WO2013178844A1 - Specific aptamers against gluten and associated method for detecting gluten - Google Patents

Specific aptamers against gluten and associated method for detecting gluten Download PDF

Info

Publication number
WO2013178844A1
WO2013178844A1 PCT/ES2013/000133 ES2013000133W WO2013178844A1 WO 2013178844 A1 WO2013178844 A1 WO 2013178844A1 ES 2013000133 W ES2013000133 W ES 2013000133W WO 2013178844 A1 WO2013178844 A1 WO 2013178844A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
gluten
molecule
dna sequence
sequence
Prior art date
Application number
PCT/ES2013/000133
Other languages
Spanish (es)
French (fr)
Inventor
Noemi DE LOS SANTOS ÁLVAREZ
Sonia AMAYA GONZÁLEZ
Arturo MIRANDA ORDIERES
Mariá Jesús LOBO CASTAÑÓN
Original Assignee
Universidad De Oviedo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Oviedo filed Critical Universidad De Oviedo
Publication of WO2013178844A1 publication Critical patent/WO2013178844A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/115Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/04Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with deoxyribosyl as saccharide radical
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/16Aptamers

Definitions

  • the present invention relates to single-stranded DNA molecules, also called aptamers, capable of specifically recognizing and binding to gluten, and a method of recognition, capture and / or detection of gluten using said aptamers. Therefore, the invention could be framed in the field of biotechnology.
  • Celiac disease is an autoimmune disease of genetic origin, which is characterized by a permanent inflammatory process of the small intestine induced by the ingestion of the storage proteins (gluten) of wheat (all species called Triticum such as durum wheat, spelled and kamut ), barley, rye, hybrid varieties and probably oats. According to current data, this disease has a prevalence of approximately 1 percent of the population (S.K. Lee et al. 2006 Curr Opin Rheumatol 18, 101-107). The only known effective therapy is based on following a gluten-free diet for life, which is complex and expensive given the massive use of these cereals in the current diet.
  • gluten analysis is based on the direct detection of the allergenic protein.
  • Gluten is made up of hundreds of proteins characterized by their high proline and glutamine content and low amino acid content with loaded side chains. Traditionally it is subdivided into two large fractions according to its solubility in alcohol: water (60%): the soluble prolamines (gliadin in wheat, hordein in barley, secalin in rye, avenin in oats) and the insoluble glutenins.
  • soluble prolamines gliadin in wheat, hordein in barley, secalin in rye, avenin in oats
  • the insoluble glutenins Various toxic or immunogenic fragments have been identified in prolamines that are resistant to digestion by human proteases (R. Ciccocioppo et al.
  • MAb 401.21 developed in 1990 by Skerrit (JH Skerritt et al. 1990 J. Agrie. Food Chem. 38, 1771-1778) and described in Australian patent AU572955, is marketed in a sandwich test approved by the AOAC International ("the scientific association dedicated to analytical excelence®", (JH Skerritt et al. 1991 J.
  • R5 the antibody called R5 has been developed, which recognizes the potentially toxic epitope QQPFP and other sequences similar pre Seats in prolamines, including 33mer (L. Sorell et al. Febs Lett 439, 46-50; I. Valdes et al. 2003 Eur. J. Gastroenterol. Hepatol 15, 465-474).
  • the sandwich test with R5 has been designated as type I method by the Codex Alimentarius Analysis and Sampling Method Committee (Codex Alimentarius ALINORM 06/29/23, Appendix II, p.
  • Aptamers are oligonucleotides that are selected in vitro by a combinatorial method called SELEX (systematic evolution of exponential enrichment ligands) and are characterized by having a high affinity and specificity towards a given ligand (AD Ellington et al. 1990 Nature 346, 818- 822; C. Tuerk et al. 1990 Science 249, 505-510).
  • SELEX systematic evolution of exponential enrichment ligands
  • the presence of the ligand can induce a conformational change in the oligonucleotide that allows molecular recognition. Once the oligonucleotide sequence is known, its synthesis is chemical (does not require the use of animals), very reproducible and cheap.
  • SELEX is to find the sequence of higher affinity for a ligand in the desired experimental conditions for the greatest possible number of different strands ( ⁇ 13 October -10 15) by an iterative system contacting between nucleic acid strands and the ligand, separation of the strands with affinity for the ligand and PCR amplification thereof.
  • the selection of aptamers against proteins is usually carried out using as a target the complete protein
  • obtaining aptamers against specific protein epitopes is also possible following several strategies (AV Kulbachinsky et al. 2007 Biochemistry-Moscow 72, 1505-1518). One of them is to use the specific peptide sequence, much shorter than the complete protein.
  • aptamers thus obtained are capable of recognizing the peptide within the complete protein (D. Proske et al. 2002 Chembiochem 3, 717-725), although in some cases with lower affinity (W. Xu et al. 1996 Proc. Nati. Acad. Sci. USA 93, 7475-7480).
  • aptamer selection is possible for any ligand, there are a number of prerequisites to have a high probability of finding a high affinity and specificity aptamer.
  • Ligands with positively charged groups capable of forming hydrogen bonds or flat aromatic structures, are more favorable than those with negatively charged groups and, especially, those with a strong hydrophobic nature (R. Stoltenburg et al.
  • the present invention relates in a first aspect to a single-stranded DNA molecule characterized in that said molecule specifically recognizes and binds to a peptide comprising the amino acid sequence SEQ ID NO: 1.
  • the present invention relates to a kit for the detection of gluten characterized in that it comprises a single stranded DNA molecule of the first aspect of the invention.
  • the present invention relates to a use of the single stranded DNA molecule of the first aspect of the invention or of the kit of the second aspect of the invention, for the detection of gluten.
  • the present invention relates to a method of detecting gluten based on the single stranded DNA molecule of the first aspect of the invention.
  • the present invention is a solution to the need to detect the presence of gluten in samples of food or other products that can cause intolerance in celiac individuals.
  • the inventors of the present invention have demonstrated the usefulness of single stranded DNA sequences, also called aptamers, capable of specifically binding a peptide fraction of gliadin for the separation and / or detection of this protein.
  • An advantage of the present invention is that aptamers are molecules that can be easily modified to bind them to marker molecules, unlike antibodies, and therefore have high versatility at the time of detection.
  • aptamers are highly stable molecules, which is a great advantage when developing in vitro tests for gluten detection.
  • aptamers are also much cheaper and easier to synthesize than antibodies, which are the molecules currently used for gluten detection.
  • the present invention allows the detection of gluten at trace level, specifically less than 50 ppb (parts per billion) of PWG standard gliadin can be detected safely.
  • the present invention relates to a single stranded DNA molecule characterized in that said molecule specifically recognizes and binds to a peptide comprising the amino acid sequence SEQ ID NO: 1.
  • the molecule specifically recognizes and binds to gluten. More preferably, said gluten is wheat, barley, rye or oats. Even more preferably, said gluten is wheat.
  • the peptide with SEQ ID NO: 1 is known as the 33-mer peptide.
  • 33-mer peptide is understood as a wheat ⁇ -gliadin peptide, which is resistant to proteases and which has been considered as the primary initiator of the inflammatory response to gluten in celiac patients.
  • the 33-mer peptide is the most bioactive (immunodominant) gluten peptide that is recognized by T cells from HLA-DQ2 + celiac donors.
  • the 33-mer peptide has been chosen as a target for the evolution of single-stranded DNA molecules (aptamers), specifically the sequence between amino acids 57 and 89 of gliadin, which corresponds to SEQ ID NO: 1 .
  • single chain DNA molecule refers to a single strand of bound nucleotides, which in turn are each composed of a sugar, a nitrogen base and a Phosphate group. Unlike DNA that is presented as a double nucleotide chain, in which the two strands are linked together by connections called hydrogen bonds, single stranded DNA has a single strand.
  • single chain DNA molecule and the term “aptamer” are used interchangeably.
  • the term "specifically recognizes and binds”, as used herein, refers to the ability of the aptamers of the present invention to interact with a peptide, which preferably forms part of gluten specifically, that is, , to join with a certain affinity to said protein and not to join others. This ability of aptamers of the invention to recognize and specifically bind gluten is similar to that of antibodies.
  • gluten is understood as an amorphous protein found in the seed of some cereals, such as wheat, rye, barley and oats, combined with starch.
  • Gluten represents 80% of wheat proteins.
  • two grain proteins belonging to the group of prolamines, gliadins and glutenins combine to form a protein network called gluten.
  • This protein generates in a small part of the population a disease called celiac disease, in which the immune system responds by damaging the small intestine of people who ingest it by not being able to digest it.
  • the single chain DNA molecule specifically recognizes and binds gliadin, hordein, secane or avenin.
  • the single chain DNA molecule specifically recognizes and binds to gliadin.
  • g liad na refers to a prolamine that is part of the protein portion of gluten (soluble in ethanol) of wheat seeds. Prolamines are proteins that have large amounts of proline and glutamic acid. There are homologues of gliadin in barley (hordein), rye (secalin) and some varieties of oats (avenin), which explains that such cereals can also cause celiac disease.
  • the single chain DNA molecule is unable to recognize and specifically bind corn, soy or rice proteins.
  • the single chain DNA molecule is unable to recognize and specifically bind rice proteins.
  • the authors of the present invention have shown that the aptamers of the present invention are unable to bind and detect rice proteins, which implies the advantage that they will not give false positive results in gluten detection assays.
  • the single stranded DNA molecule comprises the nucleotide sequence X-GTCT-Y, where X comprises between 3 and 29 nucleotides and Y comprises between 7 and 33 nucleotides.
  • the single stranded DNA molecule comprises a nucleotide sequence that is selected from SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9 and SEQ ID NO: 10.
  • said molecule binds to the amino acid sequence SEQ ID NO: 1 with a dissociation constant K D equal to or less than 55 nM .
  • dissociation constant K D is understood as a constant that measures the affinity with which a ligand, in the present invention the single-stranded DNA molecule, binds to a protein, in the present invention gluten.
  • the ligand-protein affinity depends on non-covalent intermolecular interactions between two molecules such as hydrogen bonds, electrostatic interactions, Van der Waals and hydrophobic forces.
  • the single stranded DNA molecule comprises the nucleotide sequence SEQ ID NO: 2.
  • the single stranded DNA molecule comprises the nucleotide sequence SEQ ID NO: 7.
  • the single stranded DNA molecule further comprises a marker molecule.
  • the marker molecule is selected from a fluorophore, an enzyme, a peptide, a nanoparticle, an electroactive molecule, a digoxigenin and a biotin.
  • a marker molecule is understood as a molecule easily detectable by different methods, which can for example have specific receptors or it can be an enzyme that catalyzes a detectable reaction directly or indirectly after the addition of the corresponding substrates for the detection of the single chain DNA molecule of interest.
  • fluorophore refers to a fluorescent chemical compound that emits light upon excitation. A fluorophore bound to the single stranded DNA molecule of interest therefore allows its detection.
  • the fluorophore is selected from fluorescein, boron-dipyrromethene, cyanine, naphthalene and rhodamine and any of its derivatives.
  • the enzyme is selected from peroxidase, alkaline phosphatase, DNAzymes and NADH dehydrogenases.
  • DNAzymes refers to nucleic acids with catalytic activity that can generate with said activity a detectable marking associated with the presence of said DNAzyme.
  • the peptide is selected from a polyhistidine, a myc epitope and a FLAG epitope.
  • a polyhistidine is a peptide of between 2 and 12 histidines, preferably 6 histidines.
  • a myc epitope is a 10 amino acid peptide derived from the c-myc gene and that because it is highly immunogenic it is easily detectable by antibodies, such as the monoclonal antibody called 9E10 from Developmental Studies Hybridoma Bank,
  • a FLAG epitope is also an octapeptide that is also highly immunogenic and therefore easily detectable by antibodies. Both epitopes are well known in the state of the art.
  • the nanoparticle is selected from a metal nanoparticle, semiconductor nanoparticle and magnetic micro or nanoparticle.
  • metal nanoparticle refers to a nano-object with its three dimensions in the nanoscale (between 1 and 100 nm), formed by gold, silver, platinum or other metals, which together The single-stranded DNA molecule of interest allows its detection through its optical, electrochemical or catalytic properties.
  • the term "immobilized”, as used in the present invention, refers to the fact that the 33-mer peptide, the immunogenic protein or the single stranded DNA molecule of the invention can be attached to a support without losing its activity.
  • the support can be the surface of a microtiter plate, surfaces of conductive materials, micro and magnetic nanoparticles, glass supports, latex particles, carbon nanotubes, among others.
  • semiconductor nanoparticle refers to a nanoobject with its three dimensions in the nanoscale of semiconductor material, such as sulfides, selenides and tellurides of Cd, Zn or Pb, which together The single stranded DNA molecule of interest allows its detection by its optical or electrochemical properties.
  • micro or magnetic nanoparticle refers to a microscopic particle with magnetic properties, which together with the single stranded DNA molecule of interest allows its detection by changing the properties optics that take place after the union between the protein and the DNA chain so marked.
  • said nanoparticle is used for detection as a marker molecule and also as a solid support for the immobilization of the single-stranded DNA molecule, 33-mer peptide or immunogenic protein (gliadin or gluten).
  • the electroactive molecule is selected from methylene blue, ferrocene, anthraquinone and thionine, and any of its derivatives, among others.
  • electroactive molecule refers to a molecule that can be oxidized or reduced within the potential window of an electrode material and, therefore, its presence can be detected by faradic electrochemical techniques. well known in the state of the art.
  • the marker molecule is biotin.
  • Biotin is also known as vitamin H and is a molecule widely used in biotechnology to label other molecules, which is why it is known as biotinylation.
  • the avidin and streptavidin proteins bind with a very high affinity and specificity to biotin, so that this molecule is a good marker.
  • the marker molecule is digoxigenin. Digoxigenin is a hapten and can be conjugated to the single-stranded DNA molecules of the present invention as a marker thereof, since it can be easily detected by specific anti-digoxigenin antibodies.
  • the single stranded DNA molecule comprises a primer at each of its ends for detection by PCR.
  • primer means a nucleic acid chain that serves as a starting point for DNA amplification. It is a short nucleic acid sequence that contains a free 3 'hydroxyl group that forms base pairs complementary to the template strand and acts as a starting point for the addition of nucleotides in order to copy and amplify the template strand.
  • the primers are attached to the ends of the single stranded DNA molecule for amplification and detection by PCR.
  • the primers can be labeled with biotin or the fluorophore 6- carboxyfluorescein (6-FAM), or unlabeled.
  • PCR is understood as the polymerase chain reaction. It is a molecular biology technique whose objective is to obtain a large number of copies of a particular DNA fragment, starting from a minimum. This technique is based on the natural property of DNA polymerases to replicate strands of DNA from primers that bind at the ends of the strands, for which it uses cycles of alternating high and low temperatures to separate newly formed strands of DNA between yes after each phase of replication and primer binding and then allow the polymerases to rejoin to duplicate them again.
  • PCR is used for amplification and subsequent detection of the single-stranded DNA molecule linked to gluten, 33-mer peptide, 33-mer recombinant peptide or control peptide
  • PCR-ELISA polymerase chain reaction - enzyme-linked immunoabsorption assay
  • PCR-ELOSA is a technique very similar to PCR-ELISA, in which PCR products are only labeled with the hapten, so that they hybridize with an immobilized capture probe and quantify by using an antibody against said hapten conjugated with an enzyme.
  • At least one phosphodiester bond of the single stranded DNA molecule contains at least one oxygen (O) substituted by a sulfur (S).
  • O oxygen
  • S sulfur
  • phosphodiester bond refers to a covalent bond that occurs between a hydroxyl group (OH) in the 3 'carbon and a phosphate group (PO 4 3 ⁇ ) in the 5 'carbon of the ribose sugar of the nucleotides of the single stranded DNA molecule, thus forming a double ester bond.
  • the present invention relates to a kit for the detection of gluten characterized in that it comprises at least one single stranded DNA molecule of the first aspect of the invention.
  • said kit It also includes a solid support. More preferably, the single chain DNA molecule is anchored to the solid support.
  • the kit comprises at least two aptamers, one for capture and one for detection.
  • the kit further comprises the peptide with SEQ ID NO: 1 or gliadin or gluten, anchored to the solid support.
  • a competitive ELISA would consist of the competition between the gluten present in the corresponding sample and the SEQ ID NO: 1 peptide immobilized on solid supports for a fixed and limited quantity of aptamer in solution previously marked and / or modified as described above.
  • said kit further comprises an antibody that specifically recognizes and binds gluten.
  • Gluten has several repetitions of SEQ ID NO: 1, that is, it has several binding sites whereby both the aptamers of the invention and a specific antibody could bind at the same time. Therefore, more than one aptamer or one or several aptamers and one or more antibodies could be used in combination for the separation and / or detection of gluten.
  • the kit of the invention may further comprise, without any limitation, conjugated or unconjugated primary antibodies, peptides, labeled or unlabeled primers, buffers, conjugated secondary antibodies, proteins or standard peptides, agents to prevent contamination, marker compounds, although not limited, fluorochromes, etc.
  • the kit of the invention can include all the supports and containers necessary for its implementation and optimization.
  • the kit of the invention may also contain other proteins or peptides that serve as positive and negative controls.
  • this kit further comprises instructions for carrying out the detection and / or quantification of the single stranded DNA molecule of the invention.
  • antibody refers to immunoglobulin molecules and immunologically active portions of immunoglobulin molecules, that is, molecules that contain an antigen binding site that specifically binds (immunoreacts) with the gluten protein, with any of its fragments or with other indicator molecules used in the detection process.
  • the present invention relates to a use of the single stranded DNA molecule of the first aspect of the invention or of the kit! second aspect of the invention, for the detection of gluten.
  • the aptamers of the invention have proven useful in the specific detection of gluten.
  • the present invention relates to a gluten detection method comprising the following steps:
  • step (b) detect the presence of the complex formed by said molecule and the gluten of the test sample in step (a).
  • Protein sample means any sample, be it a food or other sample, capable of containing gluten or gluten-derived fragments that may cause intolerance in a celiac individual.
  • step (a) is carried out in solution.
  • step (a) is carried out on a solid support.
  • step (b) is carried out by PCR.
  • step (b) is carried out by means of an aptaassay.
  • aptaassay refers to binding assays where the receptor molecule that binds to gluten is a single DNA chain or aptamer completely analogous to immunoassays where the receptor molecule is an antibody
  • this term includes all the variety of known formats for immunoassays, with no more than substituting antibody for aptamer.
  • step (b) is carried out by an immunoassay.
  • said immunoassay is selected from westem blot, dot blot or ELISA. More preferably, said immunoassay is an ELISA.
  • the aptamers of the present invention can be used to capture, concentrate and / or detect gluten in solution or anchored on solid surfaces. For example, to capture and / or preconcentrate gluten, biotinylated aptamers conjugated to a solid support containing streptavidin or any of its variants (magnetic microparticles, microtiter plates, etc.) could be used to allow separation of the matrix containing gluten. .
  • FIG. 1 A) Representation of the concentration of aptamers of each selection cycle that do not bind (dark gray) and that bind (light gray) to the peptide with SEQ ID NO: 1 after interaction with it for 10 min in BS (binding buffer) obtained by fluorescence. B) Evolution of the enrichment percentage in DNA sequences of affinity towards the peptide with SEQ ID NO: 1 with the successive rounds of selection.
  • More stable secondary structure of aptamers with A) SEQ ID NO: 2, B) SEQ ID NO: 5, C) SEQ ID NO: 7, D) SEQ ID NO: 8, E) SEQ ID NO: 9 and F) SEQ ID NO: 10, obtained through the open-access network server (mfold), hosted by "The RNA Institute, College of Arts and Sciences, State University of New York at Albany".
  • FIG. 3 Calorimetric evaluation of 33.4 ⁇ of the aptamer with SEQ ID NO: 2 with 0.338 mM of the peptide with SEQ ID NO: 1 in BS (50 mM TRIS pH 7.4 + 0.25 M NaCI + 5 mM MgCI 2 ) at 15 ° C (A) and 35 ° C (B). Superior graphics: Power as a function of time obtained after each peptide addition. Lower graphs: Integrated values of heat variation in each addition after correction with dilution heat.
  • FIG. 4 Link curves of aptamers with SEQ ID NO: 2, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9 and SEQ ID NO: 10 to modified magnetic particles A) with the peptide with SEQ ID NO: 1 B) with the gliadin standard PWG (Prolamin Working Group).
  • FIG. 5 Bonding curves of aptamers with SEQ ID NO: 2, SEQ ID NO: 5, SEQ ID NO: 7 and SEQ ID NO: 8 to magnetic particles modified with ethanol extracts of A) rye flour (as a percentage of fraction linked) and B) oatmeal (current intensity).
  • Example 1 Obtaining aptamers for the peptide with SEQ ID NO: 1 of a-2- gliadin.
  • the selected target was obtained by recombinant DNA techniques.
  • a synthetic oligonucleotide (SEQ ID NO: 20) obtained in Sigma-Genosys with the sequence coding for the 33 amino acids ranging from position 57 to 89 of gliadin (Gen Bank, accession number AJ133612.1) and the direct (SEQ ID NO: 11) and reverse (SEQ ID NO: 12) primers, multiple copies were obtained by PCR.
  • the recombinant peptide was obtained after cloning this PCR product and expressing it in the pETBIue-2 system, following the manufacturer's instructions (Novagen), whereby a histidine tail is added.
  • a 1 mL HisTrap FF column was used in an AKTA FPLC equipment (GE Healthcare).
  • Histidine tail control peptide, SEQ ID NO: 14
  • the 80 nucleotide DNA sequence collection was designed so that its general sequence corresponds to SEQ ID NO: 15.
  • the collection was synthesized and purified by PAGE by Sigma-Genosys.
  • the sequences of the primers used in the PCR amplification step correspond to SEQ ID NO: 16 (direct primer) and SEQ ID NO: 17 (biotinylated reverse primer).
  • Magnetic microparticles (MagneHis TM Ni particles, from Promega, USA) modified with the target peptide or with the control were used for each round.
  • the protocol Modification consisted of balancing the particles in modification buffer (B, 100 mM HEPES pH 7.5 + 10 mM imidazole + 0.5 M NaCI). They were then incubated with peptide with SEQ ID NO: 1 or with control peptide with SEQ ID NO. 14 in concentration between 0.25 and 1 pg / pL on BM for 15 min with rotation at room temperature.
  • the modified magnetic particles were diluted to 5 pmol of target / pL in BS.
  • the DNA molecules were contacted with a concentration of peptide (peptide with SEQ ID NO: 1 or control peptide with SEQ ID NO: 14 in the counterselections) 10 times lower than that of DNA to limit the amount of target and favor the competition.
  • concentration of peptide peptide with SEQ ID NO: 1 or control peptide with SEQ ID NO: 14 in the counterselections 10 times lower than that of DNA to limit the amount of target and favor the competition.
  • DNA-peptide complex was eluted by incubating the particles in 100 mM HEPES pH 7.5 + 500 mM imidazole (BME) for 10 min under stirring.
  • the eluate was transferred to PCR tubes for amplification.
  • Each 100 ⁇ ! _ Of PCR contained: 2 ⁇ _ of template (eluate), 1 ⁇ of each primer (SEQ ID NO: 16 and SEQ ID NO: 17), 0.2 mM dNTP, 3 mM Mg 2+ , 1x PCR buffer and 2.8 U of immolase DNA polymerase (Disbiotec).
  • the PCR conditions were: initial incubation at 37 ° C for 10 min, 20 min at 95 ° C to activate the enzyme and 15 cycles of 94 ° C- 57 ° C- 72 ° C for 45 s each. The final extension was performed at 72 ° C for 10 min. The amplification was confirmed by 2% agarose gel electrophoresis. Quantification of the amplified double-stranded DNA was fluorometrically performed with a "MiniFluorimeter" model TBS-380 from the Turner Biosystems house. Obtaining the single strand DNA strand was achieved using streptavidin modified magnetic particles (Dynabeads® MyOne TM Streptavidin C1, Life Technologies, Madrid).
  • the binding assay was carried out by contacting equal amounts of DNA-6-FAM of each cycle and recombinant peptide (SEQ ID NO: 13) immobilized on magnetic particles (15 pmoles) for 10 minutes in BS.
  • the unbound fraction was collected and after 2 washes in BS + 0.01% Tween-20, the bound aptamers were eluted in B E for 10 min under stirring, thus obtaining the bound fraction.
  • Both fractions were analyzed fluorimetrically ( Figure 1A), observing a progressive decrease in the fraction not linked with the cycles simultaneously to an increase in the fraction linked ( Figure 1B).
  • a binding assay was performed with the control peptide and the DNA sequences obtained in cycle 10. The fluorescence emitted by the unbound fraction was lower than the detection limit, indicating that no affinity sequences were amplified by the tail of histidines or solid support.
  • Example 2 Identification of the DNA aptamers obtained.
  • an aliquot of cycle 10 was amplified using the unmodified primers (SEQ ID NO: 16 and SEQ ID NO: 19) using the same conditions as in previous stages of amplification, and was cloned using the pETBIue-1 Acceptor Vector Kit system from Novagen. After cloning, plates of the host strain (Nova Competent cells, Novagen) were seeded and 25 clones were sequenced using the BigDye Terminator v3.1 Cycle Sequencing kit (Applied Biosystems) and an Abi PRISM 3130x1 Genetic Analyzer. The sequences obtained were analyzed using the Chromas Lite 2.01 software.
  • the secondary structure of the six aptamers was determined SEQ ID NO: 2, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9 and SEQ ID NO: 10 using the network server " mfoid "under the binding conditions (25 ° C, 250 mM NaCI and 5 mM MgCl 2 ).
  • Figure 2 and Table 2 show the most stable structure and Gibbs free energies for each of the aptamers, respectively.
  • Example 3 Characterization of the SEQ ID NO: 2 aptamer.
  • the aptamer with SEQ ID NO: 2 was selected for further characterization by isothermal calorimetric titration.
  • the SEQ ID NO: 1 peptide chemically synthesized by Biomedal (Seville, Spain) was used as the target molecule.
  • the aptamer binding with SEQ ID NO: 2 to the peptide SEQ ID NO: 1 was studied by isothermal calorimetric titration.
  • the concentration of the aptamer in the calorimetric cell was 33.4 ⁇ , while the concentration of peptide in the syringe was 0.338 mM.
  • the following series of peptide injections was performed: a first 4 L injection followed by 18 injections of 15 ⁇ .
  • Figure 3 shows the valuations at both temperatures 15 0 C and 35 0 C.
  • the analysis of the measurements have provided the thermodynamic values summarized in table 3.
  • the K D was determined by isothermal calorimetric titration (ITC), a usual technique for this type of measurement.
  • the aptamer was evaluated by successive additions of peptide SEQ ID NO: 1 chemically synthesized, at 15 and 35 ° C, obtaining a KD of 45 ⁇ 10 nM and 17 ⁇ 10 nM, respectively.
  • These data confirm the binding between the aptamer with SEQ ID NO: 2 object of the invention and the peptide SEQ ID NO: 1.
  • the aptamer with SEQ ID NO: 2 has a high affinity for the target, as follows from a constant of nM dissociation for a hydrophobic molecule, which does not contain the functional groups that favor interaction with nucleic acids.
  • Example 4 Binding curves of the aptamers selected to the peptide with SEQ! D NO: 1.
  • the affinity evaluation of the aptamers by the peptide with SEQ ID NO: 1 was carried out by binding assays on streptavidin coated magnetic particles, on which the peptide with biotinylated SEQ ID NO: 1 was immobilized at its C-terminus.
  • the fraction of each of the six biotin modified aptamers that binds to said particles was measured chronoamperometrically after addition of! streptavidin-HRP and enzyme substrate conjugate (tetramethylbenzidine + H 2 0 2 ). All selected aptamers had affinity for the target.
  • streptavidin-coated magnetic particles (Dynabeads® MyOne TM Streptavidin C1, Life Technologies, Madrid) were modified with SEQ ID NO: 1 biotinylated peptide at its C-terminal end (Biomedal, Sevilla) 2 ⁇ in PBS + 0.01% Tween -20 throughout the night. After two washes with PBS + 0.01% Tween-20, they were blocked with 500 ⁇ of biotin in PBS + 0.01% Tween-20 for 30 min. After 2 new washes they were reconstituted in BS.
  • the affinity of aptamers was evaluated by the gliadin pattern commonly used in commercial immunoassays obtained from a mixture of wheat flour from different sources, called PWG. Binding assays were performed on magnetic particles activated with surface tosyl groups, on which the PWG was immobilized. The fraction of each of the six biotin modified aptamers that binds to said particles was measured chronoamperometrically after the addition of the streptavidin-HRP conjugate and the enzyme substrate (tetramethylbenzidine + H2O2).
  • magnetic particles were modified with superficial tosyl groups (Dynabeads® MyOne TM Tosylactivated, Life Technologies, Madrid) with PWG (Prolamin Working Group gliadin standard) at 0.32 mg / mL in Borate 0.058 M pH 9.5 + ( NH 4 ) 2 SO 4 1 M for 24 h at 37 ° C. After two washes in PBS + 0.01% Tween-20, they are left in the same buffer overnight at 37 ° C. After 2 new washes, they were reconstituted in PBS + 0.01% Tween-20 and used to obtain the binding curves.
  • superficial tosyl groups Dynabeads® MyOne TM Tosylactivated, Life Technologies, Madrid
  • PWG Prolamin Working Group gliadin standard
  • Binding tests were carried out on magnetic particles activated with surface tosyl groups, on which a diluted ethanolic extract of rye, oatmeal and rice flour was immobilized. The fraction of each of the biotin-modified aptamers that bind to said particles was measured chronoamperometrically after the addition of the streptavidin-HRP conjugate and the enzyme substrate (tetramethylbenzidine + H 2 O 2 ) ( Figure 5).
  • link curves of the aptamers with sequences SEQ ID NO: 7, SEQ ID NO: 2 and SEQ ID NO: 8, were made to the prolamines of other cereals that cause celiac disease (rye and possibly oats) and others that do not cause it (rice).
  • the extraction of 1 g of each flour was performed with 10 mL of 60% ethanol for 30 mtn under stirring, after which it was centrifuged at 2500 g for 45 min. The extract was centrifuged again and the resulting supernatant collected for use.
  • Tosylated magnetic particles were modified in the manner indicated in example 5 and the binding curves were performed in a completely analogous manner.
  • Figure 5 shows that all aptamers tested have an affinity for rye, although less than for wheat.
  • the SEQ ID NO: 7 aptamer shows affinity for oats, although at higher concentrations than for wheat and rye, so it is able to recognize avenins, whose role in triggering the Celiac disease is not yet fully clarified.
  • the SEQ ID NO: 2 aptamer showed no affinity for rice proteins since the amperometric signals obtained are indistinct from the target.

Abstract

The invention relates to single-stranded DNA molecules, also called aptamers, that are able to recognise and bind specifically to gluten. The invention also relates to a method for recognising, capturing and/or detecting gluten using said aptamers, and to a kit comprising said aptamers.

Description

APTÁMERQS ESPECÍFICOS CONTRA EL GLUTEN Y MÉTODO DE  SPECIFIC APTÁMERQS AGAINST GLUTEN AND METHOD OF
DETECCIÓN DEL GLUTEN ASOCIADO  DETECTION OF ASSOCIATED GLUTEN
DESCRIPCIÓN DESCRIPTION
La presente invención se refiere a unas moléculas de ADN de cadena sencilla, también denominadas aptámeros, capaces de reconocer y unirse específicamente al gluten, y a un método de reconocimiento, captura y/o detección de gluten que emplea dichos aptámeros. Por tanto, la invención se podría encuadrar en el campo de la biotecnología. The present invention relates to single-stranded DNA molecules, also called aptamers, capable of specifically recognizing and binding to gluten, and a method of recognition, capture and / or detection of gluten using said aptamers. Therefore, the invention could be framed in the field of biotechnology.
ESTADO DE LA TÉCNICA STATE OF THE TECHNIQUE
La enfermedad celiaca es una enfermedad autoinmune de origen genético, que se caracteriza por un proceso inflamatorio permanente del intestino delgado inducido por la ingestión de las proteínas de almacenamiento (gluten) del trigo (todas las especies denominadas Triticum como el trigo duro, espelta y kamut), la cebada, el centeno, sus variedades híbridas y probablemente la avena. Según los datos actuales esta enfermedad tiene una prevalencta de aproximadamente el 1 por 100 de la población (S.K. Lee et al. 2006 Curr Opin Rheumatol 18, 101-107). La única terapia efectiva conocida se basa en seguir una dieta exenta de gluten de por vida, lo cual resulta complejo y costoso dado el uso masivo de estos cereales en la alimentación actual. Aunque la relación causal entre la ingesta de gluten y la enfermedad celiaca está perfectamente establecida, no está definida la relación entre la cantidad de gluten ingerida y la gravedad de las manifestaciones clínicas. La variación individual así como la heterogeneidad clínica de los pacientes supone un problema para establecer valores umbral que permitan la protección de todos los individuos susceptibles, ya que incluso trazas de alimentos contaminados con gluten pueden ser perjudiciales para algunos celíacos. Celiac disease is an autoimmune disease of genetic origin, which is characterized by a permanent inflammatory process of the small intestine induced by the ingestion of the storage proteins (gluten) of wheat (all species called Triticum such as durum wheat, spelled and kamut ), barley, rye, hybrid varieties and probably oats. According to current data, this disease has a prevalence of approximately 1 percent of the population (S.K. Lee et al. 2006 Curr Opin Rheumatol 18, 101-107). The only known effective therapy is based on following a gluten-free diet for life, which is complex and expensive given the massive use of these cereals in the current diet. Although the causal relationship between gluten intake and celiac disease is perfectly established, the relationship between the amount of gluten ingested and the severity of clinical manifestations is not defined. The individual variation as well as the clinical heterogeneity of the patients is a problem to establish threshold values that allow the protection of all susceptible individuals, since even traces of gluten-contaminated foods can be detrimental to some celiacs.
Para satisfacer las necesidades de este sector de la población, la industria alimentaria ha desarrollado una gama de productos con limitadas cantidades de gluten, ya que su supresión total en cereales que lo contienen naturalmente es técnicamente difícil y costosa. Además, existen otros productos que, aunque no contienen gluten de forma natural, pueden resultar contaminados durante su recolección, almacenamiento, procesamiento y/o transporte. La Unión Europea ha homogeneizado las normas sobre la composición y etiquetado de productos alimenticios destinados a este colectivo, basándose en las más recientes directrices de la Comisión del Codex Alimentarius (Codex Alimentaríus ALINORM 08/31/REP, Appendix VII, p 107), que indican un umbral de 20 ppm para alimentos denominados "exentos de gluten", con el fin de que encuentren alimentos adaptados a sus necesidades y nivel de sensibilidad. To meet the needs of this sector of the population, the food industry has developed a range of products with limited quantities of gluten, since its total suppression in cereals that contain it naturally is technically difficult and expensive. In addition, there are other products that, although they do not contain gluten naturally, can be contaminated during collection, storage, processing and / or transport. The European Union has homogenized the rules on the composition and labeling of food products intended for this group, based on the most recent guidelines of the Codex Alimentarius Commission (Codex Alimentaríus ALINORM 08/31 / REP, Appendix VII, p 107), which they indicate a threshold of 20 ppm for foods called "gluten-free", so that they find foods adapted to their needs and level of sensitivity.
Este valor es un compromiso entre la detectabilidad que alcanzan los métodos analíticos actuales basados en ensayos de afinidad con anticuerpos marcados con enzimas y la capacidad tecnológica para reducir la contaminación sin aumentar los costes económicos y medioambientales. Desafortunadamente, este valor no es suficientemente seguro para muchos enfermos celíacos. En 1999, la Federación de Asociaciones de Celíacos de España (FACE) creó la marca de garantía "Controlado por FACE" para aquellos productos que garanticen un valor máximo de 10 ppm, valor muy próximo a los límites de detección de los métodos actuales. This value is a compromise between the detectability of current analytical methods based on affinity tests with enzyme-labeled antibodies and the technological capacity to reduce pollution without increasing economic and environmental costs. Unfortunately, this value is not safe enough for many celiac patients. In 1999, the Federation of Celiac Associations of Spain (FACE) created the guarantee brand "Controlled by FACE" for those products that guarantee a maximum value of 10 ppm, a value very close to the detection limits of current methods.
Los métodos de análisis del gluten se basan en la detección directa de la proteína alergénica. El gluten está formado por cientos de proteínas caracterizadas por su alto contenido en prolina y glutamina y bajos contenidos en aminoácidos con cadenas laterales cargadas. Tradicionalmente se subdivide en dos grandes fracciones según su solubilidad en alcohol:agua (60%): las solubles prolaminas (gliadina en trigo, hordeína en cebada, secalina en centeno, avenina en avena) y las insolubles gluteninas. Se han identificado diversos fragmentos tóxicos o inmunogénicos en las prolaminas que son resistentes a la digestión por proteasas humanas (R. Ciccocioppo et al. 2005 Clin Exp Immunol 140, 408-416), aunque estudios recientes apuntan a que las gluteninas también son tóxicas (D.H. Dewar et al. 2006 Eur. J. Gastroenterol. Hepatol. 18, 483-491). Shan et al. identificaron un péptido de 33 aminoácidos en la α-2-gliadina (L. Shan et al. 2002 Science 297, 2275-2279) que resultó ser inmunodominante (L.Shan et al. 2005 J Proteome Res 4, 1732-1741 ). Hoy en día, los métodos estándar para la detección de gluten se basan en ensayos tipo ELISA, empleando diferentes anticuerpos que reconocen diferentes epítopos de las prolaminas. Sin embargo, los resultados obtenidos dependen fuertemente del anticuerpo así como del material de referencia empleado (R. van Eckert et al. 2010 J. Cereal Sci. 51 , 198-204). El anticuerpo denominado MAb 401.21 desarrollado en 1990 por Skerrit (J.H. Skerritt et al. 1990 J. Agrie. Food Chem. 38, 1771-1778) y descrito en la patente australiana AU572955, se comercializa en un ensayo tipo sándwich aprobado por la AOAC International ("the scientifíc association dedicated to analytical excelence®", (J.H. Skerritt et al. 1991 J. AOAC 74, 257-264) descrito en las solicitudes de patente GB2207921 , CA1294903 y AU1891788, aunque no es capaz de cuantificar hordeínas (detecta sólo un 4-5%), subestima el trigo duro y sobreestima el triticale y las secalinas (T. Thompson et al. 2008 J. Am. Diet. Assoc. 108, 1682-1687). Tampoco detecta gluten parcialmente hidrolizado debido al formato tipo sándwich. Estudios recientes muestran que también reacciona contra gluteninas (R. van Eckert et al. 2010 J. Cereal Sci. 51 , 198-204). Posteriormente se ha desarrollado el anticuerpo denominado R5, que reconoce el epítopo potencialmente tóxico QQPFP y otras secuencias similares presentes en las prolaminas, incluido el 33- mer (L. Sorell et al. Febs Lett 439, 46-50; I. Valdes et al. 2003 Eur. J. Gastroenterol. Hepatol. 15, 465-474). El ensayo sándwich con el R5 ha sido designado como método tipo I por el Comité de métodos de análisis y muestreo del Codex Alimentarius (Codex Alimentarius ALINORM 06/29/23, Appendix I I, p. 40) y permite la detección de gluten en muestras naturales o procesadas con calor, previa extracción con una disolución que contiene reductores para eliminar los puentes disulfuro intercatenarios que se forman tras el calentamiento (E. García et al. 2005 Eur. J. Gastroenterol. Hepatol. 17, 529-539) descrita en la patente española con número de publicación ES2182698 y familia de patentes (EP1424345, US7585529). Sin embargo, este método no sirve para medir las prolaminas hidrolizadas. Se han desarrollado otros anticuerpos como el PN3 (H.J. Ellis et al. 1998 Gut 43, 190-195), el CDC5 (H.M. Nassef et al. 2008 Anal. Chem. 80, 9265-9271) y el G12 (B. Morón et al. 2008 Am. J. Clin. Nutr. 87 405-414; B. Morón et al. 2008 Píos One 3) contra los epítopos tóxicos o immunogénicos comprendidos entre los aminoácidos 31-49, 56-75 y 57-89 de la a-gliadina, respectivamente. The methods of gluten analysis are based on the direct detection of the allergenic protein. Gluten is made up of hundreds of proteins characterized by their high proline and glutamine content and low amino acid content with loaded side chains. Traditionally it is subdivided into two large fractions according to its solubility in alcohol: water (60%): the soluble prolamines (gliadin in wheat, hordein in barley, secalin in rye, avenin in oats) and the insoluble glutenins. Various toxic or immunogenic fragments have been identified in prolamines that are resistant to digestion by human proteases (R. Ciccocioppo et al. 2005 Clin Exp Immunol 140, 408-416), although recent studies suggest that glutenins are also toxic ( DH Dewar et al. 2006 Eur. J. Gastroenterol. Hepatol. 18, 483-491). Shan et al. identified a 33 amino acid peptide in α-2-gliadin (L. Shan et al. 2002 Science 297, 2275-2279) which proved to be immunodominant (L. Shan et al. 2005 J Proteome Res 4, 1732-1741). Today, the standard methods for gluten detection are based on ELISA type assays, using different antibodies that recognize different epitopes of prolamins. However, the results obtained depend strongly on the antibody as well as the reference material used (R. van Eckert et al. 2010 J. Cereal Sci. 51, 198-204). The antibody called MAb 401.21 developed in 1990 by Skerrit (JH Skerritt et al. 1990 J. Agrie. Food Chem. 38, 1771-1778) and described in Australian patent AU572955, is marketed in a sandwich test approved by the AOAC International ("the scientific association dedicated to analytical excelence®", (JH Skerritt et al. 1991 J. AOAC 74, 257-264) described in patent applications GB2207921, CA1294903 and AU1891788, although it is not able to quantify hordeins (detects only 4-5%), underestimate durum wheat and overestimate triticale and secalins (T. Thompson et al. 2008 J. Am. Diet. Assoc. 108, 1682-1687). Nor does it detect partially hydrolyzed gluten due to the type format sandwich Recent studies show that it also reacts against glutenins (R. van Eckert et al. 2010 J. Cereal Sci. 51, 198-204) Subsequently, the antibody called R5 has been developed, which recognizes the potentially toxic epitope QQPFP and other sequences similar pre Seats in prolamines, including 33mer (L. Sorell et al. Febs Lett 439, 46-50; I. Valdes et al. 2003 Eur. J. Gastroenterol. Hepatol 15, 465-474). The sandwich test with R5 has been designated as type I method by the Codex Alimentarius Analysis and Sampling Method Committee (Codex Alimentarius ALINORM 06/29/23, Appendix II, p. 40) and allows the detection of gluten in samples natural or heat processed, after extraction with a solution containing reducers to remove intercatenary disulfide bridges that form after heating (E. García et al. 2005 Eur. J. Gastroenterol. Hepatol. 17, 529-539) described in Spanish patent with publication number ES2182698 and patent family (EP1424345, US7585529). However, this method does not serve to measure hydrolyzed prolamines. Other antibodies have been developed such as PN3 (HJ Ellis et al. 1998 Gut 43, 190-195), CDC5 (HM Nassef et al. 2008 Anal. Chem. 80, 9265-9271) and G12 (B. Morón et al. 2008 Am. J. Clin. Nutr. 87 405-414; B. Morón et al. 2008 Pios One 3) against toxic or immunogenic epitopes comprised between amino acids 31-49, 56-75 and 57-89 of a-gliadin, respectively.
Con el fin de detectar el gluten hidrolizado, se han propuesto ensayos competitivos, que requieren un único epítopo, y que han sido comercializados usando los anticuerpos R5 descritos en la patente española con número de publicación ES2304874 (ver también WO2008110655) y G12. Sin embargo, estos métodos no son compatibles con el procedimiento de extracción anteriormente citado debido a que desnaturalizan los anticuerpos y marcadores enzimáticos durante la inevitable incubación entre la muestra y el único anticuerpo de detección usado. Los aptámeros son un tipo de receptor molecular no proteico, son estables térmica y químicamente en condiciones extremas y, por tanto, constituyen una alternativa prometedora respecto a los anticuerpos. Los aptámeros son oligonucleótidos que se seleccionan in vitro mediante un método combinatorio denominado SELEX (evolución sistemática de ligandos por enriquecimiento exponencial) y se caracterizan por presentar una gran afinidad y especificidad hacia un ligando determinado (A.D. Ellington et al. 1990 Nature 346, 818-822; C. Tuerk et al. 1990 Science 249, 505-510). La presencia del ligando puede inducir un cambio conformacional en el oligonucleótido que permite el reconocimiento molecular. Una vez conocida la secuencia del oligonucleótido, su síntesis es química (no requiere el uso de animales), muy reproducible y barata. In order to detect hydrolyzed gluten, competitive assays have been proposed, which require a single epitope, and which have been marketed using the R5 antibodies described in the Spanish patent with publication number ES2304874 (see also WO2008110655) and G12. However, these methods are not compatible with the aforementioned extraction procedure because they denature the antibodies and enzymatic markers during the inevitable incubation between the sample and the only detection antibody used. Aptamers are a type of non-protein molecular receptor, they are thermally and chemically stable under extreme conditions and, therefore, constitute a promising alternative to antibodies. Aptamers are oligonucleotides that are selected in vitro by a combinatorial method called SELEX (systematic evolution of exponential enrichment ligands) and are characterized by having a high affinity and specificity towards a given ligand (AD Ellington et al. 1990 Nature 346, 818- 822; C. Tuerk et al. 1990 Science 249, 505-510). The presence of the ligand can induce a conformational change in the oligonucleotide that allows molecular recognition. Once the oligonucleotide sequence is known, its synthesis is chemical (does not require the use of animals), very reproducible and cheap.
El procedimiento SELEX consiste en encontrar la secuencia de mayor afinidad por un ligando en las condiciones experimentales deseadas entre la mayor cantidad posible de hebras diferentes (~1013-1015) mediante un sistema iterativo de puesta en contacto entre las hebras de ácido nucleico y el ligando, separación de las hebras con afinidad por el ligando y amplificación por PCR de las mismas. La selección de aptámeros contra proteínas se suele realizar empleando como diana la proteína completa. Sin embargo, la obtención de aptámeros contra epítopos específicos de proteínas es también posible siguiendo varias estrategias (A.V. Kulbachinsky et al. 2007 Biochemistry-Moscow 72, 1505-1518). Una de ellas consiste en emplear la secuencia peptídica específica, mucho más corta que la proteína completa. Se ha demostrado que los aptámeros así obtenidos son capaces de reconocer el péptido dentro de la proteína completa (D. Proske et al. 2002 Chembiochem 3, 717-725), aunque en algunos casos con menor afinidad (W. Xu et al. 1996 Proc. Nati. Acad. Sci. USA 93, 7475-7480). Aunque a priori podría pensarse que la selección de aptámeros es posible para cualquier ligando, hay una serie de prerrequisitos para tener altas probabilidades de encontrar un aptámero de alta afinidad y especificidad. Ligandos con grupos cargados positivamente, capaces de formar puentes de hidrógeno o estructuras aromáticas planas, son más favorables que los que tienen grupos cargados negativamente y, especialmente, que los que tienen una fuerte naturaleza hidrofóbica (R. Stoltenburg et al. 2007 Biomolecular Engineering 24, 381-403). Aunque el reconocimiento del ARN/ADN de estructuras hidrofóbicas es conocido, es bastante raro (B.A. Gilbert et al. 1997 Bioorgan ed Chem 5, 1115-1122). La estrategia para facilitar la interacción de ácidos nucleicos con moléculas hidrofóbicas podría ser el uso de nucleótidos modificados con grupos que le confieran hidrofobicidad, compatibles con las enzimas de amplificación (S.D. Jayasena 1999 Clin. Chem. 45, 1628-1650). Por tanto, no es evidente que la selección de aptámeros contra ligandos muy hidrofóbicos, como el péptido 33-mer empleado en esta invención, usando nucleótidos no modificados con grupos hidrofóbicos, dé lugar a secuencias consenso de alta afinidad. SELEX is to find the sequence of higher affinity for a ligand in the desired experimental conditions for the greatest possible number of different strands (~ 13 October -10 15) by an iterative system contacting between nucleic acid strands and the ligand, separation of the strands with affinity for the ligand and PCR amplification thereof. The selection of aptamers against proteins is usually carried out using as a target the complete protein However, obtaining aptamers against specific protein epitopes is also possible following several strategies (AV Kulbachinsky et al. 2007 Biochemistry-Moscow 72, 1505-1518). One of them is to use the specific peptide sequence, much shorter than the complete protein. It has been shown that the aptamers thus obtained are capable of recognizing the peptide within the complete protein (D. Proske et al. 2002 Chembiochem 3, 717-725), although in some cases with lower affinity (W. Xu et al. 1996 Proc. Nati. Acad. Sci. USA 93, 7475-7480). Although a priori one might think that aptamer selection is possible for any ligand, there are a number of prerequisites to have a high probability of finding a high affinity and specificity aptamer. Ligands with positively charged groups, capable of forming hydrogen bonds or flat aromatic structures, are more favorable than those with negatively charged groups and, especially, those with a strong hydrophobic nature (R. Stoltenburg et al. 2007 Biomolecular Engineering 24 , 381-403). Although the recognition of RNA / DNA from hydrophobic structures is known, it is quite rare (BA Gilbert et al. 1997 Bioorgan ed Chem 5, 1115-1122). The strategy to facilitate the interaction of nucleic acids with hydrophobic molecules could be the use of modified nucleotides with groups that confer hydrophobicity, compatible with amplification enzymes (SD Jayasena 1999 Clin. Chem. 45, 1628-1650). Therefore, it is not evident that the selection of aptamers against highly hydrophobic ligands, such as the 33-mer peptide employed in this invention, using nucleotides unmodified with hydrophobic groups, results in high affinity consensus sequences.
DESCRIPCIÓN DE LA INVENCIÓN DESCRIPTION OF THE INVENTION
La presente invención se refiere en un primer aspecto a una molécula de ADN de cadena sencilla caracterizada por que dicha molécula reconoce y se une específicamente a un péptido que comprende la secuencia aminoacídica SEQ ID NO:1. En un segundo aspecto, la presente invención se refiere a un kit para la detección de gluten caracterizado por que comprende una molécula de ADN de cadena sencilla del primer aspecto de la invención. The present invention relates in a first aspect to a single-stranded DNA molecule characterized in that said molecule specifically recognizes and binds to a peptide comprising the amino acid sequence SEQ ID NO: 1. In a second aspect, the present invention relates to a kit for the detection of gluten characterized in that it comprises a single stranded DNA molecule of the first aspect of the invention.
En un tercer aspecto, la presente invención se refiere a un uso de la molécula de ADN de cadena sencilla del primer aspecto de la invención o del kit del segundo aspecto de la invención, para la detección del gluten. En un cuarto aspecto, la presente invención se refiere a un método de detección del gluten basado en la molécula de ADN de cadena sencilla del primer aspecto de la invención. In a third aspect, the present invention relates to a use of the single stranded DNA molecule of the first aspect of the invention or of the kit of the second aspect of the invention, for the detection of gluten. In a fourth aspect, the present invention relates to a method of detecting gluten based on the single stranded DNA molecule of the first aspect of the invention.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN DETAILED DESCRIPTION OF THE INVENTION
La presente invención supone una solución a la necesidad de detectar la presencia de gluten en muestras de productos alimentarios o de otro tipo que puedan provocar intolerancia en individuos celiacos. Los inventores de la presente invención han demostrado la utilidad de unas secuencias de ADN de cadena sencilla, también llamados aptámeros, capaces de unir específicamente una fracción peptídica de la gliadina para la separación y/o detección de esta proteína. Una ventaja de la presente invención es que los aptámeros son moléculas que pueden ser modificadas fácilmente para unirlas a moléculas marcadoras, a diferencia de los anticuerpos, y por tanto presentan una alta versatilidad a la hora de su detección. Además, los aptámeros son moléculas altamente estables, lo cual supone una gran ventaja a la hora de desarrollar ensayos ¡n vitro para la detección del gluten. Es importante resaltar que los aptámeros son también mucho más baratos y fáciles de sintetizar que los anticuerpos, que son las moléculas usadas actualmente para la detección del gluten. La presente invención permite la detección de gluten a nivel de trazas, concretamente menos de 50 ppb (partes por billón) de gliadina patrón PWG pueden ser detectadas con seguridad. The present invention is a solution to the need to detect the presence of gluten in samples of food or other products that can cause intolerance in celiac individuals. The inventors of the present invention have demonstrated the usefulness of single stranded DNA sequences, also called aptamers, capable of specifically binding a peptide fraction of gliadin for the separation and / or detection of this protein. An advantage of the present invention is that aptamers are molecules that can be easily modified to bind them to marker molecules, unlike antibodies, and therefore have high versatility at the time of detection. In addition, aptamers are highly stable molecules, which is a great advantage when developing in vitro tests for gluten detection. It is important to note that aptamers are also much cheaper and easier to synthesize than antibodies, which are the molecules currently used for gluten detection. The present invention allows the detection of gluten at trace level, specifically less than 50 ppb (parts per billion) of PWG standard gliadin can be detected safely.
Por tanto, en un primer aspecto, la presente invención se refiere a una molécula de ADN de cadena sencilla caracterizada por que dicha molécula reconoce y se une específicamente a un péptido que comprende la secuencia aminoacídica SEQ ID NO:1. Preferiblemente, la molécula reconoce y se une específicamente al gluten. Más referiblemente, dicho gluten es de trigo, cebada, centeno o avena. Aún más preferiblemente, dicho gluten es de trigo. Therefore, in a first aspect, the present invention relates to a single stranded DNA molecule characterized in that said molecule specifically recognizes and binds to a peptide comprising the amino acid sequence SEQ ID NO: 1. Preferably, the molecule specifically recognizes and binds to gluten. More preferably, said gluten is wheat, barley, rye or oats. Even more preferably, said gluten is wheat.
El péptido con SEQ ID NO: 1 es el conocido como péptido 33-mer. En la presente descripción, se entiende por péptido 33-mer un péptido de la α-gliadina de trigo, que es resistente a proteasas y que se ha considerado como el iniciador primario de la respuesta inflamatoria al gluten en los enfermos celiacos. Así, se ha demostrado mediante ensayos in vitro que el péptido 33-mer es el péptido del gluten más bioactivo (inmunodominante) que es reconocido por células T procedentes de donantes celiacos HLA-DQ2+. En la presente invención el péptido 33-mer se ha elegido como diana para la evolución de las moléculas de ADN de cadena sencilla (aptámeros), concretamente la secuencia entre los aminoácidos 57 y 89 de la gliadina, que corresponde a SEQ ID NO: 1. The peptide with SEQ ID NO: 1 is known as the 33-mer peptide. In the present description, 33-mer peptide is understood as a wheat α-gliadin peptide, which is resistant to proteases and which has been considered as the primary initiator of the inflammatory response to gluten in celiac patients. Thus, it has been demonstrated by in vitro assays that the 33-mer peptide is the most bioactive (immunodominant) gluten peptide that is recognized by T cells from HLA-DQ2 + celiac donors. In the present invention the 33-mer peptide has been chosen as a target for the evolution of single-stranded DNA molecules (aptamers), specifically the sequence between amino acids 57 and 89 of gliadin, which corresponds to SEQ ID NO: 1 .
La expresión "molécula de ADN de cadena sencilla", tal y como se emplea en la presente descripción, se refiere a una única hebra de nucleótidos unidos, que a su vez están compuestos cada uno de ellos por un azúcar, una base nitrogenada y un grupo fosfato. A diferencia del ADN que se presenta como una doble cadena de nucleótidos, en la que las dos hebras están unidas entre sí por unas conexiones denominadas puentes de hidrógeno, el ADN de cadena sencilla presenta una única hebra. En la presente descripción, la expresión "molécula de ADN de cadena sencilla" y el término "aptámero" se usan indistintamente. La expresión "reconoce y se une específicamente", tal y como se emplea en la presente descripción, se refiere a la capacidad de ios aptámeros de la presente invención de interaccionar con un péptido, que preferiblemente forma parte del gluten de manera específica, es decir, de unirse con una determinada afinidad a dicha proteína y de no unirse a otras. Esta capacidad de los aptámeros de la invención de reconocer y unirse específicamente a gluten es similar a la de los anticuerpos. The term "single chain DNA molecule", as used herein, refers to a single strand of bound nucleotides, which in turn are each composed of a sugar, a nitrogen base and a Phosphate group. Unlike DNA that is presented as a double nucleotide chain, in which the two strands are linked together by connections called hydrogen bonds, single stranded DNA has a single strand. In the present description, the expression "single chain DNA molecule" and the term "aptamer" are used interchangeably. The term "specifically recognizes and binds", as used herein, refers to the ability of the aptamers of the present invention to interact with a peptide, which preferably forms part of gluten specifically, that is, , to join with a certain affinity to said protein and not to join others. This ability of aptamers of the invention to recognize and specifically bind gluten is similar to that of antibodies.
En la presente descripción, se entiende por gluten una proteína amorfa que se encuentra en la semilla de algunos cereales, como el trigo, el centeno, la cebada y la avena, combinada con almidón. El gluten representa un 80% de las proteínas del trigo. Cuando la harina de uno de estos cereales se mezcla con agua, dos proteínas del grano pertenecientes al grupo de las prolaminas, las gliadinas y las gluteninas, se unen para formar una red proteica llamada gluten. Esta proteína genera en una pequeña parte de la población una enfermedad llamada celiaquía, en la cual el sistema inmunológico responde dañando el intestino delgado de las personas que la ingieren al no poder digerirla. La gliadina parece ser la proteína que presenta el mayor problema en la enfermedad celiaca o intolerancia al gluten, es modificada por la transgíutaminasa y presentada por el alelo DQ2 del complejo mayor de histocompatibilidad. Esto hace que cada vez que se consuma un alimento con gluten se produzca una reacción inmunológica que deteriora progresivamente el intestino, pudiéndose además complicar con episodios de dermatitis herpetiforme y otras patologías neurológicas, reumáticas, etc. En una realización preferida del primer aspecto de la invención, la molécula de ADN de cadena sencilla reconoce y se une específicamente a gliadina, hordeína, secaüna o avenina. Preferiblemente, la molécula de ADN de cadena sencilla reconoce y se une específicamente a gliadina. Los autores de la presente invención han demostrado la capacidad de los aptámeros de la presente invención de reconocer y unir específicamente gliadina, como muestra el ejemplo 5 y la figura 4B. El término "g liad ¡na", tal y como se emplea en la presente descripción, se refiere a una prolamina que forma parte de !a porción proteica del gluten (soluble en etanol) de las semillas del trigo. Las prolaminas son proteínas que poseen grandes cantidades de prolina y ácido glutámico. Existen homólogos de la gliadina en la cebada (hordeína), el centeno (secalina) y algunas variedades de avena (avenina), lo que explica que dichos cereales puedan también provocar la enfermedad celiaca. In the present description, gluten is understood as an amorphous protein found in the seed of some cereals, such as wheat, rye, barley and oats, combined with starch. Gluten represents 80% of wheat proteins. When the flour of one of these cereals is mixed with water, two grain proteins belonging to the group of prolamines, gliadins and glutenins, combine to form a protein network called gluten. This protein generates in a small part of the population a disease called celiac disease, in which the immune system responds by damaging the small intestine of people who ingest it by not being able to digest it. Gliadin appears to be the protein that presents the greatest problem in celiac disease or gluten intolerance, is modified by transgutaminase and presented by the DQ2 allele of the major histocompatibility complex. This makes every time a food with gluten is consumed an immune reaction that progressively deteriorates the intestine, can also be complicated by episodes of dermatitis herpetiformis and other neurological, rheumatic diseases, etc. In a preferred embodiment of the first aspect of the invention, the single chain DNA molecule specifically recognizes and binds gliadin, hordein, secane or avenin. Preferably, the single chain DNA molecule specifically recognizes and binds to gliadin. The authors of the present invention have demonstrated the ability of the aptamers of the present invention to specifically recognize and bind gliadin, as shown in Example 5 and Figure 4B. The term "g liad na", as used herein, refers to a prolamine that is part of the protein portion of gluten (soluble in ethanol) of wheat seeds. Prolamines are proteins that have large amounts of proline and glutamic acid. There are homologues of gliadin in barley (hordein), rye (secalin) and some varieties of oats (avenin), which explains that such cereals can also cause celiac disease.
En una realización preferida del primer aspecto de la invención, la molécula de ADN de cadena sencilla es incapaz de reconocer y unir específicamente proteínas de maíz, soja o arroz. Preferiblemente, la molécula de ADN de cadena sencilla es incapaz de reconocer y unir específicamente proteínas de arroz. Los autores de la presente invención han demostrado que ios aptámeros de la presente invención son incapaces de unir y detectar proteínas de arroz, lo cual implica la ventaja de que no van a dar resultados de falsos positivos en ensayos de detección de gluten. In a preferred embodiment of the first aspect of the invention, the single chain DNA molecule is unable to recognize and specifically bind corn, soy or rice proteins. Preferably, the single chain DNA molecule is unable to recognize and specifically bind rice proteins. The authors of the present invention have shown that the aptamers of the present invention are unable to bind and detect rice proteins, which implies the advantage that they will not give false positive results in gluten detection assays.
En una realización preferida del primer aspecto de la invención, la molécula de ADN de cadena sencilla comprende la secuencia nucleotidica X-GTCT-Y, donde X comprende entre 3 y 29 nucleótidos e Y comprende entre 7 y 33 nucleótidos. Preferiblemente, la molécula de ADN de cadena sencilla comprende una secuencia nucleotidica que se selecciona de entre SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9 y SEQ ID NO: 10. Preferiblemente, dicha molécula se une a la secuencia aminoacídica SEQ ID NO: 1 con una constante de disociación KD igual o menor de 55 nM. In a preferred embodiment of the first aspect of the invention, the single stranded DNA molecule comprises the nucleotide sequence X-GTCT-Y, where X comprises between 3 and 29 nucleotides and Y comprises between 7 and 33 nucleotides. Preferably, the single stranded DNA molecule comprises a nucleotide sequence that is selected from SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9 and SEQ ID NO: 10. Preferably, said molecule binds to the amino acid sequence SEQ ID NO: 1 with a dissociation constant K D equal to or less than 55 nM .
En la presente descripción, se entiende por constante de disociación KD una constante que mide la afinidad con la que un ligando, en la presente invención la molécula de ADN de cadena sencilla, se une a una proteína, en la presente invención el gluten. La afinidad ligando-proteína depende de interacciones intermoleculares no covalentes entre dos moléculas como puentes de hidrógeno, interacciones electrostáticas, fuerzas de Van der Waals e hidrofóbicas. Cuanto menor sea la KD, mayor será la afinidad con la que el aptámero se una al péptido inmunotóxico contenido en el gluten. En una realización preferida del primer aspecto de la invención, la molécula de ADN de cadena sencilla comprende la secuencia nucleotídica SEQ ID NO: 2. In the present description, dissociation constant K D is understood as a constant that measures the affinity with which a ligand, in the present invention the single-stranded DNA molecule, binds to a protein, in the present invention gluten. The ligand-protein affinity depends on non-covalent intermolecular interactions between two molecules such as hydrogen bonds, electrostatic interactions, Van der Waals and hydrophobic forces. The lower the KD, the greater the affinity with which the aptamer binds to the immunotoxic peptide contained in gluten. In a preferred embodiment of the first aspect of the invention, the single stranded DNA molecule comprises the nucleotide sequence SEQ ID NO: 2.
En otra realización preferida del primer aspecto de la invención, la molécula de ADN de cadena sencilla comprende la secuencia nucleotídica SEQ ID NO: 7. In another preferred embodiment of the first aspect of the invention, the single stranded DNA molecule comprises the nucleotide sequence SEQ ID NO: 7.
En una realización preferida del primer aspecto de la invención, la molécula de ADN de cadena sencilla comprende además una molécula marcadora. Preferiblemente, la molécula marcadora se selecciona de entre un fluoróforo, una enzima, un péptido, una nanopartícula, una molécula electroactiva, una digoxigenina y una biotina. In a preferred embodiment of the first aspect of the invention, the single stranded DNA molecule further comprises a marker molecule. Preferably, the marker molecule is selected from a fluorophore, an enzyme, a peptide, a nanoparticle, an electroactive molecule, a digoxigenin and a biotin.
En la presente descripción, se entiende por molécula marcadora una molécula fácilmente detectable mediante distintos métodos, que puede por ejemplo tener receptores específicos o puede ser una enzima que cataliza una reacción detectable directa o indirectamente tras la adición de los correspondientes sustratos para la detección de la molécula de ADN de cadena sencilla de interés. In the present description, a marker molecule is understood as a molecule easily detectable by different methods, which can for example have specific receptors or it can be an enzyme that catalyzes a detectable reaction directly or indirectly after the addition of the corresponding substrates for the detection of the single chain DNA molecule of interest.
El término "fluoróforo", tal y como se emplea en la presente descripción, se refiere a un compuesto químico fluorescente que emite luz tras su excitación. Un fluoróforo unido a la molécula de ADN de cadena sencilla de interés permite por lo tanto su detección. En una realización preferida del primer aspecto de la invención, el fluoróforo se selecciona de entre fluoresceína, boro-dipirrometeno, cianina, naftaleno y rodamina y cualquiera de sus derivados. En una realización preferida del primer aspecto de la invención, la enzima se selecciona de entre peroxidasa, fosfatasa alcalina, DNAzimas y NADH deshidrogenasas. E! término "DNAzimas", tal y como se emplea en la presente descripción, se refiere a ácidos nucleicos con actividad catalítica que pueden generar con dicha actividad un mareaje detectable asociado a la presencia de dicha DNAzima. The term "fluorophore", as used herein, refers to a fluorescent chemical compound that emits light upon excitation. A fluorophore bound to the single stranded DNA molecule of interest therefore allows its detection. In a preferred embodiment of the first aspect of the invention, the fluorophore is selected from fluorescein, boron-dipyrromethene, cyanine, naphthalene and rhodamine and any of its derivatives. In a preferred embodiment of the first aspect of the invention, the enzyme is selected from peroxidase, alkaline phosphatase, DNAzymes and NADH dehydrogenases. AND! The term "DNAzymes", as used herein, refers to nucleic acids with catalytic activity that can generate with said activity a detectable marking associated with the presence of said DNAzyme.
En una realización preferida del primer aspecto de la invención, el péptido se selecciona de entre una polihistidina, un epítopo myc y un epítopo FLAG. Una polihistidina es un péptido de entre 2 y 12 histidinas, preferiblemente de 6 histidinas. Un epítopo myc es un péptido de 10 aminoácidos derivado del gen c- myc y que por ser altamente inmunogénico es fácilmente detectable mediante anticuerpos, como por ejemplo el anticuerpo monoclonal llamada 9E10 del Developmental Studies Hybrídoma Bank, Un epítopo FLAG es un octapéptido que también es altamente inmunogénico y por tanto fácilmente detectable mediante anticuerpos. Ambos epítopos son bien conocidos en el estado de la técnica. In a preferred embodiment of the first aspect of the invention, the peptide is selected from a polyhistidine, a myc epitope and a FLAG epitope. A polyhistidine is a peptide of between 2 and 12 histidines, preferably 6 histidines. A myc epitope is a 10 amino acid peptide derived from the c-myc gene and that because it is highly immunogenic it is easily detectable by antibodies, such as the monoclonal antibody called 9E10 from Developmental Studies Hybridoma Bank, A FLAG epitope is also an octapeptide that is also highly immunogenic and therefore easily detectable by antibodies. Both epitopes are well known in the state of the art.
En una realización preferida del primer aspecto de la invención, la nanopartícula se selecciona de entre una nanopartícula metálica, nanopartícula semiconductora y micro o nanopartícula magnética. El término "nanopartícula metálica", tal y como se emplea en la presente descripción, se refiere a un nanoobjeto con sus tres dimensiones en la nanoescala (entre 1 y 100 nm), formada por oro, plata, platino u otros metales, que unida a la molécula de ADN de cadena sencilla de interés permite su detección a través de sus propiedades ópticas, electroquímicas o catalíticas. In a preferred embodiment of the first aspect of the invention, the nanoparticle is selected from a metal nanoparticle, semiconductor nanoparticle and magnetic micro or nanoparticle. The term "metal nanoparticle", as used in the present description, refers to a nano-object with its three dimensions in the nanoscale (between 1 and 100 nm), formed by gold, silver, platinum or other metals, which together The single-stranded DNA molecule of interest allows its detection through its optical, electrochemical or catalytic properties.
El término "inmovilizado", tal y como se utiliza en la presente invención, se refiere a que el péptido 33-mer, la proteína inmunógena o la molécula de ADN de cadena sencilla de la invención pueden estar unidos a un soporte sin perder su actividad. El soporte puede ser la superficie de una placa de microtitulación, superficies de materiales conductores, micro y nanopartícuias magnéticas, soportes de vidrio, partículas de látex, nanotubos de carbono, entre otras. El término "nanopartícula semiconductora", tal y como se emplea en la presente descripción, se refiere a un nanoobjeto con sus tres dimensiones en la nanoescala de material semiconductor, como por ejemplo sulfuras, seleniuros y telururos de Cd, Zn o Pb, que unido a la molécula de ADN de cadena sencilla de interés permite su detección mediante sus propiedades ópticas o electroquímicas. The term "immobilized", as used in the present invention, refers to the fact that the 33-mer peptide, the immunogenic protein or the single stranded DNA molecule of the invention can be attached to a support without losing its activity. . The support can be the surface of a microtiter plate, surfaces of conductive materials, micro and magnetic nanoparticles, glass supports, latex particles, carbon nanotubes, among others. The term "semiconductor nanoparticle", as used herein, refers to a nanoobject with its three dimensions in the nanoscale of semiconductor material, such as sulfides, selenides and tellurides of Cd, Zn or Pb, which together The single stranded DNA molecule of interest allows its detection by its optical or electrochemical properties.
El término "micro o nanopartícula magnética", tal y como se emplea en la presente descripción, se refiere a una partícula microscópica con propiedades magnéticas, que unida a la molécula de ADN de cadena sencilla de interés permite su detección mediante el cambio en las propiedades ópticas que tienen lugar tras la unión entre la proteína y la cadena de ADN así marcada. En la presente invención dicha nanopartícula se utiliza para la detección como molécula marcadora y también como soporte sólido para la inmovilización de la molécula de ADN de cadena sencilla, del péptido 33-mer o de la proteína inmunógena (gliadina o gluten). The term "micro or magnetic nanoparticle", as used in the present description, refers to a microscopic particle with magnetic properties, which together with the single stranded DNA molecule of interest allows its detection by changing the properties optics that take place after the union between the protein and the DNA chain so marked. In the present invention said nanoparticle is used for detection as a marker molecule and also as a solid support for the immobilization of the single-stranded DNA molecule, 33-mer peptide or immunogenic protein (gliadin or gluten).
En una realización preferida del primer aspecto de la invención, la molécula electroactiva se selecciona de entre azul de metileno, ferroceno, antraquinona y tionina, y cualquiera de sus derivados, entre otras. In a preferred embodiment of the first aspect of the invention, the electroactive molecule is selected from methylene blue, ferrocene, anthraquinone and thionine, and any of its derivatives, among others.
El término molécula electroactiva, tal y como se emplea en la presente descripción, se refiere a una molécula que puede oxidarse o reducirse dentro de la ventana de potencial de un material electródico y que, por tanto, su presencia puede ser detectada mediante técnicas electroquímicas faradaicas bien conocidas en el estado de la técnica. The term "electroactive molecule", as used in the present description, refers to a molecule that can be oxidized or reduced within the potential window of an electrode material and, therefore, its presence can be detected by faradic electrochemical techniques. well known in the state of the art.
En una realización preferida del primer aspecto de la invención, la molécula marcadora es biotina. La biotina es también conocida como vitamina H y es una molécula muy usada en biotecnología para marcar otras moléculas, por lo que se conoce como biotinilación. Las proteínas avidina y estreptavidina se unen con una altísima afinidad y especificidad a la biotina, por lo que dicha molécula es un buen marcador. En una realización preferida del primer aspecto de la invención, la molécula marcadora es digoxigenina. La digoxigenina es un hapteno y puede conjugarse a las moléculas de ADN de cadena sencilla de la presente invención como marcador de las mismas, ya que puede ser detectado fácilmente mediante anticuerpos específicos anti-digoxigenina. In a preferred embodiment of the first aspect of the invention, the marker molecule is biotin. Biotin is also known as vitamin H and is a molecule widely used in biotechnology to label other molecules, which is why it is known as biotinylation. The avidin and streptavidin proteins bind with a very high affinity and specificity to biotin, so that this molecule is a good marker. In a preferred embodiment of the first aspect of the invention, the marker molecule is digoxigenin. Digoxigenin is a hapten and can be conjugated to the single-stranded DNA molecules of the present invention as a marker thereof, since it can be easily detected by specific anti-digoxigenin antibodies.
En una realización preferida del primer aspecto de la invención, la molécula de ADN de cadena sencilla comprende un cebador en cada uno de sus extremos para su detección mediante PCR. In a preferred embodiment of the first aspect of the invention, the single stranded DNA molecule comprises a primer at each of its ends for detection by PCR.
En la presente descripción, se entiende por cebador una cadena de ácido nucleico que sirve como punto de partida para la amplificación de ADN. Es una secuencia corta de ácido nucleico que contiene un grupo 3' hidroxilo libre que forma pares de bases complementarios a la hebra molde y actúa como punto de inicio para la adición de nucleótidos con el fin de copiar y amplificar la hebra molde. En la presente invención los cebadores se unen a los extremos de la molécula de ADN de cadena sencilla para su amplificación y detección mediante PCR. Los cebadores pueden estar marcados con biotina o el fluoróforo 6- carboxilfuoresceína (6-FAM), o sin marcar. In the present description, "primer" means a nucleic acid chain that serves as a starting point for DNA amplification. It is a short nucleic acid sequence that contains a free 3 'hydroxyl group that forms base pairs complementary to the template strand and acts as a starting point for the addition of nucleotides in order to copy and amplify the template strand. In the present invention the primers are attached to the ends of the single stranded DNA molecule for amplification and detection by PCR. The primers can be labeled with biotin or the fluorophore 6- carboxyfluorescein (6-FAM), or unlabeled.
En la presente descripción, se entiende por PCR la reacción en cadena de la polimerasa. Es una técnica de biología molecular cuyo objetivo es obtener un gran número de copias de un fragmento de ADN particular, partiendo de un mínimo. Esta técnica se fundamenta en la propiedad natural de los ADN polimerasas para replicar hebras de ADN partiendo de cebadores que se unen en los extremos de las hebras, para lo cual emplea ciclos de altas y bajas temperaturas alternadas para separar las hebras de ADN recién formadas entre sí tras cada fase de replicación y la unión del cebador y, a continuación, dejar que vuelvan a unirse las polimerasas para que vuelvan a duplicarlas. En la presente invención la PCR se emplea para la amplificación y posterior detección de la molécula de ADN de cadena sencilla unida al gluten, péptido 33-mer, péptido recombinante 33-mer o péptido control. Existen varios tipos de PCR como la PCR a tiempo real, PCR- ELISA o PCR-ELOSA. La principal característica de la PCR a tiempo real o cuantitativa es que permite cuantificar la cantidad de ADN presentes en la muestra original o identificar con una muy alta probabilidad, muestras de ADN específicas a partir de su temperatura de fusión. La PCR-ELISA (reacción en cadena de polimerasa - ensayo por inmunoabsorción ligado a enzimas) es una técnica híbrida entre PCR y ELISA para la cuantificación de productos de ADN. En este ensayo los productos de PCR están marcados con una biotina y con un hapteno para permitir su captura sobre superficies con (estrept)avidina y posterior cuantificación usando un anticuerpo contra el hapteno conjugado con una enzima. La PCR-ELOSA es una técnica muy similar a la PCR-ELISA, en la que los productos de PCR sólo están marcados con el hapteno, de manera que se hibridan con una sonda de captura inmovilizada y se cuantifica mediante la utilización de un anticuerpo contra dicho hapteno conjugado con un enzima. In the present description, PCR is understood as the polymerase chain reaction. It is a molecular biology technique whose objective is to obtain a large number of copies of a particular DNA fragment, starting from a minimum. This technique is based on the natural property of DNA polymerases to replicate strands of DNA from primers that bind at the ends of the strands, for which it uses cycles of alternating high and low temperatures to separate newly formed strands of DNA between yes after each phase of replication and primer binding and then allow the polymerases to rejoin to duplicate them again. In the present invention the PCR is used for amplification and subsequent detection of the single-stranded DNA molecule linked to gluten, 33-mer peptide, 33-mer recombinant peptide or control peptide There are several types of PCR such as real-time PCR, PCR-ELISA or PCR-ELOSA. The main characteristic of real-time or quantitative PCR is that it allows quantifying the amount of DNA present in the original sample or identifying, with a very high probability, specific DNA samples from their melting temperature. PCR-ELISA (polymerase chain reaction - enzyme-linked immunoabsorption assay) is a hybrid technique between PCR and ELISA for the quantification of DNA products. In this assay the PCR products are labeled with a biotin and with a hapten to allow their capture on surfaces with (strept) avidin and subsequent quantification using an antibody against the hapten conjugated to an enzyme. PCR-ELOSA is a technique very similar to PCR-ELISA, in which PCR products are only labeled with the hapten, so that they hybridize with an immobilized capture probe and quantify by using an antibody against said hapten conjugated with an enzyme.
En una realización preferida del primer aspecto de la invención, al menos un enlace fosfodiéster de la molécula de ADN de cadena sencilla contiene al menos un oxigeno (O) sustituido por un azufre (S). La expresión "enlace fosfodiéster", tal y como se emplea en la presente descripción, se refiere a un enlace covalente que se produce entre un grupo hidroxilo (OH ) en el carbono 3' y un grupo fosfato (PO4 3~) en el carbono 5' del azúcar ribosa de los nucleótidos de la molécula de ADN de cadena sencilla, formándose así un doble enlace éster. Para mejorar la resistencia de los aptámeros frente a la degradación por nucleasas, se incluyen en la presente invención aptámeros modificados, en los cuales se ha sustituido al menos uno de los átomos de oxígeno que participan en el enlace fosfodiéster, por un átomo de azufre. En un segundo aspecto, la presente invención se refiere a un kit para la detección de gluten caracterizado por que comprende al menos una molécula de ADN de cadena sencilla del primer aspecto de la invención. Preferiblemente, dicho kit además comprende un soporte sólido. Más preferiblemente, la molécula de ADN de cadena sencilla está anclada al soporte sólido. En una realización preferida, el kit comprende al menos dos aptámeros, uno de captura y otro de detección. En una realización preferida, el kit además comprende el péptido con SEQ ID NO: 1 o gliadina o gluten, anclado al soporte sólido. Un kit de este tipo permitiría llevar a cabo un ensayo ELISA competitivo, que consistiría en la competición entre el gluten presente en la correspondiente muestra y el péptido SEQ ID NO: 1 inmovilizado sobre soportes sólidos por una cantidad fija y limitada de aptámero en disolución previamente marcado y/o modificado como se ha descrito arriba. In a preferred embodiment of the first aspect of the invention, at least one phosphodiester bond of the single stranded DNA molecule contains at least one oxygen (O) substituted by a sulfur (S). The term "phosphodiester bond", as used herein, refers to a covalent bond that occurs between a hydroxyl group (OH) in the 3 'carbon and a phosphate group (PO 4 3 ~ ) in the 5 'carbon of the ribose sugar of the nucleotides of the single stranded DNA molecule, thus forming a double ester bond. To improve the resistance of aptamers against degradation by nucleases, modified aptamers are included in the present invention, in which at least one of the oxygen atoms participating in the phosphodiester bond has been replaced by a sulfur atom. In a second aspect, the present invention relates to a kit for the detection of gluten characterized in that it comprises at least one single stranded DNA molecule of the first aspect of the invention. Preferably, said kit It also includes a solid support. More preferably, the single chain DNA molecule is anchored to the solid support. In a preferred embodiment, the kit comprises at least two aptamers, one for capture and one for detection. In a preferred embodiment, the kit further comprises the peptide with SEQ ID NO: 1 or gliadin or gluten, anchored to the solid support. Such a kit would allow a competitive ELISA to be carried out, which would consist of the competition between the gluten present in the corresponding sample and the SEQ ID NO: 1 peptide immobilized on solid supports for a fixed and limited quantity of aptamer in solution previously marked and / or modified as described above.
Preferiblemente, dicho kit comprende además un anticuerpo que reconoce y se une específicamente a gluten. El gluten tiene varias repeticiones de la SEQ ID NO: 1 , es decir, tiene varios sitios de unión por los que tanto los aptámeros de la invención como un anticuerpo específico podrían unirse al mismo tiempo. Por tanto, más de un aptámero o uno o va os aptámeros y uno o varios anticuerpos podrían usarse de manera combinada para la separación y/o detección de gluten. Preferably, said kit further comprises an antibody that specifically recognizes and binds gluten. Gluten has several repetitions of SEQ ID NO: 1, that is, it has several binding sites whereby both the aptamers of the invention and a specific antibody could bind at the same time. Therefore, more than one aptamer or one or several aptamers and one or more antibodies could be used in combination for the separation and / or detection of gluten.
El kit de la invención pueden comprender además, sin ningún tipo de limitación, anticuerpos primarios conjugados o no conjugados, péptidos, cebadores marcados o sin marcar, tampones, anticuerpos secundarios conjugados, proteínas o péptidos patrones, agentes para prevenir la contaminación, compuestos marcadores, aunque sin limitarnos, fluorocromos, etc. Por otro lado, el kit de la invención puede incluir todos los soportes y recipientes necesarios para su puesta en marcha y optimización. El kit de la invención pueden contener además otras proteínas o péptidos que sirvan como controles positivos y negativos. Preferiblemente, este kit comprende además las instrucciones para llevar a cabo la detección y/o cuantificación de la molécula de ADN de cadena sencilla de la invención. The kit of the invention may further comprise, without any limitation, conjugated or unconjugated primary antibodies, peptides, labeled or unlabeled primers, buffers, conjugated secondary antibodies, proteins or standard peptides, agents to prevent contamination, marker compounds, although not limited, fluorochromes, etc. On the other hand, the kit of the invention can include all the supports and containers necessary for its implementation and optimization. The kit of the invention may also contain other proteins or peptides that serve as positive and negative controls. Preferably, this kit further comprises instructions for carrying out the detection and / or quantification of the single stranded DNA molecule of the invention.
E! término "anticuerpo", tal como se emplea en esta memoria, se refiere a moléculas de inmunoglobulinas y porciones inmunológicamente activas de moléculas de inmunoglobulinas, es decir, moléculas que contienen un sitio de fijación de antígeno que se une específicamente (inmunorreacciona) con la proteína gluten, con alguno de sus fragmentos o con otras moléculas indicadoras utilizadas en el proceso de detección. AND! term "antibody", as used herein, refers to immunoglobulin molecules and immunologically active portions of immunoglobulin molecules, that is, molecules that contain an antigen binding site that specifically binds (immunoreacts) with the gluten protein, with any of its fragments or with other indicator molecules used in the detection process.
En un tercer aspecto, la presente invención se refiere a un uso de la molécula de ADN de cadena sencilla del primer aspecto de la invención o del kit de! segundo aspecto de la invención, para la detección del gluten. Como se demuestra en los ejemplos y figuras de la presente descripción, los aptámeros de la invención han probado ser útiles en la detección específica del gluten. In a third aspect, the present invention relates to a use of the single stranded DNA molecule of the first aspect of the invention or of the kit! second aspect of the invention, for the detection of gluten. As demonstrated in the examples and figures of the present description, the aptamers of the invention have proven useful in the specific detection of gluten.
En un cuarto aspecto, la presente invención se refiere a un método de detección del gluten que comprende las siguientes etapas: In a fourth aspect, the present invention relates to a gluten detection method comprising the following steps:
a) poner en contacto una molécula de ADN de cadena sencilla del primer aspecto de la invención con una muestra problema; y  a) contacting a single stranded DNA molecule of the first aspect of the invention with a test sample; Y
b) detectar la presencia del complejo formado por dicha molécula y el gluten de la muestra problema en la etapa (a).  b) detect the presence of the complex formed by said molecule and the gluten of the test sample in step (a).
Se entiende por "muestra problema" cualquier muestra, ya sea una muestra alimentaria o de otro tipo, susceptible de contener gluten o fragmentos derivados del gluten que puedan provocar la intolerancia en un individuo celiaco. "Problem sample" means any sample, be it a food or other sample, capable of containing gluten or gluten-derived fragments that may cause intolerance in a celiac individual.
En una realización preferida del cuarto aspecto de la invención, la etapa (a) se lleva a cabo en disolución. In a preferred embodiment of the fourth aspect of the invention, step (a) is carried out in solution.
En una realización preferida del cuarto aspecto de la invención, la etapa (a) se lleva a cabo en un soporte sólido. In a preferred embodiment of the fourth aspect of the invention, step (a) is carried out on a solid support.
En una realización preferida del cuarto aspecto de la invención, la etapa (b) se lleva a cabo mediante PCR. En una realización preferida del cuarto aspecto de la invención, la etapa (b) se lleva a cabo mediante un aptaensayo. El término "aptaensayo", tal y como se emplea en la presente descripción, se refiere a ensayos de unión donde la molécula receptora que enlaza al gluten es una cadena de ADN sencilla o aptámero de forma completamente análoga a los inmunoensayos donde la molécula receptora es un anticuerpo. Por analogía con los inmunoensayos, en este término se incluyen toda la variedad de formatos conocidos para los inmunoensayos, sin más que sustituir anticuerpo por aptámero. En una realización preferida del cuarto aspecto de la invención, la etapa (b) se lleva a cabo mediante un inmunoensayo. Preferiblemente, dicho inmunoensayo se selecciona de entre westem blot, dot blot o ELISA. Más preferiblemente, dicho inmunoensayo es un ELISA. Los aptámeros de la presente invención pueden ser usados para capturar, concentrar y/o detectar gluten en disolución o anclados sobre superficies sólidas. Por ejemplo, para capturar y/o preconcentrar gluten se podrían usar los aptámeros biotinilados conjugados a un soporte sólido que contenga estreptavidina o alguna de sus variantes (micropartículas magnéticas, placas de microtitulación, etc) que permita su separación de la matriz que contenga el gluten. In a preferred embodiment of the fourth aspect of the invention, step (b) is carried out by PCR. In a preferred embodiment of the fourth aspect of the invention, step (b) is carried out by means of an aptaassay. The term "aptaassay", as used herein, refers to binding assays where the receptor molecule that binds to gluten is a single DNA chain or aptamer completely analogous to immunoassays where the receptor molecule is an antibody By analogy with immunoassays, this term includes all the variety of known formats for immunoassays, with no more than substituting antibody for aptamer. In a preferred embodiment of the fourth aspect of the invention, step (b) is carried out by an immunoassay. Preferably, said immunoassay is selected from westem blot, dot blot or ELISA. More preferably, said immunoassay is an ELISA. The aptamers of the present invention can be used to capture, concentrate and / or detect gluten in solution or anchored on solid surfaces. For example, to capture and / or preconcentrate gluten, biotinylated aptamers conjugated to a solid support containing streptavidin or any of its variants (magnetic microparticles, microtiter plates, etc.) could be used to allow separation of the matrix containing gluten. .
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Los siguientes ejemplos y figuras se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención. BREVE DESCRIPCIÓN DE LAS FIGURAS Throughout the description and the claims the word "comprises" and its variants are not intended to exclude other technical characteristics, additives, components or steps. For those skilled in the art, other objects, advantages and features of the invention will be derived partly from the description and partly from the practice of the invention. The following examples and figures are provided by way of illustration, and are not intended to be limiting of the present invention. BRIEF DESCRIPTION OF THE FIGURES
FIG. 1. A) Representación de la concentración de aptámeros de cada ciclo de selección que no se enlazan (gris oscuro) y que se enlazan (gris claro) al péptido con SEQ ID NO: 1 tras su interacción con el mismo durante 10 min en BS (tampón de enlace) obtenidas por fluorescencia. B) Evolución del porcentaje de enriquecimiento en secuencias de ADN de afinidad hacia el péptido con SEQ ID NO: 1 con las sucesivas rondas de selección. FIG. 2. Estructura secundaria más estable de los aptámeros con A) SEQ ID NO: 2, B) SEQ ID NO: 5, C) SEQ ID NO: 7, D) SEQ ID NO: 8, E) SEQ ID NO: 9 y F) SEQ ID NO: 10, obtenidos mediante el servidor en red (mfold) de acceso libre, alojado por "The RNA Institute, College of Arts and Sciences, State University of New York at Albany". FIG. 1. A) Representation of the concentration of aptamers of each selection cycle that do not bind (dark gray) and that bind (light gray) to the peptide with SEQ ID NO: 1 after interaction with it for 10 min in BS (binding buffer) obtained by fluorescence. B) Evolution of the enrichment percentage in DNA sequences of affinity towards the peptide with SEQ ID NO: 1 with the successive rounds of selection. FIG. 2. More stable secondary structure of aptamers with A) SEQ ID NO: 2, B) SEQ ID NO: 5, C) SEQ ID NO: 7, D) SEQ ID NO: 8, E) SEQ ID NO: 9 and F) SEQ ID NO: 10, obtained through the open-access network server (mfold), hosted by "The RNA Institute, College of Arts and Sciences, State University of New York at Albany".
FIG. 3. Valoración calorimétrica de 33,4 μΜ del aptámero con SEQ ID NO: 2 con 0,338 mM del péptido con SEQ ID NO: 1 en BS (50 mM TRIS pH 7,4+0,25 M NaCI+5 mM MgCI2) a 15 °C (A) y 35 °C (B). Gráficas superiores: Potencia en función del tiempo obtenida tras cada adición de péptido. Gráficas inferiores: Valores integrados de la variación de calor en cada adición tras la corrección con el calor de dilución. FIG. 3. Calorimetric evaluation of 33.4 μΜ of the aptamer with SEQ ID NO: 2 with 0.338 mM of the peptide with SEQ ID NO: 1 in BS (50 mM TRIS pH 7.4 + 0.25 M NaCI + 5 mM MgCI 2 ) at 15 ° C (A) and 35 ° C (B). Superior graphics: Power as a function of time obtained after each peptide addition. Lower graphs: Integrated values of heat variation in each addition after correction with dilution heat.
FIG. 4. Curvas de enlace de los aptámeros con SEQ ID NO: 2, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9 y SEQ ID NO: 10 a partículas magnéticas modificadas A) con el péptido con SEQ ID NO: 1 B) con el estándar de gliadina PWG (Prolamin Working Group). FIG. 4. Link curves of aptamers with SEQ ID NO: 2, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9 and SEQ ID NO: 10 to modified magnetic particles A) with the peptide with SEQ ID NO: 1 B) with the gliadin standard PWG (Prolamin Working Group).
FIG. 5. Curvas de enlace de los aptámeros con SEQ ID NO: 2, SEQ ID NO: 5, SEQ ID NO: 7 y SEQ ID NO: 8 a partículas magnéticas modificadas con extractos etanólicos de harina de A) centeno (en porcentaje de fracción enlazada) y B) avena (en intensidad de corriente). EJEMPLOS FIG. 5. Bonding curves of aptamers with SEQ ID NO: 2, SEQ ID NO: 5, SEQ ID NO: 7 and SEQ ID NO: 8 to magnetic particles modified with ethanol extracts of A) rye flour (as a percentage of fraction linked) and B) oatmeal (current intensity). EXAMPLES
A continuación se ilustrará la invención mediante unos ensayos realizados por los inventores, que pone de manifiesto la eficacia de los aptámeros de la invención y del método de detección de gluten de la invención. The invention will now be illustrated by tests carried out by the inventors, which demonstrates the efficacy of the aptamers of the invention and the gluten detection method of the invention.
Ejemplo 1 : Obtención de aptámeros para el péptido con SEQ ID NO: 1 de la a-2- gliadina. Example 1: Obtaining aptamers for the peptide with SEQ ID NO: 1 of a-2- gliadin.
Materiales materials
La diana seleccionada, el péptido con SEQ ID NO: 1 , se obtuvo mediante técnicas de ADN recombinante. A partir de un oligonucleotido sintético (SEQ ID NO: 20) obtenido en Sigma-Genosys con la secuencia que codifica para los 33 aminoácidos que van desde la posición 57 a la 89 de la gliadina (Gen Bank, número de acceso AJ133612.1) y los cebadores directo (SEQ ID NO: 11) e inverso (SEQ ID NO: 12), se obtuvieron múltiples copias por PCR. El péptido recombinante fue obtenido tras clonar este producto de PCR y expresarlo en el sistema pETBIue-2, siguiendo las instrucciones del fabricante (Novagen), por el cual se le añade una cola de histidinas. Para la purificación del péptido con la cola de histidinas (SEQ !D NO: 13) se utilizó una columna HisTrap FF de 1 mL en un equipo AKTA FPLC (GE Healthcare). Para la contraselección se empleó la cola de histidinas (péptido control, SEQ ID NO: 14) obtenida con el sistema pETBIue-2. La colección de secuencias de ADN de 80 nucleótidos fue diseñada de forma que su secuencia general corresponde a la SEQ ID NO: 15. La colección fue sintetizada y purificada por PAGE por Sigma-Genosys. Las secuencias de los cebadores empleados en la etapa de amplificación por PCR corresponden a SEQ ID NO: 16 (cebador directo) y SEQ ID NO: 17 (cebador inverso biotinilado). Para cada ronda se emplearon micropartículas magnéticas (MagneHis™ Ni particles, de Promega, USA) modificadas con el péptido diana o con el control. El protocolo de modificación consistió en equilibrar las partículas en tampón de modificación (B , 100 mM HEPES pH 7,5+10 mM imidazol+0,5 M NaCI). Después se incubaron con péptido con SEQ ID NO: 1 o con péptido control con SEQ ID NO. 14 en concentración comprendida entre 0,25 y 1 pg/pL en BM durante 15 min con rotación a temperatura ambiente. Tras decantar y lavar 2 veces con BM + 0,01% Tween-20 y 1 vez con tampón de enlace (BS: 50 mM TRIS pH 7,4+0,25 M NaCI+5 mM MgCk), las partículas magnéticas modificadas fueron diluidas a 5 pmol de diana/pL en BS. Procedimiento The selected target, the peptide with SEQ ID NO: 1, was obtained by recombinant DNA techniques. From a synthetic oligonucleotide (SEQ ID NO: 20) obtained in Sigma-Genosys with the sequence coding for the 33 amino acids ranging from position 57 to 89 of gliadin (Gen Bank, accession number AJ133612.1) and the direct (SEQ ID NO: 11) and reverse (SEQ ID NO: 12) primers, multiple copies were obtained by PCR. The recombinant peptide was obtained after cloning this PCR product and expressing it in the pETBIue-2 system, following the manufacturer's instructions (Novagen), whereby a histidine tail is added. For the purification of the peptide with the histidine tail (SEQ! D NO: 13) a 1 mL HisTrap FF column was used in an AKTA FPLC equipment (GE Healthcare). For the counter-selection the histidine tail (control peptide, SEQ ID NO: 14) obtained with the pETBIue-2 system was used. The 80 nucleotide DNA sequence collection was designed so that its general sequence corresponds to SEQ ID NO: 15. The collection was synthesized and purified by PAGE by Sigma-Genosys. The sequences of the primers used in the PCR amplification step correspond to SEQ ID NO: 16 (direct primer) and SEQ ID NO: 17 (biotinylated reverse primer). Magnetic microparticles (MagneHis ™ Ni particles, from Promega, USA) modified with the target peptide or with the control were used for each round. The protocol Modification consisted of balancing the particles in modification buffer (B, 100 mM HEPES pH 7.5 + 10 mM imidazole + 0.5 M NaCI). They were then incubated with peptide with SEQ ID NO: 1 or with control peptide with SEQ ID NO. 14 in concentration between 0.25 and 1 pg / pL on BM for 15 min with rotation at room temperature. After decanting and washing twice with BM + 0.01% Tween-20 and 1 time with binding buffer (BS: 50 mM TRIS pH 7.4 + 0.25 M NaCI + 5 mM MgCk), the modified magnetic particles were diluted to 5 pmol of target / pL in BS. Process
Para cada ronda de selección se usaron 250 pmoles de la colección de ADN seleccionada y amplificada en la ronda anterior (1 nmol de la colección inicial en la primera ronda para asegurar una variedad de secuencias de 5x1014-1x1015 moléculas) diluidos en BS. Se calentaron a 98 °C durante 4 min e inmediatamente se enfriaron en hielo otros 4 min. El medio de selección consistió en BS al que se le añadió 1 pg/mL de BSA (albúmina de suero bovino) para evitar uniones inespecíficas y un ARN transferente competidor en una concentración 10 veces inferior a la de la colección de ADN. En este medio se pusieron en contacto las moléculas de ADN con una concentración de péptido (péptido con SEQ ID NO: 1 o péptido control con SEQ ID NO: 14 en las contraselecciones) 10 veces inferior a la de ADN para limitar la cantidad de diana y favorecer la competición. Tras un tiempo de incubación que fue disminuyendo progresivamente en las rondas sucesivas según la tabla 1 , se hicieron varios lavados en BS+0,01 Tween-20 (ver tabla 1). For each round of selection 250 pmoles of the DNA collection selected and amplified in the previous round (1 nmol of the initial collection in the first round were used to ensure a variety of sequences of 5x10 14 -1x10 15 molecules) diluted in BS. They were heated at 98 ° C for 4 min and immediately cooled on ice another 4 min. The selection medium consisted of BS to which 1 pg / mL of BSA (bovine serum albumin) was added to avoid nonspecific binding and a competing transfer RNA at a concentration 10 times lower than that of the DNA collection. In this medium the DNA molecules were contacted with a concentration of peptide (peptide with SEQ ID NO: 1 or control peptide with SEQ ID NO: 14 in the counterselections) 10 times lower than that of DNA to limit the amount of target and favor the competition. After an incubation time that was progressively decreasing in successive rounds according to Table 1, several washes were done in BS + 0.01 Tween-20 (see table 1).
Finalmente se eluyó el complejo ADN-péptido incubando las partículas en 100 mM HEPES pH 7,5+500 mM imidazol (BME) durante 10 min bajo agitación. El eluato fue transferido a tubos de PCR para proceder a su amplificación. Cada 100 μ!_ de PCR contenía: 2 μΙ_ de molde (eluato), 1 μΜ de cada cebador (SEQ ID NO: 16 y SEQ ID NO: 17), 0,2 mM de dNTP, 3 mM de Mg2+, 1x buffer PCR y 2,8 U de inmolase DNA polymerase (Disbiotec). Las condiciones de PCR fueron: incubación inicial a 37 °C durante 10 min, 20 min a 95 °C para activar la enzima y 15 ciclos de 94 °C- 57 °C- 72 °C durante 45 s cada uno. La extensión final fue realizada a 72 °C durante 10 min. La amplificación fue confirmada por electroforesis en gel de agarosa al 2%. La cuantificación del ADN de cadena doble amplificado se realizó fluorimétricamente con un "MiniFluorímetro" modelo TBS-380 de la casa Turner Biosystems. La obtención de la hebra de ADN de cadena simple se logró usando partículas magnéticas modificadas con estreptavidina (Dynabeads® MyOne™ Streptavidin C1 , Life Technologies, Madrid). Estas partículas se pusieron en contacto con el ADN durante 15 min a temperatura ambiente y bajo rotación tras lo cual, se procedió a la separación de las hebras por incubación en NaOH 100 mM durante 10 min bajo agitación. El sobrenadante resultante contiene el ADN de cadena simple que se emplea en la siguiente ronda. Finally, the DNA-peptide complex was eluted by incubating the particles in 100 mM HEPES pH 7.5 + 500 mM imidazole (BME) for 10 min under stirring. The eluate was transferred to PCR tubes for amplification. Each 100 μ! _ Of PCR contained: 2 μΙ_ of template (eluate), 1 μΜ of each primer (SEQ ID NO: 16 and SEQ ID NO: 17), 0.2 mM dNTP, 3 mM Mg 2+ , 1x PCR buffer and 2.8 U of immolase DNA polymerase (Disbiotec). The PCR conditions were: initial incubation at 37 ° C for 10 min, 20 min at 95 ° C to activate the enzyme and 15 cycles of 94 ° C- 57 ° C- 72 ° C for 45 s each. The final extension was performed at 72 ° C for 10 min. The amplification was confirmed by 2% agarose gel electrophoresis. Quantification of the amplified double-stranded DNA was fluorometrically performed with a "MiniFluorimeter" model TBS-380 from the Turner Biosystems house. Obtaining the single strand DNA strand was achieved using streptavidin modified magnetic particles (Dynabeads® MyOne ™ Streptavidin C1, Life Technologies, Madrid). These particles were contacted with the DNA for 15 min at room temperature and under rotation after which, the strands were separated by incubation in 100 mM NaOH for 10 min under stirring. The resulting supernatant contains the single stranded DNA that is used in the next round.
Tabla 1. Condiciones experimentales variables empleadas en las sucesivas rondas de la selección. Table 1. Variable experimental conditions used in the successive rounds of the selection.
Figure imgf000022_0001
Figure imgf000022_0001
Antes de las rondas 3, 6 y 9 se procedió a hacer una contraselección incubando el ADN de la ronda anterior con partículas magnéticas modificadas con el péptido control con SEQ ID NO: 14 en las mismas condiciones que con el péptido con SEQ ID NO: 1 , pero en este caso se desecharon las partículas y se usó el sobrenadante en la correspondiente ronda de selección. Before rounds 3, 6 and 9, a counter-selection was made by incubating the DNA of the previous round with magnetic particles modified with the control peptide with SEQ ID NO: 14 under the same conditions as with the peptide with SEQ ID NO: 1, but in this case the particles were discarded and the supernatant was used in the corresponding selection round.
Tras 10 rondas de selección, el 12,8% del ADN seleccionado fue capaz de unirse al péptido recombinante, mientras que no se detectaron secuencias que se uniesen al péptido control. El porcentaje de unión se determinó con alícuotas de cada ciclo amplificadas por PCR en las mismas condiciones experimentales que en cada ciclo salvo que se empleó un cebador directo con SEQ ID NO: 16 marcado con 6-FAM (SEQ ID NO: 18). La hebra marcada con 6-FAM fue separada de la marcada con biotina de manera idéntica a la separación de hebras previa a cada ronda y su concentración fue determinada fluorimétricamente (Biotek Instrument flx800) frente a un calibrado realizado con secuencias aleatorias de ADN-6-FAM de concentración conocida empleando una λ de excitación de 480 nm y una λ de emisión de 528 nm. After 10 rounds of selection, 12.8% of the selected DNA was able to bind to the recombinant peptide, while no sequences that bound to the control peptide were detected. The percentage of binding was determined with aliquots of each cycle amplified by PCR under the same experimental conditions as in each cycle except that a direct primer with SEQ ID NO: 16 labeled with 6-FAM (SEQ ID NO: 18) was used. The 6-FAM-labeled strand was separated from the biotin-labeled strand identically to the strand separation prior to each round and its concentration was determined fluorimetrically (Biotek Instrument flx800) versus a calibration performed with random DNA-6- sequences. FAM of known concentration using an excitation λ of 480 nm and an emission λ of 528 nm.
El ensayo de unión se realizó poniendo en contacto cantidades equ ¡molares de ADN-6-FAM de cada ciclo y péptido recombinante (SEQ ID NO: 13) inmovilizados sobre partículas magnéticas (15 pmoles) durante 10 minutos en BS. La fracción no enlazada se recogió y tras 2 lavados en BS + 0,01% Tween-20, se eluyeron los aptámeros enlazados en B E durante 10 min bajo agitación, obteniendo así la fracción enlazada. Ambas fracciones fueron analizadas fluorimétricamente (figura 1A), observándose una progresiva disminución de la fracción no enlazada con los ciclos simultáneamente a un aumento de la fracción enlazada (figura 1B). Se realizó un ensayo de unión con el péptido control y las secuencias de ADN obtenidas en el ciclo 10. La fluorescencia emitida por la fracción no enlazada fue inferior al límite de detección, lo que indica que no se amplificaron secuencias con afinidad por la cola de histidinas ni por el soporte sólido. The binding assay was carried out by contacting equal amounts of DNA-6-FAM of each cycle and recombinant peptide (SEQ ID NO: 13) immobilized on magnetic particles (15 pmoles) for 10 minutes in BS. The unbound fraction was collected and after 2 washes in BS + 0.01% Tween-20, the bound aptamers were eluted in B E for 10 min under stirring, thus obtaining the bound fraction. Both fractions were analyzed fluorimetrically (Figure 1A), observing a progressive decrease in the fraction not linked with the cycles simultaneously to an increase in the fraction linked (Figure 1B). A binding assay was performed with the control peptide and the DNA sequences obtained in cycle 10. The fluorescence emitted by the unbound fraction was lower than the detection limit, indicating that no affinity sequences were amplified by the tail of histidines or solid support.
Ejemplo 2: Identificación de las aptámeros de ADN obtenidos. Para identificar los aptámeros con afinidad por el péptido SEQ ID NO: 1 se procedió a amplificar una alícuota del ciclo 10 usando los cebadores no modificados (SEQ ID NO: 16 y SEQ ID NO: 19) usando las mismas condiciones que en anteriores etapas de amplificación, y se clonó utilizando el sistema pETBIue-1 Acceptor Vector Kit de la casa Novagen. Tras clonarlo se sembraron placas de la cepa huésped (Nova Competent cells, Novagen) y se secuenciaron 25 clones utilizando el kit BigDye Terminator v3.1 Cycle Sequencing (Applied Biosystems) y un equipo Abi PRISM 3130x1 Genetic Analyzer. Las secuencias obtenidas se analizaron mediante el software Chromas Lite 2.01. Example 2: Identification of the DNA aptamers obtained. To identify aptamers with affinity for the SEQ ID NO: 1 peptide, an aliquot of cycle 10 was amplified using the unmodified primers (SEQ ID NO: 16 and SEQ ID NO: 19) using the same conditions as in previous stages of amplification, and was cloned using the pETBIue-1 Acceptor Vector Kit system from Novagen. After cloning, plates of the host strain (Nova Competent cells, Novagen) were seeded and 25 clones were sequenced using the BigDye Terminator v3.1 Cycle Sequencing kit (Applied Biosystems) and an Abi PRISM 3130x1 Genetic Analyzer. The sequences obtained were analyzed using the Chromas Lite 2.01 software.
Se determinó la estructura secundaria de los seis aptámeros SEQ ID NO: 2, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9 y SEQ ID NO: 10 usando el servidor en red "mfoid" en las condiciones de enlace (25 °C, 250 mM de NaCI y 5 mM de MgCI2). En la figura 2 y en la tabla 2 se muestra la estructura más estable y las energías libres de Gibbs para cada uno de los aptámeros, respectivamente. The secondary structure of the six aptamers was determined SEQ ID NO: 2, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9 and SEQ ID NO: 10 using the network server " mfoid "under the binding conditions (25 ° C, 250 mM NaCI and 5 mM MgCl 2 ). Figure 2 and Table 2 show the most stable structure and Gibbs free energies for each of the aptamers, respectively.
Tabla 2. Parámetros termodinámicos de los aptámeros. Table 2. Thermodynamic parameters of aptamers.
Figure imgf000024_0001
Ejemplo 3: Caracterización del aptámero SEQ ID NO: 2. El aptámero con SEQ ID NO: 2 se seleccionó para su posterior caracterización mediante valoración calorimétrica isoterma. Se empleó como molécula diana el péptido SEQ ID NO: 1 sintetizado químicamente por Biomedal (Sevilla, España). El enlace del aptámero con SEQ ID NO: 2 al péptido SEQ ID NO: 1 fue estudiado mediante valoración calorimétrica isoterma. La concentración del aptámero en la celda calorimétrica fue de 33,4 μΜ, mientras que la concentración de péptido en ía jeringa fue de 0,338 mM. Se realizó la siguiente serie de inyecciones de péptido: una primera inyección de 4 L seguida de 18 inyecciones de 15 μί. En la figura 3 se muestran las valoraciones a ambas temperaturas 15 0 C y 35 0 C. El análisis de las medidas han proporcionado los valores termodinámicos resumidos en la tabla 3.
Figure imgf000024_0001
Example 3: Characterization of the SEQ ID NO: 2 aptamer. The aptamer with SEQ ID NO: 2 was selected for further characterization by isothermal calorimetric titration. The SEQ ID NO: 1 peptide chemically synthesized by Biomedal (Seville, Spain) was used as the target molecule. The aptamer binding with SEQ ID NO: 2 to the peptide SEQ ID NO: 1 was studied by isothermal calorimetric titration. The concentration of the aptamer in the calorimetric cell was 33.4 μΜ, while the concentration of peptide in the syringe was 0.338 mM. The following series of peptide injections was performed: a first 4 L injection followed by 18 injections of 15 μί. Figure 3 shows the valuations at both temperatures 15 0 C and 35 0 C. The analysis of the measurements have provided the thermodynamic values summarized in table 3.
Tabla 3. Parámetros termodinámicos hallados por ITC. Table 3. Thermodynamic parameters found by ITC.
Figure imgf000025_0001
La KD fue determinada mediante valoración calorimétrica isoterma (ITC), técnica habitual para este tipo de medidas. El aptámero fue valorado mediante adiciones sucesivas de péptido SEQ ID NO: 1 sintetizado químicamente, a 15 y 35 °C, obteniéndose unas KD de 45 ± 10 nM y 17 ±10 nM, respectivamente. Estos datos confirman la unión entre el aptámero con SEQ ID NO: 2 objeto de la invención y el péptido SEQ ID NO: 1 . Además el aptámero con SEQ ID NO: 2 presenta una gran afinidad por la diana, como se deduce de una constante de disociación nM para una molécula hidrofóbica, que no contiene los grupos funcionales que favorecen la interacción con los ácidos nucleicos.
Figure imgf000025_0001
The K D was determined by isothermal calorimetric titration (ITC), a usual technique for this type of measurement. The aptamer was evaluated by successive additions of peptide SEQ ID NO: 1 chemically synthesized, at 15 and 35 ° C, obtaining a KD of 45 ± 10 nM and 17 ± 10 nM, respectively. These data confirm the binding between the aptamer with SEQ ID NO: 2 object of the invention and the peptide SEQ ID NO: 1. In addition, the aptamer with SEQ ID NO: 2 has a high affinity for the target, as follows from a constant of nM dissociation for a hydrophobic molecule, which does not contain the functional groups that favor interaction with nucleic acids.
Ejemplo 4 Curvas de enlace de los aptámeros seleccionados al péptido con SEQ !D NO: 1. Example 4 Binding curves of the aptamers selected to the peptide with SEQ! D NO: 1.
La evaluación de la afinidad de los aptámeros por el péptido con SEQ ID NO: 1 se realizó mediante ensayos de unión sobre partículas magnéticas recubiertas de estreptavidina, sobre los que se inmovilizó el péptido con SEQ ID NO: 1 biotinilado en su extremo C terminal. La fracción de cada uno de los seis aptámeros modificados con biotina que se une a dichas partículas fue medida cronoamperométricamente tras adición de! conjugado de estreptavidina-HRP y del sustrato de la enzima (tetrametilbencidina + H202). Todos los aptámeros seleccionados presentaron afinidad por la diana. The affinity evaluation of the aptamers by the peptide with SEQ ID NO: 1 was carried out by binding assays on streptavidin coated magnetic particles, on which the peptide with biotinylated SEQ ID NO: 1 was immobilized at its C-terminus. The fraction of each of the six biotin modified aptamers that binds to said particles was measured chronoamperometrically after addition of! streptavidin-HRP and enzyme substrate conjugate (tetramethylbenzidine + H 2 0 2 ). All selected aptamers had affinity for the target.
Para ello se modificaron partículas magnéticas recubiertas de estreptavidina (Dynabeads® MyOne™ Streptavidin C1 , Life Technologies, Madrid) con péptido SEQ ID NO: 1 biotinilado en su extremo C terminal (Biomedal, Sevilla) 2 μΜ en PBS + 0,01 % Tween-20 durante toda la noche. Tras dos lavados con PBS + 0,01 % Tween-20, se bloquearon con 500 μΜ de biotina en PBS + 0,01 % Tween-20 durante 30 min. Tras 2 nuevos lavados se reconstituyeron en BS. Se pusieron en contacto concentraciones crecientes de cada uno de los aptámeros biotinilados (SEQ ID NO: 2, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9 y SEQ ID NO: 10) en BS durante 30 min. Tras 2 lavados con BS + 0,01 % Tween- 20, se añadieron 2,5 g mL estreptavidina-HRP de Sigma-Aldrich durante 30 min. Tras 3 lavados con BS + 0,01 % Tween-20, una alícuota se colocó sobre un electrodo serigrafiado de carbono (Dropsens, Oviedo) y se añadió el sustrato. Tras 1 minuto de reacción enzimática se midió cronoamperométricamente a 0 V la cantidad de producto generado usando un potenciostato μ-AutoLab tipo II PGstat- 12 equipado con el software GPES 4.9 (EcoChemie, Holanda). En la figura 4A se observa que todos los aptámeros presentan afinidad por la diana (péptido SEQ ID NO: 1). Ejemplo 5 Curvas de enlace de los aptámeros seleccionados a PWG. For this, streptavidin-coated magnetic particles (Dynabeads® MyOne ™ Streptavidin C1, Life Technologies, Madrid) were modified with SEQ ID NO: 1 biotinylated peptide at its C-terminal end (Biomedal, Sevilla) 2 μΜ in PBS + 0.01% Tween -20 throughout the night. After two washes with PBS + 0.01% Tween-20, they were blocked with 500 μΜ of biotin in PBS + 0.01% Tween-20 for 30 min. After 2 new washes they were reconstituted in BS. Increasing concentrations of each of the biotinylated aptamers were contacted (SEQ ID NO: 2, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9 and SEQ ID NO: 10) in BS for 30 min. After 2 washes with BS + 0.01% Tween-20, 2.5 g mL streptavidin-HRP from Sigma-Aldrich was added for 30 min. After 3 washes with BS + 0.01% Tween-20, an aliquot was placed on a screen-printed carbon electrode (Dropsens, Oviedo) and the substrate was added. After 1 minute of enzymatic reaction, the amount of product generated was measured chronoamperometrically at 0 V using a μ-AutoLab potentiostat type II PGstat-12 equipped with GPES 4.9 software (EcoChemie, The Netherlands). Figure 4A shows that all aptamers have affinity for the target (peptide SEQ ID NO: 1). Example 5 Link curves of the aptamers selected to PWG.
Se realizó la evaluación de la afinidad de los aptámeros por el patrón de gliadina comúnmente usado en los inmunoensayos comerciales obtenido a partir de una mezcla de harinas de trigo de diferente procedencia, denominado PWG. Se llevaron a cabo ensayos de unión sobre partículas magnéticas activadas con grupos tosilo superficiales, sobre los que se inmovilizó el PWG. La fracción de cada uno de los seis aptámeros modificados con biotina que se une a dichas partículas fue medida cronoamperométricamente tras adición del conjugado de estreptavidina-HRP y del sustrato de la enzima (tetrametilbencidina + H2O2). The affinity of aptamers was evaluated by the gliadin pattern commonly used in commercial immunoassays obtained from a mixture of wheat flour from different sources, called PWG. Binding assays were performed on magnetic particles activated with surface tosyl groups, on which the PWG was immobilized. The fraction of each of the six biotin modified aptamers that binds to said particles was measured chronoamperometrically after the addition of the streptavidin-HRP conjugate and the enzyme substrate (tetramethylbenzidine + H2O2).
Para ello se modificaron partículas magnéticas con grupos tosilo superficiales (Dynabeads® MyOne™ Tosylactivated, Life Technologies, Madrid) con PWG (estándar de gliadina de Prolamin Working Group) en 0,32 mg/mL en Borato 0,058 M pH 9,5 +(NH4)2SO4 1 M durante 24 h a 37 °C. Tras dos lavados en PBS +0,01 % Tween-20, se dejan en el mismo tampón durante la noche a 37 °C. Tras 2 nuevos lavados se reconstituyeron en PBS +0,01 % Tween-20 y se utilizaron para la obtención de las curvas de enlace. Para ello alícuotas idénticas de las micropartículas modificadas con PWG se pusieron en contacto con concentraciones crecientes de cada uno de los aptámeros biotinilados (SEQ ID NO: 2, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 8 y SEQ ID NO: 9) en BS + 0,01 % Tween-20 durante 30 min. Tras 2 lavados con BS +0,01 % Tween-20, se añadieron 2,5 pg/mL estreptavidina-HRP de Sigma-Aldrich y se incubó durante 30 min. Tras 2 lavados con BS + 0,01 % Tween-20 y uno en BS, se resuspendieron en BS. Una alícuota se colocó sobre un electrodo serigrafiado de carbono (Dropsens, Oviedo) y se añadió el sustrato. Tras 1 minuto de reacción enzimática se midió cronoamperométricamente a 0 V la cantidad de producto generado usando un potenciostato μ-AutoLab tipo II PGstat-12 equipado con el software GPES 4.9 (EcoChemie, Holanda). En la figura 4B se observa que todos los aptámeros presentan afinidad por la proteína gliadina completa, como cabe esperar tras la exigente selección efectuada mediante SELEX. Ejemplo 6: Especificidad de la interacción. To this end, magnetic particles were modified with superficial tosyl groups (Dynabeads® MyOne ™ Tosylactivated, Life Technologies, Madrid) with PWG (Prolamin Working Group gliadin standard) at 0.32 mg / mL in Borate 0.058 M pH 9.5 + ( NH 4 ) 2 SO 4 1 M for 24 h at 37 ° C. After two washes in PBS + 0.01% Tween-20, they are left in the same buffer overnight at 37 ° C. After 2 new washes, they were reconstituted in PBS + 0.01% Tween-20 and used to obtain the binding curves. For this, identical aliquots of the PWG modified microparticles were contacted with increasing concentrations of each of the biotinylated aptamers (SEQ ID NO: 2, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 8 and SEQ ID NO: 9) in BS + 0.01% Tween-20 for 30 min. After 2 washes with BS + 0.01% Tween-20, 2.5 pg / mL streptavidin-HRP from Sigma-Aldrich was added and incubated for 30 min. After 2 washes with BS + 0.01% Tween-20 and one in BS, they were resuspended in BS. An aliquot was placed on a screen-printed carbon electrode (Dropsens, Oviedo) and the substrate was added. After 1 minute of enzymatic reaction, the amount of product generated was measured chronoamperometrically at 0 V using a PG-typeLamp-12 potentiostat type II equipped with GPES 4.9 software (EcoChemie, The Netherlands). Figure 4B shows that all aptamers have affinity for the complete gliadin protein, as expected after the demanding selection made by SELEX. Example 6: Specificity of the interaction.
Se evaluó la especificidad de la afinidad de los aptámeros hacia otras proteínas susceptibles de desencadenar la enfermedad celíaca y se evaluó su reactividad cruzada con otras proteínas presentes en cereales que no la desencadenan. Se llevaron a cabo ensayos de unión sobre partículas magnéticas activadas con grupos tosilo superficiales, sobre los que se inmovilizó un extracto etanólico diluido de harinas de centeno, avena y arroz. La fracción de cada uno de ios aptámeros modificados con biotina que se une a dichas partículas fue medida cronoamperométricamente tras adición del conjugado de estreptavidina-HRP y del sustrato de la enzima (tetrametilbencidina + H2O2) (Figura 5). The specificity of the affinity of aptamers towards other proteins susceptible to trigger celiac disease was evaluated and their cross-reactivity was evaluated with other proteins present in cereals that do not trigger it. Binding tests were carried out on magnetic particles activated with surface tosyl groups, on which a diluted ethanolic extract of rye, oatmeal and rice flour was immobilized. The fraction of each of the biotin-modified aptamers that bind to said particles was measured chronoamperometrically after the addition of the streptavidin-HRP conjugate and the enzyme substrate (tetramethylbenzidine + H 2 O 2 ) (Figure 5).
Para ello, se realizaron curvas de enlace de los aptámeros con secuencias SEQ ID NO: 7, SEQ ID NO: 2 y SEQ ID NO: 8, hacia las prolaminas de otros cereales que provocan la enfermedad celíaca (centeno y posiblemente avena) y otros que no la ocasionan (arroz). La extracción de 1 g de cada harina se realizó con 10 mL de etanol al 60% durante 30 mtn bajo agitación, tras lo cual se centrifugó a 2500 g durante 45 min. El extracto volvió a ser centrifugado y el sobrenadante resultante recogido para su uso. Se modificaron partículas magnéticas tosiladas de la forma indicada en el ejemplo 5 y se realizaron las curvas de enlace de manera totalmente análoga. En la figura 5 se observa que todos los aptámeros ensayados tienen afinidad por el centeno, aunque menor que por el trigo. Como se muestra en la figura 5B el aptámero SEQ ID NO: 7 muestra afinidad por la avena, aunque a concentraciones más elevadas que para el trigo y el centeno, por lo que es capaz de reconocer las aveninas, cuyo papel en el desencadenamiento de la enfermedad celíaca no está aún completamente esclarecido. El aptámero SEQ ID NO: 2 no mostró afinidad por las proteínas de arroz puesto que las señales amperométricas obtenidas son indistiguibles del blanco. For this, link curves of the aptamers with sequences SEQ ID NO: 7, SEQ ID NO: 2 and SEQ ID NO: 8, were made to the prolamines of other cereals that cause celiac disease (rye and possibly oats) and others that do not cause it (rice). The extraction of 1 g of each flour was performed with 10 mL of 60% ethanol for 30 mtn under stirring, after which it was centrifuged at 2500 g for 45 min. The extract was centrifuged again and the resulting supernatant collected for use. Tosylated magnetic particles were modified in the manner indicated in example 5 and the binding curves were performed in a completely analogous manner. Figure 5 shows that all aptamers tested have an affinity for rye, although less than for wheat. As shown in Figure 5B, the SEQ ID NO: 7 aptamer shows affinity for oats, although at higher concentrations than for wheat and rye, so it is able to recognize avenins, whose role in triggering the Celiac disease is not yet fully clarified. The SEQ ID NO: 2 aptamer showed no affinity for rice proteins since the amperometric signals obtained are indistinct from the target.

Claims

REIVINDICACIONES
1. - Una molécula de ADN de cadena sencilla, donde dicha secuencia reconoce y se une específicamente a un péptido que comprende la secuencia aminoacídica SEQ ID NO:1. 1. - A single-stranded DNA molecule, where said sequence recognizes and specifically binds to a peptide that comprises the amino acid sequence SEQ ID NO:1.
2. - La molécula de ADN según la reivindicación 1 , caracterizada por que dicha molécula reconoce y se une específicamente al gluten. 2. - The DNA molecule according to claim 1, characterized in that said molecule recognizes and specifically binds to gluten.
3.- La molécula de ADN según la reivindicación 2, donde dicho gluten es de trigo, cebada, centeno o avena. 3.- The DNA molecule according to claim 2, wherein said gluten is from wheat, barley, rye or oats.
4.- La molécula de ADN según la reivindicación 3, donde dicho gluten es de trigo. 4.- The DNA molecule according to claim 3, wherein said gluten is wheat.
5.- La molécula de ADN según cualquiera de las reivindicaciones 2 o 3, donde dicha molécula reconoce y se une específicamente a gliadina, hordeína, secalina o avenina. 5.- The DNA molecule according to any of claims 2 or 3, wherein said molecule recognizes and specifically binds to gliadin, hordein, secalin or avenin.
6. - La molécula de ADN según cualquiera de las reivindicaciones 1 a 5, donde dicha molécula reconoce y se une específicamente a gliadina. 6. - The DNA molecule according to any of claims 1 to 5, wherein said molecule recognizes and specifically binds to gliadin.
7. - La secuencia de ADN según cualquiera de las reivindicaciones 1 a 6, donde dicha secuencia es incapaz de reconocer y unir específicamente proteínas de maíz, soja o arroz. 7. - The DNA sequence according to any of claims 1 to 6, wherein said sequence is incapable of specifically recognizing and binding corn, soy or rice proteins.
8. - La secuencia de ADN según cualquiera de las reivindicaciones 1 a 7, donde dicha secuencia comprende la secuencia nucleotídica X-GTCT-Y, donde X comprende entre 3 y 29 nucleótidos e Y comprende entre 7 y 33 nucleótidos. 8. - The DNA sequence according to any of claims 1 to 7, where said sequence comprises the nucleotide sequence X-GTCT-Y, where X comprises between 3 and 29 nucleotides and Y comprises between 7 and 33 nucleotides.
9.- La secuencia de ADN según cualquiera de las reivindicaciones 1 a 8, donde dicha secuencia comprende una secuencia nucleotídica que se selecciona de entre SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9 y SEQ ID NO: 10. 9.- The DNA sequence according to any of claims 1 to 8, where said sequence comprises a nucleotide sequence that is selected from between SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9 and SEQ ID NO: 10.
10. - La secuencia de ADN según la reivindicación 9, donde dicha secuencia se une a la secuencia aminoacídica SEQ ID NO: 1 con una constante de disociación10. - The DNA sequence according to claim 9, wherein said sequence joins the amino acid sequence SEQ ID NO: 1 with a dissociation constant
KD igual o menor de 55 nM. K D equal to or less than 55 nM.
11. - La secuencia de ADN según cualquiera de las reivindicaciones 1 a 10, donde dicha secuencia comprende la secuencia nucleotídica SEQ ID NO: 2. 11. - The DNA sequence according to any of claims 1 to 10, where said sequence comprises the nucleotide sequence SEQ ID NO: 2.
12. La secuencia de ADN según cualquiera de las reivindicaciones 1 a 10 donde dicha secuencia comprende la secuencia nucleotídica SEQ ID NO: 7. 12. The DNA sequence according to any of claims 1 to 10 wherein said sequence comprises the nucleotide sequence SEQ ID NO: 7.
13. - La secuencia de ADN según cualquiera de las reivindicaciones 1 a 12, donde dicha secuencia comprende además una molécula marcadora. 13. - The DNA sequence according to any of claims 1 to 12, wherein said sequence also comprises a marker molecule.
14. - La secuencia de ADN según la reivindicación 13, donde dicha molécula marcadora se selecciona de entre un fluoróforo, una enzima, un péptido, una nanopartícula, una molécula electroactiva, una digoxigenina y una biotina. 14. - The DNA sequence according to claim 13, wherein said marker molecule is selected from among a fluorophore, an enzyme, a peptide, a nanoparticle, an electroactive molecule, a digoxigenin and a biotin.
15. - La secuencia de ADN según la reivindicación 14, donde dicha molécula electroactiva se selecciona de entre azul de metileno, ferroceno, antraquinona y tionina. 15. - The DNA sequence according to claim 14, wherein said electroactive molecule is selected from methylene blue, ferrocene, anthraquinone and thionine.
16.- La secuencia de ADN según la reivindicación 14, donde dicho fluoróforo se selecciona de entre fluoresceína, boro-dipirrometeno, cianina, naftaleno y rodamina. 16.- The DNA sequence according to claim 14, wherein said fluorophore is selected from fluorescein, boron-dipyrromethene, cyanine, naphthalene and rhodamine.
17.- La secuencia de ADN según la reivindicación 14, donde dicha enzima se selecciona de entre peroxidasa, fosfatasa alcalina, DNAzimas y NADH deshidrogenasas. 17.- The DNA sequence according to claim 14, wherein said enzyme is selected from peroxidase, alkaline phosphatase, DNAzymes and NADH dehydrogenases.
18. - La secuencia de ADN según la reivindicación 14, donde el péptido se selecciona de entre una polihistidina, un epítopo myc y un epítopo flag. 18. - The DNA sequence according to claim 14, wherein the peptide is selected from a polyhistidine, a myc epitope and a flag epitope.
19. - La secuencia de ADN según la reivindicación 14, donde dicha nanopartícula se selecciona de entre una nanopartícula metálica, nanopartícula semiconductora y micro o nanopartícula magnética. 19. - The DNA sequence according to claim 14, wherein said nanoparticle is selected from a metallic nanoparticle, semiconductor nanoparticle and magnetic micro or nanoparticle.
20. - La secuencia de ADN según la reivindicación 14, donde la molécula marcadora es biotina. 20. - The DNA sequence according to claim 14, where the marker molecule is biotin.
21. - La secuencia de ADN según la reivindicación 14, donde la molécula marcadora es digoxigenina. 21. - The DNA sequence according to claim 14, where the marker molecule is digoxigenin.
22. - La secuencia de ADN según cualquiera de las reivindicaciones 1 a 21 , donde al menos un enlace fosfodiéster de dicha secuencia contiene al menos un O sustituido por un S. 22. - The DNA sequence according to any of claims 1 to 21, where at least one phosphodiester bond of said sequence contains at least one O substituted by an S.
23. - Un kit para la detección de gluten caracterizado por que comprende al menos una secuencia de ADN de cadena sencilla según cualquiera de las reivindicaciones 1 a 22. 23. - A kit for the detection of gluten characterized in that it comprises at least one single-stranded DNA sequence according to any of claims 1 to 22.
24. - El kit según la reivindicación 23, caracterizado por que además comprende un soporte sólido. 24. - The kit according to claim 23, characterized in that it also comprises a solid support.
25.- El kit según cualquiera de las reivindicaciones 23 o 24, donde la secuencia de ADN está anclada al soporte sólido. 25.- The kit according to any of claims 23 or 24, wherein the DNA sequence is anchored to the solid support.
26.- El kit según cualquiera de las reivindicaciones 23 o 24, que además comprende el péptido con SEQ ID NO: 1 o gliadina o gluten, anclado al soporte sólido. 26.- The kit according to any of claims 23 or 24, which also comprises the peptide with SEQ ID NO: 1 or gliadin or gluten, anchored to the solid support.
27. - El kit según cualquiera de las reivindicaciones 23 a 26, donde además comprende un anticuerpo que reconoce y se une específicamente a gluten. 27. - The kit according to any of claims 23 to 26, where it also comprises an antibody that recognizes and specifically binds to gluten.
28. - Uso de la secuencia de ADN de cadena sencilla según cualquiera de las reivindicaciones 1 a 22 o del kit según cualquiera de las reivindicaciones 23 a 27, para la detección del gluten. 28. - Use of the single-stranded DNA sequence according to any of claims 1 to 22 or the kit according to any of claims 23 to 27, for the detection of gluten.
29 - Un método de detección del gluten que comprende las siguientes etapas: a) poner en contacto una secuencia de ADN de cadena sencilla según cualquiera de las reivindicaciones 1 a 22 con una muestra problema; y b) detectar la presencia del complejo formado por dicha secuencia y el gluten de la muestra problema en la etapa (a). 29 - A gluten detection method comprising the following steps: a) contacting a single-stranded DNA sequence according to any of claims 1 to 22 with a test sample; and b) detect the presence of the complex formed by said sequence and the gluten of the test sample in step (a).
30 - El método según la reivindicación 29, donde la etapa (a) se lleva a cabo en disolución. 30 - The method according to claim 29, wherein step (a) is carried out in solution.
31.- El método según la reivindicación 29, donde la etapa (a) se lleva a cabo en un soporte sólido. 31.- The method according to claim 29, wherein step (a) is carried out on a solid support.
32.- E! método según cualquiera de las reivindicaciones 29 a 31 , donde la etapa (b) se lleva a cabo mediante PCR. 32.- E! method according to any of claims 29 to 31, where step (b) is carried out by PCR.
33. - El método según cualquiera de las reivindicaciones 29 a 31 , donde la etapa (b) se lleva a cabo mediante un aptaensayo. 33. - The method according to any of claims 29 to 31, where step (b) is carried out by means of an apta-assay.
34. - El método según la reivindicación 33, donde el aptaensayo es un ELOSA. 34. - The method according to claim 33, wherein the aptaassay is an ELOSA.
PCT/ES2013/000133 2012-05-31 2013-05-29 Specific aptamers against gluten and associated method for detecting gluten WO2013178844A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201200600A ES2436861B2 (en) 2012-05-31 2012-05-31 Specific aptamers against gluten and associated gluten detection method
ESP201200600 2012-05-31

Publications (1)

Publication Number Publication Date
WO2013178844A1 true WO2013178844A1 (en) 2013-12-05

Family

ID=49672510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2013/000133 WO2013178844A1 (en) 2012-05-31 2013-05-29 Specific aptamers against gluten and associated method for detecting gluten

Country Status (2)

Country Link
ES (1) ES2436861B2 (en)
WO (1) WO2013178844A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017085767A1 (en) * 2015-11-16 2017-05-26 Necソリューションイノベータ株式会社 Wheat allergen-binding nucleic acid molecule and use thereof
WO2018097220A1 (en) * 2016-11-24 2018-05-31 Necソリューションイノベータ株式会社 Nucleic acid molecule and use thereof
JP2018519796A (en) * 2015-04-29 2018-07-26 ドッツ テクノロジー コーポレイションDOTS Technology Corp. Compositions and methods for allergen detection
US10344319B2 (en) 2013-10-28 2019-07-09 Dots Technology Corp. Allergen detection
US20210063395A1 (en) * 2018-05-10 2021-03-04 Orly Yadid-Pecht Sensor for detecting food-borne gastrointestinal irritants, contaminants, allergens and pathogens

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006051145A1 (en) * 2004-03-15 2006-05-18 Consejo Superior De Investigaciones Científicas Competitive elisa for the detection of gluten hydrolysate and applications thereof
WO2008110655A1 (en) * 2007-03-15 2008-09-18 Consejo Superior De Investigaciones Cientificas Method for the simultaneous detection and quantification of dna from wheat, barley, rye and crosses and mixtures thereof in food, elements required to perform same and use thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006051145A1 (en) * 2004-03-15 2006-05-18 Consejo Superior De Investigaciones Científicas Competitive elisa for the detection of gluten hydrolysate and applications thereof
WO2008110655A1 (en) * 2007-03-15 2008-09-18 Consejo Superior De Investigaciones Cientificas Method for the simultaneous detection and quantification of dna from wheat, barley, rye and crosses and mixtures thereof in food, elements required to perform same and use thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LEE JF. ET AL.: "Aptamer therapeutics advance.", CURRENT OPINION IN CHEMICAL BIOLOGY., vol. 10, 2006, pages 282 - 289 *
SHAN L. ET AL.: "Structural Basis for Gluten Intolerance in Celiac Sprue.", SCIENCE., vol. 297, 2002, pages 2275 - 2279 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10344319B2 (en) 2013-10-28 2019-07-09 Dots Technology Corp. Allergen detection
US11268136B2 (en) 2013-10-28 2022-03-08 Dots Technology Corp. Allergen detection
JP2018519796A (en) * 2015-04-29 2018-07-26 ドッツ テクノロジー コーポレイションDOTS Technology Corp. Compositions and methods for allergen detection
US10466246B2 (en) 2015-04-29 2019-11-05 Dots Technology Corp. Compositions and methods for allergen detection
US11016094B2 (en) 2015-04-29 2021-05-25 Dots Technology Corp. Compositions and methods for allergen detection
WO2017085767A1 (en) * 2015-11-16 2017-05-26 Necソリューションイノベータ株式会社 Wheat allergen-binding nucleic acid molecule and use thereof
CN108350460A (en) * 2015-11-16 2018-07-31 日本电气方案创新株式会社 Wheat Dood Allergy original combination nucleic acid molecules and application thereof
JPWO2017085767A1 (en) * 2015-11-16 2018-08-23 Necソリューションイノベータ株式会社 Nucleic acid molecules that bind to wheat allergens and uses thereof
EP3378939A4 (en) * 2015-11-16 2019-07-10 NEC Solution Innovators, Ltd. Wheat allergen-binding nucleic acid molecule and use thereof
US10934548B2 (en) 2015-11-16 2021-03-02 Nec Solution Innovators, Ltd. Wheat allergen-binding nucleic acid molecule and use thereof
WO2018097220A1 (en) * 2016-11-24 2018-05-31 Necソリューションイノベータ株式会社 Nucleic acid molecule and use thereof
US20210063395A1 (en) * 2018-05-10 2021-03-04 Orly Yadid-Pecht Sensor for detecting food-borne gastrointestinal irritants, contaminants, allergens and pathogens

Also Published As

Publication number Publication date
ES2436861B2 (en) 2014-04-28
ES2436861A1 (en) 2014-01-07

Similar Documents

Publication Publication Date Title
Amaya-González et al. Sensitive gluten determination in gluten-free foods by an electrochemical aptamer-based assay
Amaya-Gonzalez et al. Aptamer binding to celiac disease-triggering hydrophobic proteins: a sensitive gluten detection approach
ES2436861B2 (en) Specific aptamers against gluten and associated gluten detection method
Pu et al. Insulin-binding aptamer-conjugated graphene oxide for insulin detection
Tang et al. In vitro selection of DNA aptamer against abrin toxin and aptamer-based abrin direct detection
Bittner et al. Identification of wheat gliadins as an allergen family related to baker's asthma
Manfredi et al. Multiplex liquid chromatography-tandem mass spectrometry for the detection of wheat, oat, barley and rye prolamins towards the assessment of gluten-free product safety
Laube et al. Magneto immunosensor for gliadin detection in gluten-free foodstuff: Towards food safety for celiac patients
Carmody et al. The mitogen-activated protein kinase Slt2 regulates nuclear retention of non-heat shock mRNAs during heat shock-induced stress
Corouge et al. Humoral immunity links Candida albicans infection and celiac disease
ES2963079T3 (en) Detection of residual host cell proteins in recombinant protein preparations
CA2884338A1 (en) Detection of non-nucleic acid analytes using strand displacement exchange reactions
Lauridsen et al. Nucleic acid aptamers against biotoxins: a new paradigm toward the treatment and diagnostic approach
Elli et al. Immunological effects of transglutaminase-treated gluten in coeliac disease
Svigelj et al. Truncated aptamers as selective receptors in a gluten sensor supporting direct measurement in a deep eutectic solvent
Liu et al. Development and evaluation of a novel in situ target-capture approach for aptamer selection of human noroviruses
JP2018519796A (en) Compositions and methods for allergen detection
Mena et al. Analytical tools for gluten detection: Policies and regulation
Fiedler et al. Analysis of gluten in a wheat-gluten-incurred sorghum beer brewed in the presence of proline endopeptidase by LC/MS/MS
Ahmed et al. Prediction of residue-specific contributions to binding and thermal stability using yeast surface display
CN111172166A (en) nucleic acid aptamer for specifically recognizing β -lactoglobulin and application thereof
Liao et al. Fluorescence turn-on detection of a protein using cytochrome c as a quencher
He et al. Selected ssDNA aptamers–graphene oxide‐based fluorescent biosensor to detect sulfameter in milk
WO2006098485A1 (en) Glutamate decarboxylase mutant
US9221881B2 (en) Markers for the diagnosis of celiac disease

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13796682

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13796682

Country of ref document: EP

Kind code of ref document: A1