
  • Bindability analysis was performed in the same manner as in Example 1 except that aptamers 2 to 5 were used as aptamers, and 100 ppm of the milk sample and the heated milk sample were used as samples. In addition, in order to confirm the cross-reaction of the aptamer, binding analysis was performed in the same manner except that the gluten sample, the egg sample, and the raw peanut sample were used.
  • FIG. 13 is a graph showing the binding properties of aptamers 2 to 5 to a heated milk sample.
  • the horizontal axis indicates the type of aptamer, and the vertical axis indicates signal intensity (RU).
  • aptamer 2, aptamer 4, aptamer 3, and aptamer 5 are shown in order from the left.
  • Each graph shows a milk sample, a heated milk sample, a gluten sample, an egg sample, and a raw peanut sample in order from the left.
  • aptamers 2 to 5 showed binding properties to milk samples and heated milk samples.
  • aptamers 2 to 5 had a signal intensity of 0 or less and showed no binding to gluten samples, egg samples, and raw peanut samples.
  • the aptamer of the present invention specifically binds to heated milk-derived ⁇ -casein and can be detected by measurement.
  • Example 7 About the aptamer of this invention, the binding property with respect to milk origin (alpha) casein was confirmed by SPR analysis.
  • the aptamers 6 and 7 of the following polynucleotides were synthesized in the same manner as in Example 1.
  • the aptamer 6 is a sequence obtained by further miniaturizing the aptamer 3 which is a miniaturized sequence of the aptamer 2, and the aptamer 7 is a miniaturized sequence of the aptamer 4.
  • the underlined “T” has 5′-benzylaminocarbonyluracil (BndU) substituted at the 5-position of thymine in place of natural thymine (T).
  • BndU 5′-benzylaminocarbonyluracil
  • a deoxyribonucleotide residue having a 5′-methylcytosine substituted at the 5-position of cytosine in place of natural cytosine (C) was designated as a deoxyribonucleotide residue.
  • Aptamer 6 aCas757BR8m3s63 (SEQ ID NO: 6) GGATAGCAGCAGGGACCTCTTATACG TC GG T G CT GG T G TT G T A T AGA CCCCCTT A T A TT A T AA
  • Aptamer 7 aCas757BR8m4s44 (SEQ ID NO: 7) TTATAC CT GAG C GG CTC A TT A CCCTTCC GA CT GG TC G CCC G CTC
  • the estimated secondary structure of aptamers 6 and 7 is shown in FIG. However, it is not limited to this.
  • the aptamer was biotin-modified at the 5 'end and used for SPR described later.
  • the biotin-modified aptamer used was thermally denatured at 95 ° C. for 5 minutes.
  • the sample was separated by suspending milk-derived ⁇ -casein (C6780-19, manufactured by SIGMA) in SB1T buffer and dissolving overnight, followed by centrifugation (12,000 rpm, 15 minutes, room temperature). The separated supernatant was obtained as an extract containing native ⁇ -casein. This was diluted with SB1T (+) buffer to obtain an ⁇ -casein sample.
  • the composition of the SB1T (+) buffer was 40 mmol / L HEPES, 125 mmol / L NaCl, 5 mmol / L KCl, 1 mmol / L MgCl 2, 0.01% Tween® 20 and 0.1 mmol / L Sodium Dextran Sulfate. The pH was 5000 and the pH was 7.5.
  • a chip (product name: ProteOn NLC Sensor Chip, BioRad) on which streptavidin was immobilized was set in the ProteON XPR36. 200 nmol / L of the biotin-modified aptamer was injected into the flow cell of the sensor chip at a flow rate of 25 ⁇ L / min for 80 seconds using the SB1T buffer, and was bound until the signal intensity reached about 800 RU. Then, the flow cell of the chip was blocked using ultrapure water (DDW) containing 10 ⁇ mol / L biotin.
  • DDW ultrapure water
  • the ⁇ casein samples having predetermined protein concentrations 100, 200, 400, and 800 nmol / L were each injected with the SB1T (+) buffer at a flow rate of 50 ⁇ L / min for 120 seconds, and the same.
  • the SB1T (+) buffer was flowed, and washing was performed at a flow rate of 50 ⁇ L / min for 300 seconds.
  • the signal intensity (RU) at a predetermined time was obtained.
  • FIGS. 15A and 15B are graphs showing the binding properties of aptamers 6 and 7 to ⁇ -casein, respectively.
  • the horizontal axis represents the elapsed time (seconds) after the start of injection of the sample, and the vertical axis Indicates signal intensity (RU).
  • aptamers 6 and 7 increased in signal intensity as the ⁇ -casein concentration increased.
  • aptamers 6 and 7 have excellent dissociation properties with dissociation constants (KD) for ⁇ -casein of 18 ⁇ 10 ⁇ 9 mol / L and 17.2 ⁇ 10 ⁇ 9 mol / L, respectively. I understood it.
  • Example 8 About the aptamer of this invention, the binding property with respect to milk origin (alpha) casein was confirmed by SPR analysis.
  • aptamers 8 and 9 were synthesized in the same manner as in Example 1.
  • Aptamers 8 and 9 are partial sequences of aptamer 2.
  • the underlined “T” has 5′-benzylaminocarbonyluracil (BndU) substituted at the 5-position of thymine in place of natural thymine (T).
  • BndU 5′-benzylaminocarbonyluracil
  • a deoxyribonucleotide residue having a 5′-methylcytosine substituted at the 5-position of cytosine in place of natural cytosine (C) was designated as a deoxyribonucleotide residue.
  • Aptamer 8 aCas757BR8m3s63b (SEQ ID NO: 8) GGATAGACCTCTTATACG TCT G TT G T A T AGA CCCCCTT A T A TT A T AA
  • Aptamer 9 aCas757BR8m3s63c (SEQ ID NO: 9) GGATAGCAGCACTCTTATAC T G CT GG T G TT G T A T AGA CCCCCTT A T A TT A T AA
  • the predicted secondary structure of aptamers 8 and 9 is shown in FIG. However, it is not limited to this.
  • the binding analysis was performed in the same manner as in Example 7 except that the aptamers 8 and 9 were used, and the signal intensity at a predetermined time after starting the injection of the sample was determined.
  • FIGS. 17A and 17B are graphs showing the binding properties of aptamers 8 and 9 to ⁇ -casein, respectively.
  • the horizontal axis represents the elapsed time (seconds) after the start of injection of the sample, and the vertical axis Indicates signal intensity (RU).
  • aptamers 8 and 9 increased in signal intensity as the ⁇ -casein concentration increased.
  • aptamers 8 and 9 have dissociation constants (KD) for ⁇ -casein of 12.9 ⁇ 10 ⁇ 9 mol / L and 8.59 ⁇ 10 ⁇ 9 mol / L, respectively, and excellent binding properties I found out that
  • the nucleic acid molecule of the present invention can bind to milk-derived ⁇ -casein. For this reason, according to the nucleic acid molecule of the present invention, milk-derived ⁇ -casein can be detected based on the presence or absence of binding to the allergen in the sample. For this reason, the nucleic acid molecule of the present invention can be said to be an extremely useful tool for detecting allergens derived from milk, for example, in the fields of food production, food management, food distribution, and the like.

Abstract

Provided is a novel nucleic acid molecule which binds to α-casein. This nucleic acid molecule, which binds to milk-derived α-casein, includes any polynucleotide set forth in (a) or (b) below: (a) a polynucleotide which comprises the base sequence of SEQ ID NO: 1, 2, or 4, or a partial sequence of the base sequence of SEQ ID NO: 1, 2, or 4; or (b) a polynucleotide which comprises a base sequence having at least 90% identity with any of the base sequences in (a), and which binds to milk-derived α-casein.

Description

核酸分子およびその用途Nucleic acid molecules and uses thereof
 本発明は、乳由来αカゼインに結合する核酸分子およびその用途に関する。 The present invention relates to nucleic acid molecules that bind to milk-derived α-casein and uses thereof.
 牛乳は、日常的に頻繁に摂取される食品であるが、近年、牛乳アレルギーの患者が増加しており、問題視されている。チーズ、バター、およびヨーグルトの加工食品等は、牛乳を使用するものが多く存在するため、加工食品やその製造ライン等においては、原料として牛乳が混入しているか否かを分析することは、極めて重要である。 Milk is a food that is frequently consumed on a daily basis, but in recent years, the number of patients with milk allergies has increased and has been regarded as a problem. Many processed foods such as cheese, butter, and yogurt use milk, so it is extremely difficult to analyze whether processed milk or its production line contains milk as a raw material. is important.
 アレルギーのアレルゲンは、一般的に、タンパク質やその分解物(ペプチド)であり、これらを抗原とする抗体を使用した分析方法が、主流である。牛乳に関しても、例えば、牛乳タンパク質であるαカゼインがアレルゲンとして知られている。αカゼインに対する分析方法として、ELISA法を用いた方法が報告されている(非特許文献1)。 Allergic allergens are generally proteins and their degradation products (peptides), and analysis methods using antibodies using these as antigens are the mainstream. Regarding milk, for example, α-casein, which is a milk protein, is known as an allergen. As an analysis method for α-casein, a method using an ELISA method has been reported (Non-patent Document 1).
 しかし、抗体は、タンパク質であり、安定性に問題があるため、低コストで簡易な検査法に抗体を用いることが難しい。また、電気泳動やニトロセルロース膜へのブロッティング等が必要であり、操作が煩雑である。このため、近年、抗体に代えて、抗原と特異的に結合する核酸分子が注目されている。 However, since an antibody is a protein and has a problem in stability, it is difficult to use the antibody for a simple test method at a low cost. Further, electrophoresis, blotting on a nitrocellulose membrane, and the like are necessary, and the operation is complicated. For this reason, in recent years, attention has been focused on nucleic acid molecules that specifically bind to antigens instead of antibodies.
 そこで、本発明の目的は、乳由来αカゼインに結合する新たな核酸分子を提供することにある。 Therefore, an object of the present invention is to provide a new nucleic acid molecule that binds to milk-derived α-casein.
 本発明の核酸分子は、下記(a)または(b)のいずれかのポリヌクレオチドを含むことを特徴とする、乳由来αカゼインに結合する核酸分子である。
(a)配列番号1、2もしくは4の塩基配列または配列番号1、2もしくは4の塩基配列の部分配列からなるポリヌクレオチド
(b)前記(a)の塩基配列に対して、90%以上の同一性を有する塩基配列からなり、乳由来αカゼインに結合するポリヌクレオチド
The nucleic acid molecule of the present invention is a nucleic acid molecule that binds to milk-derived α-casein, which comprises any of the following polynucleotides (a) or (b).
(A) a polynucleotide comprising the nucleotide sequence of SEQ ID NO: 1, 2 or 4 or a partial sequence of the nucleotide sequence of SEQ ID NO: 1, 2 or 4 (b) 90% or more identical to the nucleotide sequence of (a) A polynucleotide comprising a base sequence having sex and binding to milk-derived α-casein
 本発明の乳由来αカゼインの検出試薬は、前記本発明の核酸分子を含むことを特徴とする。 The milk-derived α-casein detection reagent of the present invention includes the nucleic acid molecule of the present invention.
 本発明の乳由来αカゼインの検出方法は、前記本発明の核酸分子、または前記本発明の検出試薬と、試料とを接触させ、前記試料中の乳由来αカゼインと、前記核酸分子または前記検出試薬との複合体を形成させる工程、および、
前記複合体を検出する工程を含むことを特徴とする。
In the method for detecting milk-derived α-casein of the present invention, the nucleic acid molecule of the present invention or the detection reagent of the present invention is brought into contact with a sample, and the milk-derived α-casein in the sample is mixed with the nucleic acid molecule or the detection. Forming a complex with the reagent, and
A step of detecting the complex.
 本発明の核酸分子は、乳由来αカゼインに結合可能である。このため、本発明の核酸分子によれば、試料中のアレルゲンとの結合の有無によって、乳由来αカゼインを検出できる。したがって、本発明の核酸分子は、例えば、食品製造、食品管理、食品の流通等の分野において、例えば、牛乳に由来するアレルゲンの検出に、極めて有用なツールといえる。 The nucleic acid molecule of the present invention can bind to milk-derived α-casein. For this reason, according to the nucleic acid molecule of the present invention, milk-derived α-casein can be detected based on the presence or absence of binding to the allergen in the sample. Therefore, the nucleic acid molecule of the present invention can be said to be an extremely useful tool for detecting allergens derived from milk, for example, in the fields of food production, food management, food distribution and the like.
図1は、本発明の実施例1における、アプタマー1の推定二次構造である。FIG. 1 shows a presumed secondary structure of aptamer 1 in Example 1 of the present invention. 図2は、本発明の実施例1における、乳由来αカゼインに対するアプタマー1の結合性を示すグラフである。FIG. 2 is a graph showing the binding property of aptamer 1 to milk-derived α-casein in Example 1 of the present invention. 図3は、本発明の実施例1における、牛乳試料に対するアプタマー1の結合性を示すグラフである。FIG. 3 is a graph showing aptamer 1 binding to a milk sample in Example 1 of the present invention. 図4は、本発明の実施例1における、αカゼインに対するアプタマー1の結合性を示すグラフである。FIG. 4 is a graph showing aptamer 1 binding to α-casein in Example 1 of the present invention. 図5は、本発明の実施例2における、発光量の測定結果を示すグラフである。FIG. 5 is a graph showing the measurement result of the light emission amount in Example 2 of the present invention. 図6は、本発明の実施例2における、発光量の測定結果を示すグラフである。FIG. 6 is a graph showing the measurement result of the light emission amount in Example 2 of the present invention. 図7は、本発明の実施例3における、加熱した牛乳試料に対するアプタマー1の結合性を示すグラフである。FIG. 7 is a graph showing aptamer 1 binding to a heated milk sample in Example 3 of the present invention. 図8は、本発明の実施例4における、アプタマー2~5の推定二次構造である。FIG. 8 shows the presumed secondary structures of aptamers 2 to 5 in Example 4 of the present invention. 図9は、本発明の実施例4における、αカゼインに対するアプタマー2および3の結合性を示すグラフである。FIG. 9 is a graph showing the binding properties of aptamers 2 and 3 to α-casein in Example 4 of the present invention. 図10は、本発明の実施例4における、αカゼインに対するアプタマー4および5の結合性を示すグラフである。FIG. 10 is a graph showing the binding properties of aptamers 4 and 5 to α-casein in Example 4 of the present invention. 図11は、本発明の実施例5における、加熱αカゼインに対するアプタマー2および3の結合性を示すグラフである。FIG. 11 is a graph showing the binding properties of aptamers 2 and 3 to heated α-casein in Example 5 of the present invention. 図12は、本発明の実施例5における、加熱αカゼインに対するアプタマー4および5の結合性を示すグラフである。FIG. 12 is a graph showing the binding properties of aptamers 4 and 5 to heated α-casein in Example 5 of the present invention. 図13は、本発明の実施例6における、牛乳試料に対するアプタマー2~5の結合性を示すグラフである。FIG. 13 is a graph showing the binding properties of aptamers 2 to 5 to milk samples in Example 6 of the present invention. 図14は、本発明の実施例7における、アプタマー6および7の推定二次構造である。FIG. 14 is a putative secondary structure of aptamers 6 and 7 in Example 7 of the present invention. 図15は、本発明の実施例7における、αカゼインに対するアプタマー6および7の結合性を示すグラフである。FIG. 15 is a graph showing the binding properties of aptamers 6 and 7 to α-casein in Example 7 of the present invention. 図16は、本発明の実施例8における、アプタマー8および9の推定二次構造である。FIG. 16 is a putative secondary structure of aptamers 8 and 9 in Example 8 of the present invention. 図17は、本発明の実施例8における、αカゼインに対するアプタマー8および9の結合性を示すグラフである。FIG. 17 is a graph showing the binding properties of aptamers 8 and 9 to α-casein in Example 8 of the present invention.
(1)核酸分子
 本発明の核酸分子は、前述のように、下記(a)または(b)のいずれかのポリヌクレオチドを含むことを特徴とする、乳由来αカゼインに結合する核酸分子である。
(a)配列番号1、2もしくは4の塩基配列または配列番号1、2もしくは4の塩基配列の部分配列からなるポリヌクレオチド
(b)前記(a)の塩基配列に対して、90%以上の同一性を有する塩基配列からなり、乳由来αカゼインに結合するポリヌクレオチド
(1) Nucleic acid molecule As described above, the nucleic acid molecule of the present invention is a nucleic acid molecule that binds to milk-derived α-casein, characterized in that it comprises a polynucleotide of either (a) or (b) below. .
(A) a polynucleotide comprising the nucleotide sequence of SEQ ID NO: 1, 2 or 4 or a partial sequence of the nucleotide sequence of SEQ ID NO: 1, 2 or 4 (b) 90% or more identical to the nucleotide sequence of (a) A polynucleotide comprising a base sequence having sex and binding to milk-derived α-casein
 本発明において、ターゲットは、乳由来αカゼインである。前記乳の由来は、例えば、牛、ヤギ等である。乳由来αカゼインは、例えば、牛乳由来αカゼインである。本発明の核酸について、例えば、結合能を確認するためのαカゼインとして、市販のαカゼインが使用でき、具体例として、牛乳由来のαカゼイン(C6780-19、SIGMA社製)が例示できる。αカゼインは、例えば、未変性アレルゲンである。本発明において、以下、乳由来αカゼインは、単にαカゼインともいう。 In the present invention, the target is α-casein derived from milk. The origin of the milk is, for example, cows and goats. Milk-derived α-casein is, for example, milk-derived α-casein. Regarding the nucleic acid of the present invention, for example, commercially available α-casein can be used as α-casein for confirming the binding ability, and specific examples include α-casein derived from milk (C6780-19, manufactured by SIGMA). Alpha casein is, for example, a native allergen. In the present invention, hereinafter, milk-derived α-casein is also simply referred to as α-casein.
 本発明の核酸分子は、前述のように、αカゼインに結合可能である。本発明において、「αカゼインに結合する」とは、例えば、αカゼインに対する結合性を有している、または、αカゼインに対する結合活性を有しているともいう。本発明の核酸分子とαカゼインとの結合は、例えば、表面プラズモン共鳴分子相互作用(SPR;Surface Plasmon resonance)解析等により決定できる。前記解析は、例えば、BIACORE3000(商品名、GE Healthcare UK Ltd.)が使用できる。本発明の核酸分子は、αカゼインに結合することから、例えば、αカゼインの検出に使用できる。 As described above, the nucleic acid molecule of the present invention can bind to α-casein. In the present invention, “binding to α-casein” means, for example, having binding property to α-casein or having binding activity to α-casein. The binding between the nucleic acid molecule of the present invention and α-casein can be determined by, for example, surface plasmon resonance molecular interaction (SPR) analysis. For the analysis, for example, BIACORE 3000 (trade name, GE Healthcare UK Ltd.) can be used. Since the nucleic acid molecule of the present invention binds to α-casein, it can be used, for example, for detection of α-casein.
 本発明の核酸分子は、αカゼインに対する結合力を示す解離定数が、例えば、20nmol/L以下、17nmol/L以下、13nmol/L以下、9nmol/L以下、7nmol/L以下である。 The nucleic acid molecule of the present invention has a dissociation constant indicating the binding force to α-casein, for example, 20 nmol / L or less, 17 nmol / L or less, 13 nmol / L or less, 9 nmol / L or less, 7 nmol / L or less.
 本発明の核酸分子は、DNA分子、またはDNAアプタマーともいう。本発明の核酸分子は、例えば、前記(a)または(b)のポリヌクレオチドからなる分子でもよいし、前記ポリヌクレオチドを含む分子でもよい。 The nucleic acid molecule of the present invention is also called a DNA molecule or a DNA aptamer. The nucleic acid molecule of the present invention may be, for example, a molecule composed of the polynucleotide (a) or (b) or a molecule containing the polynucleotide.
 前記(a)のポリヌクレオチドは、例えば、前記配列番号1、2または4の塩基配列を含むポリヌクレオチドでもよいし、前記配列番号1、2または4の塩基配列からなるポリヌクレオチドでもよく、また、前記配列番号1、2または4の塩基配列の部分配列を含むポリヌクレオチドでもよいし、前記部分配列からなるポリヌクレオチドでもよい。前記部分配列は、特に制限されず、例えば、元の配列から、5’末端および3’末端の少なくとも一方の配列を欠失した配列でもよいし、中間領域の配列を欠失した配列でもよい。前記配列番号1、2または4のポリヌクレオチドを以下に示す。 The polynucleotide of (a) may be, for example, a polynucleotide containing the base sequence of SEQ ID NO: 1, 2, or 4, may be a polynucleotide consisting of the base sequence of SEQ ID NO: 1, 2, or 4, The polynucleotide may include a partial sequence of the base sequence of SEQ ID NO: 1, 2, or 4 or may be a polynucleotide comprising the partial sequence. The partial sequence is not particularly limited, and may be, for example, a sequence in which at least one of the 5 'end and 3' end is deleted from the original sequence, or a sequence in which an intermediate region sequence is deleted. The polynucleotide of SEQ ID NO: 1, 2 or 4 is shown below.
aCas392BR8m2(配列番号1)
GGTATGGAGGCAAGTCCCAATTCTAAGAAGTGGAGTAGGTGGGTTTAAGGATACGTTTCAGCCAGACAGGGTTTATG
aCas757BR8m3(配列番号2)
GGATAGCAGCAGGGACCTCTTATACGTCGGTGCTGGTGTTGTATAGACCCCCTTATATTATAACCGAATGATTTGCCCGCTACGATATG
aCas757BR8m4(配列番号4)
GGATAGCAGCAGGGACCTCTTATACCTGAGCGGCTCATTACCCTTCCGACTGGTCGCCCGCTTACCGAATGATTTGCCCGCTACGATATG
aCas392BR8m2 (SEQ ID NO: 1)
GGTATGGAGGCAAGTCCCAATTC T AAGAAG T GGAG T AGG T GGG TTT AAGGA T A C G TTTC AG CC AGA C AGGG TTT A T G
aCas757BR8m3 (SEQ ID NO: 2)
GGATAGCAGCAGGGACCTCTTATACG TC GG T G CT GG T G TT G T A T AGA CCCCCTT A T A TT A T AA CC GAA T GA TTT G CCC G CT A C GA T A T G
aCas757BR8m4 (SEQ ID NO: 4)
GGATAGCAGCAGGGACCTCTTATAC CT GAG C GG CTC A TT A CCCTTCC GA CT GG TC G CCC G CTT A CC GAA T GA TTT G CCC G CT A C GA T A T G
 前記配列番号2の部分配列は、特に制限されないが、例えば、配列番号3、6、8および9の塩基配列があげられる。前記配列番号6の塩基配列は、前記配列番号3の塩基配列を、さらに小型化した配列である。
aCas757BR8m3s69(配列番号3)
GGATAGCAGCAGGGACCTCTTATACGTCGGTGCTGGTGTTGTATAGACCCCCTTATATTATAACCGAAT
aCas757BR8m3s63(配列番号6)
GGATAGCAGCAGGGACCTCTTATACGTCGGTGCTGGTGTTGTATAGACCCCCTTATATTATAA
aCas757BR8m3s63b(配列番号8)
GGATAGACCTCTTATACGTCTGTTGTATAGACCCCCTTATATTATAA
aCas757BR8m3s63c(配列番号9)
GGATAGCAGCACTCTTATACTGCTGGTGTTGTATAGACCCCCTTATATTATAA
The partial sequence of SEQ ID NO: 2 is not particularly limited, and examples thereof include the base sequences of SEQ ID NOs: 3, 6, 8, and 9. The base sequence of SEQ ID NO: 6 is a sequence obtained by further miniaturizing the base sequence of SEQ ID NO: 3.
aCas757BR8m3s69 (SEQ ID NO: 3)
GGATAGCAGCAGGGACCTCTTATACG TC GG T G CT GG T G TT G T A T AGA CCCCCTT A T A TT A T AA CC GAA T
aCas757BR8m3s63 (SEQ ID NO: 6)
GGATAGCAGCAGGGACCTCTTATACG TC GG T G CT GG T G TT G T A T AGA CCCCCTT A T A TT A T AA
aCas757BR8m3s63b (SEQ ID NO: 8)
GGATAGACCTCTTATACG TCT G TT G T A T AGA CCCCCTT A T A TT A T AA
aCas757BR8m3s63c (SEQ ID NO: 9)
GGATAGCAGCACTCTTATAC T G CT GG T G TT G T A T AGA CCCCCTT A T A TT A T AA
 前記配列番号4の部分配列は、特に制限されないが、例えば、配列番号5および7の塩基配列があげられる。
aCas757BR8m4s62(配列番号5)
GGATAGCAGCAGGGACCTCTTATACCTGAGCGGCTCATTACCCTTCCGACTGGTCGCCCGCT
aCas757BR8m4s44(配列番号7)
TTATACCTGAGCGGCTCATTACCCTTCCGACTGGTCGCCCGCTC
The partial sequence of SEQ ID NO: 4 is not particularly limited, and examples thereof include the nucleotide sequences of SEQ ID NOs: 5 and 7.
aCas757BR8m4s62 (SEQ ID NO: 5)
GGATAGCAGCAGGGACCTCTTATAC CT GAG C GG CTC A TT A CCCTTCC GA CT GG TC G CCC G CT
aCas757BR8m4s44 (SEQ ID NO: 7)
TTATAC CT GAG C GG CTC A TT A CCCTTCC GA CT GG TC G CCC G CTC
 前記(b)において、「同一性」は、特に制限されず、例えば、前記(b)のポリヌクレオチドが、αカゼインに結合する範囲であればよい。前記同一性は、例えば、80%以上、好ましくは85%以上、より好ましくは90%以上、さらに好ましくは95%以上、96%以上、97%以上、特に好ましくは98%以上、最も好ましくは99%以上である。前記同一性は、例えば、BLAST、FASTA等の解析ソフトウェアを用いて、デフォルトのパラメータにより算出できる(以下、同様)。 In (b), the “identity” is not particularly limited, and may be any range as long as the polynucleotide (b) binds to α-casein. The identity is, for example, 80% or more, preferably 85% or more, more preferably 90% or more, further preferably 95% or more, 96% or more, 97% or more, particularly preferably 98% or more, and most preferably 99%. % Or more. The identity can be calculated with default parameters using analysis software such as BLAST and FASTA (hereinafter the same).
 本発明の核酸分子における前記ポリヌクレオチドは、例えば、下記(c)のポリヌクレオチドでもよい。この場合、本発明の核酸分子は、例えば、前記(c)のポリヌクレオチドからなる分子でもよいし、前記ポリヌクレオチドを含む分子でもよい。
(c)前記(a)の塩基配列からなるポリヌクレオチドに対して、ストリンジェントな条件下でハイブリダイズするポリヌクレオチドに相補的な塩基配列からなり、乳由来αカゼインに結合するポリヌクレオチド
The polynucleotide in the nucleic acid molecule of the present invention may be, for example, the polynucleotide (c) below. In this case, the nucleic acid molecule of the present invention may be, for example, a molecule composed of the polynucleotide (c) or a molecule containing the polynucleotide.
(C) a polynucleotide comprising a base sequence complementary to a polynucleotide that hybridizes under stringent conditions to the polynucleotide comprising the base sequence of (a) and binding to milk-derived α-casein
 前記(c)において、「ハイブリダイズするポリヌクレオチド」は、特に制限されず、例えば、前記(a)の塩基配列に対して、完全または部分的に相補的なポリヌクレオチドである。前記ハイブリダイズは、例えば、各種ハイブリダイゼーションアッセイにより検出できる。前記ハイブリダイゼーションアッセイは、特に制限されず、例えば、ザンブルーク(Sambrook)ら編「モレキュラー・クローニング:ア・ラボラトリーマニュアル第2版(Molecular Cloning: A Laboratory Manual 2nd Ed.)」〔Cold Spring Harbor Laboratory Press (1989)〕等に記載されている方法を採用することもできる。 In (c), the “hybridizing polynucleotide” is not particularly limited, and is, for example, a polynucleotide that is completely or partially complementary to the base sequence of (a). The hybridization can be detected by, for example, various hybridization assays. The hybridization assay is not particularly limited, for example, Zanburuku (Sambrook) et al., Eds., "Molecular Cloning: A Laboratory Manual 2nd Edition (Molecular Cloning:. A Laboratory Manual 2 nd Ed) ," [Cold Spring Harbor Laboratory Press (1989)] and the like can also be employed.
 前記(c)において、「ストリンジェントな条件」は、例えば、低ストリンジェントな条件、中ストリンジェントな条件、高ストリンジェントな条件のいずれでもよい。「低ストリンジェントな条件」は、例えば、5×SSC、5×デンハルト溶液、0.5%SDS、50%ホルムアミド、32℃の条件である。「中ストリンジェントな条件」は、例えば、5×SSC、5×デンハルト溶液、0.5%SDS、50%ホルムアミド、42℃の条件である。「高ストリンジェントな条件」は、例えば、5×SSC、5×デンハルト溶液、0.5%SDS、50%ホルムアミド、50℃の条件である。ストリンジェンシーの程度は、当業者であれば、例えば、温度、塩濃度、プローブの濃度および長さ、イオン強度、時間等の条件を適宜選択することで、設定可能である。「ストリンジェントな条件」は、例えば、前述したザンブルーク(Sambrook)ら編「モレキュラー・クローニング:ア・ラボラトリーマニュアル第2版(Molecular Cloning: A Laboratory Manual 2nd Ed.)」〔Cold Spring Harbor Laboratory Press (1989)〕等に記載の条件を採用することもできる。 In the above (c), the “stringent conditions” may be, for example, any of low stringent conditions, medium stringent conditions, and high stringent conditions. “Low stringent conditions” are, for example, conditions of 5 × SSC, 5 × Denhardt's solution, 0.5% SDS, 50% formamide, and 32 ° C. “Medium stringent conditions” are, for example, 5 × SSC, 5 × Denhardt's solution, 0.5% SDS, 50% formamide, 42 ° C. “High stringent conditions” are, for example, conditions of 5 × SSC, 5 × Denhardt's solution, 0.5% SDS, 50% formamide, 50 ° C. The degree of stringency can be set by those skilled in the art by appropriately selecting conditions such as temperature, salt concentration, probe concentration and length, ionic strength, time, and the like. "Stringent conditions" are, for example, Zanburuku previously described (Sambrook) et al., Eds., "Molecular Cloning: A Laboratory Manual 2nd Edition (Molecular Cloning:. A Laboratory Manual 2 nd Ed) ," [Cold Spring Harbor Laboratory Press ( 1989)]] and the like.
 本発明の核酸分子における前記ポリヌクレオチドは、例えば、下記(d)のポリヌクレオチドでもよい。この場合、本発明の核酸分子は、例えば、前記(d)のポリヌクレオチドからなる分子でもよいし、前記ポリヌクレオチドを含む分子でもよい。
(d)前記(a)の塩基配列において、1もしくは数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、乳由来αカゼインに結合するポリヌクレオチド
The polynucleotide in the nucleic acid molecule of the present invention may be, for example, the polynucleotide (d) below. In this case, the nucleic acid molecule of the present invention may be, for example, a molecule composed of the polynucleotide (d) or a molecule containing the polynucleotide.
(D) a polynucleotide comprising a base sequence in which one or several bases are deleted, substituted, inserted and / or added in the base sequence of (a), and which binds to milk-derived α-casein
 前記(d)において、「1もしくは数個」は、例えば、前記(d)のポリヌクレオチドが、乳由来αカゼインに結合する範囲であればよい。前記「1もしくは数個」は、前記(a)の塩基配列において、例えば、1~10個、好ましくは1~7個、より好ましくは1~5個、さらに好ましくは1~3個、特に好ましくは1または2個である。 In the above (d), “one or several” may be in the range where the polynucleotide in (d) is bound to milk-derived α-casein, for example. The “one or several” in the base sequence of (a) is, for example, 1 to 10, preferably 1 to 7, more preferably 1 to 5, further preferably 1 to 3, particularly preferably. Is one or two.
 本発明の核酸分子における前記ポリヌクレオチドは、例えば、下記(e)のポリヌクレオチドでもよい。この場合、本発明の核酸分子は、例えば、前記(e)のポリヌクレオチドからなる分子でもよいし、前記ポリヌクレオチドを含む分子でもよい。
(e)前記配列番号2または4の塩基配列に対して、80%以上の同一性を有する塩基配列からなり、それぞれ、配列番号3および6のいずれか一方、または5および7のいずれか一方の塩基配列を含む、乳由来αカゼインに結合するポリヌクレオチド
The polynucleotide in the nucleic acid molecule of the present invention may be, for example, the polynucleotide (e) below. In this case, the nucleic acid molecule of the present invention may be, for example, a molecule composed of the polynucleotide (e) or a molecule containing the polynucleotide.
(E) consisting of a base sequence having 80% or more identity to the base sequence of SEQ ID NO: 2 or 4, wherein either one of SEQ ID NOs: 3 and 6, or any one of 5 and 7, respectively A polynucleotide comprising a base sequence and binding to α-casein derived from milk
 前記(e)において、「同一性」は、特に制限されず、例えば、前記(b)と同様である。 In (e), “identity” is not particularly limited, and is the same as (b), for example.
 本発明の核酸分子における前記ポリヌクレオチドは、例えば、下記(f)のポリヌクレオチドでもよい。この場合、本発明の核酸分子は、例えば、前記(f)のポリヌクレオチドからなる分子でもよいし、前記ポリヌクレオチドを含む分子でもよい。
(f)配列番号1~9からなる群から選択された少なくとも一つの塩基配列に対して、80%以上の同一性を有する塩基配列からなり、それぞれ、式(I)~(IX)で表される二次構造を形成可能である、乳由来αカゼインに結合するポリヌクレオチド
Figure JPOXMLDOC01-appb-C000010
 
Figure JPOXMLDOC01-appb-C000011
 
Figure JPOXMLDOC01-appb-C000012
 
Figure JPOXMLDOC01-appb-C000013
 
Figure JPOXMLDOC01-appb-C000014
 
Figure JPOXMLDOC01-appb-C000015
 
Figure JPOXMLDOC01-appb-C000016
 
Figure JPOXMLDOC01-appb-C000017
 
Figure JPOXMLDOC01-appb-C000018
 
The polynucleotide in the nucleic acid molecule of the present invention may be, for example, the polynucleotide (f) below. In this case, the nucleic acid molecule of the present invention may be, for example, a molecule composed of the polynucleotide (f) or a molecule containing the polynucleotide.
(F) a base sequence having 80% or more identity to at least one base sequence selected from the group consisting of SEQ ID NOs: 1 to 9, and represented by formulas (I) to (IX), respectively. A polynucleotide that binds to milk-derived α-casein
Figure JPOXMLDOC01-appb-C000010

Figure JPOXMLDOC01-appb-C000011

Figure JPOXMLDOC01-appb-C000012

Figure JPOXMLDOC01-appb-C000013

Figure JPOXMLDOC01-appb-C000014

Figure JPOXMLDOC01-appb-C000015

Figure JPOXMLDOC01-appb-C000016

Figure JPOXMLDOC01-appb-C000017

Figure JPOXMLDOC01-appb-C000018
 前記(f)において、「同一性」は、特に制限されず、例えば、前記(b)と同様である。また、前記(f)において、「二次構造を形成可能」とは、例えば、前記(f)のポリヌクレオチドが、前記式におけるステム構造およびループ構造を形成可能であることをいう。ステム構造およびループ構造については、後述する。 In (f), “identity” is not particularly limited, and is the same as (b), for example. In (f) above, “can form a secondary structure” means, for example, that the polynucleotide of (f) can form a stem structure and a loop structure in the above formula. The stem structure and loop structure will be described later.
 本発明の核酸分子における前記ポリヌクレオチドは、例えば、下記(g)のポリヌクレオチドでもよい。この場合、本発明の核酸分子は、例えば、前記(g)のポリヌクレオチドからなる分子でもよいし、前記ポリヌクレオチドを含む分子でもよい。
(g)配列番号2および4からなる群から選択された少なくとも一つの塩基配列に対して、80%以上の同一性を有する塩基配列からなり、それぞれ、式(III)および(VI)、ならびに式(V)および式(VII)で表される二次構造を形成可能である、乳由来αカゼインに結合するポリヌクレオチド
The polynucleotide in the nucleic acid molecule of the present invention may be, for example, the polynucleotide (g) below. In this case, the nucleic acid molecule of the present invention may be, for example, a molecule composed of the polynucleotide (g) or a molecule containing the polynucleotide.
(G) consisting of a base sequence having 80% or more identity to at least one base sequence selected from the group consisting of SEQ ID NOs: 2 and 4, respectively represented by formulas (III) and (VI), and formula A polynucleotide capable of forming a secondary structure represented by (V) and formula (VII) and binding to milk-derived α-casein
 本発明の核酸分子における前記ポリヌクレオチドは、例えば、下記(h)のポリヌクレオチドでもよい。この場合、本発明の核酸分子は、例えば、前記(h)のポリヌクレオチドからなる分子でもよいし、前記ポリヌクレオチドを含む分子でもよい。
(h)配列番号2、3、または4の塩基配列に対して、80%以上の同一性を有する塩基配列からなり、それぞれ、配列番号6または7の塩基配列を含む、乳由来αカゼインに結合するポリヌクレオチド
The polynucleotide in the nucleic acid molecule of the present invention may be, for example, the polynucleotide (h) below. In this case, the nucleic acid molecule of the present invention may be, for example, a molecule composed of the polynucleotide (h) or a molecule containing the polynucleotide.
(H) Binds to milk-derived α-casein comprising a base sequence having 80% or more identity to the base sequence of SEQ ID NO: 2, 3, or 4 and comprising the base sequence of SEQ ID NO: 6 or 7, respectively. Polynucleotide
 本発明の核酸分子における前記ポリヌクレオチドは、例えば、下記(i)のポリヌクレオチドでもよい。この場合、本発明の核酸分子は、例えば、前記(i)のポリヌクレオチドからなる分子でもよいし、前記ポリヌクレオチドを含む分子でもよい。
(i)配列番号2、3、または4の塩基配列に対して、80%以上の同一性を有する塩基配列からなり、それぞれ、式(VI)または式(VII)で表される二次構造を形成可能である、乳由来αカゼインに結合するポリヌクレオチド
The polynucleotide in the nucleic acid molecule of the present invention may be, for example, the following polynucleotide (i). In this case, the nucleic acid molecule of the present invention may be, for example, a molecule comprising the polynucleotide (i) or a molecule containing the polynucleotide.
(I) It consists of a base sequence having 80% or more identity to the base sequence of SEQ ID NO: 2, 3, or 4, and has a secondary structure represented by formula (VI) or formula (VII), respectively. Polynucleotide that binds to milk-derived α-casein that can be formed
 本発明の核酸分子は、例えば、前記(a)~(i)のいずれかのポリヌクレオチドの配列を1つ含んでもよいし、前記ポリヌクレオチドの配列を複数含んでもよい。後者の場合、複数のポリヌクレオチドの配列が連結して、一本鎖のポリヌクレオチドを形成していることが好ましい。前記複数のポリヌクレオチドの配列は、例えば、それぞれが直接的に連結してもよいし、リンカーを介して、それぞれが間接的に連結してもよい。前記ポリヌクレオチドの配列は、それぞれの末端において、直接的または間接的に連結していることが好ましい。前記複数のポリヌクレオチドの配列は、例えば、同じでもよいし、異なってもよいが、好ましくは同じである。前記ポリヌクレオチドの配列を複数含む場合、前記配列の数は、特に制限されず、例えば、2以上であり、好ましくは2~12であり、より好ましくは2~6であり、さらに好ましくは2である。 The nucleic acid molecule of the present invention may contain, for example, one of the polynucleotide sequences (a) to (i) or a plurality of the polynucleotide sequences. In the latter case, it is preferable that a plurality of polynucleotide sequences are linked to form a single-stranded polynucleotide. For example, the sequences of the plurality of polynucleotides may be directly linked to each other or indirectly linked via a linker. The polynucleotide sequences are preferably linked directly or indirectly at the respective ends. The sequences of the plurality of polynucleotides may be the same or different, for example, but are preferably the same. When the polynucleotide includes a plurality of sequences, the number of the sequences is not particularly limited, and is, for example, 2 or more, preferably 2 to 12, more preferably 2 to 6, and further preferably 2. is there.
 前記リンカーは、例えば、ポリヌクレオチドがあげられ、その構成単位は、例えば、ヌクレオチド残基があげられる。前記ヌクレオチド残基は、例えば、リボヌクレオチド残基、デオキシリボヌクレオチド残基があげられる。前記リンカーの長さは、特に制限されず、例えば、1~24塩基長であり、好ましくは12~24塩基長であり、より好ましくは16~24塩基長であり、さらに好ましくは20~24塩基長である。 The linker is, for example, a polynucleotide, and the structural unit is, for example, a nucleotide residue. Examples of the nucleotide residue include a ribonucleotide residue and a deoxyribonucleotide residue. The length of the linker is not particularly limited, and is, for example, 1 to 24 bases long, preferably 12 to 24 bases long, more preferably 16 to 24 bases long, and further preferably 20 to 24 bases long. It is long.
 本発明の核酸分子において、前記ポリヌクレオチドは、一本鎖ポリヌクレオチドであることが好ましい。前記一本鎖ポリヌクレオチドは、例えば、自己アニーリングによりステム構造およびループ構造を形成可能であることが好ましい。前記ポリヌクレオチドは、例えば、ステムループ構造、インターナルループ構造および/またはバルジ構造等を形成可能であることが好ましい。 In the nucleic acid molecule of the present invention, the polynucleotide is preferably a single-stranded polynucleotide. The single-stranded polynucleotide is preferably capable of forming a stem structure and a loop structure by, for example, self-annealing. The polynucleotide is preferably capable of forming a stem loop structure, an internal loop structure, and / or a bulge structure, for example.
 本発明の核酸分子は、例えば、二本鎖でもよい。二本鎖の場合、例えば、一方の一本鎖ポリヌクレオチドは、前記(a)~(i)のいずれかのポリヌクレオチドであり、他方の一本鎖ポリヌクレオチドは、制限されない。前記他方の一本鎖ポリヌクレオチドは、例えば、前記(a)~(i)のいずれかのポリヌクレオチドに相補的な塩基配列からなるポリヌクレオチドがあげられる。本発明の核酸分子が二本鎖の場合、例えば、使用に先立って、変性等により、一本鎖ポリヌクレオチドに解離させることが好ましい。また、解離した前記(a)~(i)のいずれかの一本鎖ポリヌクレオチドは、例えば、前述のように、ステム構造およびループ構造を形成していることが好ましい。 The nucleic acid molecule of the present invention may be, for example, double stranded. In the case of a double strand, for example, one single-stranded polynucleotide is any one of the polynucleotides (a) to (i), and the other single-stranded polynucleotide is not limited. Examples of the other single-stranded polynucleotide include a polynucleotide having a base sequence complementary to any one of the polynucleotides (a) to (i). When the nucleic acid molecule of the present invention is double-stranded, it is preferably dissociated into a single-stranded polynucleotide by denaturation or the like prior to use. Further, the dissociated single-stranded polynucleotide of any one of (a) to (i) preferably has a stem structure and a loop structure as described above, for example.
 本発明において、「ステム構造およびループ構造を形成可能」とは、例えば、実際にステム構造およびループ構造を形成すること、ならびに、ステム構造およびループ構造が形成されていなくても、条件によってステム構造およびループ構造を形成可能なことも含む。「ステム構造およびループ構造を形成可能」とは、例えば、実験的に確認した場合、および、コンピュータ等のシミュレーションで予測した場合の双方を含む。 In the present invention, “the stem structure and the loop structure can be formed” means, for example, that the stem structure and the loop structure are actually formed, and even if the stem structure and the loop structure are not formed, the stem structure depending on the conditions. And the ability to form a loop structure. “A stem structure and a loop structure can be formed” includes, for example, both experimental confirmation and prediction by a computer simulation.
 本発明の核酸分子の構成単位は、例えば、ヌクレオチド残基である。前記核酸分子の長さは、特に制限されず、その下限は、例えば、15塩基長であり、好ましくは75塩基長または80塩基長であり、その上限は、例えば、1000塩基長であり、好ましくは200塩基長、100塩基長または90塩基長である。 The structural unit of the nucleic acid molecule of the present invention is, for example, a nucleotide residue. The length of the nucleic acid molecule is not particularly limited, and the lower limit thereof is, for example, 15 base length, preferably 75 base length or 80 base length, and the upper limit thereof is, for example, 1000 base length, preferably Is 200 bases, 100 bases or 90 bases long.
 前記ヌクレオチド残基は、例えば、デオキシリボヌクレオチド残基およびリボヌクレオチド残基があげられる。本発明の核酸分子は、例えば、デオキシリボヌクレオチド残基のみから構成されるDNA、1もしくは数個のリボヌクレオチド残基を含むDNA等があげられる。後者の場合、「1もしくは数個」は、特に制限されず、例えば、前記ポリヌクレオチドにおいて、例えば、1~3個である。本発明において、塩基数および配列数等の個数の数値範囲は、例えば、その範囲に属する正の整数を全て開示するものである。つまり、例えば、「1~3塩基」との記載は、「1、2、3塩基」の全ての開示を意味する(以下、同様)。 Examples of the nucleotide residue include deoxyribonucleotide residue and ribonucleotide residue. Examples of the nucleic acid molecule of the present invention include DNA composed only of deoxyribonucleotide residues, DNA containing one or several ribonucleotide residues, and the like. In the latter case, “1 or several” is not particularly limited, and is, for example, 1 to 3 in the polynucleotide. In the present invention, the numerical range of numbers such as the number of bases and the number of sequences, for example, discloses all positive integers belonging to the range. That is, for example, the description “1 to 3 bases” means all disclosures of “1, 2, 3 bases” (hereinafter the same).
 前記ポリヌクレオチドは、例えば、少なくとも1個の修飾塩基を含む。前記修飾塩基は、特に制限されず、例えば、天然塩基(非人工塩基)が修飾された塩基があげられ、前記天然塩基と同様の機能を有することが好ましい。前記天然塩基は、特に制限されず、例えば、プリン骨格を有するプリン塩基、ピリミジン骨格を有するピリミジン塩基等があげられる。前記プリン塩基は、特に制限されず、例えば、アデニン(a)、グアニン(g)があげられる。前記ピリミジン塩基は、特に制限されず、例えば、シトシン(c)、チミン(t)、ウラシル(u)等があげられる。前記塩基の修飾部位は、特に制限されない。前記塩基がプリン塩基の場合、前記プリン塩基の修飾部位は、例えば、前記プリン骨格の7位および8位があげられる。前記塩基がピリミジン塩基の場合、前記ピリミジン塩基の修飾部位は、例えば、前記ピリミジン骨格の5位および6位があげられる。前記ピリミジン骨格において、4位の炭素に「=O」が結合し、5位の炭素に「-CH」または「-H」以外の基が結合している場合、修飾ウラシルまたは修飾チミンということができる。 The polynucleotide includes, for example, at least one modified base. The modified base is not particularly limited, and examples thereof include a base modified with a natural base (non-artificial base), and preferably has the same function as the natural base. The natural base is not particularly limited, and examples thereof include a purine base having a purine skeleton and a pyrimidine base having a pyrimidine skeleton. The purine base is not particularly limited, and examples thereof include adenine (a) and guanine (g). The pyrimidine base is not particularly limited, and examples thereof include cytosine (c), thymine (t), uracil (u) and the like. The base modification site is not particularly limited. When the base is a purine base, examples of the purine base modification site include the 7th and 8th positions of the purine skeleton. When the base is a pyrimidine base, examples of the modification site of the pyrimidine base include the 5th and 6th positions of the pyrimidine skeleton. In the pyrimidine skeleton, when “═O” is bonded to carbon at position 4 and a group other than “—CH 3 ” or “—H” is bonded to carbon at position 5, it is called modified uracil or modified thymine. Can do.
 前記修飾塩基の修飾基は、特に制限されず、例えば、メチル基、フルオロ基、アミノ基、チオ基、下記式(1)のベンジルアミノカルボニル基(benzylaminocarbonyl)、下記式(2)のトリプタミノカルボニル基(tryptaminocarbonyl)およびイソブチルアミノカルボニル基(isobutylaminocarbonyl)等があげられる。
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
The modifying group of the modifying base is not particularly limited, and examples thereof include a methyl group, a fluoro group, an amino group, a thio group, a benzylaminocarbonyl group represented by the following formula (1), and a tryptaminocarbonyl represented by the following formula (2). Group (tryptaminocarbonyl), isobutylaminocarbonyl group (isobutylaminocarbonyl) and the like.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
 前記修飾塩基は、特に制限されず、例えば、アデニンが修飾された修飾アデニン、チミンが修飾された修飾チミン、グアニンが修飾された修飾グアニン、シトシンが修飾された修飾シトシンおよびウラシルが修飾された修飾ウラシル等があげられ、前記修飾チミン、前記修飾ウラシルおよび前記修飾シトシンが好ましい。 The modified base is not particularly limited. For example, modified adenine modified with adenine, modified thymine modified with thymine, modified guanine modified with guanine, modified cytosine modified with cytosine and modified modified with uracil Examples include uracil and the like, and the modified thymine, the modified uracil and the modified cytosine are preferable.
 前記修飾アデニンの具体例としては、例えば、7’-デアザアデニン等があげられる。 Specific examples of the modified adenine include 7'-deazaadenine and the like.
 前記修飾グアニンの具体例としては、例えば、7’-デアザグアニン等があげられる。 Specific examples of the modified guanine include, for example, 7'-deazaguanine.
 前記修飾シトシンの具体例としては、例えば、5’-メチルシトシン等があげられる。 Specific examples of the modified cytosine include 5'-methylcytosine.
 前記修飾チミンの具体例としては、例えば、5’-ベンジルアミノカルボニルチミン、5’-トリプタミノカルボニルチミン、5’-イソブチルアミノカルボニルチミン等があげられる。 Specific examples of the modified thymine include 5'-benzylaminocarbonylthymine, 5'-tryptaminocarbonylthymine, 5'-isobutylaminocarbonylthymine and the like.
 前記修飾ウラシルの具体例としては、例えば、5’-ベンジルアミノカルボニルウラシル(BndU)、5’-トリプタミノカルボニルウラシル(TrpdU)および5’-イソブチルアミノカルボニルウラシル等があげられる。 Specific examples of the modified uracil include 5'-benzylaminocarbonyluracil (BndU), 5'-tryptaminocarbonyluracil (TrpdU), 5'-isobutylaminocarbonyluracil and the like.
 前記ポリヌクレオチドは、特に制限されず、例えば、いずれか1種類の前記修飾塩基のみを含んでもよいし、2種類以上の前記修飾塩基を含んでもよい。 The polynucleotide is not particularly limited, and may include, for example, only one type of the modified base, or may include two or more types of the modified base.
 前記修飾塩基の個数は、特に制限されない。前記ポリヌクレオチドにおいて、前記修飾塩基の個数は、例えば、1個以上である。前記修飾塩基は、前記ポリヌクレオチドにおいて、例えば、1~80個、好ましくは1~70個、より好ましくは1~50個、さらに好ましくは1~40個、特に好ましくは1~30個、最も好ましくは1~20個であり、また、全ての塩基が、前記修飾塩基でもよい。前記修飾塩基の個数は、例えば、いずれか1種類の前記修飾塩基の個数であってもよいし、2種類以上の前記修飾塩基の個数の合計であってもよい。また、前記ポリヌクレオチドを含む前記核酸分子の全長における前記修飾塩基も、特に制限されず、例えば、1~80個、1~50個、1~20個であり、好ましくは、前述の範囲と同様である。 The number of the modified base is not particularly limited. In the polynucleotide, the number of the modified base is, for example, one or more. In the polynucleotide, the modified base is, for example, 1 to 80, preferably 1 to 70, more preferably 1 to 50, still more preferably 1 to 40, particularly preferably 1 to 30, and most preferably. 1 to 20 and all the bases may be the modified bases. The number of the modified bases may be, for example, the number of any one of the modified bases or the total number of the two or more modified bases. In addition, the modified base in the entire length of the nucleic acid molecule containing the polynucleotide is not particularly limited, and is, for example, 1 to 80, 1 to 50, or 1 to 20, preferably in the same range as described above. It is.
 前記ポリヌクレオチドにおいて、前記修飾塩基の割合は、特に制限されない。前記修飾塩基の割合は、前記ポリヌクレオチドの全塩基数のうち、例えば、1/100以上、好ましくは1/40以上、より好ましくは1/20以上、さらに好ましくは1/10以上、特に好ましくは1/4以上、最も好ましくは1/3以上である。また、前記ポリヌクレオチドを含む前記核酸分子の全長における前記修飾塩基の割合も、特に制限されず、前述の範囲と同様である。ここで、前記全塩基数は、例えば、前記ポリヌクレオチドにおける天然塩基の個数と前記修飾塩基の個数の合計である。前記修飾塩基の割合を分数で示すが、これを満たす全塩基数と修飾塩基数とは、それぞれ正の整数である。 In the polynucleotide, the ratio of the modified base is not particularly limited. The ratio of the modified base is, for example, 1/100 or more, preferably 1/40 or more, more preferably 1/20 or more, still more preferably 1/10 or more, particularly preferably, of the total number of bases of the polynucleotide. 1/4 or more, most preferably 1/3 or more. Further, the ratio of the modified base in the entire length of the nucleic acid molecule containing the polynucleotide is not particularly limited, and is the same as the above range. Here, the total number of bases is, for example, the total number of natural bases and modified bases in the polynucleotide. The ratio of the modified base is expressed as a fraction, and the total number of bases and the number of modified bases that satisfy this are positive integers.
 前記ポリヌクレオチドにおける前記修飾塩基が、前記修飾チミンの場合、前記修飾チミンの個数は、特に制限されない。前記ポリヌクレオチドにおいて、例えば、天然チミンは、前記修飾チミンに置換できる。前記ポリヌクレオチドにおいて、前記修飾チミンの個数は、例えば、1個以上である。前記修飾チミンは、前記ポリヌクレオチドにおいて、例えば、1~80個、好ましくは1~70個、より好ましくは1~50個、さらに好ましくは1~40個、特に好ましくは1~30個、最も好ましくは1~21個であり、また、全てのチミンが、前記修飾チミンでもよい。 When the modified base in the polynucleotide is the modified thymine, the number of the modified thymine is not particularly limited. In the polynucleotide, for example, natural thymine can be substituted for the modified thymine. In the polynucleotide, the number of the modified thymine is, for example, one or more. In the polynucleotide, the modified thymine is, for example, 1 to 80, preferably 1 to 70, more preferably 1 to 50, still more preferably 1 to 40, particularly preferably 1 to 30, and most preferably. 1 to 21 and all the thymines may be the modified thymines.
 前記ポリヌクレオチドにおいて、前記修飾チミンの割合は、特に制限されない。前記修飾チミンの割合は、前記天然チミンの個数と前記修飾チミンの個数との合計のうち、例えば、1/100以上、好ましくは1/40以上、より好ましくは1/20以上、さらに好ましくは1/10以上、特に好ましくは1/4以上、最も好ましくは1/3以上である。 In the polynucleotide, the ratio of the modified thymine is not particularly limited. The ratio of the modified thymine is, for example, 1/100 or more, preferably 1/40 or more, more preferably 1/20 or more, further preferably 1 out of the total number of the natural thymine and the modified thymine. / 10 or more, particularly preferably 1/4 or more, and most preferably 1/3 or more.
 前記ポリヌクレオチドにおける前記修飾塩基が、前記修飾ウラシルの場合、前記修飾ウラシルの個数は、特に制限されない。前記ポリヌクレオチドにおいて、例えば、天然チミンは、前記修飾ウラシルに置換できる。前記ポリヌクレオチドにおいて、前記修飾ウラシルの個数は、例えば、1個以上である。前記修飾ウラシルは、前記ポリヌクレオチドにおいて、例えば、1~80個、好ましくは1~70個、より好ましくは1~50個、さらに好ましくは1~40個、特に好ましくは1~30個、最も好ましくは1~21個であり、また、全てのウラシルが、前記修飾ウラシルでもよい。 When the modified base in the polynucleotide is the modified uracil, the number of the modified uracil is not particularly limited. In the polynucleotide, for example, natural thymine can be substituted for the modified uracil. In the polynucleotide, the number of the modified uracil is, for example, one or more. In the polynucleotide, the modified uracil is, for example, 1 to 80, preferably 1 to 70, more preferably 1 to 50, still more preferably 1 to 40, particularly preferably 1 to 30, and most preferably. 1 to 21 and all the uracils may be the modified uracils.
 前記ポリヌクレオチドにおいて、前記修飾ウラシルの割合は、特に制限されない。前記修飾ウラシルの割合は、前記天然チミンの個数と前記修飾ウラシルの個数との合計のうち、例えば、1/100以上、好ましくは1/40以上、より好ましくは1/20以上、さらに好ましくは1/10以上、特に好ましくは1/4以上、最も好ましくは1/3以上である。 In the polynucleotide, the ratio of the modified uracil is not particularly limited. The ratio of the modified uracil is, for example, 1/100 or more, preferably 1/40 or more, more preferably 1/20 or more, and further preferably 1 out of the total number of the natural thymines and the number of the modified uracils. / 10 or more, particularly preferably 1/4 or more, and most preferably 1/3 or more.
 前記修飾チミンと前記修飾ウラシルの個数の例示は、例えば、両者をあわせた個数であってもよい。 Examples of the number of the modified thymine and the modified uracil may be, for example, the total number of both.
 前記ポリヌクレオチドにおいて、例えば、前記各塩基配列における下線部で示されるチミンが、前記修飾チミンおよび前記修飾ウラシルの少なくとも一方でもよい。具体的には、例えば、配列番号1~9のいずれかの塩基配列における下線部で示されるチミンが、5’-ベンジルアミノカルボニルウラシル(BndU)でもよい。 In the polynucleotide, for example, the thymine indicated by the underline in each base sequence may be at least one of the modified thymine and the modified uracil. Specifically, for example, 5'-benzylaminocarbonyluracil (BndU) may be used as the thymine indicated by the underline in any of the nucleotide sequences of SEQ ID NOS: 1 to 9.
 前記ポリヌクレオチドにおける前記修飾塩基が、前記修飾シトシンの場合、前記修飾シトシンの個数は、特に制限されない。前記ポリヌクレオチドにおいて、例えば、天然シトシンは、前記修飾シトシンに置換できる。前記ポリヌクレオチドにおいて、前記修飾シトシンの個数は、例えば、1個以上である。前記修飾シトシンは、前記ポリヌクレオチドにおいて、例えば、1~80個、好ましくは1~70個、より好ましくは1~50個、さらに好ましくは1~40個、特に好ましくは1~30個、最も好ましくは1~21個であり、であり、また、全てのシトシンが、前記修飾シトシンでもよい。 When the modified base in the polynucleotide is the modified cytosine, the number of the modified cytosines is not particularly limited. In the polynucleotide, for example, natural cytosine can be substituted for the modified cytosine. In the polynucleotide, the number of the modified cytosines is, for example, one or more. In the polynucleotide, the modified cytosine is, for example, 1 to 80, preferably 1 to 70, more preferably 1 to 50, still more preferably 1 to 40, particularly preferably 1 to 30, and most preferably. 1 to 21 and all cytosines may be the modified cytosine.
 前記ポリヌクレオチドにおいて、前記修飾シトシンの割合は、特に制限されない。前記修飾シトシンの割合は、前記天然シトシンの個数と前記修飾シトシンの個数との合計のうち、例えば、1/100以上、好ましくは1/40以上、より好ましくは1/20以上、さらに好ましくは1/10以上、特に好ましくは1/4以上、最も好ましくは1/3以上である。 In the polynucleotide, the ratio of the modified cytosine is not particularly limited. The ratio of the modified cytosine is, for example, 1/100 or more, preferably 1/40 or more, more preferably 1/20 or more, further preferably 1 out of the total number of the natural cytosine and the modified cytosine. / 10 or more, particularly preferably 1/4 or more, and most preferably 1/3 or more.
 前記ポリヌクレオチドにおいて、例えば、前記各塩基配列における下線部で示されるシトシンが、前記修飾シトシンでもよい。具体的には、例えば、配列番号1~9のいずれかの塩基配列における下線部で示されるシトシンが、5’-メチルシトシンでもよい。 In the polynucleotide, for example, the cytosine indicated by the underline in each base sequence may be the modified cytosine. Specifically, for example, the cytosine indicated by the underline in any one of the nucleotide sequences of SEQ ID NOS: 1 to 9 may be 5'-methylcytosine.
 前記修飾塩基が、前記修飾アデニンまたは前記修飾グアニンの場合、前記修飾シトシンの個数および割合の説明において、「シトシン」および「修飾シトシン」を、それぞれ「アデニン」および「修飾アデニン」または「グアニン」および「修飾グアニン」に読み替えて援用できる。前記ポリヌクレオチドにおいて、例えば、天然アデニンは、前記修飾アデニンに置換でき、例えば、天然グアニンは、前記修飾グアニンに置換できる。 When the modified base is the modified adenine or the modified guanine, in the description of the number and ratio of the modified cytosine, “cytosine” and “modified cytosine” are referred to as “adenine” and “modified adenine” or “guanine” and It can be read as “modified guanine”. In the polynucleotide, for example, natural adenine can be substituted with the modified adenine, and for example, natural guanine can be substituted with the modified guanine.
 本発明の核酸分子は、修飾ヌクレオチドを含んでもよい。前記修飾ヌクレオチドは、前述の前記修飾塩基を有するヌクレオチドでもよいし、糖残基が修飾された修飾糖を有するヌクレオチドでもよいし、前記修飾塩基および前記修飾糖を有するヌクレオチドでもよい。 The nucleic acid molecule of the present invention may contain a modified nucleotide. The modified nucleotide may be a nucleotide having the modified base described above, a nucleotide having a modified sugar in which a sugar residue is modified, or a nucleotide having the modified base and the modified sugar.
 前記糖残基は、特に制限されず、例えば、デオキシリボース残基またはリボース残基があげられる。前記糖残基における修飾部位は、特に制限されず、例えば、前記糖残基の2’位または4’位があげられ、いずれか一方でも両方が修飾されてもよい。前記修飾糖の修飾基は、例えば、メチル基、フルオロ基、アミノ基、チオ基等があげられる。 The sugar residue is not particularly limited, and examples thereof include deoxyribose residue or ribose residue. The modification site in the sugar residue is not particularly limited, and examples thereof include the 2'-position and the 4'-position of the sugar residue, and both of them may be modified. Examples of the modifying group of the modified sugar include a methyl group, a fluoro group, an amino group, and a thio group.
 前記修飾ヌクレオチド残基において、塩基がピリミジン塩基の場合、例えば、前記糖残基の2’位および/または4’位が修飾されていることが好ましい。前記修飾ヌクレオチド残基の具体例は、例えば、デオキシリボース残基またはリボース残基の2’位が修飾された、2’-メチル化-ウラシルヌクレオチド残基、2’-メチル化-シトシンヌクレオチド残基、2’-フルオロ化-ウラシルヌクレオチド残基、2’-フルオロ化-シトシンヌクレオチド残基、2’-アミノ化-ウラシルヌクレオチド残基、2’-アミノ化-シトシンヌクレオチド残基、2’-チオ化-ウラシルヌクレオチド残基、2’-チオ化-シトシンヌクレオチド残基等があげられる。 In the modified nucleotide residue, when the base is a pyrimidine base, for example, the 2'-position and / or the 4'-position of the sugar residue is preferably modified. Specific examples of the modified nucleotide residue include, for example, a 2′-methylated-uracil nucleotide residue and a 2′-methylated-cytosine nucleotide residue in which the deoxyribose residue or the 2 ′ position of the ribose residue is modified. 2'-fluorinated-uracil nucleotide residues, 2'-fluorinated-cytosine nucleotide residues, 2'-aminated-uracil nucleotide residues, 2'-aminated-cytosine nucleotide residues, 2'-thiolated -Uracil nucleotide residue, 2'-thiolated-cytosine nucleotide residue and the like.
 前記修飾ヌクレオチドの個数は、特に制限されず、例えば、前記ポリヌクレオチドにおいて、例えば、1~80個、好ましくは1~70個、より好ましくは1~50個、さらに好ましくは1~40個、特に好ましくは1~30個、最も好ましくは1~21個である。また、前記ポリヌクレオチドを含む前記核酸分子の全長における前記修飾ヌクレオチドも、特に制限されず、例えば、1~80個、1~50個、1~20個であり、好ましくは、前述の範囲と同様である。 The number of the modified nucleotides is not particularly limited. For example, in the polynucleotide, for example, 1 to 80, preferably 1 to 70, more preferably 1 to 50, still more preferably 1 to 40, particularly The number is preferably 1 to 30, and most preferably 1 to 21. Further, the modified nucleotides in the entire length of the nucleic acid molecule including the polynucleotide are not particularly limited, and are, for example, 1 to 80, 1 to 50, and 1 to 20, preferably in the same range as described above. It is.
 本発明の核酸分子は、例えば、1もしくは数個の人工核酸モノマー残基を含んでもよい。前記「1もしくは数個」は、特に制限されず、例えば、前記ポリヌクレオチドにおいて、例えば、1~80個、好ましくは1~70個、より好ましくは1~50個、さらに好ましくは1~40個、特に好ましくは1~30個、最も好ましくは1~21個である。前記人工核酸モノマー残基は、例えば、PNA(ペプチド核酸)、LNA(Locked Nucleic Acid)、ENA(2’-O,4’-C-Ethylenebridged Nucleic Acids)等があげられる。前記モノマー残基における核酸は、例えば、前述と同様である。また、前記ポリヌクレオチドを含む前記核酸分子の全長における前記人工核酸モノマー残基も、特に制限されず、例えば、1~80個、1~50個、1~20個であり、好ましくは、前述の範囲と同様である。 The nucleic acid molecule of the present invention may contain, for example, one or several artificial nucleic acid monomer residues. The “one or several” is not particularly limited, and for example, in the polynucleotide, for example, 1 to 80, preferably 1 to 70, more preferably 1 to 50, still more preferably 1 to 40 Particularly preferred is 1 to 30, most preferably 1 to 21. Examples of the artificial nucleic acid monomer residue include PNA (peptide nucleic acid), LNA (Locked Nucleic Acid), ENA (2'-O, 4'-C-Ethylenebridged Nucleic Acids) and the like. The nucleic acid in the monomer residue is the same as described above, for example. In addition, the artificial nucleic acid monomer residue in the entire length of the nucleic acid molecule containing the polynucleotide is not particularly limited, and is, for example, 1 to 80, 1 to 50, or 1 to 20, preferably the above-mentioned Similar to range.
 本発明の核酸分子は、例えば、ヌクレアーゼ耐性であることが好ましい。本発明の核酸分子は、ヌクレアーゼ耐性のため、例えば、前記修飾ヌクレオチド残基および/または前記人工核酸モノマー残基を有することが好ましい。本発明の核酸分子は、ヌクレアーゼ耐性のため、例えば、5’末端または3’末端に、数10kDaのPEG(ポリエチレングリコール)またはデオキシチミジン等が結合してもよい。 The nucleic acid molecule of the present invention is preferably nuclease resistant, for example. The nucleic acid molecule of the present invention preferably has, for example, the modified nucleotide residue and / or the artificial nucleic acid monomer residue for nuclease resistance. Since the nucleic acid molecule of the present invention is nuclease resistant, for example, tens of kDa PEG (polyethylene glycol) or deoxythymidine may be bound to the 5 'end or 3' end.
 本発明の核酸分子は、例えば、さらに付加配列を有してもよい。前記付加配列は、例えば、前記核酸分子の5’末端および3’末端の少なくとも一方に結合していることが好ましく、より好ましくは3’末端である。前記付加配列は、特に制限されない。前記付加配列の長さは、特に制限されず、例えば、1~200塩基長であり、好ましくは1~50塩基長であり、より好ましくは1~25塩基長、さらに好ましくは18~24塩基長である。前記付加配列の構成単位は、例えば、ヌクレオチド残基であり、デオキシリボヌクレオチド残基およびリボヌクレオチド残基等があげられる。前記付加配列は、特に制限されず、例えば、デオキシリボヌクレオチド残基からなるDNA、リボヌクレオチド残基を含むDNA等のポリヌクレオチドがあげられる。前記付加配列の具体例として、例えば、ポリdT、ポリdA等があげられる。 The nucleic acid molecule of the present invention may further have an additional sequence, for example. The additional sequence is preferably bound to, for example, at least one of the 5 'end and the 3' end of the nucleic acid molecule, and more preferably the 3 'end. The additional sequence is not particularly limited. The length of the additional sequence is not particularly limited, and is, for example, 1 to 200 bases long, preferably 1 to 50 bases long, more preferably 1 to 25 bases long, and further preferably 18 to 24 bases long. It is. The structural unit of the additional sequence is, for example, a nucleotide residue, and examples thereof include a deoxyribonucleotide residue and a ribonucleotide residue. The additional sequence is not particularly limited, and examples thereof include polynucleotides such as DNA consisting of deoxyribonucleotide residues and DNA containing ribonucleotide residues. Specific examples of the additional sequence include poly dT and poly dA.
 本発明の核酸分子は、例えば、担体に固定化して使用できる。前記本発明の核酸分子は、例えば、5’末端および3’末端のいずれかを固定化することができる。本発明の核酸分子を固定化する場合、例えば、前記核酸分子は、前記担体に、直接的に固定化してもよいし、間接的に固定化してもよい。後者の場合、本発明の核酸分子は、例えば、前記付加配列を介して、前記担体に固定化する。前記担体は、例えば、ビーズ、プレート、フィルター、カラム、基板、容器等があげられる。 The nucleic acid molecule of the present invention can be used, for example, immobilized on a carrier. In the nucleic acid molecule of the present invention, for example, either the 5 'end or the 3' end can be immobilized. When immobilizing the nucleic acid molecule of the present invention, for example, the nucleic acid molecule may be immobilized directly or indirectly on the carrier. In the latter case, the nucleic acid molecule of the present invention is immobilized on the carrier, for example, via the additional sequence. Examples of the carrier include beads, plates, filters, columns, substrates, containers and the like.
 本発明の核酸分子は、例えば、さらに標識物質を有してもよく、具体的には、前記核酸分子に前記標識物質が結合してもよい。前記標識物質が結合した前記核酸分子は、例えば、本発明の核酸センサということもできる。前記標識物質は、例えば、前記核酸分子の5’末端および3’末端の少なくとも一方に結合させてもよい。前記標識物質による標識化は、例えば、結合でもよいし、化学修飾でもよい。前記標識物質は、特に制限されず、例えば、酵素、蛍光物質、色素、同位体、薬物、毒素および抗生物質等があげられる。前記酵素は、例えば、ルシフェラーゼ、NanoLucルシフェラーゼ等があげられる。前記蛍光物質は、例えば、ピレン、TAMRA、フルオレセイン、Cy3色素、Cy5色素、FAM色素、ローダミン色素、テキサスレッド色素、JOE、MAX、HEX、TYE等の蛍光団があげられ、前記色素は、例えば、Alexa488、Alexa647等のAlexa色素等があげられる。前記標識物質は、例えば、前記核酸分子に直接的に連結してもよいし、リンカーを介して、間接的に連結してもよい。前記リンカーは、特に制限されず、例えば、ポリヌクレオチドのリンカー等である。 For example, the nucleic acid molecule of the present invention may further have a labeling substance, and specifically, the labeling substance may be bound to the nucleic acid molecule. The nucleic acid molecule to which the labeling substance is bound can also be referred to as a nucleic acid sensor of the present invention, for example. The labeling substance may be bound to, for example, at least one of the 5 'end and the 3' end of the nucleic acid molecule. The labeling with the labeling substance may be, for example, binding or chemical modification. The labeling substance is not particularly limited, and examples thereof include enzymes, fluorescent substances, dyes, isotopes, drugs, toxins, and antibiotics. Examples of the enzyme include luciferase and NanoLuc luciferase. Examples of the fluorescent substance include pyrene, TAMRA, fluorescein, Cy3 dye, Cy5 dye, FAM dye, rhodamine dye, Texas red dye, JOE, MAX, HEX, TYE and the like, and the dye includes, for example, And Alexa dyes such as Alexa 488 and Alexa 647. The labeling substance may be linked directly to the nucleic acid molecule or indirectly via a linker, for example. The linker is not particularly limited and is, for example, a polynucleotide linker.
 本発明の核酸分子の製造方法は、特に制限されず、例えば、化学合成を利用した核酸合成方法、遺伝子工学的手法等の公知の方法等により合成できる。 The method for producing the nucleic acid molecule of the present invention is not particularly limited, and can be synthesized by, for example, a known method such as a nucleic acid synthesis method using chemical synthesis or a genetic engineering technique.
 本発明の核酸分子は、前述のように、αカゼインに結合性を示す。このため、本発明の核酸分子の用途は、αカゼインへの結合性を利用する用途であれば、特に制限されない。本発明の核酸分子は、例えば、αカゼインに対する抗体に代えて、種々の方法に使用できる。 As described above, the nucleic acid molecule of the present invention exhibits binding to α-casein. For this reason, the use of the nucleic acid molecule of the present invention is not particularly limited as long as it uses the binding to α-casein. The nucleic acid molecule of the present invention can be used in various methods in place of, for example, an antibody against α-casein.
 本発明の核酸分子によれば、αカゼインを検出できる。αカゼインの検出方法は、特に制限されず、αカゼインと前記核酸分子との結合を検出することによって行える。 According to the nucleic acid molecule of the present invention, α-casein can be detected. The method for detecting α-casein is not particularly limited, and can be performed by detecting the binding between α-casein and the nucleic acid molecule.
(2)検出試薬およびキット
 本発明の検出試薬は、前述のように、乳由来αカゼインの検出試薬であって、前記本発明の核酸分子を含むことを特徴とする。本発明の検出試薬は、前記本発明の核酸分子を含んでいればよく、その他の構成は何ら制限されない。本発明の検出試薬を使用すれば、前述のように、例えば、乳由来αカゼインの検出等を行うことができる。本発明の検出試薬は、例えば、乳由来αカゼインへの結合剤ともいえる。
(2) Detection Reagent and Kit As described above, the detection reagent of the present invention is a detection reagent for milk-derived α-casein, and includes the nucleic acid molecule of the present invention. The detection reagent of this invention should just contain the nucleic acid molecule of the said this invention, and another structure is not restrict | limited at all. When the detection reagent of the present invention is used, for example, milk-derived α-casein can be detected as described above. The detection reagent of the present invention can be said to be a binder to milk-derived α-casein, for example.
 本発明の検出試薬は、例えば、さらに、標識物質を有し、前記標識物質が、前記核酸分子に結合されてもよい。前記標識物質は、例えば、前記本発明の核酸分子における説明を援用できる。また、本発明の検出試薬は、例えば、担体を有し、前記担体に前記核酸分子が固定化されてもよい。前記担体は、例えば、前記本発明の核酸分子における説明を援用できる。 The detection reagent of the present invention may further have a labeling substance, for example, and the labeling substance may be bound to the nucleic acid molecule. For the labeling substance, for example, the description in the nucleic acid molecule of the present invention can be used. The detection reagent of the present invention may have, for example, a carrier, and the nucleic acid molecule may be immobilized on the carrier. For the carrier, for example, the description in the nucleic acid molecule of the present invention can be incorporated.
 本発明の検出キットは、前記本発明の核酸分子または前記本発明の検出試薬を含む。本発明の検出キットは、例えば、さらに、その他の構成要素を含んでもよい。前記構成要素は、例えば、前記試料を調製するための緩衝液、使用説明書等があげられる。また、後述する本発明の検出方法に示す、前記核酸分子に標識物質であるルシフェラーゼを結合させた核酸センサと、アレルゲン標識化担体とを用いる方法の場合、本発明の検出キットは、例えば、前記核酸センサと、アレルゲン標識化担体(αカゼイン標識化担体)を含むキットとすることができる。 The detection kit of the present invention includes the nucleic acid molecule of the present invention or the detection reagent of the present invention. The detection kit of the present invention may further include other components, for example. Examples of the constituent element include a buffer solution for preparing the sample, an instruction manual, and the like. In addition, in the case of a method using a nucleic acid sensor in which a luciferase that is a labeling substance is bound to the nucleic acid molecule and an allergen-labeled carrier shown in the detection method of the present invention described later, the detection kit of the present invention includes A kit containing a nucleic acid sensor and an allergen-labeled carrier (α-casein-labeled carrier) can be obtained.
 本発明の検出試薬および検出キットは、例えば、前記本発明の核酸分子の説明を援用でき、また、その使用方法についても、前記本発明の核酸分子および後述する前記本発明の検出方法を援用できる。 For the detection reagent and detection kit of the present invention, for example, the description of the nucleic acid molecule of the present invention can be used, and the nucleic acid molecule of the present invention and the detection method of the present invention described later can also be used for the method of use. .
(3)検出方法
 本発明の乳由来αカゼインの検出方法は、前述のように、前記本発明の核酸分子、または前記本発明の検出試薬と、試料とを接触させ、前記試料中の乳由来αカゼインと、前記核酸分子または前記検出試薬との複合体を形成させる工程、および、前記複合体を検出する工程を含むことを特徴とする。本発明の検出方法は、前記本発明の核酸分子または前記検出試薬を使用することが特徴であって、その他の工程および条件等は、特に制限されない。以下、本発明の核酸分子の使用を例にあげて説明するが、本発明の核酸分子は、本発明の検出試薬と読み替え可能である。
(3) Detection method As described above, the method for detecting milk-derived α-casein of the present invention is a method in which the nucleic acid molecule of the present invention or the detection reagent of the present invention is brought into contact with the sample, and the milk in the sample is derived. The method includes a step of forming a complex of α-casein with the nucleic acid molecule or the detection reagent, and a step of detecting the complex. The detection method of the present invention is characterized by using the nucleic acid molecule of the present invention or the detection reagent, and the other steps and conditions are not particularly limited. Hereinafter, the use of the nucleic acid molecule of the present invention will be described as an example, but the nucleic acid molecule of the present invention can be read as the detection reagent of the present invention.
 本発明によれば、前記本発明の核酸分子が、αカゼインに特異的に結合することから、例えば、αカゼインと、前記核酸分子または前記検出試薬との結合を検出することによって、試料中のαカゼインを特異的に検出可能である。具体的には、例えば、試料中のαカゼインの量を分析可能であることから、定性分析または定量分析も可能といえる。 According to the present invention, since the nucleic acid molecule of the present invention specifically binds to α-casein, for example, by detecting the binding between α-casein and the nucleic acid molecule or the detection reagent, α-casein can be specifically detected. Specifically, for example, since the amount of α-casein in a sample can be analyzed, it can be said that qualitative analysis or quantitative analysis is also possible.
 本発明において、前記試料は、特に制限されない。前記試料は、例えば、食品、食品原料、食品添加物等があげられる。また、前記試料は、例えば、食品加工場または調理場等における付着物、洗浄後の洗浄液等があげられる。 In the present invention, the sample is not particularly limited. Examples of the sample include foods, food materials, food additives, and the like. Examples of the sample include a deposit in a food processing shop or a cooking place, a cleaning liquid after cleaning, and the like.
 前記試料は、例えば、液体試料でもよいし、固体試料でもよい。前記試料は、例えば、前記核酸分子と接触させ易く、取扱いが簡便であることから、液体試料が好ましい。前記固体試料の場合、例えば、溶媒を用いて、混合液、抽出液、溶解液等を調製し、これを使用してもよい。前記溶媒は、特に制限されず、例えば、水、生理食塩水、緩衝液等があげられる。 The sample may be, for example, a liquid sample or a solid sample. For example, the sample is preferably a liquid sample because it is easy to contact with the nucleic acid molecule and is easy to handle. In the case of the solid sample, for example, a mixed solution, an extract, a dissolved solution, and the like may be prepared using a solvent and used. The solvent is not particularly limited, and examples thereof include water, physiological saline, and buffer solution.
 本発明の検出方法について、本発明の核酸分子として、標識物質で標識化された本発明の核酸センサを使用し、αカゼインを検出する方法を例にあげて説明する。なお、本発明は、これらの例示には制限されない。 The detection method of the present invention will be described with reference to an example of a method for detecting α-casein using the nucleic acid sensor of the present invention labeled with a labeling substance as the nucleic acid molecule of the present invention. In addition, this invention is not restrict | limited to these illustrations.
 前記検出工程は、例えば、さらに、前記複合体の検出結果に基づいて、前記試料中のαカゼインの有無または量を分析する工程を含む。 The detection step further includes, for example, a step of analyzing the presence or amount of α-casein in the sample based on the detection result of the complex.
 前記複合体形成工程において、前記試料と前記核酸分子との接触方法は、特に制限されない。前記試料と前記核酸分子との接触は、例えば、液体中で行われることが好ましい。前記液体は、特に制限されず、例えば、水、生理食塩水、緩衝液等があげられる。 In the complex formation step, the method for contacting the sample and the nucleic acid molecule is not particularly limited. The contact between the sample and the nucleic acid molecule is preferably performed in a liquid, for example. The liquid is not particularly limited, and examples thereof include water, physiological saline, and buffer solution.
 前記複合体形成工程において、前記試料と前記核酸分子との接触条件は、特に制限されない。接触温度は、例えば、4~37℃であり、好ましくは18~25℃であり、接触時間は、例えば、10~120分であり、好ましくは30~60分である。 In the complex formation step, the contact condition between the sample and the nucleic acid molecule is not particularly limited. The contact temperature is, for example, 4 to 37 ° C., preferably 18 to 25 ° C., and the contact time is, for example, 10 to 120 minutes, preferably 30 to 60 minutes.
 前記複合体形成工程において、前記核酸分子は、例えば、担体に固定化された固定化核酸分子(固相担体)でもよいし、未固定の遊離した核酸分子でもよい。後者の場合、例えば、容器内で、前記試料と接触させる。前者の場合、前記担体は、特に制限されず、例えば、プレート、フィルター、カラム、基板、ビーズ、容器等があげられ、前記容器は、例えば、マイクロプレート、チューブ等があげられる。前記核酸分子の固定化は、例えば、前述の通りである。 In the complex formation step, the nucleic acid molecule may be, for example, an immobilized nucleic acid molecule (solid phase carrier) immobilized on a carrier or an unfixed free nucleic acid molecule. In the latter case, for example, the sample is contacted in a container. In the former case, the carrier is not particularly limited, and examples thereof include a plate, a filter, a column, a substrate, a bead, and a container. Examples of the container include a microplate and a tube. The nucleic acid molecule is immobilized as described above, for example.
 前記検出工程は、前述のように、前記試料中のαカゼインと前記核酸分子との結合を検出する工程である。前記両者の結合の有無を検出することによって、例えば、前記試料中のαカゼインの有無を分析(定性)でき、また、前記両者の結合の程度(結合量)を検出することによって、例えば、前記試料中のαカゼインの量を分析(定量)できる。 The detection step is a step of detecting the binding between α-casein in the sample and the nucleic acid molecule as described above. By detecting the presence or absence of binding between the two, for example, the presence or absence of α-casein in the sample can be analyzed (qualitative), and by detecting the degree of binding (binding amount) between the two, for example, The amount of α-casein in the sample can be analyzed (quantified).
 αカゼインと前記核酸分子との結合の検出方法は、特に制限されない。前記方法は、例えば、物質間の結合を検出する従来公知の方法が採用でき、具体例として、前述のSPR等があげられる。 The method for detecting the binding between α-casein and the nucleic acid molecule is not particularly limited. As the method, for example, a conventionally known method for detecting binding between substances can be adopted, and specific examples thereof include the SPR described above.
 そして、αカゼインと前記核酸分子との結合が検出できなかった場合は、前記試料中にαカゼインは存在しないと判断でき、前記結合が検出された場合は、前記試料中にαカゼインが存在すると判断できる。また、予め、αカゼインの濃度と結合量との相関関係を求めておき、前記相関関係に基づいて、前記結合量から、前記試料中のαカゼインの濃度を分析することもできる。 Then, when the binding between α-casein and the nucleic acid molecule cannot be detected, it can be determined that α-casein is not present in the sample, and when the binding is detected, α-casein is present in the sample. I can judge. In addition, the correlation between the concentration of α-casein and the binding amount can be obtained in advance, and the concentration of α-casein in the sample can be analyzed from the binding amount based on the correlation.
 αカゼインと前記核酸分子との結合の検出について、一例として、前記核酸分子に標識物質であるルシフェラーゼを結合させた核酸センサと、乳由来αカゼイン標識化担体とを用いる方法を、以下に示す。 As an example of detection of the binding between α-casein and the nucleic acid molecule, a method using a nucleic acid sensor in which a luciferase as a labeling substance is bound to the nucleic acid molecule and a milk-derived α-casein labeling carrier will be described below.
 まず、前記核酸センサと前記試料とを混合する。これにより、前記試料中に乳由来αカゼインが存在する場合、前記核酸センサにおける前記核酸分子は、ターゲットである乳由来αカゼインと結合する。他方、前記試料中に乳由来αカゼインが存在しない場合、前記核酸センサにおける核酸分子は、ターゲットと未結合の状態となる。 First, the nucleic acid sensor and the sample are mixed. As a result, when milk-derived α-casein is present in the sample, the nucleic acid molecule in the nucleic acid sensor binds to the target milk-derived α-casein. On the other hand, when milk-derived α-casein is not present in the sample, the nucleic acid molecules in the nucleic acid sensor are not bound to the target.
 つぎに、前記混合物を、前記乳由来αカゼイン標識化担体に接触させた後、前記αカゼイン標識化担体を除去する。前記担体は、例えば、ビーズがあげられる。前記混合物において、前記核酸センサが乳由来αカゼインと結合している場合、前記核酸センサにおける前記核酸分子は、前記αカゼイン標識化担体における乳由来αカゼインとは結合できない。このため、前記αカゼイン標識化担体を除去した画分に対して、ルシフェラーゼの基質を添加して発光反応を行った場合、前記核酸センサにおけるルシフェラーゼの触媒反応によって、発光が生じる。他方、前記混合物において、前記核酸センサが乳由来αカゼインと結合していない場合、前記核酸センサにおける前記核酸分子は、前記αカゼイン標識化担体における乳由来αカゼインと結合する。このため、前記αカゼイン標識化担体の除去により、前記核酸センサも、前記αカゼイン標識化担体に結合した状態で除去されることになる。このため、前記αカゼイン標識化担体を除去した画分に対して、ルシフェラーゼの基質を添加して発光反応を行った場合、前記核酸センサが存在していないことから、ルシフェラーゼの触媒反応による発光は生じない。このため、発光の有無によって、試料中の乳由来αカゼインの有無を分析(定性分析)することができる。また、試料中の乳由来αカゼインの量と、前記αカゼイン標識化担体を除去した後の前記画分に残存する前記核酸センサの量とは、相関関係を有するため、発光の強弱によって、試料中の乳由来αカゼインの量も分析(定量分析)することができる。 Next, the mixture is brought into contact with the milk-derived α-casein labeled carrier, and then the α-casein labeled carrier is removed. Examples of the carrier include beads. In the mixture, when the nucleic acid sensor is bound to milk-derived α-casein, the nucleic acid molecule in the nucleic acid sensor cannot bind to milk-derived α-casein in the α-casein labeled carrier. For this reason, when a luciferase substrate is added to the fraction from which the α-casein labeled carrier has been removed to perform a luminescence reaction, luminescence is generated by the catalytic reaction of luciferase in the nucleic acid sensor. On the other hand, in the mixture, when the nucleic acid sensor is not bound to milk-derived α-casein, the nucleic acid molecule in the nucleic acid sensor binds to milk-derived α-casein in the α-casein labeled carrier. For this reason, by removing the α-casein labeled carrier, the nucleic acid sensor is also removed while bound to the α-casein labeled carrier. For this reason, when the luciferase substrate is added to the fraction from which the α-casein labeled carrier has been removed and the luminescence reaction is performed, the luminescence due to the luciferase catalytic reaction does not occur because the nucleic acid sensor does not exist. Does not occur. For this reason, the presence or absence of milk-derived α-casein in the sample can be analyzed (qualitative analysis) based on the presence or absence of luminescence. In addition, since the amount of milk-derived α-casein in the sample and the amount of the nucleic acid sensor remaining in the fraction after removing the α-casein-labeled carrier have a correlation, depending on the intensity of light emission, The amount of α-casein derived from milk can also be analyzed (quantitative analysis).
 本発明によれば、前述のように、アレルゲンである乳由来αカゼインを検出できる。また、本発明によれば、前記アレルゲンである乳由来αカゼインの検出により、例えば、間接的に、乳の有無を検出することも可能である。 According to the present invention, as described above, milk-derived α-casein, which is an allergen, can be detected. Further, according to the present invention, the presence or absence of milk can also be detected indirectly, for example, by detecting milk-derived α-casein, which is the allergen.
 つぎに、本発明の実施例について説明する。ただし、本発明は、下記実施例により制限されない。市販の試薬は、特に示さない限り、それらのプロトコルに基づいて使用した。 Next, examples of the present invention will be described. However, the present invention is not limited by the following examples. Commercial reagents were used based on those protocols unless otherwise indicated.
[実施例1]
 本発明のアプタマーについて、牛乳由来αカゼインに対する結合性を、SPR解析により確認した。
[Example 1]
About the aptamer of this invention, the binding property with respect to milk origin (alpha) casein was confirmed by SPR analysis.
(1)アプタマー
 下記ポリヌクレオチドのアプタマー1を、実施例のアプタマーとして合成した。下記ポリヌクレオチドにおいて、下線部で示される「T」は、天然チミン(T)に代えて、チミンの5位が置換された5’-ベンジルアミノカルボニルウラシル(BndU)を有するデオキシリボヌクレオチド残基とし、下線部で示される「C」は、天然シトシン(C)に代えて、シトシンの5位が置換された5’-メチルシトシンを有するデオキシリボヌクレオチド残基とした。
(1) Aptamer Aptamer 1 of the following polynucleotide was synthesized as an aptamer of Examples. In the following polynucleotide, the underlined “T” is a deoxyribonucleotide residue having 5′-benzylaminocarbonyluracil (BndU) substituted at the 5-position of thymine in place of natural thymine (T), The underlined “C” was a deoxyribonucleotide residue having 5′-methylcytosine substituted at the 5-position of cytosine in place of natural cytosine (C).
アプタマー1:aCas392BR8m2(配列番号1)
GGTATGGAGGCAAGTCCCAATTCTAAGAAGTGGAGTAGGTGGGTTTAAGGATACGTTTCAGCCAGACAGGGTTTATG
Aptamer 1: aCas392BR8m2 (SEQ ID NO: 1)
GGTATGGAGGCAAGTCCCAATTC T AAGAAG T GGAG T AGG T GGG TTT AAGGA T A C G TTTC AG CC AGA C AGGG TTT A T G
 アプタマー1の推定二次構造を、図1に示す。ただし、これには限定されない。 The estimated secondary structure of aptamer 1 is shown in FIG. However, it is not limited to this.
 前記アプタマーは、その3’末端に、20塩基長のポリデオキシアデニン(ポリdA)を付加し、ポリdA付加アプタマーとして、後述するSPRに使用した。前記ポリdA付加アプタマーは、95℃、5分の条件で熱変性させたものを使用した。 The aptamer was added with polydeoxyadenine (poly dA) having a length of 20 bases at the 3 'end and used as a poly dA added aptamer in SPR described later. The poly dA-added aptamer used was heat-denatured at 95 ° C. for 5 minutes.
(2)試料
 牛乳由来αカゼイン(C6780-19、SIGMA社製)を、SB1Tバッファーに懸濁し、一晩溶解させた後、遠心(12,000rpm、15分、室温)し分離した。前記分離した上清を、未変性αカゼインを含む抽出液として得た。これをαカゼイン試料とした。また、牛乳(足柄乳業株式会社製)を、SB1Tバッファーで希釈し、一晩溶解させた後、遠心(3000g、20分、室温)し分離し、前記分離した上清を、0.8mmのフィルターでろ過し、得られた抽出液を、牛乳試料として使用した。前記SB1Tバッファーの組成は、40mmol/L HEPES、125mmol/L NaCl、5mmol/L KCl、1mmol/L MgClおよび0.01% Tween(登録商標)20とし、pHは、7.5とした。
(2) Sample Milk-derived α-casein (C6780-19, manufactured by SIGMA) was suspended in SB1T buffer, dissolved overnight, and then centrifuged (12,000 rpm, 15 minutes, room temperature) for separation. The separated supernatant was obtained as an extract containing native α-casein. This was used as an α-casein sample. In addition, milk (manufactured by Ashigara Dairy Co., Ltd.) was diluted with SB1T buffer and dissolved overnight, then centrifuged (3000 g, 20 minutes, room temperature) and separated, and the separated supernatant was filtered with a 0.8 mm filter. The obtained extract was used as a milk sample. The composition of the SB1T buffer was 40 mmol / L HEPES, 125 mmol / L NaCl, 5 mmol / L KCl, 1 mmol / L MgCl 2 and 0.01% Tween (registered trademark) 20, and the pH was 7.5.
 以下の結合性試験において、前記アプタマーの交差反応の確認のため、以下に示す材料から、それぞれの試料を調製した。グリアジン試料、グルテン試料、リゾチーム試料の調製は、前記αカゼイン試料の調製と同様にして行った。卵試料、生ピーナッツ試料、およびローストピーナッツ試料は、以下に示す材料を、フードプロセッサで破砕後、SB1Tバッファーに懸濁し、一晩溶解させた後、遠心(3000g、20分、室温)し分離し、前記分離した上清を、0.8mmのフィルターでろ過し、得られた抽出液を、試料として使用した。
グリアジン(101778、MP Biomedicals社製)
小麦由来グルテン(073-00575、和光純薬社製)
鶏卵の卵白由来リゾチーム(120-02674、和光純薬社製)
鶏卵の全卵
生ピーナッツ(インドカレーの店アールティー社製)
ローストピーナッツ(KFVフルーツ社製)
In the following binding test, each sample was prepared from the materials shown below for confirmation of the cross-reaction of the aptamer. The preparation of the gliadin sample, the gluten sample, and the lysozyme sample was performed in the same manner as the preparation of the α-casein sample. Egg samples, raw peanut samples, and roasted peanut samples were separated from the materials shown below after being crushed with a food processor, suspended in SB1T buffer, dissolved overnight, and centrifuged (3000 g, 20 minutes, room temperature). The separated supernatant was filtered with a 0.8 mm filter, and the resulting extract was used as a sample.
Gliadin (101778, manufactured by MP Biomedicals)
Wheat-derived gluten (073-00575, manufactured by Wako Pure Chemical Industries, Ltd.)
Lysozyme derived from egg white of chicken egg (120-02674, manufactured by Wako Pure Chemical Industries, Ltd.)
Whole egg peanuts from chicken eggs (made by Indian tea curry shop R-Tea)
Roasted peanut (KFV Fruit)
(3)SPRによる結合性の解析
 結合性の解析には、ProteON XPR36(BioRad社)を、その使用説明書にしたがって使用した。
(3) Analysis of binding by SPR For analysis of binding, ProteON XPR36 (BioRad) was used according to the instruction manual.
 まず、前記ProteON専用のセンサーチップとして、ストレプトアビジンが固定化されたチップ(商品名 ProteOn NLC Sensor Chip、BioRad社)を、前記ProteON XPR36にセットした。前記センサーチップのフローセルに、超純水(DDW)を用いて、1μmol/Lのビオチン化ポリdTをインジェクションし、シグナル強度(RU:Resonance Unit)が約900RUになるまで結合させた。前記ビオチン化ポリdTは、20塩基長のデオキシチミジンの5’末端をビオチン化して調製した。そして、前記チップの前記フローセルに、SB1Tバッファーを用いて、1μmol/Lの前記ポリdA付加アプタマーを、流速25μL/minで80秒間インジェクションし、シグナル強度が約800RUになるまで結合させた。続いて、所定のタンパク質濃度(500ppmまたは100ppm)の前記試料を、それぞれ、前記バッファーを用いて、流速25μL/minで240秒間インジェクションし、引き続き、同じ条件で、前記バッファーを流して、洗浄を行った。前記試料のインジェクション後、シグナル強度(RU)を測定し、前記試料のインジェクション開始を0秒として、295~315秒におけるRUの平均値(RU295-315)を求めた。そして、前記ビオチン化ポリdTに前記ポリdA付加アプタマーを結合させた時におけるRU値(RUimmob)とRU295-315との比(RU295-315/RUimmob)を算出した。 First, as a ProteON dedicated sensor chip, a chip (trade name: ProteOn NLC Sensor Chip, BioRad) on which streptavidin was immobilized was set in the ProteON XPR36. 1 μmol / L of biotinylated poly dT was injected into the flow cell of the sensor chip using ultrapure water (DDW) and allowed to bind until the signal intensity (RU: Resonance Unit) was about 900 RU. The biotinylated poly dT was prepared by biotinylating the 5 ′ end of 20 base deoxythymidine. Then, 1 μmol / L of the poly dA-added aptamer was injected into the flow cell of the chip at a flow rate of 25 μL / min for 80 seconds using SB1T buffer, and was bound until the signal intensity reached about 800 RU. Subsequently, the samples having a predetermined protein concentration (500 ppm or 100 ppm) were each injected with the buffer at a flow rate of 25 μL / min for 240 seconds, and then the buffer was flowed under the same conditions for washing. It was. After the injection of the sample, the signal intensity (RU) was measured, and the average value of RU (RU 295-315 ) at 295 to 315 seconds was determined with the start of injection of the sample as 0 second. Then, a ratio (RU 295-315 / RU immob ) between the RU value (RU immob ) and RU 295-315 when the poly dA-added aptamer was bound to the biotinylated poly dT was calculated.
 これらの結果を図2に示す。図2は、乳由来αカゼインに対するアプタマー1の結合性を示すグラフであり、横軸は、各試料を示し、縦軸は、シグナル強度(RU)を示す。横軸において、左から順に、αカゼイン試料、牛乳試料、グリアジン試料、グルテン試料、リゾチーム試料、卵試料、生ピーナッツ試料、およびローストピーナッツ試料を示す。各試料における濃度(ppm)は、αカゼイン試料、グリアジン試料、グルテン試料、およびリゾチーム試料については、各タンパク質の濃度を示し、牛乳試料、卵試料、生ピーナッツ試料、およびローストピーナッツ試料については、各試料に含まれる全タンパク質の濃度を示す。図2に示すように、アプタマー1は、αカゼイン試料および牛乳試料に対して、結合性を示した。アプタマー1は、乳由来αカゼインに対して選択的に結合するため、牛乳試料に対する結合性を示したことは、前記牛乳試料に含まれる乳由来αカゼインに対して結合性を示したといえる。なお、牛乳に含まれるタンパクの約80%がαカゼインであることから、アプタマー1により、前記牛乳試料に含まれる乳由来αカゼインのほとんどが検出されたといえる。一方、アプタマー1は、グリアジン試料、グルテン試料、リゾチーム試料、卵試料、生ピーナッツ試料、およびローストピーナッツ試料に対しては、いずれも、シグナル強度が0以下であり、結合性を示さなかった。 These results are shown in FIG. FIG. 2 is a graph showing the binding property of aptamer 1 to milk-derived α-casein. The horizontal axis represents each sample, and the vertical axis represents signal intensity (RU). On the horizontal axis, an α-casein sample, a milk sample, a gliadin sample, a gluten sample, a lysozyme sample, an egg sample, a raw peanut sample, and a roasted peanut sample are shown in order from the left. Concentration (ppm) in each sample indicates the concentration of each protein for α-casein sample, gliadin sample, gluten sample, and lysozyme sample, and each for milk sample, egg sample, raw peanut sample, and roasted peanut sample The concentration of total protein contained in the sample is shown. As shown in FIG. 2, aptamer 1 showed binding properties to α-casein samples and milk samples. Since aptamer 1 selectively binds to milk-derived α-casein, it can be said that the ability to bind to a milk sample showed binding to milk-derived α-casein contained in the milk sample. Since about 80% of the protein contained in milk is α casein, it can be said that most of the milk-derived α casein contained in the milk sample was detected by the aptamer 1. On the other hand, the aptamer 1 showed no signal intensity to the gliadin sample, gluten sample, lysozyme sample, egg sample, raw peanut sample, and roasted peanut sample, and showed no binding.
 つぎに、前記牛乳試料を使用し、前記試料におけるタンパク質濃度を、0.37、1.1、3.3、10、および30ppmとした以外は同様にして、結合性の解析を行った。 Next, the binding analysis was performed in the same manner except that the milk sample was used and the protein concentration in the sample was changed to 0.37, 1.1, 3.3, 10 and 30 ppm.
 この結果を図3に示す。図3は、牛乳試料に対するアプタマー1の結合性を示すグラフであり、横軸は、牛乳抽出液の濃度(ppm)を示し、縦軸は、シグナル強度(RU)を示す。図3に示すように、アプタマー1は、前記牛乳試料におけるタンパク質濃度が増加するにつれて、シグナル強度が増加した。この結果から、本発明のアプタマーを用い、シグナル強度を測定することで、前記牛乳試料におけるαカゼイン濃度を定量分析できることがわかった。 This result is shown in FIG. FIG. 3 is a graph showing the binding property of aptamer 1 to a milk sample, the horizontal axis indicates the concentration (ppm) of the milk extract, and the vertical axis indicates the signal intensity (RU). As shown in FIG. 3, the signal intensity of the aptamer 1 increased as the protein concentration in the milk sample increased. From this result, it was found that the α-casein concentration in the milk sample can be quantitatively analyzed by measuring the signal intensity using the aptamer of the present invention.
 つぎに、前記αカゼイン試料を使用し、前記試料におけるαカゼインの濃度を、12.5、25、50、100、および200nmol/Lとした以外は同様にして、結合性の解析を行い、前記試料のインジェクション開始後の所定時間におけるシグナル強度を求めた。 Next, using the α-casein sample, the binding analysis was performed in the same manner except that the α-casein concentration in the sample was 12.5, 25, 50, 100, and 200 nmol / L. The signal intensity at a predetermined time after the start of sample injection was determined.
 この結果を図4に示す。図4は、αカゼインに対するアプタマー1の結合性を示すグラフであり、横軸は、前記試料のインジェクション開始後の経過時間(秒)を示し、縦軸は、シグナル強度(RU)を示す。図4に示すように、アプタマー1は、αカゼインの濃度が増加するにつれて、シグナル強度が増加した。 This result is shown in FIG. FIG. 4 is a graph showing the binding property of aptamer 1 to α-casein, the horizontal axis indicates the elapsed time (seconds) after the start of injection of the sample, and the vertical axis indicates the signal intensity (RU). As shown in FIG. 4, the signal intensity of aptamer 1 increased as the α-casein concentration increased.
 さらに、前記図4のSPR解析の結果から、動態パラメータを算出した。この結果、アプタマー1は、前記αカゼイン試料における解離定数(KD)が、8.95×10-9Mであり、優れた結合性であることがわかった。 Further, kinetic parameters were calculated from the results of the SPR analysis in FIG. As a result, the aptamer 1 has a dissociation constant (KD) in the α-casein sample of 8.95 × 10 −9 M, which indicates that the aptamer 1 has excellent binding properties.
[実施例2]
 本発明のアプタマーに標識物質ルシフェラーゼを結合させた核酸センサを作製し、前記核酸センサの乳由来αカゼインに対する結合性を確認した。前記結合性の確認は、ターゲットである乳由来αカゼインが固相化されたターゲット固相化ビーズと、前記核酸センサとを用いて行った。
[Example 2]
A nucleic acid sensor in which a labeling substance luciferase was bound to the aptamer of the present invention was prepared, and the binding property of the nucleic acid sensor to milk-derived α-casein was confirmed. The confirmation of the binding was performed using target solid-phased beads on which milk-derived α-casein as a target was solid-phased and the nucleic acid sensor.
 前述のように、反応液において、前記核酸センサが前記ターゲットと結合している場合、前記核酸センサにおける前記核酸分子は、前記ターゲット固相化ビーズに固相化されたαカゼインとは結合できない。このため、前記ターゲット固相化ビーズを除去した画分に対して発光反応を行った場合、前記核酸センサにおけるルシフェラーゼの触媒反応によって、発光が生じる。他方、前記反応液において、前記核酸センサが前記ターゲットと結合していない場合、前記核酸センサにおける前記核酸分子は、前記ターゲット固相化ビーズに固相化されたαカゼインと結合する。このため、前記ターゲット固相化ビーズの除去により、前記核酸センサも、前記ターゲット固相化ビーズに結合した状態で除去されることになる。このため、前記ターゲット固相化ビーズを除去した画分に対して、ルシフェラーゼの基質を添加して発光反応を行った場合、前記核酸センサが存在していないことから、ルシフェラーゼの触媒反応による発光は生じない。このため、前記核酸センサと前記ターゲット固相化ビーズとを用いて、ルシフェラーゼによる発光を検出することで、乳由来αカゼインを検出することができる。 As described above, in the reaction solution, when the nucleic acid sensor is bound to the target, the nucleic acid molecule in the nucleic acid sensor cannot bind to α-casein immobilized on the target immobilized beads. For this reason, when a luminescence reaction is performed on the fraction from which the target solid-phased beads have been removed, luminescence is generated by the catalytic reaction of luciferase in the nucleic acid sensor. On the other hand, in the reaction solution, when the nucleic acid sensor is not bound to the target, the nucleic acid molecule in the nucleic acid sensor binds to α-casein immobilized on the target immobilized beads. For this reason, by removing the target-immobilized beads, the nucleic acid sensor is also removed while bound to the target-immobilized beads. For this reason, when the luciferase substrate is added to the fraction from which the target solid-phased beads have been removed and the luminescence reaction is performed, the luminescence due to the luciferase catalytic reaction is not caused by the absence of the nucleic acid sensor. Does not occur. Therefore, milk-derived α-casein can be detected by detecting luminescence by luciferase using the nucleic acid sensor and the target solid-phased beads.
 核酸センサは、蛍光物質NanoLuc(商標)ルシフェラーゼ(Promega社製)を使用し、その使用説明書にしたがって、前記実施例1のアプタマー1(aCas392BR8m2)の5’末端を標識化することにより、調製した。 The nucleic acid sensor was prepared by labeling the 5 ′ end of the aptamer 1 of Example 1 (aCas392BR8m2) using the fluorescent substance NanoLuc ™ luciferase (manufactured by Promega) according to the instruction manual. .
 試料として、前記実施例1の前記αカゼイン試料を使用した。 As the sample, the α casein sample of Example 1 was used.
 前記ターゲット固相化ビーズは、ターゲットとして前記αカゼイン試料を使用し、NHS-activated Sepharose 4 Fast Flow Lab Packs(GE Healthcare社製)を使用し、その使用説明書にしたがって調製した。 The target-immobilized beads were prepared using the α-casein sample as a target and NHS-activated Sepharose 4 Fast Flow Lab Packs (manufactured by GE Healthcare) according to the instructions for use.
 前記核酸センサおよび前記ターゲット固相化ビーズを用い、前記核酸センサのαカゼインに対する結合性を、以下に示すようにして確認した。まず、96ウェルのU底プレートに、フィルタープレート(millipore社製、cat#MSGVN2250)をセットし、前記U底プレートの各ウェルに、50μL/ウェルとなるように前記ターゲット固相化ビーズを加えた。遠心してバッファーを除去後、前記各ウェルに、50μLの前記αカゼイン試料(終濃度 0、0.03、0.12、0.47、1.9、7.5、30ppm)と、50μLの前記核酸センサ(4×10倍希釈)とを加え、5分間、室温の条件で混合し、前記αカゼイン試料、前記ターゲット固相化ビーズおよび前記核酸センサを反応させた。その後、前記U底プレートを、3000g、2分、室温の条件で遠心分離し、前記ターゲット固相化ビーズを遠心除去した。前記遠心分離によって、前記フィルタープレートを通過した反応液を、前記各ウェルから回収し、発光量の測定に供した。前記発光量の測定には、Infinite M1000 Pro(TECAN社)を、その使用説明書にしたがって使用した。前記発光量の測定において、基質として、NanoGlo(商標、Promega社製、cat#N2012)を使用した。 Using the nucleic acid sensor and the target-immobilized beads, the binding property of the nucleic acid sensor to α-casein was confirmed as follows. First, a filter plate (manufactured by millipore, cat # MSGVN2250) was set on a 96-well U-bottom plate, and the target solid-phased beads were added to each well of the U-bottom plate so as to be 50 μL / well. . After removing the buffer by centrifugation, 50 μL of the α-casein sample (final concentration 0, 0.03, 0.12, 0.47, 1.9, 7.5, 30 ppm) and 50 μL of the α-casein sample were added to each well. A nucleic acid sensor (4 × 10 5 fold dilution) was added and mixed at room temperature for 5 minutes to react the α-casein sample, the target solid-phased beads, and the nucleic acid sensor. Thereafter, the U bottom plate was centrifuged at 3000 g for 2 minutes at room temperature, and the target solid-phased beads were removed by centrifugation. By the centrifugation, the reaction solution that passed through the filter plate was collected from each well and subjected to measurement of the amount of luminescence. For the measurement of the light emission amount, Infinite M1000 Pro (TECAN) was used according to the instruction manual. In the measurement of the luminescence amount, NanoGlo (trademark, manufactured by Promega, cat # N2012) was used as a substrate.
 発光量の測定結果を図5に示す。図5は、前記αカゼイン試料に関する発光量の測定結果を示すグラフである。図5において、横軸は、前記αカゼイン試料の濃度を示し、縦軸は、発光量(RLU)を示す。図5に示すように、ルシフェラーゼの触媒反応による発光がみられ、前記αカゼイン試料のタンパク質濃度が増加するにつれて、発光量が増加した。 Fig. 5 shows the measurement results of the luminescence amount. FIG. 5 is a graph showing the measurement results of the luminescence amount for the α-casein sample. In FIG. 5, the horizontal axis indicates the concentration of the α casein sample, and the vertical axis indicates the light emission amount (RLU). As shown in FIG. 5, light emission due to the catalytic reaction of luciferase was observed, and the light emission amount increased as the protein concentration of the α-casein sample increased.
 さらに、前記図5の測定結果から、3σ法により、前記核酸センサの乳由来αカゼインに対する検出限界を算出した(n=3)。この結果、前記核酸センサの乳由来αカゼインに対する検出限界(LOD)は、0.12ppmであった。このことから、前記核酸センサは、微量の乳由来αカゼインを検出可能であることがわかった。 Furthermore, the detection limit for the milk-derived α-casein of the nucleic acid sensor was calculated from the measurement result of FIG. 5 by the 3σ method (n = 3). As a result, the detection limit (LOD) for the milk-derived α-casein of the nucleic acid sensor was 0.12 ppm. From this, it was found that the nucleic acid sensor can detect a small amount of milk-derived α-casein.
 つぎに、前記αカゼイン試料に代えて、前記実施例1で調製した牛乳試料、ならびに、交差反応の確認のため、前記実施例1で調製した卵試料、グルテン試料、および生ピーナッツ試料(終濃度 0、0.032、0.16、0.8、4ppm)を使用して、同様の測定を行った。 Next, instead of the α-casein sample, the milk sample prepared in Example 1 and the egg sample, gluten sample, and raw peanut sample (final concentration) prepared in Example 1 were used for confirmation of the cross reaction. 0, 0.032, 0.16, 0.8, 4 ppm), and the same measurement was performed.
 図6は、牛乳、卵、グルテン、および生ピーナッツを試料とした場合における、発光量の測定結果を示すグラフである。図6において、横軸は、各試料の濃度を示し、縦軸は、発光量(RLU)を示す。図6に示すように、前記牛乳試料の場合、ルシフェラーゼの触媒反応による発光がみられ、前記試料のタンパク質濃度の増加に伴い、発光量が増加した。一方、前記卵試料、グルテン試料、および生ピーナッツ試料の場合は、いずれも、発光量は変化しなかった。このことから、前記核酸センサは、前記牛乳試料、具体的には前記牛乳試料中の乳由来αカゼインを特異的に検出できることがわかった。 FIG. 6 is a graph showing the measurement results of the amount of luminescence when milk, eggs, gluten, and raw peanuts are used as samples. In FIG. 6, the horizontal axis indicates the concentration of each sample, and the vertical axis indicates the light emission amount (RLU). As shown in FIG. 6, in the case of the milk sample, luminescence was observed due to the catalytic reaction of luciferase, and the amount of luminescence increased with an increase in the protein concentration of the sample. On the other hand, in the case of the egg sample, gluten sample, and raw peanut sample, the amount of luminescence did not change. From this, it was found that the nucleic acid sensor can specifically detect milk-derived α-casein in the milk sample, specifically, the milk sample.
 さらに、前記図6の測定結果から、3σ法により、前記牛乳試料における前記核酸センサの検出限界を算出した(n=3)。この結果、前記牛乳試料における前記核酸センサの検出限界(LOD)は、0.16ppmであった。このことから、前記核酸センサは、前記牛乳試料における前記乳由来αカゼインを、十分に検出可能であることがわかった。 Further, the detection limit of the nucleic acid sensor in the milk sample was calculated from the measurement result of FIG. 6 by the 3σ method (n = 3). As a result, the detection limit (LOD) of the nucleic acid sensor in the milk sample was 0.16 ppm. From this, it was found that the nucleic acid sensor can sufficiently detect the milk-derived α-casein in the milk sample.
 以上の結果から、本発明のアプタマーは、乳由来αカゼインに特異的に結合し、それを測定により検出できること、および、本発明のアプタマーによれば、発光の強弱によって、試料中の乳由来αカゼインの量を分析できることがわかった。 From the above results, the aptamer of the present invention specifically binds to milk-derived α casein and can be detected by measurement, and according to the aptamer of the present invention, the milk-derived α It was found that the amount of casein can be analyzed.
[実施例3]
 前記核酸センサを使用し、加熱した牛乳試料に対する結合性を確認した。
[Example 3]
Using the nucleic acid sensor, the binding property to the heated milk sample was confirmed.
 試料として、以下に示す試料を使用した以外は、実施例2と同様にして、前記核酸センサの試料に対する結合性を確認した。 The binding property of the nucleic acid sensor to the sample was confirmed in the same manner as in Example 2 except that the sample shown below was used as the sample.
 前記実施例1の前記牛乳試料を、95℃、10分の条件で処理し、加熱牛乳試料を作製した。また、前記加熱牛乳試料を、さらに12000rpm、10分、室温の条件で遠心分離し、得られた上清を、加熱上清試料とした。コントロールとして、前記実施例1の前記牛乳試料を使用した。 The milk sample of Example 1 was processed at 95 ° C. for 10 minutes to prepare a heated milk sample. The heated milk sample was further centrifuged at 12000 rpm for 10 minutes at room temperature, and the resulting supernatant was used as a heated supernatant sample. As a control, the milk sample of Example 1 was used.
 この結果を図7に示す。図7は、前記牛乳試料、前記加熱牛乳試料および前記加熱上清試料に関する発光量の測定結果を示すグラフである。図7において、横軸は、各試料を示し、縦軸は、発光量(RLU)を示す。各グラフは、各試料における全タンパク質濃度(ppm)を示し、左から順に、0ppm、100ppmを示す。図4に示すように、0ppmと比較して、100ppmにおいて、加熱牛乳試料および加熱上清試料のいずれにおいても、牛乳試料と同程度の発光量の増加がみられた。 The result is shown in FIG. FIG. 7 is a graph showing the measurement results of the amount of luminescence regarding the milk sample, the heated milk sample, and the heated supernatant sample. In FIG. 7, the horizontal axis indicates each sample, and the vertical axis indicates the light emission amount (RLU). Each graph shows the total protein concentration (ppm) in each sample, and shows 0 ppm and 100 ppm in order from the left. As shown in FIG. 4, compared to 0 ppm, at 100 ppm, both the heated milk sample and the heated supernatant sample showed an increase in the amount of luminescence comparable to that of the milk sample.
 以上の結果から、本発明のアプタマーは、加熱した乳由来αカゼインに対しても結合し、それを測定により検出できることがわかった。 From the above results, it was found that the aptamer of the present invention also binds to heated milk-derived α-casein and can be detected by measurement.
[実施例4]
 本発明のアプタマーについて、牛乳由来αカゼインに対する結合性を、SPR解析により確認した。
[Example 4]
About the aptamer of this invention, the binding property with respect to milk origin (alpha) casein was confirmed by SPR analysis.
 下記ポリヌクレオチドのアプタマー2および3を、実施例1と同様にして、合成した。アプタマー3は、アプタマー2の小型化配列である。下記配列番号2および3のポリヌクレオチドにおいて、下線部で示される「T」は、天然チミン(T)に代えて、チミンの5位が置換された5’-ベンジルアミノカルボニルウラシル(BndU)を有するデオキシリボヌクレオチド残基とし、下線部で示される「C」は、天然シトシン(C)に代えて、シトシンの5位が置換された5’-メチルシトシンを有するデオキシリボヌクレオチド残基とした。 The following polynucleotide aptamers 2 and 3 were synthesized in the same manner as in Example 1. Aptamer 3 is a miniaturized sequence of aptamer 2. In the polynucleotides of SEQ ID NOs: 2 and 3, the underlined “T” has 5′-benzylaminocarbonyluracil (BndU) substituted at the 5-position of thymine in place of natural thymine (T) A deoxyribonucleotide residue having a 5′-methylcytosine substituted at the 5-position of cytosine in place of natural cytosine (C) was designated as a deoxyribonucleotide residue.
アプタマー2:aCas757BR8m3(配列番号2)
GGATAGCAGCAGGGACCTCTTATACGTCGGTGCTGGTGTTGTATAGACCCCCTTATATTATAACCGAATGATTTGCCCGCTACGATATG
アプタマー3:aCas757BR8m3s69(配列番号3)
GGATAGCAGCAGGGACCTCTTATACGTCGGTGCTGGTGTTGTATAGACCCCCTTATATTATAACCGAAT
Aptamer 2: aCas757BR8m3 (SEQ ID NO: 2)
GGATAGCAGCAGGGACCTCTTATACG TC GG T G CT GG T G TT G T A T AGA CCCCCTT A T A TT A T AA CC GAA T GA TTT G CCC G CT A C GA T A T G
Aptamer 3: aCas757BR8m3s69 (SEQ ID NO: 3)
GGATAGCAGCAGGGACCTCTTATACG TC GG T G CT GG T G TT G T A T AGA CCCCCTT A T A TT A T AA CC GAA T
 アプタマー2および3の推定二次構造を、図8(A)に示す。ただし、これには限定されない。 The presumed secondary structure of aptamers 2 and 3 is shown in FIG. However, it is not limited to this.
 アプタマー2および3を使用し、試料として、前記αカゼイン試料を使用し、前記試料におけるαカゼインの濃度を、50、100、および200nmol/Lとした以外は実施例1と同様にして、結合性の解析を行い、前記試料のインジェクション開始後の所定時間におけるシグナル強度を求めた。 As in Example 1 except that aptamers 2 and 3 were used, the α-casein sample was used as a sample, and the α-casein concentration in the sample was 50, 100, and 200 nmol / L. The signal intensity at a predetermined time after the start of injection of the sample was determined.
 この結果を図9に示す。図9(A)および(B)は、それぞれ、αカゼインに対するアプタマー2および3の結合性を示すグラフであり、横軸は、前記試料のインジェクション開始後の経過時間(秒)を示し、縦軸は、シグナル強度(RU)を示す。図9(A)および(B)に示すように、アプタマー2、およびその小型化配列であるアプタマー3は、αカゼインの濃度が増加するにつれて、シグナル強度が増加した。 The result is shown in FIG. FIGS. 9A and 9B are graphs showing the binding properties of aptamers 2 and 3 to α-casein, respectively, and the horizontal axis represents the elapsed time (seconds) after the start of injection of the sample, and the vertical axis Indicates signal intensity (RU). As shown in FIGS. 9A and 9B, aptamer 2 and aptamer 3, which is a miniaturized sequence thereof, increased in signal intensity as the α-casein concentration increased.
 さらに、前記図9のSPR解析の結果から、動態パラメータを算出した。この結果、アプタマー2および3は、αカゼインに対する解離定数(KD)が、それぞれ、19.1×10-9mol/L、および6.2×10-9mol/Lであり、優れた結合性であることがわかった。 Furthermore, kinetic parameters were calculated from the results of the SPR analysis in FIG. As a result, aptamers 2 and 3 have dissociation constants (KD) for α-casein of 19.1 × 10 −9 mol / L and 6.2 × 10 −9 mol / L, respectively, and excellent binding properties I found out that
 つぎに、下記ポリヌクレオチドのアプタマー4および5を、実施例1と同様にして、合成した。アプタマー5は、アプタマー4の小型化配列である。下記配列番号4および5のポリヌクレオチドにおいて、下線部で示される「T」は、天然チミン(T)に代えて、チミンの5位が置換された5’-ベンジルアミノカルボニルウラシル(BndU)を有するデオキシリボヌクレオチド残基とし、下線部で示される「C」は、天然シトシン(C)に代えて、シトシンの5位が置換された5’-メチルシトシンを有するデオキシリボヌクレオチド残基とした。 Next, aptamers 4 and 5 of the following polynucleotides were synthesized in the same manner as in Example 1. Aptamer 5 is a miniaturized sequence of aptamer 4. In the polynucleotides of SEQ ID NOs: 4 and 5, the underlined “T” has 5′-benzylaminocarbonyluracil (BndU) substituted at the 5-position of thymine in place of natural thymine (T). A deoxyribonucleotide residue having a 5′-methylcytosine substituted at the 5-position of cytosine in place of natural cytosine (C) was designated as a deoxyribonucleotide residue.
アプタマー4:aCas757BR8m4(配列番号4)
GGATAGCAGCAGGGACCTCTTATACCTGAGCGGCTCATTACCCTTCCGACTGGTCGCCCGCTTACCGAATGATTTGCCCGCTACGATATG
アプタマー5:aCas757BR8m4s62(配列番号5)
GGATAGCAGCAGGGACCTCTTATACCTGAGCGGCTCATTACCCTTCCGACTGGTCGCCCGCT
Aptamer 4: aCas757BR8m4 (SEQ ID NO: 4)
GGATAGCAGCAGGGACCTCTTATAC CT GAG C GG CTC A TT A CCCTTCC GA CT GG TC G CCC G CTT A CC GAA T GA TTT G CCC G CT A C GA T A T G
Aptamer 5: aCas757BR8m4s62 (SEQ ID NO: 5)
GGATAGCAGCAGGGACCTCTTATAC CT GAG C GG CTC A TT A CCCTTCC GA CT GG TC G CCC G CT
 アプタマー4および5の推定二次構造を、図8(B)に示す。ただし、これには限定されない。 The estimated secondary structure of aptamers 4 and 5 is shown in FIG. However, it is not limited to this.
 アプタマー4および5を使用し、試料として、前記αカゼイン試料を使用し、前記試料におけるαカゼインの濃度を、50、100、200、および400nmol/Lとした以外は同様にして、結合性の解析を行い、前記試料のインジェクション開始後の所定時間におけるシグナル強度を求めた。 Analysis of binding properties in the same manner except that aptamers 4 and 5 were used, the α casein sample was used as a sample, and the α casein concentration in the sample was 50, 100, 200, and 400 nmol / L. The signal intensity at a predetermined time after the start of injection of the sample was determined.
 この結果を図10に示す。図10(A)および(B)は、それぞれ、αカゼインに対するアプタマー4および5の結合性を示すグラフであり、横軸は、前記試料のインジェクション開始後の経過時間(秒)を示し、縦軸は、シグナル強度(RU)を示す。図10(A)および(B)に示すように、アプタマー4およびその小型化配列であるアプタマー5は、αカゼインの濃度が増加するにつれて、シグナル強度が増加した。 The result is shown in FIG. FIGS. 10 (A) and (B) are graphs showing the binding properties of aptamers 4 and 5 to α-casein, respectively. The horizontal axis represents the elapsed time (seconds) after the start of injection of the sample, and the vertical axis Indicates signal intensity (RU). As shown in FIGS. 10A and 10B, aptamer 4 and aptamer 5, which is a miniaturized sequence thereof, increased in signal intensity as the α-casein concentration increased.
 さらに、前記図10のSPR解析の結果から、動態パラメータを算出した。この結果、アプタマー4および5は、αカゼインに対する解離定数(KD)が、それぞれ、12.3×10-9mol/L、および16.7×10-9mol/Lであり、優れた結合性であることがわかった。 Furthermore, kinetic parameters were calculated from the results of the SPR analysis in FIG. As a result, aptamers 4 and 5 have dissociation constants (KD) for α-casein of 12.3 × 10 −9 mol / L and 16.7 × 10 −9 mol / L, respectively, and excellent binding properties I found out that
[実施例5]
 本発明のアプタマーについて、加熱したαカゼインに対する結合性を、SPR解析により確認した。
[Example 5]
About the aptamer of this invention, the binding property with respect to the heated alpha casein was confirmed by SPR analysis.
 試料として、加熱αカゼイン試料を使用した以外は実施例4と同様にして、結合性の解析を行い、前記試料のインジェクション開始後の所定時間におけるシグナル強度を求めた。前記加熱αカゼイン試料は、前記αカゼイン試料を、95℃、10分の条件で加熱処理することにより調製した。 The binding analysis was performed in the same manner as in Example 4 except that a heated α-casein sample was used as a sample, and the signal intensity at a predetermined time after the start of injection of the sample was obtained. The heated α-casein sample was prepared by heat-treating the α-casein sample at 95 ° C. for 10 minutes.
 この結果を図11および12に示す。図11(A)および(B)は、加熱αカゼインに対するアプタマー2および3の結合性を示すグラフであり、横軸は、前記試料のインジェクション開始後の経過時間(秒)を示し、縦軸は、シグナル強度(RU)を示す。図11(A)および(B)に示すように、アプタマー2およびその小型化配列であるアプタマー3は、加熱αカゼインの濃度が増加するにつれて、シグナル強度が増加した。 The results are shown in FIGS. FIGS. 11 (A) and (B) are graphs showing the binding properties of aptamers 2 and 3 to heated α-casein, the horizontal axis indicates the elapsed time (seconds) after the start of injection of the sample, and the vertical axis is Shows the signal intensity (RU). As shown in FIGS. 11A and 11B, aptamer 2 and aptamer 3, which is a miniaturized sequence thereof, increased in signal intensity as the concentration of heated α-casein increased.
 図12(A)および(B)は、加熱αカゼインに対するアプタマー4および5の結合性を示すグラフであり、横軸は、前記試料のインジェクション開始後の経過時間(秒)を示し、縦軸は、シグナル強度(RU)を示す。図12(A)および(B)に示すように、アプタマー4およびその小型化配列であるアプタマー5は、加熱αカゼインの濃度が増加するにつれて、シグナル強度が増加した。 12 (A) and (B) are graphs showing the binding properties of aptamers 4 and 5 to heated α-casein, the horizontal axis indicates the elapsed time (seconds) after the start of injection of the sample, and the vertical axis is Shows the signal intensity (RU). As shown in FIGS. 12A and 12B, aptamer 4 and aptamer 5, which is a miniaturized sequence thereof, increased in signal intensity as the concentration of heated α-casein increased.
 さらに、前記図11および12のSPR解析の結果から、動態パラメータを算出した。この結果、アプタマー2~5は、加熱αカゼインに対する解離定数(KD)が、それぞれ、21.3×10-9mol/L、8.29×10-9mol/L、14.7×10-9mol/L、および22.2×10-9mol/Lであり、優れた結合性であることがわかった。 Furthermore, kinetic parameters were calculated from the results of SPR analysis in FIGS. As a result, aptamers 2 to 5 have dissociation constants (KD) for heated α-casein of 21.3 × 10 −9 mol / L, 8.29 × 10 −9 mol / L, and 14.7 × 10 −, respectively. It was 9 mol / L, and 22.2 × 10 −9 mol / L, which was found to be excellent binding properties.
[実施例6]
 本発明のアプタマーについて、牛乳試料に対する結合性を、SPR解析により確認した。
[Example 6]
About the aptamer of this invention, the binding property with respect to a milk sample was confirmed by SPR analysis.
 アプタマーとして、アプタマー2~5を使用し、試料として、100ppmの前記牛乳試料、および前記加熱牛乳試料を使用した以外は実施例1と同様にして、結合性の解析を行った。また、前記アプタマーの交差反応の確認のため、前記グルテン試料、前記卵試料、および前記生ピーナッツ試料を使用した以外は同様にして、結合性の解析を行った。 Bindability analysis was performed in the same manner as in Example 1 except that aptamers 2 to 5 were used as aptamers, and 100 ppm of the milk sample and the heated milk sample were used as samples. In addition, in order to confirm the cross-reaction of the aptamer, binding analysis was performed in the same manner except that the gluten sample, the egg sample, and the raw peanut sample were used.
 この結果を図13に示す。図13は、加熱牛乳試料に対するアプタマー2~5の結合性を示すグラフであり、横軸は、アプタマーの種類を示し、縦軸は、シグナル強度(RU)を示す。横軸において、左から順に、アプタマー2、アプタマー4、アプタマー3、およびアプタマー5を示す。各グラフは、左から順に、牛乳試料、加熱牛乳試料、グルテン試料、卵試料、および生ピーナッツ試料を示す。図13に示すように、アプタマー2~5は、牛乳試料および加熱牛乳試料に対して、結合性を示した。一方、アプタマー2~5は、グルテン試料、卵試料、および生ピーナッツ試料に対しては、シグナル強度が0以下であり、結合性を示さなかった。 The result is shown in FIG. FIG. 13 is a graph showing the binding properties of aptamers 2 to 5 to a heated milk sample. The horizontal axis indicates the type of aptamer, and the vertical axis indicates signal intensity (RU). In the horizontal axis, aptamer 2, aptamer 4, aptamer 3, and aptamer 5 are shown in order from the left. Each graph shows a milk sample, a heated milk sample, a gluten sample, an egg sample, and a raw peanut sample in order from the left. As shown in FIG. 13, aptamers 2 to 5 showed binding properties to milk samples and heated milk samples. On the other hand, aptamers 2 to 5 had a signal intensity of 0 or less and showed no binding to gluten samples, egg samples, and raw peanut samples.
 以上の結果から、本発明のアプタマーは、加熱した乳由来αカゼインに対しても特異的に結合し、それを測定により検出できることがわかった。 From the above results, it was found that the aptamer of the present invention specifically binds to heated milk-derived α-casein and can be detected by measurement.
[実施例7]
 本発明のアプタマーについて、牛乳由来αカゼインに対する結合性を、SPR解析により確認した。
[Example 7]
About the aptamer of this invention, the binding property with respect to milk origin (alpha) casein was confirmed by SPR analysis.
 下記ポリヌクレオチドのアプタマー6および7を、実施例1と同様にして、合成した。アプタマー6は、アプタマー2の小型化配列であるアプタマー3を、さらに小型化した配列であり、アプタマー7は、アプタマー4の小型化配列である。下記配列番号6および7のポリヌクレオチドにおいて、下線部で示される「T」は、天然チミン(T)に代えて、チミンの5位が置換された5’-ベンジルアミノカルボニルウラシル(BndU)を有するデオキシリボヌクレオチド残基とし、下線部で示される「C」は、天然シトシン(C)に代えて、シトシンの5位が置換された5’-メチルシトシンを有するデオキシリボヌクレオチド残基とした。 The aptamers 6 and 7 of the following polynucleotides were synthesized in the same manner as in Example 1. The aptamer 6 is a sequence obtained by further miniaturizing the aptamer 3 which is a miniaturized sequence of the aptamer 2, and the aptamer 7 is a miniaturized sequence of the aptamer 4. In the polynucleotides of SEQ ID NOs: 6 and 7, the underlined “T” has 5′-benzylaminocarbonyluracil (BndU) substituted at the 5-position of thymine in place of natural thymine (T). A deoxyribonucleotide residue having a 5′-methylcytosine substituted at the 5-position of cytosine in place of natural cytosine (C) was designated as a deoxyribonucleotide residue.
アプタマー6:aCas757BR8m3s63(配列番号6)
GGATAGCAGCAGGGACCTCTTATACGTCGGTGCTGGTGTTGTATAGACCCCCTTATATTATAA
アプタマー7:aCas757BR8m4s44(配列番号7)
TTATACCTGAGCGGCTCATTACCCTTCCGACTGGTCGCCCGCTC
Aptamer 6: aCas757BR8m3s63 (SEQ ID NO: 6)
GGATAGCAGCAGGGACCTCTTATACG TC GG T G CT GG T G TT G T A T AGA CCCCCTT A T A TT A T AA
Aptamer 7: aCas757BR8m4s44 (SEQ ID NO: 7)
TTATAC CT GAG C GG CTC A TT A CCCTTCC GA CT GG TC G CCC G CTC
 アプタマー6および7の推定二次構造を、図14に示す。ただし、これには限定されない。 The estimated secondary structure of aptamers 6 and 7 is shown in FIG. However, it is not limited to this.
 前記アプタマーは、その5’末端を、ビオチン修飾し、後述するSPRに使用した。前記ビオチン修飾アプタマーは、95℃、5分の条件で熱変性させたものを使用した。 The aptamer was biotin-modified at the 5 'end and used for SPR described later. The biotin-modified aptamer used was thermally denatured at 95 ° C. for 5 minutes.
 前記試料は、牛乳由来αカゼイン(C6780-19、SIGMA社製)を、SB1Tバッファーに懸濁し、一晩溶解させた後、遠心(12,000rpm、15分、室温)し分離した。前記分離した上清を、未変性αカゼインを含む抽出液として得た。これをSB1T(+)バッファーで希釈し、αカゼイン試料とした。前記SB1T(+)バッファーの組成は、40mmol/L HEPES、125mmol/L NaCl、5mmol/L KCl、1mmol/L MgCl2、0.01% Tween(登録商標)20および0.1mmol/L Sodium Dextran Sulfate 5000とし、pHは、7.5とした。 The sample was separated by suspending milk-derived α-casein (C6780-19, manufactured by SIGMA) in SB1T buffer and dissolving overnight, followed by centrifugation (12,000 rpm, 15 minutes, room temperature). The separated supernatant was obtained as an extract containing native α-casein. This was diluted with SB1T (+) buffer to obtain an α-casein sample. The composition of the SB1T (+) buffer was 40 mmol / L HEPES, 125 mmol / L NaCl, 5 mmol / L KCl, 1 mmol / L MgCl 2, 0.01% Tween® 20 and 0.1 mmol / L Sodium Dextran Sulfate. The pH was 5000 and the pH was 7.5.
 結合性の解析には、ProteON XPR36(BioRad社)を、その使用説明書にしたがって使用した。 For the binding analysis, ProteON XPR36 (BioRad) was used according to the instruction manual.
 まず、前記ProteON専用のセンサーチップとして、ストレプトアビジンが固定化されたチップ(商品名 ProteOn NLC Sensor Chip、BioRad社)を、前記ProteON XPR36にセットした。前記センサーチップのフローセルに、前記SB1Tバッファーを用いて、200nmol/Lの前記ビオチン修飾アプタマーを、流速25μL/minで80秒間インジェクションし、シグナル強度が約800RUになるまで結合させた。そして、前記チップの前記フローセルを、10μmol/Lのビオチンを含む超純水(DDW)を用いて、ブロッキングした。続いて、所定のタンパク質濃度(100、200、400および800nmol/L)の前記αカゼイン試料を、それぞれ、前記SB1T(+)バッファーを用いて、流速50μL/minで120秒間インジェクションし、引き続き、同じ条件で、前記SB1T(+)バッファーを流して、流速50μL/minで300秒間洗浄を行った。前記試料のインジェクション開始後、所定時間におけるシグナル強度(RU)を求めた。 First, as a ProteON dedicated sensor chip, a chip (product name: ProteOn NLC Sensor Chip, BioRad) on which streptavidin was immobilized was set in the ProteON XPR36. 200 nmol / L of the biotin-modified aptamer was injected into the flow cell of the sensor chip at a flow rate of 25 μL / min for 80 seconds using the SB1T buffer, and was bound until the signal intensity reached about 800 RU. Then, the flow cell of the chip was blocked using ultrapure water (DDW) containing 10 μmol / L biotin. Subsequently, the α casein samples having predetermined protein concentrations (100, 200, 400, and 800 nmol / L) were each injected with the SB1T (+) buffer at a flow rate of 50 μL / min for 120 seconds, and the same. Under the conditions, the SB1T (+) buffer was flowed, and washing was performed at a flow rate of 50 μL / min for 300 seconds. After the injection of the sample was started, the signal intensity (RU) at a predetermined time was obtained.
 この結果を図15に示す。図15(A)および(B)は、それぞれ、αカゼインに対するアプタマー6および7の結合性を示すグラフであり、横軸は、前記試料のインジェクション開始後の経過時間(秒)を示し、縦軸は、シグナル強度(RU)を示す。図15(A)および(B)に示すように、アプタマー6および7は、αカゼインの濃度が増加するにつれて、シグナル強度が増加した。 The results are shown in FIG. FIGS. 15A and 15B are graphs showing the binding properties of aptamers 6 and 7 to α-casein, respectively. The horizontal axis represents the elapsed time (seconds) after the start of injection of the sample, and the vertical axis Indicates signal intensity (RU). As shown in FIGS. 15 (A) and (B), aptamers 6 and 7 increased in signal intensity as the α-casein concentration increased.
 さらに、前記図15のSPR解析の結果から、動態パラメータを算出した。この結果、アプタマー6および7は、αカゼインに対する解離定数(KD)が、それぞれ、18×10-9mol/L、および17.2×10-9mol/Lであり、優れた結合性であることがわかった。 Furthermore, kinetic parameters were calculated from the results of the SPR analysis in FIG. As a result, aptamers 6 and 7 have excellent dissociation properties with dissociation constants (KD) for α-casein of 18 × 10 −9 mol / L and 17.2 × 10 −9 mol / L, respectively. I understood it.
[実施例8]
 本発明のアプタマーについて、牛乳由来αカゼインに対する結合性を、SPR解析により確認した。
[Example 8]
About the aptamer of this invention, the binding property with respect to milk origin (alpha) casein was confirmed by SPR analysis.
 下記ポリヌクレオチドのアプタマー8および9を、実施例1と同様にして、合成した。アプタマー8および9は、アプタマー2の部分配列である。下記配列番号8および9のポリヌクレオチドにおいて、下線部で示される「T」は、天然チミン(T)に代えて、チミンの5位が置換された5’-ベンジルアミノカルボニルウラシル(BndU)を有するデオキシリボヌクレオチド残基とし、下線部で示される「C」は、天然シトシン(C)に代えて、シトシンの5位が置換された5’-メチルシトシンを有するデオキシリボヌクレオチド残基とした。 The following polynucleotide aptamers 8 and 9 were synthesized in the same manner as in Example 1. Aptamers 8 and 9 are partial sequences of aptamer 2. In the polynucleotides of SEQ ID NOs: 8 and 9, the underlined “T” has 5′-benzylaminocarbonyluracil (BndU) substituted at the 5-position of thymine in place of natural thymine (T). A deoxyribonucleotide residue having a 5′-methylcytosine substituted at the 5-position of cytosine in place of natural cytosine (C) was designated as a deoxyribonucleotide residue.
アプタマー8:aCas757BR8m3s63b(配列番号8)
GGATAGACCTCTTATACGTCTGTTGTATAGACCCCCTTATATTATAA
アプタマー9:aCas757BR8m3s63c(配列番号9)
GGATAGCAGCACTCTTATACTGCTGGTGTTGTATAGACCCCCTTATATTATAA
Aptamer 8: aCas757BR8m3s63b (SEQ ID NO: 8)
GGATAGACCTCTTATACG TCT G TT G T A T AGA CCCCCTT A T A TT A T AA
Aptamer 9: aCas757BR8m3s63c (SEQ ID NO: 9)
GGATAGCAGCACTCTTATAC T G CT GG T G TT G T A T AGA CCCCCTT A T A TT A T AA
 アプタマー8および9の推定二次構造を、図16に示す。ただし、これには限定されない。 The predicted secondary structure of aptamers 8 and 9 is shown in FIG. However, it is not limited to this.
 アプタマー8および9を使用した以外は実施例7と同様にして、結合性の解析を行い、前記試料のインジェクション開始後の所定時間におけるシグナル強度を求めた。 The binding analysis was performed in the same manner as in Example 7 except that the aptamers 8 and 9 were used, and the signal intensity at a predetermined time after starting the injection of the sample was determined.
 この結果を図17に示す。図17(A)および(B)は、それぞれ、αカゼインに対するアプタマー8および9の結合性を示すグラフであり、横軸は、前記試料のインジェクション開始後の経過時間(秒)を示し、縦軸は、シグナル強度(RU)を示す。図17(A)および(B)に示すように、アプタマー8および9は、αカゼインの濃度が増加するにつれて、シグナル強度が増加した。 The result is shown in FIG. FIGS. 17A and 17B are graphs showing the binding properties of aptamers 8 and 9 to α-casein, respectively. The horizontal axis represents the elapsed time (seconds) after the start of injection of the sample, and the vertical axis Indicates signal intensity (RU). As shown in FIGS. 17 (A) and (B), aptamers 8 and 9 increased in signal intensity as the α-casein concentration increased.
 さらに、前記図17のSPR解析の結果から、動態パラメータを算出した。この結果、アプタマー8および9は、αカゼインに対する解離定数(KD)が、それぞれ、12.9×10-9mol/L、および8.59×10-9mol/Lであり、優れた結合性であることがわかった。 Further, kinetic parameters were calculated from the results of the SPR analysis in FIG. As a result, aptamers 8 and 9 have dissociation constants (KD) for α-casein of 12.9 × 10 −9 mol / L and 8.59 × 10 −9 mol / L, respectively, and excellent binding properties I found out that
 以上、実施形態および実施例を参照して本願発明を説明したが、本願発明は、上記実施形態および実施例に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解しうる様々な変更をできる。 As mentioned above, although this invention was demonstrated with reference to embodiment and an Example, this invention is not limited to the said embodiment and Example. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
 この出願は、2016年11月21日に出願された日本出願特願2016-226350を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2016-226350 filed on November 21, 2016, the entire disclosure of which is incorporated herein.
 本発明の核酸分子は、乳由来αカゼインに結合可能である。このため、本発明の核酸分子によれば、試料中のアレルゲンとの結合の有無によって、乳由来αカゼインを検出できる。このため、本発明の核酸分子は、例えば、食品製造、食品管理、食品の流通等の分野において、例えば、牛乳に由来するアレルゲンの検出に、極めて有用なツールといえる。

 
The nucleic acid molecule of the present invention can bind to milk-derived α-casein. For this reason, according to the nucleic acid molecule of the present invention, milk-derived α-casein can be detected based on the presence or absence of binding to the allergen in the sample. For this reason, the nucleic acid molecule of the present invention can be said to be an extremely useful tool for detecting allergens derived from milk, for example, in the fields of food production, food management, food distribution, and the like.

Claims (18)

  1. 下記(a)または(b)のいずれかのポリヌクレオチドを含むことを特徴とする、乳由来αカゼインに結合する核酸分子。
    (a)配列番号1、2もしくは4の塩基配列または配列番号1、2もしくは4の塩基配列の部分配列からなるポリヌクレオチド
    (b)前記(a)の塩基配列に対して、90%以上の同一性を有する塩基配列からなり、乳由来αカゼインに結合するポリヌクレオチド
    aCas392BR8m2(配列番号1)
    GGTATGGAGGCAAGTCCCAATTCTAAGAAGTGGAGTAGGTGGGTTTAAGGATACGTTTCAGCCAGACAGGGTTTATG
    aCas757BR8m3(配列番号2)
    GGATAGCAGCAGGGACCTCTTATACGTCGGTGCTGGTGTTGTATAGACCCCCTTATATTATAACCGAATGATTTGCCCGCTACGATATG
    aCas757BR8m4(配列番号4)
    GGATAGCAGCAGGGACCTCTTATACCTGAGCGGCTCATTACCCTTCCGACTGGTCGCCCGCTTACCGAATGATTTGCCCGCTACGATATG
    A nucleic acid molecule that binds to milk-derived α-casein, comprising the polynucleotide of any one of (a) and (b) below:
    (A) a polynucleotide comprising the nucleotide sequence of SEQ ID NO: 1, 2 or 4 or a partial sequence of the nucleotide sequence of SEQ ID NO: 1, 2 or 4 (b) 90% or more identical to the nucleotide sequence of (a) Polynucleotide aCas392BR8m2 (SEQ ID NO: 1) consisting of a base sequence having a property and binding to milk-derived α-casein
    GGTATGGAGGCAAGTCCCAATTC T AAGAAG T GGAG T AGG T GGG TTT AAGGA T A C G TTTC AG CC AGA C AGGG TTT A T G
    aCas757BR8m3 (SEQ ID NO: 2)
    GGATAGCAGCAGGGACCTCTTATACG TC GG T G CT GG T G TT G T A T AGA CCCCCTT A T A TT A T AA CC GAA T GA TTT G CCC G CT A C GA T A T G
    aCas757BR8m4 (SEQ ID NO: 4)
    GGATAGCAGCAGGGACCTCTTATAC CT GAG C GG CTC A TT A CCCTTCC GA CT GG TC G CCC G CTT A CC GAA T GA TTT G CCC G CT A C GA T A T G
  2. 前記配列番号2または4の塩基配列の部分配列が、それぞれ、配列番号3、6、8および9、または5および7の塩基配列である、請求項1記載の核酸分子。
    aCas757BR8m3s69(配列番号3)
    GGATAGCAGCAGGGACCTCTTATACGTCGGTGCTGGTGTTGTATAGACCCCCTTATATTATAACCGAAT
    aCas757BR8m3s63(配列番号6)
    GGATAGCAGCAGGGACCTCTTATACGTCGGTGCTGGTGTTGTATAGACCCCCTTATATTATAA
    aCas757BR8m4s62(配列番号5)
    GGATAGCAGCAGGGACCTCTTATACCTGAGCGGCTCATTACCCTTCCGACTGGTCGCCCGCT
    aCas757BR8m4s44(配列番号7)
    TTATACCTGAGCGGCTCATTACCCTTCCGACTGGTCGCCCGCTC
    aCas757BR8m3s63b(配列番号8)
    GGATAGACCTCTTATACGTCTGTTGTATAGACCCCCTTATATTATAA
    aCas757BR8m3s63c(配列番号9)
    GGATAGCAGCACTCTTATACTGCTGGTGTTGTATAGACCCCCTTATATTATAA
    The nucleic acid molecule according to claim 1, wherein the partial sequences of the base sequence of SEQ ID NO: 2 or 4 are the base sequences of SEQ ID NO: 3, 6, 8, and 9, or 5 and 7, respectively.
    aCas757BR8m3s69 (SEQ ID NO: 3)
    GGATAGCAGCAGGGACCTCTTATACG TC GG T G CT GG T G TT G T A T AGA CCCCCTT A T A TT A T AA CC GAA T
    aCas757BR8m3s63 (SEQ ID NO: 6)
    GGATAGCAGCAGGGACCTCTTATACG TC GG T G CT GG T G TT G T A T AGA CCCCCTT A T A TT A T AA
    aCas757BR8m4s62 (SEQ ID NO: 5)
    GGATAGCAGCAGGGACCTCTTATAC CT GAG C GG CTC A TT A CCCTTCC GA CT GG TC G CCC G CT
    aCas757BR8m4s44 (SEQ ID NO: 7)
    TTATAC CT GAG C GG CTC A TT A CCCTTCC GA CT GG TC G CCC G CTC
    aCas757BR8m3s63b (SEQ ID NO: 8)
    GGATAGACCTCTTATACG TCT G TT G T A T AGA CCCCCTT A T A TT A T AA
    aCas757BR8m3s63c (SEQ ID NO: 9)
    GGATAGCAGCACTCTTATAC T G CT GG T G TT G T A T AGA CCCCCTT A T A TT A T AA
  3. 前記ポリヌクレオチドにおいて、少なくとも1個のチミンが、修飾塩基であり、前記チミンの修飾塩基が、修飾チミンおよび修飾ウラシルの少なくとも一方である、請求項1または2記載の核酸分子。 The nucleic acid molecule according to claim 1 or 2, wherein in the polynucleotide, at least one thymine is a modified base, and the modified base of the thymine is at least one of a modified thymine and a modified uracil.
  4. 前記ポリヌクレオチドにおいて、チミンの全塩基数のうち、20分の1以上が、修飾塩基であり、前記チミンの修飾塩基が、修飾チミンおよび修飾ウラシルの少なくとも一方である、請求項1から3のいずれか一項に記載の核酸分子。 4. The polynucleotide according to claim 1, wherein, in the polynucleotide, at least one-twentieth of the total number of bases of thymine is a modified base, and the modified base of thymine is at least one of modified thymine and modified uracil. The nucleic acid molecule according to claim 1.
  5. 前記ポリヌクレオチドにおいて、前記各塩基配列における下線部で示されるチミンが、修飾塩基であり、前記チミンの修飾塩基が、修飾チミンおよび修飾ウラシルの少なくとも一方である、請求項1から4のいずれか一項に記載の核酸分子。 In the said polynucleotide, the thymine shown by the underline part in each said base sequence is a modified base, The modified base of the said thymine is at least one of a modified thymine and a modified uracil. The nucleic acid molecule according to Item.
  6. 前記ポリヌクレオチドにおいて、少なくとも1個のシトシンが、修飾塩基である、請求項1から5のいずれか一項に記載の核酸分子。 The nucleic acid molecule according to any one of claims 1 to 5, wherein in the polynucleotide, at least one cytosine is a modified base.
  7. 前記ポリヌクレオチドにおいて、シトシンの全塩基数のうち、20分の1以上が、修飾塩基である、請求項1から6のいずれか一項に記載の核酸分子。 The nucleic acid molecule according to any one of claims 1 to 6, wherein in the polynucleotide, at least one-twentieth of the total number of bases of cytosine is a modified base.
  8. 前記ポリヌクレオチドにおいて、前記各塩基配列における下線部で示されるシトシンが、修飾塩基である、請求項1から7のいずれか一項に記載の核酸分子。 The nucleic acid molecule according to any one of claims 1 to 7, wherein in the polynucleotide, a cytosine indicated by an underline in each base sequence is a modified base.
  9. 前記ポリヌクレオチドが、DNAである、請求項1から8のいずれか一項に記載の核酸分子。 The nucleic acid molecule according to any one of claims 1 to 8, wherein the polynucleotide is DNA.
  10. 下記(e)のポリヌクレオチドを含むことを特徴とする、請求項1から9のいずれか一項に記載の核酸分子。
    (e)前記配列番号2または4の塩基配列に対して、80%以上の同一性を有する塩基配列からなり、それぞれ、配列番号3および6のいずれか一方、または5および7のいずれか一方の塩基配列を含む、乳由来αカゼインに結合するポリヌクレオチド
    The nucleic acid molecule according to any one of claims 1 to 9, which comprises the following polynucleotide (e):
    (E) consisting of a base sequence having 80% or more identity to the base sequence of SEQ ID NO: 2 or 4, wherein either one of SEQ ID NOs: 3 and 6, or any one of 5 and 7, respectively A polynucleotide comprising a base sequence and binding to α-casein derived from milk
  11. 下記(f)のポリヌクレオチドを含むことを特徴とする、請求項1から9のいずれか一項に記載の核酸分子。
    (f)配列番号1~9からなる群から選択された少なくとも一つの塩基配列に対して、80%以上の同一性を有する塩基配列からなり、それぞれ、式(I)~(IX)で表される二次構造を形成可能である、乳由来αカゼインに結合するポリヌクレオチド
    Figure JPOXMLDOC01-appb-C000001
     
    Figure JPOXMLDOC01-appb-C000002
     
    Figure JPOXMLDOC01-appb-C000003
     
    Figure JPOXMLDOC01-appb-C000004
     
    Figure JPOXMLDOC01-appb-C000005
     
    Figure JPOXMLDOC01-appb-C000006
     
    Figure JPOXMLDOC01-appb-C000007
     
    Figure JPOXMLDOC01-appb-C000008
     
    Figure JPOXMLDOC01-appb-C000009
     
    The nucleic acid molecule according to any one of claims 1 to 9, comprising the following polynucleotide (f):
    (F) a base sequence having 80% or more identity to at least one base sequence selected from the group consisting of SEQ ID NOs: 1 to 9, and represented by formulas (I) to (IX), respectively. A polynucleotide that binds to milk-derived α-casein
    Figure JPOXMLDOC01-appb-C000001

    Figure JPOXMLDOC01-appb-C000002

    Figure JPOXMLDOC01-appb-C000003

    Figure JPOXMLDOC01-appb-C000004

    Figure JPOXMLDOC01-appb-C000005

    Figure JPOXMLDOC01-appb-C000006

    Figure JPOXMLDOC01-appb-C000007

    Figure JPOXMLDOC01-appb-C000008

    Figure JPOXMLDOC01-appb-C000009
  12. 前記乳由来αカゼインが、未変性アレルゲンである、請求項1から11のいずれか一項に記載の核酸分子。 The nucleic acid molecule according to any one of claims 1 to 11, wherein the milk-derived α-casein is a native allergen.
  13. 請求項1から12のいずれか一項に記載の核酸分子を含むことを特徴とする、乳由来αカゼインの検出試薬。 A detection reagent for milk-derived α-casein, comprising the nucleic acid molecule according to any one of claims 1 to 12.
  14. さらに、標識物質を有し、
    前記標識物質が、前記核酸分子に結合されている、請求項13記載の検出試薬。
    Furthermore, it has a labeling substance,
    The detection reagent according to claim 13, wherein the labeling substance is bound to the nucleic acid molecule.
  15. 前記標識物質が、酵素である、請求項14記載の検出試薬。 The detection reagent according to claim 14, wherein the labeling substance is an enzyme.
  16. 前記酵素が、ルシフェラーゼである、請求項15記載の検出試薬。 The detection reagent according to claim 15, wherein the enzyme is luciferase.
  17. 請求項1から12のいずれか一項に記載の核酸分子、または請求項13から16のいずれか一項に記載の検出試薬と、試料とを接触させ、前記試料中の乳由来αカゼインと、前記核酸分子または前記検出試薬との複合体を形成させる工程、および、
    前記複合体を検出する工程を含むことを特徴とする、乳由来αカゼインの検出方法。
    A nucleic acid molecule according to any one of claims 1 to 12, or a detection reagent according to any one of claims 13 to 16, and a sample, and a milk-derived α-casein in the sample; Forming a complex with the nucleic acid molecule or the detection reagent, and
    A method for detecting milk-derived α-casein, comprising a step of detecting the complex.
  18. 前記検出が、定性分析または定量分析である、請求項17記載の検出方法。 The detection method according to claim 17, wherein the detection is qualitative analysis or quantitative analysis.
PCT/JP2017/041869 2016-11-21 2017-11-21 Nucleic acid molecule, and use thereof WO2018092915A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018551723A JPWO2018092915A1 (en) 2016-11-21 2017-11-21 Nucleic acid molecule and its use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016226350 2016-11-21
JP2016-226350 2016-11-21

Publications (1)

Publication Number Publication Date
WO2018092915A1 true WO2018092915A1 (en) 2018-05-24

Family

ID=62146430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041869 WO2018092915A1 (en) 2016-11-21 2017-11-21 Nucleic acid molecule, and use thereof

Country Status (2)

Country Link
JP (1) JPWO2018092915A1 (en)
WO (1) WO2018092915A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015066027A2 (en) * 2013-10-28 2015-05-07 Dots Devices, Inc. Allergen detection
WO2015151349A1 (en) * 2014-03-31 2015-10-08 Necソリューションイノベータ株式会社 Soba-allergen-binding nucleic acid molecule and use therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015066027A2 (en) * 2013-10-28 2015-05-07 Dots Devices, Inc. Allergen detection
WO2015151349A1 (en) * 2014-03-31 2015-10-08 Necソリューションイノベータ株式会社 Soba-allergen-binding nucleic acid molecule and use therefor

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
AMAYA-GONZALEZ, S.: "Aptamer-based analysis: a promising alternative for food safety control", SENSORS, vol. 13, no. 12, 2013, pages 16292 - 16311, XP055233452 *
CAMILLE, L. A. ET AL.: "Selection and analytical applications of aptamers", TRAC TRENDS IN ANALYTICAL CHEMISTRY, vol. 25, no. 7, July 2006 (2006-07-01), pages 681 - 691, XP025029963 *
MONACI, L. ET AL.: "Milk allergens, their characteristics and their detection in food: A review.", EUROPEAN FOOD RESEARCH AND TECHNOLOGY, vol. 223, no. 2, 15 February 2006 (2006-02-15), pages 149 - 179, XP019420433 *
MONACI, L. ET AL.: "Reliable Detection of Milk Allergens in Food Using a High-Resolution, Stand-Alone Mass Spectrometer", J. AOAC. INT., vol. 94, no. 4, 2011, pages 1034 - 1042 *
ZHANG, B. ET AL.: "A novel insight in rapid allergen detection in food systems: From threshold dose to real-world concentration, Sens", ACTUATORS B CHEM., vol. 186, 2013, pages 597 - 602 *

Also Published As

Publication number Publication date
JPWO2018092915A1 (en) 2019-06-24

Similar Documents

Publication Publication Date Title
JP6687618B2 (en) Detection of residual host cell proteins in recombinant protein preparations
JP6212136B2 (en) Nucleic acid molecules that bind to peanuts and uses thereof
CN104911186A (en) Single chain DNA oligonucleotide aptamer capable of specifically recognizing aflatoxin B1
JP6744028B2 (en) Nucleic acid molecule binding to α-amylase and use thereof
WO2018092915A1 (en) Nucleic acid molecule, and use thereof
JP6414907B2 (en) Nucleic acid molecules that bind to buckwheat allergens and uses thereof
JP6347498B2 (en) Nucleic acid molecules that bind to egg allergens and uses thereof
WO2018097220A1 (en) Nucleic acid molecule and use thereof
JP7343138B2 (en) Target analysis methods and kits
JP6399611B2 (en) Nucleic acid molecules that bind to shrimp allergens and uses thereof
JP6598315B2 (en) Nucleic acid molecules that bind to wheat allergens and uses thereof
JP6687264B2 (en) Nucleic acid molecule and its use
EP3406735B1 (en) Target analysis method and target analysis kit for use in said method
JP2018171035A (en) Nucleic acid molecule and use thereof
JP7405400B2 (en) Nucleic acid molecules and their uses
JP6963221B2 (en) Nucleic acid molecules and their uses
JP2018171041A (en) Target analysis method and target analysis kit to be used for the same
JP2020165820A (en) Milk allergen analysis kit and analysis method
JP2009189310A (en) Determination method of base arrangement of highly affinitive nucleic acid fragment group and screening method of nucleic acid aptamer
JP2018170985A (en) Nucleic acid molecule and use thereof
JP2022106581A (en) Crp-binding nucleic acid molecule, crp detection sensor, crp detection reagent, crp detection method, and crp binding area
JP2019149979A (en) SECRETORY IMMUNOGLOBULIN A (sIgA)-BINDING NUCLEIC ACID MOLECULE, sIgA DETECTION SENSOR, sIgA DETECTION REAGENT, AND sIgA ANALYSIS METHOD

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17871970

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018551723

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17871970

Country of ref document: EP

Kind code of ref document: A1