WO2018097069A1 - Electrode for electrolysis - Google Patents

Electrode for electrolysis Download PDF

Info

Publication number
WO2018097069A1
WO2018097069A1 PCT/JP2017/041559 JP2017041559W WO2018097069A1 WO 2018097069 A1 WO2018097069 A1 WO 2018097069A1 JP 2017041559 W JP2017041559 W JP 2017041559W WO 2018097069 A1 WO2018097069 A1 WO 2018097069A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolysis
electrode
catalyst layer
ruthenium
mol
Prior art date
Application number
PCT/JP2017/041559
Other languages
French (fr)
Japanese (ja)
Inventor
豊光 宮阪
誠 西澤
佳典 角
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to KR1020197013662A priority Critical patent/KR102272749B1/en
Priority to EP17873862.1A priority patent/EP3546619B1/en
Priority to US16/462,367 priority patent/US20190338429A1/en
Priority to JP2018552551A priority patent/JP6670948B2/en
Priority to BR112019010219A priority patent/BR112019010219A2/en
Priority to RU2019115501A priority patent/RU2720309C1/en
Priority to CN201780066562.8A priority patent/CN109891002B/en
Priority to ES17873862T priority patent/ES2850501T3/en
Publication of WO2018097069A1 publication Critical patent/WO2018097069A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • C25B1/46Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis in diaphragm cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/093Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/097Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds comprising two or more noble metals or noble metal alloys
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded

Definitions

  • Ion exchange membrane method salt electrolysis is a method for producing caustic soda, chlorine, and hydrogen by electrolyzing (electrolyzing) salt water using an electrode for electrolysis.
  • a technique capable of maintaining a low electrolysis voltage over a long period of time is required in order to reduce power consumption.
  • a breakdown of the breakdown of the electrolysis voltage reveals that, in addition to the theoretically required electrolysis voltage, the voltage resulting from the resistance of the ion exchange membrane and the structure resistance of the electrolytic cell, the overvoltage of the anode and cathode as electrolysis electrodes, the anode and cathode It has been clarified that a voltage or the like due to the distance between is included. Further, when electrolysis is continued for a long period of time, a voltage increase or the like caused by various causes such as impurities in salt water may occur.
  • the first transition metal element includes at least one metal element selected from the group consisting of vanadium, cobalt, copper, and zinc.
  • the content of the first transition metal element with respect to all the metal elements contained in the catalyst layer is 10 mol% or more and 30 mol% or less.
  • the catalyst layer of the present embodiment includes the first transition metal element together with the above-described ruthenium element, iridium element, and titanium element.
  • the presence form of the first transition metal element is not particularly limited.
  • the first transition metal element may be in the form of an oxide, a simple metal, or an alloy, as long as it is contained in the catalyst layer.
  • the first transition metal element preferably forms a solid solution with a solid solution of ruthenium oxide, iridium oxide, and titanium oxide.
  • the formation of such a solid solution can be confirmed by, for example, XRD.
  • said solid solution can be formed by adjusting the calcination temperature at the time of forming a catalyst layer, the addition amount of a 1st transition metal element, etc. to an appropriate range.
  • the first transition metal element preferably contains a metal element selected from the group consisting of vanadium, cobalt, copper, and zinc from the viewpoint of compatibility between the voltage and durability of the catalyst layer. More preferably, the metal element contains a vanadium element.
  • Example a Electrode for Electrolysis with V / Ti Charge Ratio of 0.11
  • the element ratio (molar ratio) of ruthenium, iridium, titanium, and vanadium was 23.75: 23.75: 47.5: 5, respectively.
  • the electrode for electrolysis obtained by the method similar to Example 1 mentioned later except having applied to the electroconductive base material using the coating liquid a prepared so that it might become.
  • the D value as an index of the electric double layer capacity is a value calculated using the concept of electric double layer capacity, and the surface area of the electrode (that is, the specific surface area of the catalyst layer on the electrode) is large.
  • the value is expected to increase.
  • the D value can be set to the above-described range by adjusting the content of the first transition metal element to the above-described preferable range.
  • the D value tends to increase by increasing the content of the first transition metal element.
  • the D value tends to decrease by increasing the firing temperature (post-bake temperature) when forming the catalyst layer.
  • the thickness of the catalyst layer is preferably 0.1 to 5 ⁇ m, and more preferably 0.5 to 3 ⁇ m.
  • a preferred aspect of the method for producing an electrode for electrolysis according to the present embodiment includes a step of preparing a coating liquid containing a ruthenium compound, an iridium compound, a titanium compound, and a compound containing a first transition metal element; It is preferable to have a step of coating the liquid on at least one surface of the conductive substrate to form a coating film; and a step of baking the coating film in an oxygen-containing atmosphere to form a catalyst layer.
  • the ruthenium compound, the iridium compound, the titanium compound, and the compound containing the first transition metal element correspond to the precursor containing the metal element contained in the catalyst layer in the present embodiment.
  • the ruthenium compound, the iridium compound, and the titanium compound may be oxides, but are not necessarily oxides.
  • a metal salt or the like may be used.
  • these metal salts include, but are not limited to, any one selected from the group consisting of chloride salts, nitrates, dinitrodiammine complexes, nitrosyl nitrates, sulfates, acetates, and metal alkoxides.
  • the metal salt of the ruthenium compound is not limited to the following, and examples thereof include ruthenium chloride and ruthenium nitrate.
  • the metal salt of the iridium compound examples include, but are not limited to, iridium chloride and iridium nitrate. Although it does not limit to the following as a metal salt of a titanium compound, For example, titanium tetrachloride etc. are mentioned.
  • the compound containing the first transition metal element may be an oxide, but is not necessarily an oxide.
  • the oxo acid of vanadium and the salt thereof; vanadium chloride; and one or more selected from the group consisting of vanadium nitrate are preferable.
  • Examples of the counter cation in the oxo acid salt include, but are not limited to, Na + , K + , Ca 2+ and the like.
  • Such compounds include oxoacids or salts thereof such as sodium metavanadate, sodium orthovanadate, potassium orthovanadate and the like; chlorides such as vanadium chloride and the like; , Vanadium nitrate, and the like.
  • the above compounds are appropriately selected and used according to the desired metal element ratio in the catalyst layer.
  • the coating liquid may further contain a compound other than the compounds contained in the above-described compound. Examples of other compounds include, but are not limited to, metal compounds containing metal elements such as tantalum, niobium, tin, platinum, and rhodium; organics containing metal elements such as tantalum, niobium, tin, platinum, and rhodium Compounds and the like.
  • the coating liquid is preferably a liquid composition in which the above compound group is dissolved or dispersed in an appropriate solvent.
  • the solvent for the coating solution used here can be selected according to the type of the compound. For example, water; alcohols such as butanol can be used.
  • the total compound concentration in the coating solution is not particularly limited, but is preferably 10 to 150 g / L from the viewpoint of appropriately controlling the thickness of the catalyst layer.
  • the method of coating the coating liquid on the surface of the conductive substrate is not limited to the following, but, for example, a dipping method in which the conductive substrate is immersed in the coating liquid, or coating on the surface of the conductive substrate.
  • An electrocoating method or the like can be used.
  • the roll method and the electrostatic coating method are preferable from the viewpoint of excellent industrial productivity.
  • a coating film of the coating liquid can be formed on at least one surface of the conductive substrate.
  • the firing temperature can be appropriately selected depending on the composition of the coating liquid and the solvent type.
  • the firing temperature is preferably 300 to 650 ° C.
  • the precursor such as ruthenium compound is not sufficiently decomposed, and a catalyst layer containing ruthenium oxide or the like may not be obtained.
  • the firing temperature exceeds 650 ° C., the conductive base material may be oxidized, so that the adhesion at the interface between the catalyst layer and the base material may be lowered. This tendency should be emphasized particularly when a titanium substrate is used as the conductive substrate. A longer firing time is preferred.
  • the above-mentioned steps of coating, drying and firing the catalyst layer can be repeated a plurality of times to form the catalyst layer in a desired thickness.
  • firing can be performed for a longer time if necessary to further improve the stability of the catalyst layer that is extremely chemically, physically and thermally stable.
  • the conditions for the long-term firing are preferably about 30 minutes to 4 hours at 400 to 650 ° C.
  • the electrode for electrolysis of this embodiment has a low overvoltage even in the initial stage of electrolysis, and can be electrolyzed with a low voltage and low power consumption over a long period. Therefore, it can be used for various electrolysis.
  • it is preferably used as an anode for chlorine generation, and more preferably used as an anode for salt electrolysis in the ion exchange membrane method.
  • FIG. 1 shows a schematic sectional view according to an example of the electrolytic cell of the present embodiment.
  • an aqueous alkali chloride solution such as a 2.5 to 5.5 N (N) aqueous sodium chloride solution (saline solution) or an aqueous potassium chloride solution is provided.
  • aqueous alkali hydroxide aqueous solution for example, sodium hydroxide aqueous solution, potassium hydroxide aqueous solution, etc.
  • water can be used.
  • the structure of the electrolytic cell of this embodiment is not specifically limited, A monopolar type or a bipolar type may be sufficient.
  • the material constituting the electrolytic cell is not particularly limited.
  • the material for the anode chamber is preferably titanium or the like resistant to alkali chloride and chlorine; the material for the cathode chamber is resistant to alkali hydroxide and hydrogen. Nickel or the like is preferred.
  • the electrode for electrolysis (anode 230) of the present embodiment may be disposed with an appropriate interval between the electrode and the ion exchange membrane 250, or even if it is disposed in contact with the ion exchange membrane 250, there is no problem.
  • the cathode 240 may be arranged with an appropriate interval from the ion exchange membrane 250, or even if it is a contact type electrolytic cell (zero gap type electrolytic cell) with no gap between the ion exchange membrane 250, Can be used without any problems.
  • the electrolysis conditions of the electrolytic cell of the present embodiment are not particularly limited, and can be operated under known conditions. For example, it is preferable to perform electrolysis by adjusting the electrolysis temperature to 50 to 120 ° C. and the current density to 0.5 to 10 kA / m 2 .
  • an electrolytic cell comprising an anode cell having an anode chamber and a cathode cell having a cathode chamber was prepared.
  • a nickel wire mesh base material coated with a ruthenium oxide catalyst was used as the cathode.
  • an expanded base material made of metallic nickel as a current collector was cut out and welded at the same size as the anode, and then a cushion mat knitted with nickel wire was placed on it.
  • a cathode was placed.
  • a rubber gasket made of EPDM (ethylene propylene diene) was used as the gasket, and an ion exchange membrane was sandwiched between the anode cell and the cathode cell.
  • a cation exchange membrane “Aciplex” (registered trademark) F6801 (manufactured by Asahi Kasei Co., Ltd.) for salt electrolysis was used.
  • the overvoltage and the electrolysis voltage were measured after 7 days from the start of electrolysis.
  • the electrolysis conditions were a current density of 6 kA / m 2 , a salt water concentration of 205 g / L in the anode cell, a NaOH concentration of 32% by mass in the cathode cell, and a temperature of 90 ° C.
  • PAD36-100LA manufactured by Kikusui Electronics Co., Ltd.
  • aqueous iridium chloride solution manufactured by Tanaka Kikinzoku Co., Ltd., iridium concentration 100 g / L
  • Vanadium chloride (III) manufactured by Kishida Chemical Co., Ltd.
  • the above-mentioned cycle comprising roll coating, drying and firing is repeated 3 times by raising the firing temperature to 450 ° C., and finally by further firing for 1 hour at 520 ° C.
  • a black-brown catalyst layer was formed thereon to produce an electrode for electrolysis.
  • Example 8 The use of an aqueous ruthenium chloride solution (manufactured by Tanaka Kikinzoku Co., Ltd., ruthenium concentration 100 g / L) instead of an aqueous ruthenium nitrate solution, and an element ratio (molar ratio) of ruthenium, iridium, titanium, and vanadium of 19.6: 20.2: 47 .09: 13.11
  • the coating liquid A8 prepared so as to be 1311. 11 was applied to the conductive substrate, and the cycle consisting of roll coating, drying, and firing was performed from the first to the eighth firing.
  • An electrode for electrolysis was produced in the same manner as in Example 1 except that the temperature was set to 393 ° C. and then baking was performed at 485 ° C. for 1 hour.
  • Example 9 Use of ruthenium chloride aqueous solution (Tanaka Kikinzoku Co., Ltd., ruthenium concentration 100 g / L) instead of ruthenium nitrate aqueous solution, and cobalt (II) chloride hexahydrate (manufactured by Wako Pure Chemical Industries) instead of vanadium (III) chloride Coating the conductive substrate using the coating liquid A9 prepared so that the elemental ratio (molar ratio) of ruthenium, iridium, titanium and cobalt is 50: 3: 30: 17; and The cycle consisting of roll coating, drying and firing was carried out at a first firing temperature of 440 ° C., then heated to 475 ° C. and repeated three more times, and finally fired at 520 ° C. for 1 hour. Except for this, an electrode for electrolysis was produced in the same manner as in Example 1.

Abstract

This electrode for electrolysis is provided with a conductive base material and a catalyst layer that is formed on the surface of the conductive base material. The catalyst layer contains elemental ruthenium, elemental iridium, elemental titanium and at least one first transition metal element selected from the group consisting of Sc, V, Cr, Fe, Co, Ni, Cu and Zn; the content ratio of the first transition metal element contained in the catalyst layer relative to 1 mole of the elemental titanium is 0.25% by mole or more but less than 3.4% by mole; and the D value serving as an index for the electric double layer capacity of this electrode for electrolysis is from 120 C/m2 to 420 C/m2 (inclusive).

Description

電解用電極Electrode for electrolysis
 本発明は、電解用電極及びその製造方法、並びに該電解用電極を備えた電解槽に関する。 The present invention relates to an electrode for electrolysis, a method for producing the same, and an electrolyzer equipped with the electrode for electrolysis.
 イオン交換膜法食塩電解とは、電解用電極を用いて塩水を電気分解(電解)し、苛性ソーダ、塩素、及び水素を製造する方法である。イオン交換膜法食塩電解プロセスにおいては、消費電力量削減のため、低い電解電圧を長期間に亘って維持できる技術が求められている。
 電解電圧の内訳を詳細に解析すると、理論的に必要な電解電圧以外に、イオン交換膜の抵抗及び電解槽の構造抵抗に起因する電圧、電解用電極である陽極及び陰極の過電圧、陽極と陰極との間の距離に起因する電圧等が含まれることが明らかになっている。また、長期に亘って電解を継続すると、塩水中の不純物等の種々の原因に惹起される電圧上昇等が生じることもある。
Ion exchange membrane method salt electrolysis is a method for producing caustic soda, chlorine, and hydrogen by electrolyzing (electrolyzing) salt water using an electrode for electrolysis. In the ion exchange membrane salt electrolysis process, a technique capable of maintaining a low electrolysis voltage over a long period of time is required in order to reduce power consumption.
A breakdown of the breakdown of the electrolysis voltage reveals that, in addition to the theoretically required electrolysis voltage, the voltage resulting from the resistance of the ion exchange membrane and the structure resistance of the electrolytic cell, the overvoltage of the anode and cathode as electrolysis electrodes, the anode and cathode It has been clarified that a voltage or the like due to the distance between is included. Further, when electrolysis is continued for a long period of time, a voltage increase or the like caused by various causes such as impurities in salt water may occur.
 上述した電解電圧の中でも、塩素発生用の陽極の過電圧を低減させることを目的として、様々な検討が行われている。例えば、特許文献1には、ルテニウム等の白金族金属の酸化物をチタン基材上に被覆して成る不溶性陽極の技術が開示されている。この陽極は、DSA(登録商標、Dimension Stable Anode:寸法安定性陽極)と呼ばれる。また非特許文献1には、DSAを用いるソーダ電解技術の変遷が記載されている。 Among the electrolysis voltages described above, various studies have been conducted for the purpose of reducing the overvoltage of the anode for generating chlorine. For example, Patent Document 1 discloses a technique of an insoluble anode obtained by coating a platinum base metal oxide such as ruthenium on a titanium substrate. This anode is called DSA (registered trademark, Dimension Stable Anode). Non-Patent Document 1 describes the transition of soda electrolysis technology using DSA.
 上述のDSAに関しては、これまでにも様々な改良がなされ、性能改善に向けた検討が行われてきた。
 例えば、特許文献2には、白金族のうちパラジウムの低い塩素過電圧と高い酸素過電圧とに着目し、白金とパラジウムとを合金化した塩素発生用電極が報告されている。特許文献3及び特許文献4では、白金-パラジウム合金の表面を酸化処理し、表面に酸化パラジウムを形成させた電極が提案されている。また特許文献5には、スズの酸化物を主成分とし、ルテニウム、イリジウム、パラジウム、及びニオブの各酸化物を含有する外部触媒層で被覆された電極が提案されている。この電極により、酸素濃度の低い高純度の塩素を得るために、塩素発生と同時に起こる、陽極における酸素発生反応を抑制しようとする試みがなされている。
Various improvements have been made to the above-described DSA so far, and studies for improving the performance have been made.
For example, Patent Document 2 reports an electrode for chlorine generation in which platinum and palladium are alloyed by paying attention to a low chlorine overvoltage and a high oxygen overvoltage of palladium in the platinum group. Patent Documents 3 and 4 propose electrodes in which the surface of a platinum-palladium alloy is oxidized and palladium oxide is formed on the surface. Patent Document 5 proposes an electrode that is mainly composed of an oxide of tin and is covered with an external catalyst layer containing each of oxides of ruthenium, iridium, palladium, and niobium. In order to obtain high-purity chlorine having a low oxygen concentration with this electrode, an attempt has been made to suppress the oxygen generation reaction at the anode that occurs simultaneously with the generation of chlorine.
特公昭46-021884号公報Japanese Examined Patent Publication No. 46-021884 特公昭45-11014号公報Japanese Examined Patent Publication No. 45-11014 特公昭45-11015号公報Japanese Examined Patent Publication No. 45-11015 特公昭48-3954号公報Japanese Patent Publication No. 48-3954 特表2012-508326号公報Special table 2012-508326 gazette
 しかしながら、特許文献1に記載のDSA等の従来の陽極では、電解開始直後における過電圧が高く、触媒の活性化によって低い過電圧に落ち着くまでに一定の期間を要するため、電解時に消費電力損失が生じてしまうという問題がある。
 また、特許文献2~4に記載の塩素発生用電極は、過電圧が高く、耐久性が低い場合がある。更に、特許文献3及び4に記載の電極の製造においては、基材自体に合金を用いる必要がある他、該基材上に熱分解により酸化物を形成した後、還元により合金化し、更に電解酸化で酸化パラジウム化する等の複雑な工程を要し、実用上でも製法的にも大きな改善が必要である。
 特許文献5に記載の電極は、耐薬品性に乏しいパラジウムの電解持続時間(電極寿命)の向上に一定の効果はあるものの、塩素発生過電圧は十分に低いものとはいえない。
 以上のとおり、特許文献1~5及び非特許文献1に記載の技術では、電解初期の過電圧が十分に低く、かつ、長期に亘って低電圧・低消費電力量で電解可能な電解用電極を実現することができない。
However, in the conventional anode such as DSA described in Patent Document 1, the overvoltage immediately after the start of electrolysis is high, and it takes a certain period of time to settle down to a low overvoltage due to the activation of the catalyst. There is a problem of end.
The electrodes for generating chlorine described in Patent Documents 2 to 4 may have high overvoltage and low durability. Furthermore, in the manufacture of the electrodes described in Patent Documents 3 and 4, it is necessary to use an alloy for the base material itself. In addition, an oxide is formed on the base material by thermal decomposition, then alloyed by reduction, and further electrolyzed. It requires complicated steps such as oxidation to palladium oxide, and a great improvement is required both in practical use and in manufacturing.
Although the electrode described in Patent Document 5 has a certain effect in improving the electrolysis duration (electrode life) of palladium having poor chemical resistance, it cannot be said that the chlorine generation overvoltage is sufficiently low.
As described above, in the techniques described in Patent Documents 1 to 5 and Non-Patent Document 1, an electrode for electrolysis that can be electrolyzed with a low voltage and low power consumption over a long period of time while the overvoltage at the initial stage of electrolysis is sufficiently low. It cannot be realized.
 本発明は、上述した問題を解決するためになされたものである。従って本発明は、電解初期の過電圧を低減でき、かつ長期に亘って低電圧・低消費電力量で電解可能な電解用電極及びその製造方法、並びに該電解用電極を備えた電解槽を提供することを目的とする。 The present invention has been made to solve the above-described problems. Accordingly, the present invention provides an electrode for electrolysis capable of reducing overvoltage in the initial stage of electrolysis and capable of electrolysis with low voltage and low power consumption over a long period of time, a method for producing the same, and an electrolytic cell equipped with the electrode for electrolysis For the purpose.
 本発明者らは、前記課題を解決するために鋭意研究を重ねた。その結果、所定の金属元素を所定の比率で含有する触媒層を有する電解用電極の電気二重層容量の指標となる数値を特定の範囲に調整することにより、電解初期の過電圧を低減でき、かつ長期に亘って低電圧・低消費電力量で電解可能であることを見出し、本発明をなすに至った。
 すなわち、本発明は、以下のとおりである。
[1]
 導電性基材と、
 前記導電性基材の表面上に形成された触媒層と、
 を備える電解用電極であって、
 前記触媒層が、ルテニウム元素、イリジウム元素、チタン元素、並びに、Sc、V、Cr、Fe、Co、Ni、Cu及びZnからなる群より選択される少なくとも一種の第一遷移金属元素を含み、
 前記触媒層に含まれる第一遷移金属元素の前記チタン元素1モルに対する含有割合が、0.25モル%以上3.4モル%未満であり、
 前記電解用電極の電気二重層容量の指標となるD値が120C/m以上420C/m以下である、電解用電極。
[2]
 前記第一遷移金属元素が、ルテニウム酸化物、イリジウム酸化物及びチタン酸化物の固溶体と、固溶体を形成している、[1]に記載の電解用電極。
[3]
 前記第一遷移金属元素が、バナジウム、コバルト、銅及び亜鉛からなる群より選択される少なくとも一種の金属元素を含む、[1]又は[2]に記載の電解用電極。
[4]
 前記第一遷移金属元素が、バナジウム元素を含む、[1]~[3]のいずれかに記載の電解用電極。
[5]
 前記触媒層に含まれる全ての金属元素に対する前記第一遷移金属元素の含有率が、10モル%以上30モル%以下である、[1]~[4]のいずれかに記載の電解用電極。
[6]
 前記触媒層に含まれる前記第一遷移金属元素の前記ルテニウム元素1モルに対する含有割合が、0.3モル以上2モル未満である、[1]~[5]のいずれかに記載の電解用電極。
[7]
 前記D値が、120C/m以上380C/m以下である、[1]~[6]のいずれかに記載の電解用電極。
[8]
 [1]~[7]のいずれかに記載の電解用電極を製造するための方法であって、
 ルテニウム化合物、イリジウム化合物、チタン化合物、及び、前記第一遷移金属元素を含む化合物を含有する塗工液を調製する工程と、
 前記塗工液を前記導電性基材の少なくとも片面上に塗工して塗膜を形成する工程と、
 前記塗膜を酸素含有雰囲気下で焼成して前記触媒層を形成する工程と、
 を有する、電解用電極の製造方法。
[9]
 [1]~[7]のいずれかに記載の電解用電極を備える、電解槽。
The inventors of the present invention have made extensive studies to solve the above problems. As a result, by adjusting a numerical value that is an index of the electric double layer capacity of the electrode for electrolysis having a catalyst layer containing a predetermined metal element in a predetermined ratio to a specific range, it is possible to reduce overvoltage at the initial stage of electrolysis, and It has been found that electrolysis is possible with a low voltage and low power consumption over a long period of time, and the present invention has been made.
That is, the present invention is as follows.
[1]
A conductive substrate;
A catalyst layer formed on the surface of the conductive substrate;
An electrode for electrolysis comprising:
The catalyst layer includes a ruthenium element, an iridium element, a titanium element, and at least one first transition metal element selected from the group consisting of Sc, V, Cr, Fe, Co, Ni, Cu, and Zn;
The content ratio of the first transition metal element contained in the catalyst layer to 1 mol of the titanium element is 0.25 mol% or more and less than 3.4 mol%,
The D values indicative of the electric double layer capacity of the electrode for electrolysis is 120C / m 2 or more 420C / m 2 or less, the electrode for electrolysis.
[2]
The electrode for electrolysis according to [1], wherein the first transition metal element forms a solid solution with a solid solution of ruthenium oxide, iridium oxide, and titanium oxide.
[3]
The electrode for electrolysis according to [1] or [2], wherein the first transition metal element includes at least one metal element selected from the group consisting of vanadium, cobalt, copper, and zinc.
[4]
The electrode for electrolysis according to any one of [1] to [3], wherein the first transition metal element contains a vanadium element.
[5]
The electrode for electrolysis according to any one of [1] to [4], wherein the content of the first transition metal element with respect to all the metal elements contained in the catalyst layer is 10 mol% or more and 30 mol% or less.
[6]
The electrode for electrolysis according to any one of [1] to [5], wherein the content ratio of the first transition metal element contained in the catalyst layer to 1 mol of the ruthenium element is 0.3 mol or more and less than 2 mol .
[7]
The electrode for electrolysis according to any one of [1] to [6], wherein the D value is 120 C / m 2 or more and 380 C / m 2 or less.
[8]
A method for producing the electrode for electrolysis according to any one of [1] to [7],
A step of preparing a coating liquid containing a ruthenium compound, an iridium compound, a titanium compound, and a compound containing the first transition metal element;
Applying the coating liquid onto at least one surface of the conductive substrate to form a coating film;
Baking the coating film in an oxygen-containing atmosphere to form the catalyst layer;
The manufacturing method of the electrode for electrolysis which has these.
[9]
An electrolytic cell comprising the electrode for electrolysis according to any one of [1] to [7].
 本発明により、電解初期の過電圧を低減でき、かつ長期に亘って低電圧・低消費電力量で電解可能な電解用電極が提供される。 The present invention provides an electrode for electrolysis that can reduce overvoltage at the initial stage of electrolysis and that can be electrolyzed with low voltage and low power consumption over a long period of time.
図1は、本実施形態の電解槽の一例に係る断面模式図である。FIG. 1 is a schematic sectional view according to an example of the electrolytic cell of the present embodiment. 図2は、VとTiとの元素比(モル比)が異なる4試料について、XPS深さ方向分析により求めたV/Tiの実測値と、塗工液中の仕込みのV/Ti値をプロットし、直線近似した結果を示すグラフである。FIG. 2 is a plot of measured V / Ti values obtained by XPS depth direction analysis and V / Ti values of preparations in the coating solution for four samples having different element ratios (molar ratios) between V and Ti. It is a graph showing the result of linear approximation.
 以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について、詳細に説明する。以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。本発明は、その要旨の範囲内で適宜に変形して実施できる。 Hereinafter, a mode for carrying out the present invention (hereinafter simply referred to as “the present embodiment”) will be described in detail. The following embodiments are examples for explaining the present invention, and are not intended to limit the present invention to the following contents. The present invention can be implemented with appropriate modifications within the scope of the gist thereof.
 本実施形態の電解用電極は、導電性基材と、前記導電性基材の表面上に形成された触媒層と、を備える電解用電極であって、前記触媒層が、ルテニウム元素、イリジウム元素、チタン元素、並びに、スカンジウム、バナジウム、クロム、鉄、コバルト、ニッケル、銅及び亜鉛からなる群より選択される少なくとも一種の第一遷移金属元素(以下、これらの遷移金属元素を総称して「第一遷移金属元素」ともいう。)を含む。さらに、本実施形態の電解用電極は、前記触媒層に含まれる第一遷移金属元素の前記チタン元素1モルに対する含有割合が、0.25モル%以上3.4モル%未満であり、前記電解用電極の電気二重層容量の指標となるD値が120C/m以上420C/m以下となるように構成されている。
 本実施形態では、触媒層において、ルテニウム元素、イリジウム元素及びチタン元素に加えて、第一遷移金属元素を用いることにより、X線光電子分光法(XPS)で測定されるRuOに由来するRu3d5/2に帰属されるピークのピーク位置が、RuOの280.5eVから高結合エネルギー側にシフトした電解用電極となる。なお、XPSの帯電補正はTi2p3/2の結合エネルギーが458.4eVになるように補正する。Ru3d5/2のピーク位置の高結合エネルギー側へのシフトは、Ruが電荷的により酸化された状態を示し、これは第一遷移金属元素の添加に起因するものと考えられる。例えば、第一遷移金属元素としてバナジウムを添加したときは、以下の分極が起こる。
  RuO + VO → RuO δ+ + VO δ-
 RuO δ+が塩素を吸着する活性な吸着サイトとなり、塩素吸着を促進することで塩素発生の過電圧を低減できる。
 上記した作用機序に限定する趣旨ではないが、本実施形態の電解用電極は、上述した構成を有するため、当該電解用電極を用いて電解を行う場合、電解初期の過電圧を低減でき、かつ長期に亘って低電圧・低消費電力量で電解可能となる。本実施形態の電解用電極は、特にイオン交換膜法食塩電解に塩素発生用電極として好適に用いることができる。
The electrode for electrolysis of this embodiment is an electrode for electrolysis comprising a conductive substrate and a catalyst layer formed on the surface of the conductive substrate, and the catalyst layer is composed of a ruthenium element or an iridium element. , Titanium element, and at least one first transition metal element selected from the group consisting of scandium, vanadium, chromium, iron, cobalt, nickel, copper, and zinc (hereinafter, these transition metal elements are collectively referred to as “first Also referred to as “one transition metal element”). Furthermore, in the electrode for electrolysis of this embodiment, the content ratio of the first transition metal element contained in the catalyst layer to 1 mol of the titanium element is 0.25 mol% or more and less than 3.4 mol%, and the electrolysis D values indicative of the electric double layer capacity of use electrodes are configured to be 120C / m 2 or more 420C / m 2 or less.
In the present embodiment, in the catalyst layer, in addition to the ruthenium element, the iridium element, and the titanium element, the first transition metal element is used, whereby Ru3d5 / derived from RuO 2 measured by X-ray photoelectron spectroscopy (XPS). The peak position of the peak attributed to 2 is an electrode for electrolysis shifted from 280.5 eV of RuO 2 to the high binding energy side. XPS charging correction is performed so that the binding energy of Ti2p3 / 2 is 458.4 eV. The shift of the peak position of Ru3d5 / 2 to the high binding energy side indicates a state in which Ru is oxidized by charge, which is considered to be caused by the addition of the first transition metal element. For example, when vanadium is added as the first transition metal element, the following polarization occurs.
RuO 2 + VO 2 → RuO 2 δ + + VO 2 δ−
RuO 2 δ + becomes an active adsorption site for adsorbing chlorine, and by promoting the adsorption of chlorine, the overvoltage of chlorine generation can be reduced.
Although not intended to limit to the above-described mechanism of action, the electrode for electrolysis of the present embodiment has the above-described configuration, and therefore, when electrolysis is performed using the electrode for electrolysis, overvoltage at the initial stage of electrolysis can be reduced, and Electrolysis can be performed at low voltage and low power consumption over a long period of time. The electrode for electrolysis of the present embodiment can be suitably used as an electrode for generating chlorine, particularly for ion exchange membrane salt electrolysis.
(導電性基材)
 本実施形態の電解用電極は、飽和に近い高濃度の食塩水中で、塩素ガス発生雰囲気で用いられる。そのため、本実施形態における導電性基材の材質としては、耐食性のあるバルブ金属が好ましい。バルブ金属としては、以下に限定されないが、例えば、チタン、タンタル、ニオブ、ジルコニウム等が挙げられる。経済性及び触媒層との親和性の観点からチタンが好ましい。
 導電性基材の形状は特に限定はなく、目的によって適切な形状を選択することができる。例えば、エキスパンド形状、多孔板、金網等の形状が好適に用いられる。導電性基材の厚みは、0.1~2mmであることが好ましい。
 導電性基材における触媒層との接触表面は、触媒層との密着性を向上させるために、表面積増大化処理を実施することが好ましい。表面積増大化処理の方法としては、以下に限定されないが、例えば、カットワイヤ、スチールグリッド、アルミナグリッド等を用いるブラスト処理;硫酸又は塩酸を用いる酸処理等が挙げられる。これらの処理の中でも、ブラスト処理により導電性基材の表面に凹凸を形成させた後、更に酸処理する方法が好ましい。
(Conductive substrate)
The electrode for electrolysis of the present embodiment is used in a chlorine gas generating atmosphere in a highly concentrated saline solution close to saturation. Therefore, as a material of the conductive substrate in the present embodiment, a valve metal having corrosion resistance is preferable. Examples of the valve metal include, but are not limited to, titanium, tantalum, niobium, zirconium, and the like. Titanium is preferable from the viewpoint of economy and affinity with the catalyst layer.
The shape of the conductive substrate is not particularly limited, and an appropriate shape can be selected depending on the purpose. For example, an expanded shape, a perforated plate, a wire mesh, or the like is preferably used. The thickness of the conductive substrate is preferably 0.1 to 2 mm.
The surface of the conductive substrate that contacts the catalyst layer is preferably subjected to a surface area increasing treatment in order to improve the adhesion with the catalyst layer. Examples of the method for increasing the surface area include, but are not limited to, blasting using a cut wire, steel grid, alumina grid or the like; acid treatment using sulfuric acid or hydrochloric acid, or the like. Among these treatments, an acid treatment method is preferred after forming irregularities on the surface of the conductive substrate by blast treatment.
(触媒層)
 上述の処理を施した導電性基材の表面上に形成される触媒層は、ルテニウム元素、イリジウム元素、チタン元素及び第一遷移金属元素を含む。
 ルテニウム元素、イリジウム元素、及びチタン元素は、それぞれ、酸化物の形態にあることが好ましい。
 ルテニウム酸化物としては、以下に限定されないが、例えばRuO等が挙げられる。
 イリジウム酸化物としては、以下に限定されないが、例えばIrO等が挙げられる。
 チタン酸化物としては、以下に限定されないが、例えばTiO等が挙げられる。
(Catalyst layer)
The catalyst layer formed on the surface of the conductive substrate subjected to the above-described treatment contains a ruthenium element, an iridium element, a titanium element, and a first transition metal element.
The ruthenium element, iridium element, and titanium element are each preferably in the form of an oxide.
Examples of the ruthenium oxide include, but are not limited to, RuO 2 and the like.
Examples of the iridium oxide include, but are not limited to, IrO 2 and the like.
Examples of the titanium oxide include, but are not limited to, TiO 2 and the like.
 本実施形態の触媒層において、ルテニウム酸化物、イリジウム酸化物、及びチタン酸化物は、固溶体を形成していることが好ましい。ルテニウム酸化物、イリジウム酸化物、及びチタン酸化物が固溶体を形成することによって、ルテニウム酸化物の耐久性が一層向上する。
 固溶体とは、一般的に、2種類以上の物質が互いに溶け合い、全体が均一の固相となっているものをいう。固溶体を形成する物質としては、金属単体、金属酸化物等が挙げられる。特に本実施形態に好適な金属酸化物の固溶体の場合には、酸化物結晶構造における単位格子中の等価な格子点上に、2種類以上の金属原子が不規則に配列している。具体的には、ルテニウム酸化物とイリジウム酸化物とチタン酸化物とが相互に混合し、ルテニウム酸化物の側から見れば、ルテニウム原子がイリジウム原子若しくはチタン原子又はこれらの双方によって置換された置換型固溶体であることが好ましい。その固溶状態は特に限定されず、部分固溶の領域が存在していてもよい。
 固溶によって、結晶構造における単位格子の大きさがわずかに変化する。この変化の度合いは、例えば、粉末X線回折の測定において、結晶構造に起因する回折パターンは変化せず、単位格子の大きさに起因するピーク位置が変化すること等から確認することができる。
In the catalyst layer of this embodiment, it is preferable that the ruthenium oxide, iridium oxide, and titanium oxide form a solid solution. The ruthenium oxide, iridium oxide, and titanium oxide form a solid solution, thereby further improving the durability of the ruthenium oxide.
A solid solution generally refers to a substance in which two or more kinds of substances are dissolved in each other and the whole is a uniform solid phase. Examples of the substance forming the solid solution include a metal simple substance and a metal oxide. In particular, in the case of a metal oxide solid solution suitable for the present embodiment, two or more types of metal atoms are irregularly arranged on equivalent lattice points in the unit lattice in the oxide crystal structure. Specifically, a substitution type in which ruthenium oxide, iridium oxide and titanium oxide are mixed with each other, and when viewed from the ruthenium oxide side, the ruthenium atom is substituted by iridium atom or titanium atom or both of them. A solid solution is preferred. The solid solution state is not particularly limited, and a partial solid solution region may exist.
Due to the solid solution, the size of the unit cell in the crystal structure changes slightly. The degree of this change can be confirmed, for example, by measuring the powder X-ray diffraction without changing the diffraction pattern due to the crystal structure and changing the peak position due to the size of the unit cell.
 本実施形態の触媒層において、ルテニウム元素、イリジウム元素、及びチタン元素の含有割合は、ルテニウム元素1モルに対して、イリジウム元素0.06~3モルであり、かつ、チタン元素0.2~8モルであることが好ましく;ルテニウム元素1モルに対して、イリジウム元素0.2~3モルであり、かつ、チタン元素0.2~8モルであることがより好ましく;ルテニウム元素1モルに対して、イリジウム元素0.3~2モルであり、かつ、チタン元素0.2~6モルであることがさらに好ましく;ルテニウム元素1モルに対して、イリジウム元素0.5~1.5モルであり、かつ、チタン元素0.2~3モルであることが特に好ましい。3種類の元素の含有割合を上述の範囲とすることによって、電解用電極の長期耐久性がより向上する傾向にある。イリジウム、ルテニウム、及びチタンは、それぞれ、酸化物以外の形態、例えば金属単体として触媒層に含まれていてもよい。 In the catalyst layer of this embodiment, the content ratio of the ruthenium element, the iridium element, and the titanium element is 0.06 to 3 mol of the iridium element with respect to 1 mol of the ruthenium element, and 0.2 to 8 of the titanium element. Preferably, it is 0.2 to 3 moles of the iridium element and more preferably 0.2 to 8 moles of the titanium element with respect to 1 mole of the ruthenium element; More preferably, the iridium element is 0.3 to 2 mol and the titanium element is 0.2 to 6 mol; the iridium element is 0.5 to 1.5 mol with respect to 1 mol of the ruthenium element; In particular, the titanium element is particularly preferably 0.2 to 3 mol. By setting the content ratio of the three kinds of elements in the above range, the long-term durability of the electrode for electrolysis tends to be further improved. Each of iridium, ruthenium, and titanium may be included in the catalyst layer as a form other than an oxide, for example, as a simple metal.
 本実施形態の触媒層は、上述のルテニウム元素、イリジウム元素、及びチタン元素と共に第一遷移金属元素を含む。第一遷移金属元素の存在形態は特に限定されず、例えば酸化物の形態であっても、金属単体であっても、合金であっても、触媒層に含まれていればよい。本実施形態において、触媒層の耐久性の観点から、第一遷移金属元素が、ルテニウム酸化物、イリジウム酸化物及びチタン酸化物の固溶体と、固溶体を形成していることが好ましい。このような固溶体を形成していることは、例えば、XRDにより確認することができる。また、触媒層を形成する際の焼成温度や第一遷移金属元素の添加量等を適切な範囲に調整することにより上記の固溶体を形成することができる。 The catalyst layer of the present embodiment includes the first transition metal element together with the above-described ruthenium element, iridium element, and titanium element. The presence form of the first transition metal element is not particularly limited. For example, the first transition metal element may be in the form of an oxide, a simple metal, or an alloy, as long as it is contained in the catalyst layer. In the present embodiment, from the viewpoint of durability of the catalyst layer, the first transition metal element preferably forms a solid solution with a solid solution of ruthenium oxide, iridium oxide, and titanium oxide. The formation of such a solid solution can be confirmed by, for example, XRD. Moreover, said solid solution can be formed by adjusting the calcination temperature at the time of forming a catalyst layer, the addition amount of a 1st transition metal element, etc. to an appropriate range.
 本実施形態において、触媒層の電圧と耐久性の両立の観点から、第一遷移金属元素が、バナジウム、コバルト、銅及び亜鉛からなる群より選択される金属元素を含むことが好ましく、第一遷移金属元素が、バナジウム元素を含むことがより好ましい。 In the present embodiment, the first transition metal element preferably contains a metal element selected from the group consisting of vanadium, cobalt, copper, and zinc from the viewpoint of compatibility between the voltage and durability of the catalyst layer. More preferably, the metal element contains a vanadium element.
 本実施形態における触媒層に含まれる全ての金属元素に対する前記第一遷移金属元素の含有率は、10モル%以上30モル%以下であることが好ましく、10モル%超22.5モル%以下であることがより好ましく、12モル%以上20モル%以下であることが更に好ましい。第一遷移金属元素がバナジウムを含む場合、触媒層に含まれる全ての金属元素に対するバナジウムの含有率が上記範囲を満たすことがとりわけ好ましい。
 上記含有割合は、主に、後述する好ましい電解用電極の製造方法において調製される塗工液中の各元素の仕込み比に由来するものであるが、後述する断面STEM-EDXやX線光電子分光法(XPS)による深さ方向分析によって確認することができる。
 第一遷移金属元素の含有割合が10モル%以上である場合、塩素発生過電圧ないし電解電圧を電解初期から低減できる傾向にある。また、第一遷移金属元素の含有割合が30モル%以下である場合、ルテニウム酸化物の耐久性が十分に確保される傾向にある。
The content of the first transition metal element with respect to all the metal elements contained in the catalyst layer in the present embodiment is preferably 10 mol% or more and 30 mol% or less, and more than 10 mol% and 22.5 mol% or less. More preferably, it is 12 mol% or more and 20 mol% or less. When the first transition metal element contains vanadium, it is particularly preferable that the vanadium content with respect to all the metal elements contained in the catalyst layer satisfy the above range.
The above-mentioned content ratio is mainly derived from the charging ratio of each element in the coating liquid prepared in the preferable method for producing an electrode for electrolysis described later, but the cross-sectional STEM-EDX and X-ray photoelectron spectroscopy described later are used. It can be confirmed by depth direction analysis by the method (XPS).
When the content ratio of the first transition metal element is 10 mol% or more, the chlorine generation overvoltage or the electrolysis voltage tends to be reduced from the initial stage of electrolysis. Moreover, when the content rate of a 1st transition metal element is 30 mol% or less, it exists in the tendency for durability of a ruthenium oxide to fully be ensured.
 本実施形態における触媒層に含まれる前記第一遷移金属元素の前記ルテニウム元素1モルに対する含有割合は、0.3モル以上2モル未満であることが好ましく、0.5モル以上2モル未満であることがより好ましく、0.5モル以上1.8モル未満であることがさらに好ましい。第一遷移金属元素がバナジウムを含む場合、触媒層に含まれるルテニウム元素1モルに対するバナジウムの含有割合が上記範囲を満たすことがとりわけ好ましい。
 上記含有割合は、主に、後述する好ましい電解用電極の製造方法において調製される塗工液中の各元素の仕込み比に由来するものであるが、後述する断面STEM-EDXやX線光電子分光法(XPS)による深さ方向分析によって確認することができる。
 第一遷移金属元素の含有割合が、ルテニウム元素の1モルに対するモル数として0.3モル以上である場合、塩素発生過電圧ないし電解電圧を電解初期から低減できる傾向にあり、後述する電気二重層容量の指標となるD値を十分高くできる傾向にある。また、2モル未満である場合、ルテニウム酸化物の耐久性が十分に確保される傾向にある。
The content ratio of the first transition metal element contained in the catalyst layer in the present embodiment to 1 mol of the ruthenium element is preferably 0.3 mol or more and less than 2 mol, and is 0.5 mol or more and less than 2 mol. It is more preferable that the amount is 0.5 mol or more and less than 1.8 mol. When the first transition metal element contains vanadium, it is particularly preferable that the vanadium content with respect to 1 mole of the ruthenium element contained in the catalyst layer satisfies the above range.
The above-mentioned content ratio is mainly derived from the charging ratio of each element in the coating liquid prepared in the preferable method for producing an electrode for electrolysis described later, but the cross-sectional STEM-EDX and X-ray photoelectron spectroscopy described later are used. It can be confirmed by depth direction analysis by the method (XPS).
When the content ratio of the first transition metal element is 0.3 mol or more as 1 mol of the ruthenium element, the chlorine generation overvoltage or the electrolysis voltage tends to be reduced from the initial stage of electrolysis, and the electric double layer capacity described later It tends to be possible to sufficiently increase the D value, which is an index of. Moreover, when it is less than 2 mol, the durability of the ruthenium oxide tends to be sufficiently secured.
 本実施形態における触媒層に含まれる前記第一遷移金属元素の前記チタン元素1モルに対する含有割合は、0.25モル以上3.4モル未満であり、0.25モル以上2.6モル未満であることが好ましい。第一遷移金属元素がバナジウムを含む場合、触媒層に含まれるチタン元素1モルに対するバナジウムの含有割合が上記範囲を満たすことがとりわけ好ましい。
 上記含有割合は、主に、後述する好ましい電解用電極の製造方法において調製される塗工液中の各元素の仕込み比に由来するものであるが、後述する断面STEM-EDXやX線光電子分光法(XPS)による深さ方向分析によって確認することができる。
 第一遷移金属元素の含有割合が、チタン元素の1モルに対するモル数として0.25モル以上である場合、塩素発生過電圧ないし電解電圧を電解初期から低減できる傾向にあり、後述する電気二重層容量の指標となるD値を十分高くできる傾向にある。また、3.4モル未満である場合、ルテニウム酸化物の耐久性が十分に確保される傾向にある。
The content ratio of the first transition metal element contained in the catalyst layer in the present embodiment with respect to 1 mol of the titanium element is 0.25 mol or more and less than 3.4 mol, and 0.25 mol or more and less than 2.6 mol. Preferably there is. When the first transition metal element contains vanadium, it is particularly preferable that the content of vanadium with respect to 1 mole of titanium element contained in the catalyst layer satisfies the above range.
The above-mentioned content ratio is mainly derived from the charging ratio of each element in the coating liquid prepared in the preferable method for producing an electrode for electrolysis described later, but the cross-sectional STEM-EDX and X-ray photoelectron spectroscopy described later are used. It can be confirmed by depth direction analysis by the method (XPS).
When the content ratio of the first transition metal element is 0.25 mol or more per 1 mol of titanium element, the chlorine generation overvoltage or the electrolysis voltage tends to be reduced from the initial stage of electrolysis, and the electric double layer capacity described later It tends to be possible to sufficiently increase the D value, which is an index of. Moreover, when it is less than 3.4 mol, the durability of the ruthenium oxide tends to be sufficiently secured.
 電解用電極における触媒層中のVとTiとの元素比(モル比)は、例えば断面STEM-EDXやX線光電子分光法(XPS)による深さ方向分析等で確認することができる。例えば、XPS深さ方向定量分析によりルテニウム元素、イリジウム元素、チタン元素及び第一遷移金属元素としてバナジウム元素を含む触媒層中のVとTiとの元素比(モル比)を求める方法を以下に示す。なお、ここでは導電性基材としてTi基材を用いるものとする。
 XPS測定条件は、次のとおりとすることができる。
  装置:アルバックファイ社製PHI5000VersaProbeII、
  励起源:単色化AlKα(15kV×0.3mA)、
  分析サイズ:約200μmφ、
  光電子取出角:45°、
  PassEnergy:46.95eV(Narrow scan)
 また、Arスパッタ条件は、次のとおりとすることができる。
  加速電圧:2kV、
  ラスター範囲:2mm四方、
  Zalar回転有り。
The elemental ratio (molar ratio) of V and Ti in the catalyst layer in the electrode for electrolysis can be confirmed by, for example, cross-sectional STEM-EDX or depth direction analysis by X-ray photoelectron spectroscopy (XPS). For example, a method for obtaining an element ratio (molar ratio) between V and Ti in a catalyst layer containing a ruthenium element, an iridium element, a titanium element, and a vanadium element as a first transition metal element by XPS depth direction quantitative analysis is shown below. . Here, a Ti substrate is used as the conductive substrate.
The XPS measurement conditions can be as follows.
Apparatus: PHI5000 VersaProbeII manufactured by ULVAC-PHI,
Excitation source: Monochromatic AlKα (15 kV × 0.3 mA),
Analysis size: about 200 μmφ
Photoelectron extraction angle: 45 °
PassEnergy: 46.95 eV (Narrow scan)
Ar + sputtering conditions can be as follows.
Acceleration voltage: 2 kV,
Raster range: 2mm square,
There is Zalar rotation.
 濃度の計算の方法について、Ru、Ir、Ti、Vの定量に用いる光電子ピークの分光学的準位はRu3d、Ir4f、Ti2p、V2p3/2である。Ti2pにはRu3p3/2が、Ir4fにはTi3sが、それぞれ重なるため、以下の手順により、定量を行うことができる。
(1)装置付随の解析ソフト「MaltiPak」を用い、各スパッタ時間(各深さ)でのRu3d、Ir4f(Ti3sを含む)、Ti2p(Ru3p3/2を含む)、V2p3/2のピークの面積強度(以下、ピーク面積強度)を求める。
(2)Ru3dのピーク面積強度を元にRu3p3/2のピーク面積強度を算出する。算出は、MaltiPakのCorrected RSF(パスエネルギーの値によって修正された相対的感度因子)の比を使って行う。これをRu3p3/2を含んだTi2pのピーク面積強度から差し引き、Ti2pのみのピーク面積強度を算出する。
(3)補正したTi2pのピーク面積強度を元にTi3sのピーク面積強度をCorrected RSFの比を利用して算出する。これをTi3sを含んだIr4fのピーク面積強度から差し引き、Ir4fのみのピーク面積強度を算出する。
Regarding the method of calculating the concentration, the spectroscopic levels of the photoelectron peaks used for the determination of Ru, Ir, Ti, and V are Ru3d, Ir4f, Ti2p, and V2p3 / 2. Since Ru3p3 / 2 overlaps Ti2p and Ti3s overlaps Ir4f, quantification can be performed by the following procedure.
(1) Using the analysis software “MaltiPak” attached to the apparatus, the peak area intensity of Ru3d, Ir4f (including Ti3s), Ti2p (including Ru3p3 / 2), and V2p3 / 2 at each sputtering time (each depth) (Hereafter, peak area intensity) is obtained.
(2) The peak area intensity of Ru3p3 / 2 is calculated based on the peak area intensity of Ru3d. The calculation is performed using the ratio of the MaltiPak Corrected RSF (relative sensitivity factor modified by the path energy value). This is subtracted from the peak area intensity of Ti2p containing Ru3p3 / 2 to calculate the peak area intensity of Ti2p only.
(3) Based on the corrected peak area intensity of Ti2p, the peak area intensity of Ti3s is calculated using the ratio of Corrected RSF. This is subtracted from the peak area intensity of Ir4f containing Ti3s to calculate the peak area intensity of only Ir4f.
 XPS深さ方向定量分析により求める触媒層中のVとTiとの元素比(モル比)の実測値は、下記計算式に基づいて、Vが検出される触媒層の深さ範囲における各深さでのV2p3/2のピーク面積強度を積算し、V2p3/2のCorrected RSFで割った値と、各深さでのTi2pのピーク面積強度を積算し、Ti2pのCorrected RSFで割った値の比とする。各元素のピーク面積強度を積算する触媒層の深さ範囲は、例えば、触媒層が単層の場合には、最表面からTi基材由来のTiの信号が検出され始めるまでの深さ範囲とする。ここで、触媒層が多層の場合、Ti基材表面に直接形成されている触媒層以外の層については、各触媒層の深さ範囲とし、Ti基材表面に直接形成されている触媒層については、Ti基材由来のTiの信号が検出され始めるまでの深さ範囲とする。 The actual value of the element ratio (molar ratio) between V and Ti in the catalyst layer determined by XPS depth direction quantitative analysis is based on the following calculation formula, and each depth in the catalyst layer depth range where V is detected: The sum of V2p3 / 2 peak area intensity at V2p3 / 2 and divided by V2p3 / 2 Corrected RSF and the ratio of Ti2p peak area intensity at each depth divided by Ti2p Corrected RSF To do. For example, when the catalyst layer is a single layer, the depth range of the catalyst layer that integrates the peak area intensity of each element is the depth range from the outermost surface until the Ti signal derived from the Ti base material starts to be detected. To do. Here, when the catalyst layer is multi-layered, the layers other than the catalyst layer directly formed on the surface of the Ti base material are set to the depth range of each catalyst layer, and the catalyst layer directly formed on the surface of the Ti base material. Is a depth range until a Ti signal derived from the Ti base material starts to be detected.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 VとTiとの元素比(モル比)が異なる下記の4つの試料a~dについて、上述した測定方法にてXPS深さ方向分析により求めたV/Tiの実測値と、塗工液中の仕込みのV/Ti値をプロットした結果を図2に示す。
(試料a)V/Ti仕込み比が0.11である電解用電極
 ルテニウムとイリジウムとチタンとバナジウムとの元素比(モル比)が、それぞれ、23.75:23.75:47.5:5になるように調合した塗工液aを用いて、導電性基材に塗工したこと以外は、後述する実施例1と同様の方法により得られた電解用電極。
(試料b)V/Ti仕込み比が0.22である電解用電極
 ルテニウムとイリジウムとチタンとバナジウムとの元素比(モル比)がそれぞれ、22.5:22.5:45:10になるように調合した塗工液bを用いて、導電性基材に塗工したこと以外は、実施例1と同様の方法により得られた電解用電極。
(試料c)V/Ti仕込み比が0.35である電解用電極
 後述する実施例1と同様の方法により得られた電解用電極。
(試料d)V/Ti仕込み比が1.13である電解用電極
 後述する実施例3と同様の方法により得られた電解用電極。
For the following four samples a to d having different element ratios (molar ratios) between V and Ti, the actual measurement value of V / Ti obtained by XPS depth direction analysis by the above-described measurement method, and the coating solution The result of plotting the V / Ti value of the feed is shown in FIG.
(Sample a) Electrode for Electrolysis with V / Ti Charge Ratio of 0.11 The element ratio (molar ratio) of ruthenium, iridium, titanium, and vanadium was 23.75: 23.75: 47.5: 5, respectively. The electrode for electrolysis obtained by the method similar to Example 1 mentioned later except having applied to the electroconductive base material using the coating liquid a prepared so that it might become.
(Sample b) Electrolysis electrode having a V / Ti feed ratio of 0.22 The element ratio (molar ratio) of ruthenium, iridium, titanium, and vanadium is 22.5: 22.5: 45: 10, respectively. The electrode for electrolysis obtained by the method similar to Example 1 except having applied to the electroconductive base material using the coating liquid b mix | blended.
(Sample c) Electrolysis electrode having a V / Ti charge ratio of 0.35 Electrolysis electrode obtained by the same method as in Example 1 described later.
(Sample d) Electrolysis electrode having a V / Ti charge ratio of 1.13 Electrolysis electrode obtained by the same method as in Example 3 described later.
 図2のとおり、V/Tiの実測値と仕込みの値は正の相関を示すことから、この検量線によりルテニウム元素、イリジウム元素、チタン元素及びバナジウム元素を含む触媒層中のVとTiとの元素比(モル比)を求めることができる。触媒層中に含まれる成分が変わった場合は、同様の方法でV/Tiの実測値と仕込みの値の検量線を作成することにより、触媒層中のVとTiとの元素比(モル比)を求めることができる。
 なお、本実施形態の電解用電極において、触媒層は1層のみから構成されていてもよいし、2層以上の多層構造であってもよい。多層構造である場合は、その中の少なくとも1層に含まれる前記第一遷移金属元素の前記チタン元素1モルに対する含有割合が0.25モル以上3.4モル未満であればよく、その他の層は当該含有割合を満たさないものであってもよい。
As shown in FIG. 2, since the measured value of V / Ti and the charged value show a positive correlation, the calibration curve shows the relationship between V and Ti in the catalyst layer containing ruthenium element, iridium element, titanium element and vanadium element. The element ratio (molar ratio) can be determined. When the components contained in the catalyst layer change, an element ratio (molar ratio) of V and Ti in the catalyst layer is prepared by preparing a calibration curve of the measured value of V / Ti and the charged value by the same method. ).
In the electrode for electrolysis of this embodiment, the catalyst layer may be composed of only one layer or may have a multilayer structure of two or more layers. In the case of a multilayer structure, the content ratio of the first transition metal element contained in at least one of the layers to the 1 mol of the titanium element may be 0.25 mol or more and less than 3.4 mol, and the other layers May not satisfy the content ratio.
 本実施形態の電解用電極は、電気二重層容量の指標となるD値が120C/m以上420C/m以下であることを特徴とする。また、120C/m以上380C/m以下であることがより好ましく、150C/m以上360C/m以下であることがさらに好ましい。D値が120C/m以上であることにより、塩素発生過電圧を抑え、電解電圧を下げることができる。また420C/m以下であることにより、ルテニウム酸化物の耐久性を維持することができる。 Electrode for electrolysis of this embodiment, D values indicative of the electric double layer capacitor is characterized in that at 120C / m 2 or more 420C / m 2 or less. Further, more preferably 120C / m 2 or more 380C / m 2 or less, and more preferably 150C / m 2 or more 360C / m 2 or less. When the D value is 120 C / m 2 or more, the chlorine generation overvoltage can be suppressed and the electrolysis voltage can be lowered. Moreover, durability of a ruthenium oxide can be maintained because it is 420 C / m < 2 > or less.
 ここでいう電気二重層容量の指標となるD値とは、電気二重層容量の概念を利用して算出される値であり、電極の表面積(すなわち、電極上の触媒層の比表面積)が大きいほど、その値は大きくなると考えられる。また、例えば、第一遷移金属元素の含有量を上述した好ましい範囲に調整することで、D値を前述の範囲とすることができる。特に、第一遷移金属元素の含有量を大きくすることで、D値も大きくなる傾向にある。また、触媒層を形成する際の焼成温度(ポストベーク温度)を上げることでD値は小さくなる傾向にある。具体的には、後述する実施例に記載の方法、すなわちサイクリックボルタンメトリーにより、ある掃引速度(V/秒)に対して測定される電解電流密度(A/m)の値を用いて、算出することができる。より詳細には、掃引速度ごとに固有の電流密度差(正方向掃引時の電流密度と逆方向掃引時の電流密度の差)を得、縦軸を電流密度差と掃引範囲である0.3Vとの積とし、横軸を掃引速度とし、各データをプロットした上で、各プロットを直線近似した際の傾きをD値とする。ここで、電流密度差と、掃引範囲である0.3Vとの積は掃引速度によく比例することから、D値は下記式(a)により表現することができる。電気二重層容量の指標となるD値を上述の範囲とすることによって、得られる電解用電極の耐久性を損なうことなく、電解初期における過電圧を低減することができる。
  D(C/m)=〔電解電流密度の差(A/m)×0.3(V)〕÷〔掃引速度(V/秒)〕  (a)
The D value as an index of the electric double layer capacity here is a value calculated using the concept of electric double layer capacity, and the surface area of the electrode (that is, the specific surface area of the catalyst layer on the electrode) is large. The value is expected to increase. For example, the D value can be set to the above-described range by adjusting the content of the first transition metal element to the above-described preferable range. In particular, the D value tends to increase by increasing the content of the first transition metal element. Further, the D value tends to decrease by increasing the firing temperature (post-bake temperature) when forming the catalyst layer. Specifically, calculation is performed using the value of electrolytic current density (A / m 2 ) measured for a certain sweep rate (V / sec) by the method described in the examples described later, that is, by cyclic voltammetry. can do. More specifically, a unique current density difference (difference between the current density during forward sweep and the current density during reverse sweep) is obtained for each sweep speed, and the vertical axis represents the current density difference and the sweep range of 0.3 V. The horizontal axis is the sweep speed, each data is plotted, and the slope when each plot is linearly approximated is the D value. Here, since the product of the current density difference and the sweep range of 0.3 V is well proportional to the sweep speed, the D value can be expressed by the following equation (a). By setting the D value, which is an index of the electric double layer capacity, within the above-mentioned range, it is possible to reduce overvoltage at the initial stage of electrolysis without impairing the durability of the obtained electrode for electrolysis.
D (C / m 2 ) = [difference in electrolytic current density (A / m 2 ) × 0.3 (V)] ÷ [sweep speed (V / sec)] (a)
 本実施形態における触媒層が、ルテニウム元素、イリジウム元素、チタン元素及び第一遷移金属元素を含有し、更に第一遷移金属元素とチタン元素の含有割合を特定の範囲とすることによって、電気二重層容量の指標となるD値の増加に伴う電解触媒としての機能が向上し、電解初期における過電圧を低減することができる。 The catalyst layer in the present embodiment contains a ruthenium element, an iridium element, a titanium element, and a first transition metal element, and further sets the content ratio of the first transition metal element and the titanium element to a specific range, thereby providing an electric double layer. The function as an electrocatalyst accompanying an increase in the D value, which is an index of capacity, can be improved, and an overvoltage in the initial electrolysis can be reduced.
 本実施形態における触媒層は、構成元素として、上記に説明したルテニウム元素、イリジウム元素、チタン元素及び第一遷移金属元素のみを含有していてもよいし、これら以外に、他の金属元素を含んでいてもよい。他の金属元素の具体例としては、以下に限定されないが、タンタル、ニオブ、スズ、白金等から選ばれる元素が挙げられる。これら他の金属元素の存在形態としては例えば酸化物中に含まれる金属元素として存在すること等が挙げられる。
 本実施形態における触媒層が、他の金属元素を含んでいる場合、その含有割合は、触媒層に含まれる金属元素の全部に対する他の金属元素のモル比として、20モル%以下であることが好ましく、10モル%以下であることがより好ましい。
 本実施形態における触媒層の厚さは、0.1~5μmであることが好ましく、0.5~3μmであることがより好ましい。触媒層の厚さを上述の下限値以上とすることにより、初期電解性能を十分に維持できる傾向にある。また該触媒層の厚みを上述の上限値以下とすることにより、経済性に優れた電解用電極が得られる傾向にある。
The catalyst layer in the present embodiment may contain only the ruthenium element, the iridium element, the titanium element, and the first transition metal element described above as constituent elements, or may contain other metal elements in addition to these elements. You may go out. Specific examples of other metal elements include, but are not limited to, elements selected from tantalum, niobium, tin, platinum, and the like. Examples of the existence form of these other metal elements include existence as a metal element contained in an oxide.
When the catalyst layer in the present embodiment contains other metal elements, the content ratio is 20 mol% or less as the molar ratio of the other metal elements to the entire metal elements contained in the catalyst layer. Preferably, it is 10 mol% or less.
In the present embodiment, the thickness of the catalyst layer is preferably 0.1 to 5 μm, and more preferably 0.5 to 3 μm. By setting the thickness of the catalyst layer to the above lower limit value or more, the initial electrolytic performance tends to be sufficiently maintained. Moreover, it is in the tendency for the electrode for electrolysis excellent in economical efficiency to be obtained by making thickness of this catalyst layer below into the above-mentioned upper limit.
 触媒層は、一層のみから成っていてもよいし、二層以上であってもよい。
 触媒層が二層以上である場合には、そのうちの少なくとも一層が本実施形態における触媒層であればよい。触媒層が二層以上である場合には、少なくとも最外層が本実施形態における触媒層であることが好ましい。本実施形態における触媒層を、同じ組成又は異なる組成で二層以上有している態様も、好ましい。
 触媒層が二層以上である場合であっても、本実施形態における触媒層の厚さは、上記のとおり、0.1~5μmであることが好ましく、0.5~3μmであることがより好ましい。
The catalyst layer may be composed of only one layer or two or more layers.
When there are two or more catalyst layers, at least one of them may be the catalyst layer in the present embodiment. When there are two or more catalyst layers, at least the outermost layer is preferably the catalyst layer in the present embodiment. The aspect which has two or more catalyst layers in this embodiment by the same composition or a different composition is also preferable.
Even when there are two or more catalyst layers, the thickness of the catalyst layer in this embodiment is preferably 0.1 to 5 μm, more preferably 0.5 to 3 μm, as described above. preferable.
(電解用電極の製造方法)
 次に、本実施形態の電解用電極の製造方法の一例について、詳細に説明する。
 本実施形態の電解用電極は、例えば、前述の表面積増大化処理を施した導電性基材上に、ルテニウム元素、イリジウム元素、チタン元素及び第一遷移金属元素を含む触媒層を形成することにより、製造することができる。該触媒層の形成は熱分解法により行うことが好ましい。
 熱分解法による製造方法では、導電性基材上に、上記元素を含有する化合物(前駆体)の混合物を含む塗工液を塗工した後、酸素含有雰囲気下で焼成し、塗工液中の成分を熱分解させることにより、触媒層を形成することができる。この方法によると、従来の製造方法よりも少ない工程数で、高い生産性で、電解用電極を製造することができる。
(Method for producing electrode for electrolysis)
Next, an example of the method for manufacturing the electrode for electrolysis according to the present embodiment will be described in detail.
The electrode for electrolysis of this embodiment is formed by, for example, forming a catalyst layer containing a ruthenium element, an iridium element, a titanium element, and a first transition metal element on the conductive base material that has been subjected to the surface area increasing treatment described above. Can be manufactured. The formation of the catalyst layer is preferably performed by a thermal decomposition method.
In the production method based on the thermal decomposition method, a coating liquid containing a mixture of the above-described elements (precursor) is applied on a conductive substrate, and then baked in an oxygen-containing atmosphere. The catalyst layer can be formed by thermally decomposing these components. According to this method, the electrode for electrolysis can be manufactured with high productivity with a smaller number of steps than the conventional manufacturing method.
 ここでいう熱分解とは、前駆体となる金属塩等を酸素含有雰囲気下で焼成して、金属酸化物又は金属と、ガス状物質と、に分解することを意味する。原料として塗工液に配合される前駆体に含まれる金属種、金属塩の種類、熱分解を行う雰囲気等により、得られる分解生成物を制御することができる。通常、酸化性雰囲気下においては、多くの金属は酸化物を形成し易い傾向にある。電解用電極の工業的な製造プロセスにおいて、熱分解は、通常、空気中で行われている。本実施形態においても、焼成の際の酸素濃度の範囲は特に限定されず、空気中で行うことで十分である。しかしながら、必要に応じて焼成炉内に空気を流通し、或いは酸素を供給してもよい。 The term "thermal decomposition" as used herein means that a precursor metal salt or the like is fired in an oxygen-containing atmosphere and decomposed into a metal oxide or metal and a gaseous substance. The decomposition product obtained can be controlled by the metal species contained in the precursor blended in the coating liquid as a raw material, the type of metal salt, the atmosphere in which thermal decomposition is performed, and the like. Usually, in an oxidizing atmosphere, many metals tend to form oxides. In an industrial production process of an electrode for electrolysis, thermal decomposition is usually performed in air. Also in this embodiment, the range of the oxygen concentration at the time of firing is not particularly limited, and it is sufficient to perform in the air. However, if necessary, air may be circulated in the firing furnace or oxygen may be supplied.
 本実施形態の電解用電極の製造方法の好ましい態様としては、ルテニウム化合物、イリジウム化合物、チタン化合物、及び、第一遷移金属元素を含む化合物を含有する塗工液を調製する工程と;前記塗工液を導電性基材の少なくとも片面上に塗工して塗膜を形成する工程と;前記塗膜を酸素含有雰囲気下で焼成して触媒層を形成する工程と、を有することが好ましい。なお、ルテニウム化合物、イリジウム化合物、チタン化合物、及び、第一遷移金属元素を含む化合物は、本実施形態における触媒層に含まれる金属元素を含有する前駆体に該当する。上述の方法により、均一な触媒層を有する電解用電極を製造することができる。 A preferred aspect of the method for producing an electrode for electrolysis according to the present embodiment includes a step of preparing a coating liquid containing a ruthenium compound, an iridium compound, a titanium compound, and a compound containing a first transition metal element; It is preferable to have a step of coating the liquid on at least one surface of the conductive substrate to form a coating film; and a step of baking the coating film in an oxygen-containing atmosphere to form a catalyst layer. In addition, the ruthenium compound, the iridium compound, the titanium compound, and the compound containing the first transition metal element correspond to the precursor containing the metal element contained in the catalyst layer in the present embodiment. By the above-described method, an electrode for electrolysis having a uniform catalyst layer can be produced.
 塗工液に含まれる化合物において、ルテニウム化合物、イリジウム化合物、及びチタン化合物は、酸化物であってもよいが、必ずしも酸化物である必要はない。例えば、金属塩等であってもよい。これらの金属塩としては、以下に限定されないが、例えば、塩化物塩、硝酸塩、ジニトロジアンミン錯体、ニトロシル硝酸塩、硫酸塩、酢酸塩、及び金属アルコキシドからなる群より選ばれるいずれか1つが挙げられる。
 ルテニウム化合物の金属塩としては、以下に限定されないが、例えば、塩化ルテニウム、硝酸ルテニウム等が挙げられる。
 イリジウム化合物の金属塩としては、以下に限定されないが、例えば、塩化イリジウム、硝酸イリジウム等が挙げられる。
 チタン化合物の金属塩としては、以下に限定されないが、例えば、四塩化チタン等が挙げられる。
In the compound contained in the coating solution, the ruthenium compound, the iridium compound, and the titanium compound may be oxides, but are not necessarily oxides. For example, a metal salt or the like may be used. Examples of these metal salts include, but are not limited to, any one selected from the group consisting of chloride salts, nitrates, dinitrodiammine complexes, nitrosyl nitrates, sulfates, acetates, and metal alkoxides.
The metal salt of the ruthenium compound is not limited to the following, and examples thereof include ruthenium chloride and ruthenium nitrate.
Examples of the metal salt of the iridium compound include, but are not limited to, iridium chloride and iridium nitrate.
Although it does not limit to the following as a metal salt of a titanium compound, For example, titanium tetrachloride etc. are mentioned.
 塗工液に含まれる化合物において、第一遷移金属元素を含有する化合物は、酸化物であってもよいが、必ずしも酸化物である必要はない。例えば、バナジウムのオキソ酸、並びにその塩;バナジウムの塩化物;バナジウムの硝酸塩から成る群より選ばれる1種以上であることが好ましい。 In the compound contained in the coating solution, the compound containing the first transition metal element may be an oxide, but is not necessarily an oxide. For example, the oxo acid of vanadium and the salt thereof; vanadium chloride; and one or more selected from the group consisting of vanadium nitrate are preferable.
 上記オキソ酸塩におけるカウンターカチオンとしては、以下に限定されないが、例えば、Na、K、Ca2+等を挙げることができる。 Examples of the counter cation in the oxo acid salt include, but are not limited to, Na + , K + , Ca 2+ and the like.
 このような化合物の具体例としては、オキソ酸またはその塩として、例えば、メタバナジン酸ナトリウム、オルトバナジン酸ナトリウム、オルトバナジン酸カリウム等を;塩化物として、例えば、塩化バナジウム等を;硝酸塩として、例えば、硝酸バナジウム等を、それぞれ挙げることができる。 Specific examples of such compounds include oxoacids or salts thereof such as sodium metavanadate, sodium orthovanadate, potassium orthovanadate and the like; chlorides such as vanadium chloride and the like; , Vanadium nitrate, and the like.
 上記化合物は、触媒層における所望の金属元素比に応じて適宜に選択して使用される。
 塗工液には、上述の化合物に含まれる化合物以外の他の化合物を、更に含んでいてもよい。他の化合物としては、以下に限定されないが、例えば、タンタル、ニオブ、スズ、白金、ロジウム等の金属元素を含有する金属化合物;タンタル、ニオブ、スズ、白金、ロジウム等の金属元素を含有する有機化合物等が挙げられる。
 塗工液は、上記の化合物群が適当な溶媒に溶解又は分散されて成る液体状の組成物であることが好ましい。ここで使用される塗工液の溶媒としては、上記化合物の種類に応じて選択できる。例えば、水;ブタノール等のアルコール類等を用いることができる。塗工液中の総化合物濃度は、特に限定されないが、触媒層の厚さを適正に制御するとの観点から、10~150g/Lであることが好ましい。
The above compounds are appropriately selected and used according to the desired metal element ratio in the catalyst layer.
The coating liquid may further contain a compound other than the compounds contained in the above-described compound. Examples of other compounds include, but are not limited to, metal compounds containing metal elements such as tantalum, niobium, tin, platinum, and rhodium; organics containing metal elements such as tantalum, niobium, tin, platinum, and rhodium Compounds and the like.
The coating liquid is preferably a liquid composition in which the above compound group is dissolved or dispersed in an appropriate solvent. The solvent for the coating solution used here can be selected according to the type of the compound. For example, water; alcohols such as butanol can be used. The total compound concentration in the coating solution is not particularly limited, but is preferably 10 to 150 g / L from the viewpoint of appropriately controlling the thickness of the catalyst layer.
 塗工液を導電性基材上の表面に塗工する方法としては、以下に限定されないが、例えば、導電性基材を塗工液に浸漬するディップ法、導電性基材の表面に塗工液を刷毛で塗る方法、塗工液を含浸させたスポンジ状のロールに導電性基材を通過させるロール法、導電性基材と塗工液とを反対荷電に帯電させてスプレー噴霧を行う静電塗布法等を用いることができる。これらの塗工法の中でも、工業的な生産性に優れるという観点から、ロール法及び静電塗布法が好ましい。これらの塗工法により、導電性基材の少なくとも片面上に、塗工液の塗膜を形成することができる。
 導電性基材に塗工液を塗工した後、必要に応じて、塗膜を乾燥させる工程を行うことが好ましい。この乾燥工程により、塗膜をより強固に導電性基材の表面に形成することができる。乾燥条件は、塗工液の組成、溶媒種等によって適宜選択することができる。乾燥工程は、10~90℃の温度において1~20分間行うことが好ましい。
The method of coating the coating liquid on the surface of the conductive substrate is not limited to the following, but, for example, a dipping method in which the conductive substrate is immersed in the coating liquid, or coating on the surface of the conductive substrate. A method of applying the liquid with a brush, a roll method in which a conductive base material is passed through a sponge-like roll impregnated with the coating liquid, and static spraying by charging the conductive base material and the coating liquid to opposite charges An electrocoating method or the like can be used. Among these coating methods, the roll method and the electrostatic coating method are preferable from the viewpoint of excellent industrial productivity. By these coating methods, a coating film of the coating liquid can be formed on at least one surface of the conductive substrate.
After applying the coating liquid to the conductive substrate, it is preferable to perform a step of drying the coating film as necessary. By this drying step, the coating film can be more firmly formed on the surface of the conductive substrate. The drying conditions can be appropriately selected depending on the composition of the coating liquid, the solvent type, and the like. The drying step is preferably performed at a temperature of 10 to 90 ° C. for 1 to 20 minutes.
 導電性基材の表面に塗工液の塗膜を形成させた後、酸素含有雰囲気下で焼成する。焼成温度は、塗工液の組成及び溶媒種により、適宜選択することができる。焼成温度は、300~650℃であることが好ましい。焼成温度が300℃未満では、ルテニウム化合物等の前駆体の分解が不十分となり、酸化ルテニウム等を含む触媒層が得られない場合がある。焼成温度が650℃を超えると、導電性基材が酸化を受ける場合があるため、触媒層と基材との界面の密着性が低下することがある。特に導電性基材としてチタン製の基材を用いる場合には、この傾向は重視されるべきである。
 焼成時間は、長い方が好ましい。一方、電極の生産性の観点からは、焼成時間が過度に長くなりすぎないように調整することが好ましい。これらを勘案すると、1回の焼成時間は、5~60分間であることが好ましい。
After forming a coating film of the coating liquid on the surface of the conductive substrate, baking is performed in an oxygen-containing atmosphere. The firing temperature can be appropriately selected depending on the composition of the coating liquid and the solvent type. The firing temperature is preferably 300 to 650 ° C. When the firing temperature is less than 300 ° C., the precursor such as ruthenium compound is not sufficiently decomposed, and a catalyst layer containing ruthenium oxide or the like may not be obtained. When the firing temperature exceeds 650 ° C., the conductive base material may be oxidized, so that the adhesion at the interface between the catalyst layer and the base material may be lowered. This tendency should be emphasized particularly when a titanium substrate is used as the conductive substrate.
A longer firing time is preferred. On the other hand, from the viewpoint of electrode productivity, it is preferable to adjust so that the firing time does not become excessively long. Taking these into consideration, it is preferable that one baking time is 5 to 60 minutes.
 必要に応じて、上述した触媒層の塗工・乾燥・焼成の各工程を複数回繰り返し、触媒層を所望の厚みに形成することができる。触媒層を形成した後に、必要に応じて更に長時間の焼成を行い、化学的、物理的、及び熱的に極めて安定な触媒層の安定性を更に向上させることもできる。長時間焼成の条件としては、400~650℃において30分~4時間程度が好ましい。 If necessary, the above-mentioned steps of coating, drying and firing the catalyst layer can be repeated a plurality of times to form the catalyst layer in a desired thickness. After the formation of the catalyst layer, firing can be performed for a longer time if necessary to further improve the stability of the catalyst layer that is extremely chemically, physically and thermally stable. The conditions for the long-term firing are preferably about 30 minutes to 4 hours at 400 to 650 ° C.
 本実施形態の電解用電極は、電解初期においても過電圧が低く、かつ長期に亘って低電圧・低消費電力量で電解可能である。そのため、種々の電解に用いることができる。特に、塩素発生用陽極として用いることが好ましく、イオン交換膜法の食塩電解用陽極として用いることがより好ましい。 The electrode for electrolysis of this embodiment has a low overvoltage even in the initial stage of electrolysis, and can be electrolyzed with a low voltage and low power consumption over a long period. Therefore, it can be used for various electrolysis. In particular, it is preferably used as an anode for chlorine generation, and more preferably used as an anode for salt electrolysis in the ion exchange membrane method.
(電解槽)
 本実施形態の電解槽は、本実施形態の電解用電極を備える。この電解槽は、電解する際の初期電圧が低減されたものである。本実施形態の電解槽の一例に係る断面模式図を図1に示す。
(Electrolysis tank)
The electrolytic cell of this embodiment includes the electrode for electrolysis of this embodiment. This electrolytic cell has a reduced initial voltage during electrolysis. FIG. 1 shows a schematic sectional view according to an example of the electrolytic cell of the present embodiment.
 電解槽200は、電解液210、電解液210を収容するための容器220、電解液210中に浸漬された陽極230及び陰極240、イオン交換膜250、並びに陽極230及び陰極240を電源に接続するための配線260を備える。電解槽200のうち、イオン交換膜250で区切られた陽極側の空間を陽極室、陰極側の空間を陰極室という。本実施形態の電解槽は、種々の電解に使用できる。以下にはその代表例として、塩化アルカリ水溶液の電解に使用する場合について説明する。
 本実施形態の電解槽に供給する電解液210としては、例えば、陽極室には、2.5~5.5規定(N)の塩化ナトリウム水溶液(食塩水)、塩化カリウム水溶液等の塩化アルカリ水溶液を、陰極室には、希釈した水酸化アルカリ水溶液(例えば水酸化ナトリウム水溶液、水酸化カリウム水溶液等)又は水を、それぞれ使用することができる。
The electrolytic bath 200 connects the electrolytic solution 210, a container 220 for containing the electrolytic solution 210, the anode 230 and the cathode 240 immersed in the electrolytic solution 210, the ion exchange membrane 250, and the anode 230 and the cathode 240 to a power source. Wiring 260 is provided. In the electrolytic cell 200, a space on the anode side partitioned by the ion exchange membrane 250 is referred to as an anode chamber, and a space on the cathode side is referred to as a cathode chamber. The electrolytic cell of this embodiment can be used for various electrolysis. Below, the case where it uses for electrolysis of alkali chloride aqueous solution is demonstrated as the representative example.
As the electrolytic solution 210 to be supplied to the electrolytic cell of the present embodiment, for example, in the anode chamber, an aqueous alkali chloride solution such as a 2.5 to 5.5 N (N) aqueous sodium chloride solution (saline solution) or an aqueous potassium chloride solution is provided. In the cathode chamber, diluted alkali hydroxide aqueous solution (for example, sodium hydroxide aqueous solution, potassium hydroxide aqueous solution, etc.) or water can be used.
 陽極230として、本実施形態の電解用電極を使用する。
 イオン交換膜250としては、例えば、イオン交換基を有するフッ素樹脂膜等を使用できる。その具体例として、例えば「Aciplex」(登録商標)F6801(旭化成株式会社製)等を挙げることができる。陰極240としては、水素発生用の陰極であって、導電性基材上に触媒を塗工した電極等が用いられる。この陰極としては公知のものを採用でき、具体的には、例えば、
ニッケル基材上に、ニッケル、酸化ニッケル、ニッケルとスズとの合金、活性炭と酸化物との組み合わせ、酸化ルテニウム、白金等をコーティングした陰極;
ニッケル製の金網基材の上に酸化ルテニウムの被覆を形成した陰極
等が挙げられる。
As the anode 230, the electrode for electrolysis of this embodiment is used.
As the ion exchange membrane 250, for example, a fluororesin membrane having an ion exchange group can be used. Specific examples thereof include “Aciplex” (registered trademark) F6801 (manufactured by Asahi Kasei Corporation). As the cathode 240, a cathode for hydrogen generation, which is an electrode in which a catalyst is coated on a conductive substrate, or the like is used. As this cathode, a known one can be adopted, and specifically, for example,
A cathode coated with nickel, nickel oxide, an alloy of nickel and tin, a combination of activated carbon and oxide, ruthenium oxide, platinum, etc. on a nickel substrate;
Examples thereof include a cathode in which a ruthenium oxide coating is formed on a nickel wire mesh substrate.
 本実施形態の電解槽の構成は、特に限定されず、単極式でも複極式でもよい。電解槽を構成する材料としては、特に限定されないが、例えば、陽極室の材料としては、塩化アルカリ及び塩素に耐性があるチタン等が好ましく;陰極室の材料としては、水酸化アルカリ及び水素に耐性があるニッケル等が好ましい。
 本実施形態の電解用電極(陽極230)は、イオン交換膜250との間に適当な間隔を設けて配置してもよいし、イオン交換膜250と接触して配置されていても、何ら問題なく使用できる。陰極240は、イオン交換膜250と適当な間隔を設けて配置してもよいし、イオン交換膜250との間に間隔がない接触型の電解槽(ゼロギャップ式電解槽)であっても、何ら問題なく使用できる。
 本実施形態の電解槽の電解条件については特に限定されず、公知の条件で運転することができる。例えば、電解温度を50~120℃、電流密度を0.5~10kA/mに調整して、電解を実施することが好ましい。
The structure of the electrolytic cell of this embodiment is not specifically limited, A monopolar type or a bipolar type may be sufficient. The material constituting the electrolytic cell is not particularly limited. For example, the material for the anode chamber is preferably titanium or the like resistant to alkali chloride and chlorine; the material for the cathode chamber is resistant to alkali hydroxide and hydrogen. Nickel or the like is preferred.
The electrode for electrolysis (anode 230) of the present embodiment may be disposed with an appropriate interval between the electrode and the ion exchange membrane 250, or even if it is disposed in contact with the ion exchange membrane 250, there is no problem. Can be used without The cathode 240 may be arranged with an appropriate interval from the ion exchange membrane 250, or even if it is a contact type electrolytic cell (zero gap type electrolytic cell) with no gap between the ion exchange membrane 250, Can be used without any problems.
The electrolysis conditions of the electrolytic cell of the present embodiment are not particularly limited, and can be operated under known conditions. For example, it is preferable to perform electrolysis by adjusting the electrolysis temperature to 50 to 120 ° C. and the current density to 0.5 to 10 kA / m 2 .
 本実施形態の電解用電極は、食塩電解における電解電圧を従来よりも低下させることが可能である。そのため、該電解用電極を備える本実施形態の電解槽によれば、食塩電解に要する消費電力を低くすることができる。
 更に本実施形態の電解用電極は、化学的、物理的、及び熱的に極めて安定な触媒層を有するため、長期の耐久性に優れる。よって、該電解用電極を備える本実施形態の電解槽によれば、長時間に亘って電極の触媒活性が高く維持され、高純度の塩素を安定して製造することが可能となる。
The electrode for electrolysis of this embodiment can lower the electrolysis voltage in salt electrolysis than before. Therefore, according to the electrolytic cell of this embodiment provided with this electrode for electrolysis, the power consumption required for salt electrolysis can be reduced.
Furthermore, since the electrode for electrolysis of this embodiment has a chemically, physically, and thermally stable catalyst layer, it has excellent long-term durability. Therefore, according to the electrolytic cell of this embodiment provided with the electrode for electrolysis, the catalytic activity of the electrode is maintained high for a long time, and it becomes possible to stably produce high-purity chlorine.
 以下に、本実施形態を実施例に基づいて更に詳細に説明する。本実施形態はこれらの実施例にのみ限定されるものではない。
 先ず、実施例及び比較例における各評価方法について、以下に示す。
Hereinafter, the present embodiment will be described in more detail based on examples. The present embodiment is not limited only to these examples.
First, each evaluation method in Examples and Comparative Examples is shown below.
(イオン交換膜法食塩電解試験)
 電解セルとして、陽極室を有する陽極セルと、陰極室を有する陰極セルと、を具備する電解セルを用意した。
 各実施例及び比較例で準備した電解用電極を所定のサイズ(95×110mm=0.01045m)に切り出したものを試験用電極とし、該試験用電極を溶接によって陽極セルの陽極室のリブに装着して、陽極として用いた。
 陰極としては、ニッケル製の金網基材の上に酸化ルテニウムの触媒被覆を行ったものを用いた。先ず、陰極セルの陰極室のリブ上に、集電体として金属ニッケル製のエキスパンド基材を、陽極と同じサイズで切り出して溶接した後、ニッケル製ワイヤーを編んだクッションマットを乗せ、その上に陰極を配置した。
 ガスケットとしては、EPDM(エチレンプロピレンジエン)製のゴムガスケットを用い、陽極セルと陰極セルとの間にイオン交換膜を挟んだ。このイオン交換膜としては、食塩電解用の陽イオン交換膜「Aciplex」(登録商標)F6801(旭化成社製)を用いた。
(Ion exchange membrane salt electrolysis test)
As an electrolytic cell, an electrolytic cell comprising an anode cell having an anode chamber and a cathode cell having a cathode chamber was prepared.
The electrode for electrolysis prepared in each Example and Comparative Example was cut into a predetermined size (95 × 110 mm = 0.01045 m 2 ) as a test electrode, and the test electrode was welded to the rib of the anode chamber of the anode cell. And used as an anode.
As the cathode, a nickel wire mesh base material coated with a ruthenium oxide catalyst was used. First, on the rib of the cathode chamber of the cathode cell, an expanded base material made of metallic nickel as a current collector was cut out and welded at the same size as the anode, and then a cushion mat knitted with nickel wire was placed on it. A cathode was placed.
A rubber gasket made of EPDM (ethylene propylene diene) was used as the gasket, and an ion exchange membrane was sandwiched between the anode cell and the cathode cell. As the ion exchange membrane, a cation exchange membrane “Aciplex” (registered trademark) F6801 (manufactured by Asahi Kasei Co., Ltd.) for salt electrolysis was used.
 塩素過電圧を測定するために、PFA(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体)で被覆された白金線の先端約1mmの部分の被覆を除去して白金を露出させたものを、陽極のイオン交換膜とは反対側の面に、ポリテトラフルオロエチレン製の糸で結びつけて固定し、基準電極として用いた。電解試験中には、基準電極は発生した塩素ガスで飽和雰囲気になるため、塩素発生電位を示すこととなる。そこで、陽極の電位から基準電極の電位を差し引いたものを、陽極の塩素過電圧として評価した。
 一方、電解電圧として、陰極と陽極との間の電位差を測定した。
 陽極の初期電解性能を測定するため、過電圧及び電解電圧は、それぞれ、電解開始7日経過後の値を測定した。電解条件は、電流密度6kA/m、陽極セル内の塩水濃度205g/L、陰極セル内のNaOH濃度32質量%、温度90℃で行った。電解用の整流器としては、「PAD36-100LA」(菊水電子工業社製)を用いた。
In order to measure the chlorine overvoltage, the platinum wire exposed by removing the coating of about 1 mm from the tip of the platinum wire coated with PFA (tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer) was used as the anode. The surface opposite to the ion exchange membrane was fixed with a polytetrafluoroethylene thread and used as a reference electrode. During the electrolysis test, the reference electrode is saturated with the generated chlorine gas, and thus exhibits a chlorine generation potential. Therefore, a value obtained by subtracting the potential of the reference electrode from the potential of the anode was evaluated as the chlorine overvoltage of the anode.
On the other hand, the potential difference between the cathode and the anode was measured as the electrolysis voltage.
In order to measure the initial electrolysis performance of the anode, the overvoltage and the electrolysis voltage were measured after 7 days from the start of electrolysis. The electrolysis conditions were a current density of 6 kA / m 2 , a salt water concentration of 205 g / L in the anode cell, a NaOH concentration of 32% by mass in the cathode cell, and a temperature of 90 ° C. As a rectifier for electrolysis, “PAD36-100LA” (manufactured by Kikusui Electronics Co., Ltd.) was used.
(加速試験)
 陽極セルに装着する試験用電極として、58×48mm=0.002748mのサイズに切り出したものを用いたこと以外は、上述のイオン交換膜法食塩電解試験と同様の電解セルを用いた。
 電解条件は、電流密度6kA/m、陽極セル内の塩水濃度205g/L、陰極セル内のNaOH濃度32質量%、温度90℃で行った。試験用電極の耐久性を確認するために、電解停止、電解セル内の水洗(10分間)、及び電解開始の一連の操作を7日に1回の頻度で行い、電解開始後7日毎に塩素過電圧(陽極過電圧)を測定した。更に、電解後の試験用電極における触媒層中のRu及びIrの残存率(100×電解前の含有量/電解後の含有量;%)を、電解前後における各金属成分の蛍光X線測定(XRF)により得られた数値を用いて算出した。XRF測定装置としては、Niton XL3t-800又はXL3t-800s(商品名、Thermo Scientific社製)を使用した。
(Accelerated test)
As a test electrode to be attached to the anode cell, except that used was a cut to a size of 58 × 48mm = 0.002748m 2, using the same electrolytic cell and the ion exchange membrane process sodium chloride electrolytic test described above.
The electrolysis conditions were a current density of 6 kA / m 2 , a salt water concentration of 205 g / L in the anode cell, a NaOH concentration of 32% by mass in the cathode cell, and a temperature of 90 ° C. In order to confirm the durability of the test electrode, a series of operations of stopping electrolysis, rinsing in the electrolysis cell (10 minutes), and starting electrolysis were performed once every 7 days, and chlorine was removed every 7 days after electrolysis was started. Overvoltage (anode overvoltage) was measured. Furthermore, the residual ratio of Ru and Ir in the catalyst layer in the test electrode after electrolysis (100 × content before electrolysis / content after electrolysis;%) was measured by fluorescent X-ray measurement of each metal component before and after electrolysis ( XRF) was used for calculation. Niton XL3t-800 or XL3t-800s (trade name, manufactured by Thermo Scientific) was used as the XRF measurement apparatus.
(電気二重層容量の指標となるD値)
 試験用電極を30×30mm=0.0009mのサイズに切り出し、電解セルにチタン製のネジで固定した。対極には白金メッシュを使用し、85~90℃、塩水濃度205g/LのNaCl水溶液中において、電解電流密度1kA/m、2kA/m及び3kA/mで各5分間、4kA/mで30分間、試験陽極が塩素を発生させるよう電解を行った。
 上述の電解後、参照極にAg/AgClを用いて、印加電位を0Vから0.3Vの範囲で、掃引速度10mV/秒、30mV/秒、50mV/秒、80mV/秒、100mV/秒、及び150mV/秒として、サイクリックボルタモグラムを測定し、0Vから0.3Vへの正方向掃引時の印加電位範囲の中心である0.15Vにおける電解電流密度と、0.3Vから0Vへの逆方向掃引時の印加電位範囲の中心である0.15Vにおける電解電流密度を測定し、それら2つの電解電流密度の差を上述の各掃引速度において得た。各掃引速度において得られた電解電流密度の差と、掃引範囲である0.3Vとの積は、掃引速度に略正比例し、その傾きを電気二重層容量の指標となるD値(C/m)として算出した。
(D value as an index of electric double layer capacity)
The test electrode was cut into a size of 30 × 30 mm = 0.0009 m 2 and fixed to the electrolytic cell with a titanium screw. The counter electrode was a platinum mesh, 85 ~ 90 ℃, the NaCl aqueous solution of brine concentration 205g / L, the electrolytic current density 1kA / m 2, 2kA / m 2 and 3 kA / m 2 at 5 minutes each, 4 kA / m 2 for 30 minutes so that the test anode generated chlorine.
After the electrolysis described above, Ag / AgCl is used for the reference electrode, the applied potential is in the range of 0 V to 0.3 V, the sweep speed is 10 mV / second, 30 mV / second, 50 mV / second, 80 mV / second, 100 mV / second, and Cyclic voltammogram was measured at 150 mV / second, and the electrolytic current density at 0.15 V, which is the center of the applied potential range during the forward sweep from 0 V to 0.3 V, and the reverse sweep from 0.3 V to 0 V The electrolytic current density at 0.15 V, which is the center of the applied potential range at the time, was measured, and the difference between the two electrolytic current densities was obtained at each of the above sweep rates. The product of the difference in electrolytic current density obtained at each sweep rate and the sweep range of 0.3 V is substantially directly proportional to the sweep rate, and the slope is a D value (C / m) that serves as an index of electric double layer capacity. 2 ).
[実施例1]
 導電性基材として、目開きの大きい方の寸法(LW)が6mm、目開きの小さい方の寸法(SW)が3mm、板厚1.0mmのチタン製のエキスパンド基材を用いた。このエキスパンド基材を、大気中540℃で4時間焼成し、表面に酸化被膜を形成させた後、25質量%硫酸中において85℃で4時間酸処理を行い、導電性基材の表面に細かい凹凸を設ける前処理を施した。
 次に、ルテニウムとイリジウムとチタンとバナジウムとの元素比(モル比)が21.25:21.25:42.5:15になるように、硝酸ルテニウム水溶液(フルヤ金属社製、ルテニウム濃度100g/L)をドライアイスで5℃以下に冷却及び撹拌しながら、四塩化チタン(和光純薬社製)を少量ずつ加えた後、更に塩化イリジウム水溶液(田中貴金属社製、イリジウム濃度100g/L)及び塩化バナジウム(III)(キシダ化学社製)を少量ずつ加えて、総金属濃度が100g/Lの水溶液である塗工液A1を得た。
[Example 1]
As the conductive base material, an expanded base made of titanium having a large opening (LW) of 6 mm, a small opening (SW) of 3 mm, and a plate thickness of 1.0 mm was used. This expanded substrate was baked at 540 ° C. in the atmosphere for 4 hours to form an oxide film on the surface, and then subjected to an acid treatment in 25% by mass sulfuric acid at 85 ° C. for 4 hours, so that the surface of the conductive substrate was fine. A pretreatment for providing irregularities was performed.
Next, an aqueous ruthenium nitrate solution (manufactured by Furuya Metals Co., Ltd., ruthenium concentration 100 g / wt) so that the element ratio (molar ratio) of ruthenium, iridium, titanium, and vanadium is 21.25: 21.25: 42.5: 15. L) Titanium tetrachloride (manufactured by Wako Pure Chemical Industries, Ltd.) was added little by little while cooling and stirring to 5 ° C. or less with dry ice, and then an aqueous iridium chloride solution (manufactured by Tanaka Kikinzoku Co., Ltd., iridium concentration 100 g / L) and Vanadium chloride (III) (manufactured by Kishida Chemical Co., Ltd.) was added little by little to obtain a coating liquid A1 which was an aqueous solution having a total metal concentration of 100 g / L.
 この塗工液A1を塗工機の液受けバット内に注入し、EPDM製スポンジロールを回転させることにより塗工液A1を吸い上げて含浸させ、該スポンジロールの上部に接するようにPVC製ロールを配置した。そして、前記EPDM製スポンジロールと前記PVC製ロールとの間に、前処理を施した導電性基材を通して塗工した。塗工後直ちに、布を巻いた2本のEPDM製スポンジロールの間に、上記塗工後の導電性基材を通し、過剰な塗工液を拭き取った。その後、50℃において10分間乾燥した後、大気中、400℃において10分間、焼成を行った。
 上記のロール塗工、乾燥、及び焼成から成るサイクルを、焼成温度を450℃に昇温して更に3回繰り返し行い、最後に520℃における1時間の焼成を更に行うことにより、導電性基材上に黒褐色の触媒層を形成し、電解用電極を作製した。
This coating liquid A1 is poured into a liquid receiving vat of the coating machine, and the EPDM sponge roll is rotated to suck up and impregnate the coating liquid A1, and the PVC roll is brought into contact with the upper part of the sponge roll. Arranged. And it applied through the electroconductive base material which gave the pre-treatment between the said EPDM sponge roll and the said PVC roll. Immediately after the coating, the conductive substrate after the coating was passed between two EPDM sponge rolls wound with cloth, and the excess coating solution was wiped off. Then, after drying at 50 ° C. for 10 minutes, firing was performed in the air at 400 ° C. for 10 minutes.
The above-mentioned cycle comprising roll coating, drying and firing is repeated 3 times by raising the firing temperature to 450 ° C., and finally by further firing for 1 hour at 520 ° C. A black-brown catalyst layer was formed thereon to produce an electrode for electrolysis.
[比較例1]
 ルテニウムとイリジウムとチタンとの元素比(モル比)が25:25:50になるように、塩化ルテニウム水溶液(田中貴金属社製、ルテニウム濃度100g/L)をドライアイスで5℃以下に冷却及び撹拌しながら、四塩化チタン(和光純薬社製)を少量ずつ加えた後、更に塩化イリジウム水溶液(田中貴金属社製、イリジウム濃度100g/L)を少量ずつ加えて、総金属濃度が100g/Lの水溶液である塗工液B1を得た。この塗工液B1を用いたこと、及びロール塗工、乾燥、及び焼成から成るサイクルを、1回目の焼成温度を440℃とし、次いで475℃に昇温して更に3回繰り返し行い、最後に520℃における1時間の焼成を更に行ったこと以外は、実施例1と同様の方法により、電解用電極を作製した。
[Comparative Example 1]
Cool and stir a ruthenium chloride aqueous solution (manufactured by Tanaka Kikinzoku Co., Ltd., ruthenium concentration 100 g / L) to 5 ° C. or less with dry ice so that the element ratio (molar ratio) of ruthenium, iridium and titanium is 25:25:50. However, after adding titanium tetrachloride (manufactured by Wako Pure Chemical Industries) little by little, an iridium chloride aqueous solution (manufactured by Tanaka Kikinzoku Co., Ltd., iridium concentration 100 g / L) was added little by little to give a total metal concentration of 100 g / L. A coating liquid B1, which is an aqueous solution, was obtained. The cycle of using this coating liquid B1 and roll coating, drying, and firing was performed by setting the first firing temperature to 440 ° C., then raising the temperature to 475 ° C. and repeating three more times. An electrode for electrolysis was produced in the same manner as in Example 1 except that firing was further performed at 520 ° C. for 1 hour.
[実施例2]
 ルテニウムとイリジウムとチタンとバナジウムとの元素比(モル比)が25.45:25.45:30:19.1になるように調合した塗工液A2を用いて、導電性基材に塗工したこと以外は、実施例1と同様の方法により、電解用電極を作製した。
[Example 2]
Coating on conductive substrate using coating liquid A2 prepared so that the element ratio (molar ratio) of ruthenium, iridium, titanium and vanadium is 25.45: 25.45: 30: 19.1 An electrode for electrolysis was produced in the same manner as in Example 1 except that.
[実施例3]
 ルテニウムとイリジウムとチタンとバナジウムとの元素比(モル比)が28.75:28.75:20:22.5になるように調合した塗工液A3を用いて、導電性基材に塗工したこと以外は、実施例1と同様の方法により、電解用電極を作製した。
[Example 3]
Application to conductive substrate using coating liquid A3 prepared so that the element ratio (molar ratio) of ruthenium, iridium, titanium and vanadium is 28.75: 28.75: 20: 22.5 An electrode for electrolysis was produced in the same manner as in Example 1 except that.
[実施例4]
 ルテニウムとイリジウムとチタンとバナジウムとの元素比(モル比)が32.05:32.05:10:25.9になるように調合した塗工液A4を用いて導電性基材に塗工したこと以外は、実施例1と同様の方法により、電解用電極を作製した。
[Example 4]
The conductive base material was coated using the coating liquid A4 prepared so that the element ratio (molar ratio) of ruthenium, iridium, titanium, and vanadium was 32.05: 32.05: 10: 25.9. Except for this, an electrode for electrolysis was produced in the same manner as in Example 1.
[実施例5]
 ルテニウムとイリジウムとチタンとバナジウムとの元素比(モル比)が17.5:17.5:35:30になるように調合した塗工液A5を用いて導電性基材に塗工したこと以外は、実施例1と同様の方法により、電解用電極を作製した。
[Example 5]
Other than coating on conductive substrate using coating liquid A5 prepared so that the element ratio (molar ratio) of ruthenium, iridium, titanium and vanadium is 17.5: 17.5: 35: 30 Produced an electrode for electrolysis by the same method as in Example 1.
 実施例1~5及び比較例1でそれぞれ作製した電解用電極の構成(触媒層の形成に用いた塗工液の金属組成)を、測定した電気二重層容量の指標となるD値と共に表1に示す。表中の単位「mol%」とは、形成した触媒層に含まれる全金属元素に対するモル百分率(仕込み比)を意味する。また、第一遷移金属元素/Ruの値及び第一遷移金属元素/Tiの値は当該仕込み比から算出した値である。 Table 1 shows the configurations of the electrodes for electrolysis prepared in Examples 1 to 5 and Comparative Example 1 (metal composition of the coating solution used for forming the catalyst layer) together with the D value serving as an index of the measured electric double layer capacity. Shown in The unit “mol%” in the table means the mole percentage (feeding ratio) with respect to all the metal elements contained in the formed catalyst layer. Further, the value of the first transition metal element / Ru and the value of the first transition metal element / Ti are values calculated from the preparation ratio.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[イオン交換膜法食塩電解試験]
 実施例1~5及び比較例1でそれぞれ作製した電解用電極を用いて、イオン交換膜法食塩電解試験を実施した。その結果を表2に示す。
[Ion exchange membrane method salt electrolysis test]
Using the electrode for electrolysis produced in each of Examples 1 to 5 and Comparative Example 1, an ion exchange membrane method salt electrolysis test was conducted. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 電流密度6kA/mにおける電解電圧は、実施例1及び2において2.94V、実施例3及び4において、それぞれ2.92V、また、実施例5において2.91Vであり、比較例1における2.99Vに比較して、いずれも極めて低い値を示した。
 また陽極過電圧は、実施例1において0.032V、実施例2において0.034V、実施例3及び実施例4において、それぞれ0.032V、また、実施例5において0.031Vであり、比較例1における0.057Vと比較して、いずれも低い値を示した。
The electrolysis voltage at a current density of 6 kA / m 2 was 2.94 V in Examples 1 and 2, 2.92 V in Examples 3 and 4, and 2.91 V in Example 5, respectively. All showed extremely low values compared to .99V.
The anode overvoltage was 0.032 V in Example 1, 0.034 V in Example 2, 0.032 V in Examples 3 and 4, and 0.031 V in Example 5, respectively. Comparative Example 1 As compared with 0.057 V in the case, all showed low values.
[実施例6]
 ルテニウムとイリジウムとチタンとバナジウムとの元素比(モル比)が37:33.35:11.15:18.5になるように調合した塗工液A6を用いて導電性基材に塗工したこと、及びロール塗工、乾燥、及び焼成から成るサイクルを、1回目の焼成温度を310℃とし、次いで520℃に昇温して更に3回繰り返し行い、更に520℃における1時間の焼成を行ったこと以外は、実施例1と同様の方法により、電解用電極を作製した。
[Example 6]
The conductive base material was coated using the coating liquid A6 prepared such that the element ratio (molar ratio) of ruthenium, iridium, titanium, and vanadium was 37: 33.35: 11.15: 18.5. And a cycle consisting of roll coating, drying, and firing is performed by setting the first firing temperature to 310 ° C., then raising the temperature to 520 ° C. and repeating three more times, and further firing at 520 ° C. for 1 hour. An electrode for electrolysis was produced in the same manner as in Example 1 except that.
[実施例7]
 ルテニウムとイリジウムとチタンとバナジウムとの元素比(モル比)が31.25:28.1:9.4:31.25になるように調合した塗工液A7を用いて導電性基材に塗工したこと、及びロール塗工、乾燥、及び焼成から成るサイクルを、1回目の焼成温度を380℃とし、次いで450℃に昇温して更に3回繰り返し行い、更に450℃における1時間の焼成を行ったこと以外は、実施例1と同様の方法により、電解用電極を作製した。
[Example 7]
A conductive base material is coated with a coating liquid A7 prepared so that the element ratio (molar ratio) of ruthenium, iridium, titanium, and vanadium is 31.25: 28.1: 9.4: 31.25. And the cycle consisting of roll coating, drying, and firing was performed at a first firing temperature of 380 ° C., then raised to 450 ° C. and repeated three more times, and further fired at 450 ° C. for 1 hour. The electrode for electrolysis was produced by the same method as Example 1 except having performed.
[実施例8]
 硝酸ルテニウム水溶液ではなく塩化ルテニウム水溶液(田中貴金属社製、ルテニウム濃度100g/L)を用いたこと、ルテニウムとイリジウムとチタンとバナジウムとの元素比(モル比)が19.6:20.2:47.09:13.11になるように調合した塗工液A8を用いて導電性基材に塗工したこと、及びロール塗工、乾燥、及び焼成から成るサイクルを、1回目から8回目の焼成温度を393℃とし、次いで485℃における1時間の焼成を行ったこと以外は、実施例1と同様の方法により、電解用電極を作製した。
[Example 8]
The use of an aqueous ruthenium chloride solution (manufactured by Tanaka Kikinzoku Co., Ltd., ruthenium concentration 100 g / L) instead of an aqueous ruthenium nitrate solution, and an element ratio (molar ratio) of ruthenium, iridium, titanium, and vanadium of 19.6: 20.2: 47 .09: 13.11 The coating liquid A8 prepared so as to be 1311. 11 was applied to the conductive substrate, and the cycle consisting of roll coating, drying, and firing was performed from the first to the eighth firing. An electrode for electrolysis was produced in the same manner as in Example 1 except that the temperature was set to 393 ° C. and then baking was performed at 485 ° C. for 1 hour.
[実施例9]
 硝酸ルテニウム水溶液ではなく塩化ルテニウム水溶液(田中貴金属社製、ルテニウム濃度100g/L)を用いたこと、塩化バナジウム(III)ではなく塩化コバルト(II)六水和物(和光純薬社製)を用いたこと、ルテニウムとイリジウムとチタンとコバルトとの元素比(モル比)が50:3:30:17になるように調合した塗工液A9を用いて導電性基材に塗工したこと、並びに、ロール塗工、乾燥及び焼成から成るサイクルを、1回目の焼成温度を440℃とし、次いで475℃に昇温して更に3回繰り返し行い、最後に520℃における1時間の焼成を更に行ったこと以外は、実施例1と同様の方法により、電解用電極を作製した。
[Example 9]
Use of ruthenium chloride aqueous solution (Tanaka Kikinzoku Co., Ltd., ruthenium concentration 100 g / L) instead of ruthenium nitrate aqueous solution, and cobalt (II) chloride hexahydrate (manufactured by Wako Pure Chemical Industries) instead of vanadium (III) chloride Coating the conductive substrate using the coating liquid A9 prepared so that the elemental ratio (molar ratio) of ruthenium, iridium, titanium and cobalt is 50: 3: 30: 17; and The cycle consisting of roll coating, drying and firing was carried out at a first firing temperature of 440 ° C., then heated to 475 ° C. and repeated three more times, and finally fired at 520 ° C. for 1 hour. Except for this, an electrode for electrolysis was produced in the same manner as in Example 1.
[実施例10]
 塩化バナジウム(III)ではなく硝酸銅(II)三水和物(和光純薬社製)を用いたこと、ルテニウムとイリジウムとチタンと銅との元素比(モル比)が32.05:32.05:10:25.9になるように調合した塗工液A10を用いて導電性基材に塗工したこと以外は、実施例1と同様の方法により、電解用電極を作製した。
[Example 10]
Use of copper nitrate (II) trihydrate (manufactured by Wako Pure Chemical Industries) instead of vanadium (III) chloride, and the element ratio (molar ratio) of ruthenium, iridium, titanium and copper was 32.05: 32. An electrode for electrolysis was produced in the same manner as in Example 1 except that the coating liquid A10 prepared to be 05: 10: 25.9 was applied to the conductive substrate.
[実施例11]
 塩化バナジウム(III)ではなく硝酸亜鉛(II)六水和物(和光純薬社製)を用いたこと、ルテニウムとイリジウムとチタンと亜鉛との元素比(モル比)が32.05:32.05:10:25.9になるように調合した塗工液A11を用いて導電性基材に塗工したこと以外は、実施例1と同様の方法により、電解用電極を作製した。
[Example 11]
Zinc (II) nitrate hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of vanadium (III) chloride, and the element ratio (molar ratio) of ruthenium, iridium, titanium and zinc was 32.05: 32. An electrode for electrolysis was produced in the same manner as in Example 1 except that the coating liquid A11 prepared so that the ratio was 05: 10: 25.9 was applied to the conductive substrate.
[比較例2]
 ルテニウムとイリジウムとチタンとバナジウムとの元素比(モル比)が20:18:60:2になるように調合した塗工液B2を用いて導電性基材に塗工したこと、塗工液の調合に塩化ルテニウム水溶液(田中貴金属社製、ルテニウム濃度100g/L)を用いたこと、及びロール塗工、乾燥、及び焼成から成るサイクルを、1回目の焼成温度を450℃とし、引き続き450℃で更に3回繰り返し行い、更に450℃における1時間の焼成を行ったこと以外は、実施例1と同様の方法により、電解用電極を作製した。
[Comparative Example 2]
The coating liquid B2 prepared so that the element ratio (molar ratio) of ruthenium, iridium, titanium, and vanadium was 20: 18: 60: 2 was applied to the conductive substrate. Using a ruthenium chloride aqueous solution (manufactured by Tanaka Kikinzoku Co., Ltd., ruthenium concentration: 100 g / L) for the preparation, and a cycle consisting of roll coating, drying, and firing, the first firing temperature was set to 450 ° C., and subsequently at 450 ° C. An electrode for electrolysis was produced in the same manner as in Example 1 except that the treatment was further repeated three times and further baked at 450 ° C. for 1 hour.
[比較例3]
 ルテニウムとイリジウムとチタンとバナジウムとの元素比(モル比)が22.7:20.5:34.1:22.7になるように調合した塗工液B3を用いて導電性基材に塗工したこと、及びロール塗工、乾燥、及び焼成から成るサイクルを、1回目の焼成温度を380℃とし、引き続き380℃で更に3回繰り返し行い、最後に590℃における1時間の焼成を更に行ったこと以外は、実施例1と同様の方法により、電解用電極を作製した。
[Comparative Example 3]
The conductive base material is coated with the coating liquid B3 prepared so that the element ratio (molar ratio) of ruthenium, iridium, titanium, and vanadium is 22.7: 20.5: 34.1: 22.7. And the cycle consisting of roll coating, drying, and firing was repeated at 380 ° C. three more times, followed by further one-hour firing at 590 ° C., with the first firing temperature being 380 ° C. An electrode for electrolysis was produced in the same manner as in Example 1 except that.
[比較例4]
 ルテニウムとイリジウムとチタンとバナジウムとの元素比(モル比)が28.6:25.7:42.8:2.9になるように調合した塗工液B4を用いて導電性基材に塗工したこと、及びロール塗工、乾燥、及び焼成から成るサイクルを、1回目の焼成温度を450℃とし、次いで520℃に昇温して更に3回繰り返し行い、更に520℃における1時間の焼成を行ったこと以外は、実施例1と同様の方法により、電解用電極を作製した。
[Comparative Example 4]
Coating on a conductive substrate using coating liquid B4 prepared so that the element ratio (molar ratio) of ruthenium, iridium, titanium and vanadium is 28.6: 25.7: 42.8: 2.9. And a cycle consisting of roll coating, drying, and firing is performed by setting the first firing temperature to 450 ° C., then raising the temperature to 520 ° C. and repeating three more times, and further firing at 520 ° C. for 1 hour The electrode for electrolysis was produced by the same method as Example 1 except having performed.
[比較例5]
 ルテニウムとイリジウムとチタンとバナジウムとの元素比(モル比)が18.5:16.7:55.55:9.25になるように調合した塗工液B5を用いて導電性基材に塗工したこと、塗工液の調合に塩化ルテニウム水溶液(田中貴金属社製、ルテニウム濃度100g/L)を用いたこと、及びロール塗工、乾燥、及び焼成から成るサイクルを、1回目の焼成温度を310℃とし、次いで380℃に昇温して更に3回繰り返し行い、最後に590℃における1時間の焼成を更に行ったこと以外は、実施例1と同様の方法により、電解用電極を作製した。
[Comparative Example 5]
The conductive base material is coated with the coating liquid B5 prepared so that the element ratio (molar ratio) of ruthenium, iridium, titanium, and vanadium is 18.5: 16.7: 55.55: 9.25. The first firing temperature at the first firing temperature, and the cycle consisting of roll coating, drying, and firing, using a ruthenium chloride aqueous solution (manufactured by Tanaka Kikinzoku Co., Ltd., ruthenium concentration 100 g / L) to prepare the coating solution The electrode for electrolysis was produced in the same manner as in Example 1 except that the temperature was 310 ° C., then the temperature was raised to 380 ° C. and repeated three more times, and finally baking at 590 ° C. for 1 hour was further performed. .
[比較例6]
 実施例1における塩化バナジウム(III)の代わりに硝酸マンガン(和光純薬社製)を使用し、ルテニウムとイリジウムとチタンとマンガンとの元素比(モル比)が21.25:21.25:42.5:15になるように調合した塗工液B6を用いて導電性基材に塗工したこと以外は、実施例1と同様の方法により、電解用電極を作製した。
[Comparative Example 6]
Manganese nitrate (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of vanadium chloride (III) in Example 1, and the element ratio (molar ratio) of ruthenium, iridium, titanium, and manganese was 21.25: 21.25: 42. The electrode for electrolysis was produced in the same manner as in Example 1 except that the coating liquid B6 prepared so as to have a ratio of 5:15 was applied to the conductive substrate.
[比較例7]
 実施例1における塩化バナジウム(III)の代わりに硝酸亜鉛(和光純薬社製)を使用し、ルテニウムとイリジウムとチタンと亜鉛との元素比(モル比)が21.25:21.25:42.5:15になるように調合した塗工液B7を用いて導電性基材に塗工したこと以外は、実施例1と同様の方法により、電解用電極を作製した。
[Comparative Example 7]
Zinc nitrate (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of vanadium chloride (III) in Example 1, and the element ratio (molar ratio) of ruthenium, iridium, titanium, and zinc was 21.25: 21.25: 42. An electrode for electrolysis was produced in the same manner as in Example 1 except that the coating liquid B7 prepared to have a ratio of 5:15 was applied to the conductive substrate.
[比較例8]
 実施例1における塩化バナジウム(III)の代わりに硝酸パラジウム(和光純薬社製)を使用し、ルテニウムとイリジウムとチタンとパラジウムとの元素比(モル比)が16.9:15.4:50.8:16.9になるように調合した塗工液B8を用いて導電性基材に塗工したこと、及びロール塗工、乾燥、及び焼成から成るサイクルを、1回目の焼成温度を450℃とし、次いで520℃に昇温して更に3回繰り返し行い、最後に590℃における1時間の焼成を更に行ったこと以外は、実施例1と同様の方法により、電解用電極を作製した。
[Comparative Example 8]
Instead of vanadium (III) chloride in Example 1, palladium nitrate (manufactured by Wako Pure Chemical Industries, Ltd.) was used, and the element ratio (molar ratio) of ruthenium, iridium, titanium, and palladium was 16.9: 15.4: 50. 8: 16.9 The coating liquid B8 prepared so as to be 16.9 was applied to the conductive substrate, and the cycle consisting of roll coating, drying, and firing was performed at a first firing temperature of 450. The electrode for electrolysis was produced in the same manner as in Example 1 except that the temperature was raised to 520 ° C., the temperature was raised to 520 ° C., and the treatment was further repeated three times.
[比較例9]
 ルテニウムとチタンとバナジウムとの元素比(モル比)が40:40:20になるように調合した塗工液B9を用いて導電性基材に塗工したこと、塗工液の調合に塩化ルテニウム水溶液(田中貴金属社製、ルテニウム濃度100g/L)を用いたこと、及びロール塗工、乾燥、及び焼成から成るサイクルを、1回目の焼成温度を440℃とし、次いで475℃に昇温して更に3回繰り返し行い、最後に520℃における1時間の焼成を更に行ったこと以外は、実施例1と同様の方法により、電解用電極を作製した。
[Comparative Example 9]
Coating on the conductive substrate using the coating liquid B9 prepared so that the element ratio (molar ratio) of ruthenium, titanium and vanadium is 40:40:20, and ruthenium chloride for the coating liquid A cycle consisting of using an aqueous solution (Tanaka Kikinzoku Co., Ruthenium concentration 100 g / L) and roll coating, drying, and firing is performed at a first firing temperature of 440 ° C. and then raised to 475 ° C. An electrode for electrolysis was produced in the same manner as in Example 1 except that the treatment was further repeated three times, and finally baking at 520 ° C. for 1 hour was further performed.
 実施例6~11、及び比較例2~9のそれぞれで作製した電解用電極の構成(触媒層の形成に用いた塗工液の金属組成)を、測定した電気二重層容量の指標となるD値と共に表3に示す。表中の単位「mol%」とは、形成した触媒層に含まれる全金属元素に対するモル百分率(仕込み比)を意味する。また、第一遷移金属元素/Ruの値及び第一遷移金属元素/Tiの値は当該仕込み比から算出した値である。 The structure of the electrode for electrolysis produced in each of Examples 6 to 11 and Comparative Examples 2 to 9 (metal composition of the coating solution used for forming the catalyst layer) is an index of the measured electric double layer capacity D It shows in Table 3 with a value. The unit “mol%” in the table means the mole percentage (feeding ratio) with respect to all the metal elements contained in the formed catalyst layer. Further, the value of the first transition metal element / Ru and the value of the first transition metal element / Ti are values calculated from the preparation ratio.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
[加速試験]
 実施例1~11及び比較例1~9のそれぞれで作製した電解用電極を用いて、加速試験を実施した。その結果を表4に示す。なお、比較例9はルテニウムの耐久性が低かったため、14日後に試験を中止した時点での評価結果である。
[Accelerated test]
An acceleration test was carried out using the electrodes for electrolysis produced in each of Examples 1 to 11 and Comparative Examples 1 to 9. The results are shown in Table 4. Comparative Example 9 shows the evaluation results when the test was stopped after 14 days because ruthenium had low durability.
 21日間の加速試験を実施したところ、以下のことが分かった。
 実施例1~11の電解用電極は、試験開始1日後の陽極過電圧が0.030~0.045Vであり、かつ、21日後の陽極過電圧が0.030~0.039Vであった。これに対して、比較例1~8の電解用電極は、試験開始1日後の陽極過電圧が0.042~0.110Vであり、かつ、21日後の陽極過電圧が0.043~0.093Vであった。このように、実施例は、比較例に比べて、電解初期かつ長期に亘って低電圧・低消費電力で電解可能であることが検証された。
 また、実施例1~11においては、陽極過電圧が同程度の比較例9と比較して、試験開始21日後でもRu及びIr残存率がともに高く、陽極過電圧を低く維持しながら長期間の電解における耐久性としても十分であることが検証された。
When the 21-day acceleration test was conducted, the following was found.
The electrodes for electrolysis of Examples 1 to 11 had an anode overvoltage of 0.030 to 0.045 V one day after the start of the test, and an anode overvoltage of 0.030 to 0.039 V after 21 days. On the other hand, in the electrodes for electrolysis of Comparative Examples 1 to 8, the anode overvoltage after 1 day from the start of the test was 0.042 to 0.110 V, and the anode overvoltage after 21 days was from 0.043 to 0.093 V. there were. As described above, it was verified that the example can be electrolyzed at a low voltage and low power consumption in the initial stage of electrolysis and for a long period of time as compared with the comparative example.
In Examples 1 to 11, compared to Comparative Example 9 in which the anode overvoltage was comparable, both Ru and Ir residual ratios were high even after 21 days from the start of the test, and in the long-term electrolysis while maintaining the anode overvoltage low. It was verified that the durability was sufficient.
 本出願は、2016年11月22日出願の日本特許出願(特願2016-227066号)に基づくものであり、それらの内容はここに参照として取り込まれる。 This application is based on a Japanese patent application filed on November 22, 2016 (Japanese Patent Application No. 2016-227066), the contents of which are incorporated herein by reference.
 本発明の電解用電極は、低い塩素発生過電圧を示し、低電圧・低消費電力量で電解できるため、食塩電解の分野において好適に利用できる。特に、イオン交換膜法食塩電解用陽極として有用であり、酸素ガス濃度の低い高純度の塩素ガスを長期に亘って低電圧・低消費電力量で製造することを可能とする。 The electrode for electrolysis of the present invention exhibits a low chlorine generation overvoltage and can be electrolyzed with low voltage and low power consumption, and therefore can be suitably used in the field of salt electrolysis. In particular, it is useful as an anode for salt exchange electrolysis by ion exchange membrane method, and enables high-purity chlorine gas having a low oxygen gas concentration to be produced at low voltage and low power consumption over a long period of time.
 200  電気分解用電解槽
 210  電解液
 220  容器
 230  陽極(電解用電極)
 240  陰極
 250  イオン交換膜
 260  配線
200 Electrolysis Cell for Electrolysis 210 Electrolyte 220 Container 230 Anode (Electrode for Electrolysis)
240 Cathode 250 Ion exchange membrane 260 Wiring

Claims (9)

  1.  導電性基材と、
     前記導電性基材の表面上に形成された触媒層と、
     を備える電解用電極であって、
     前記触媒層が、ルテニウム元素、イリジウム元素、チタン元素、並びに、Sc、V、Cr、Fe、Co、Ni、Cu及びZnからなる群より選択される少なくとも一種の第一遷移金属元素を含み、
     前記触媒層に含まれる第一遷移金属元素の前記チタン元素1モルに対する含有割合が、0.25モル%以上3.4モル%未満であり、
     前記電解用電極の電気二重層容量の指標となるD値が120C/m以上420C/m以下である、電解用電極。
    A conductive substrate;
    A catalyst layer formed on the surface of the conductive substrate;
    An electrode for electrolysis comprising:
    The catalyst layer includes a ruthenium element, an iridium element, a titanium element, and at least one first transition metal element selected from the group consisting of Sc, V, Cr, Fe, Co, Ni, Cu, and Zn;
    The content ratio of the first transition metal element contained in the catalyst layer to 1 mol of the titanium element is 0.25 mol% or more and less than 3.4 mol%,
    The D values indicative of the electric double layer capacity of the electrode for electrolysis is 120C / m 2 or more 420C / m 2 or less, the electrode for electrolysis.
  2.  前記第一遷移金属元素が、ルテニウム酸化物、イリジウム酸化物及びチタン酸化物の固溶体と、固溶体を形成している、請求項1に記載の電解用電極。 The electrode for electrolysis according to claim 1, wherein the first transition metal element forms a solid solution with a solid solution of ruthenium oxide, iridium oxide and titanium oxide.
  3.  前記第一遷移金属元素が、バナジウム、コバルト、銅及び亜鉛からなる群より選択される少なくとも一種の金属元素を含む、請求項1又は2に記載の電解用電極。 The electrode for electrolysis according to claim 1 or 2, wherein the first transition metal element contains at least one metal element selected from the group consisting of vanadium, cobalt, copper and zinc.
  4.  前記第一遷移金属元素が、バナジウム元素を含む、請求項1~3のいずれか一項に記載の電解用電極。 The electrode for electrolysis according to any one of claims 1 to 3, wherein the first transition metal element contains a vanadium element.
  5.  前記触媒層に含まれる全ての金属元素に対する前記第一遷移金属元素の含有率が、10モル%以上30モル%以下である、請求項1~4のいずれか一項に記載の電解用電極。 The electrode for electrolysis according to any one of claims 1 to 4, wherein the content of the first transition metal element with respect to all the metal elements contained in the catalyst layer is 10 mol% or more and 30 mol% or less.
  6.  前記触媒層に含まれる前記第一遷移金属元素の前記ルテニウム元素1モルに対する含有割合が、0.3モル以上2モル未満である、請求項1~5のいずれか一項に記載の電解用電極。 The electrode for electrolysis according to any one of claims 1 to 5, wherein a content ratio of the first transition metal element contained in the catalyst layer to 1 mol of the ruthenium element is 0.3 mol or more and less than 2 mol. .
  7.  前記D値が、120C/m以上380C/m以下である、請求項1~6のいずれか一項に記載の電解用電極。 The electrode for electrolysis according to any one of claims 1 to 6, wherein the D value is 120 C / m 2 or more and 380 C / m 2 or less.
  8.  請求項1~7のいずれか一項に記載の電解用電極を製造するための方法であって、
     ルテニウム化合物、イリジウム化合物、チタン化合物、及び、前記第一遷移金属元素を含む化合物を含有する塗工液を調製する工程と、
     前記塗工液を前記導電性基材の少なくとも片面上に塗工して塗膜を形成する工程と、
     前記塗膜を酸素含有雰囲気下で焼成して前記触媒層を形成する工程と、
     を有する、電解用電極の製造方法。
    A method for producing the electrode for electrolysis according to any one of claims 1 to 7,
    A step of preparing a coating liquid containing a ruthenium compound, an iridium compound, a titanium compound, and a compound containing the first transition metal element;
    Applying the coating liquid onto at least one surface of the conductive substrate to form a coating film;
    Baking the coating film in an oxygen-containing atmosphere to form the catalyst layer;
    The manufacturing method of the electrode for electrolysis which has these.
  9.  請求項1~7のいずれか一項に記載の電解用電極を備える、電解槽。 An electrolytic cell comprising the electrode for electrolysis according to any one of claims 1 to 7.
PCT/JP2017/041559 2016-11-22 2017-11-17 Electrode for electrolysis WO2018097069A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020197013662A KR102272749B1 (en) 2016-11-22 2017-11-17 Electrode for electrolysis
EP17873862.1A EP3546619B1 (en) 2016-11-22 2017-11-17 Electrode for electrolysis
US16/462,367 US20190338429A1 (en) 2016-11-22 2017-11-17 Electrode for electrolysis
JP2018552551A JP6670948B2 (en) 2016-11-22 2017-11-17 Electrode for electrolysis
BR112019010219A BR112019010219A2 (en) 2016-11-22 2017-11-17 electrolysis electrode, method for producing the electrolysis electrode, and electrolyser.
RU2019115501A RU2720309C1 (en) 2016-11-22 2017-11-17 Electrode for electrolysis
CN201780066562.8A CN109891002B (en) 2016-11-22 2017-11-17 Electrode for electrolysis
ES17873862T ES2850501T3 (en) 2016-11-22 2017-11-17 Electrode for electrolysis

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016227066 2016-11-22
JP2016-227066 2016-11-22

Publications (1)

Publication Number Publication Date
WO2018097069A1 true WO2018097069A1 (en) 2018-05-31

Family

ID=62195992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041559 WO2018097069A1 (en) 2016-11-22 2017-11-17 Electrode for electrolysis

Country Status (10)

Country Link
US (1) US20190338429A1 (en)
EP (1) EP3546619B1 (en)
JP (1) JP6670948B2 (en)
KR (1) KR102272749B1 (en)
CN (1) CN109891002B (en)
BR (1) BR112019010219A2 (en)
ES (1) ES2850501T3 (en)
RU (1) RU2720309C1 (en)
TW (1) TWI661091B (en)
WO (1) WO2018097069A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023249011A1 (en) * 2022-06-20 2023-12-28 旭化成株式会社 Electrolysis electrode and electrolysis tank
JP7434828B2 (en) 2019-11-21 2024-02-21 中国電力株式会社 Hydrogen-containing water generator and method for predicting electrode replacement time

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102017567B1 (en) * 2018-11-27 2019-09-03 주식회사 웨스코일렉트로드 An anode for electrolysis
CN110438527A (en) * 2019-08-05 2019-11-12 上海氯碱化工股份有限公司 The preparation method of the transient metal doped anode containing ruthenium coating
US20230001402A1 (en) * 2019-11-25 2023-01-05 The Regents Of The University Of California Iridium-based amorphous electrocatalyst and synthesis of same
KR102424607B1 (en) * 2020-08-11 2022-07-25 울산과학기술원 Metal complex and method for preparing same
CN112195482B (en) * 2020-10-15 2023-05-16 昆明冶金研究院有限公司 Composite titanium anode plate and preparation method thereof
CN112458495B (en) * 2020-11-27 2022-05-10 浙江大学衢州研究院 Electrocatalyst of ruthenium-based transition metal oxide solid solution and preparation method and application thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012092449A (en) * 2010-10-28 2012-05-17 Bayer Materialscience Ag Electrode for manufacturing chlorine by electrolysis
JP2013166994A (en) * 2012-02-15 2013-08-29 Asahi Kasei Chemicals Corp Electrolysis electrode, electrolysis tank, and method for manufacturing electrolysis electrode
JP2013543933A (en) * 2010-11-26 2013-12-09 インドゥストリエ・デ・ノラ・ソチエタ・ペル・アツィオーニ Anode for electrolysis of chlorine
JP2014505166A (en) * 2010-12-22 2014-02-27 インドゥストリエ・デ・ノラ・ソチエタ・ペル・アツィオーニ Electrode for electrolytic cell
JP2015052145A (en) * 2013-09-06 2015-03-19 ペルメレック電極株式会社 Manufacturing method of electrode for electrolysis
JP2016204732A (en) * 2015-04-28 2016-12-08 旭化成株式会社 Electrode for electrolysis
JP2019021884A (en) 2017-07-21 2019-02-07 株式会社ディスコ Processing method of wafer

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4621884Y1 (en) 1966-07-13 1971-07-28
US4003817A (en) * 1967-12-14 1977-01-18 Diamond Shamrock Technologies, S.A. Valve metal electrode with valve metal oxide semi-conductive coating having a chlorine discharge in said coating
US3711397A (en) * 1970-11-02 1973-01-16 Ppg Industries Inc Electrode and process for making same
JPS483954Y1 (en) 1971-08-23 1973-01-31
JPS53386B2 (en) * 1972-08-28 1978-01-07
CN1012743B (en) * 1987-08-22 1991-06-05 福建省冶金工业研究所 Titanium anode for electrochemical industry
RU2140466C1 (en) * 1996-04-19 1999-10-27 Седельников Николай Георгиевич Iridium-titanium electrode and method for making it
EP1150921A4 (en) * 1998-12-07 2003-06-18 Zappi Water Purification Syste Electrolytic apparatus, methods for purification of aqueous solutions and synthesis of chemicals
GB9915420D0 (en) * 1999-07-01 1999-09-01 Atraverda Ltd Electrode
TW200304503A (en) * 2002-03-20 2003-10-01 Asahi Chemical Ind Electrode for generation of hydrogen
US7258778B2 (en) * 2003-03-24 2007-08-21 Eltech Systems Corporation Electrocatalytic coating with lower platinum group metals and electrode made therefrom
KR100676115B1 (en) * 2003-07-25 2007-02-02 아사히 가세이 케미칼즈 가부시키가이샤 Oxidation catalyst
JP2005230707A (en) * 2004-02-20 2005-09-02 Mitsubishi Heavy Ind Ltd Electrochemical reaction method and apparatus
KR101162795B1 (en) * 2004-09-01 2012-07-05 엘테크 시스템스 코포레이션 Pd-containing coating for low chlorine overvoltage
KR101135887B1 (en) * 2005-01-27 2012-04-13 인두스트리에 데 노라 에스.피.에이. High efficiency hypochlorite anode coating
UA9714U (en) * 2005-03-17 2005-10-17 Ltd Liability Company Factory Illuminating device
ITMI20061974A1 (en) * 2006-10-16 2008-04-17 Industrie De Nora Spa ANODE FOR ELECTROLYSIS
IT1391767B1 (en) 2008-11-12 2012-01-27 Industrie De Nora Spa ELECTRODE FOR ELECTROLYTIC CELL
JP2012067390A (en) * 2011-10-24 2012-04-05 De Nora Tech Inc Pd-CONTAINING COATING FOR LOW CHLORINE OVERVOLTAGE
KR101583179B1 (en) * 2011-12-26 2016-01-07 페르메렉덴꾜꾸가부시끼가이샤 High-load durable anode for oxygen generation and manufacturing method for the same
DE102013202144A1 (en) * 2013-02-08 2014-08-14 Bayer Materialscience Ag Electrocatalyst, electrode coating and electrode for the production of chlorine
JP6506983B2 (en) * 2015-02-10 2019-04-24 旭化成株式会社 Negative electrode for hydrogen generation and method for producing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012092449A (en) * 2010-10-28 2012-05-17 Bayer Materialscience Ag Electrode for manufacturing chlorine by electrolysis
JP2013543933A (en) * 2010-11-26 2013-12-09 インドゥストリエ・デ・ノラ・ソチエタ・ペル・アツィオーニ Anode for electrolysis of chlorine
JP2014505166A (en) * 2010-12-22 2014-02-27 インドゥストリエ・デ・ノラ・ソチエタ・ペル・アツィオーニ Electrode for electrolytic cell
JP2013166994A (en) * 2012-02-15 2013-08-29 Asahi Kasei Chemicals Corp Electrolysis electrode, electrolysis tank, and method for manufacturing electrolysis electrode
JP2015052145A (en) * 2013-09-06 2015-03-19 ペルメレック電極株式会社 Manufacturing method of electrode for electrolysis
JP2016204732A (en) * 2015-04-28 2016-12-08 旭化成株式会社 Electrode for electrolysis
JP2019021884A (en) 2017-07-21 2019-02-07 株式会社ディスコ Processing method of wafer

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HIROAKI AIKAWA: "National Museum of Nature and Science, Survey Reports on the Systemization of Technologies No. 8", 30 March 2007, INDEPENDENT ADMINISTRATIVE INSTITUTION NATIONAL MUSEUM, pages: 32
See also references of EP3546619A4
SIWEN WANG; XU HAOLONG; YAO PEIDONG; CHEN XUEMING : "Ti/RuO2-IrO2-SnO2-Sb2O5 Anodes for Cl2 Evolution from Seawater", ELECTROCHEMISTRY, vol. 80, no. 7, 5 July 2012 (2012-07-05), pages 507 - 511, XP055191613 *
ZERADJANIN: "On the faradaic selectivity and the role of surface inhomogeneity during the chlorine evolution reaction on ternary Ti–Ru–Ir mixed metal oxide electrocatalysts", PHYS CHEM CHEM PHYS, vol. 16, no. 27, 21 July 2014 (2014-07-21), pages 13741 - 13747, XP055595434, DOI: 10.1039/C4CP00896K *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7434828B2 (en) 2019-11-21 2024-02-21 中国電力株式会社 Hydrogen-containing water generator and method for predicting electrode replacement time
WO2023249011A1 (en) * 2022-06-20 2023-12-28 旭化成株式会社 Electrolysis electrode and electrolysis tank

Also Published As

Publication number Publication date
JP6670948B2 (en) 2020-03-25
KR102272749B1 (en) 2021-07-06
JPWO2018097069A1 (en) 2019-07-25
KR20190067859A (en) 2019-06-17
ES2850501T3 (en) 2021-08-30
EP3546619A4 (en) 2019-12-25
EP3546619B1 (en) 2021-01-06
CN109891002A (en) 2019-06-14
TW201819687A (en) 2018-06-01
RU2720309C1 (en) 2020-04-28
EP3546619A1 (en) 2019-10-02
CN109891002B (en) 2021-03-12
US20190338429A1 (en) 2019-11-07
TWI661091B (en) 2019-06-01
BR112019010219A2 (en) 2019-08-27

Similar Documents

Publication Publication Date Title
WO2018097069A1 (en) Electrode for electrolysis
JP2013166994A (en) Electrolysis electrode, electrolysis tank, and method for manufacturing electrolysis electrode
TWI512144B (en) Electrolytic Electrode, Electrolytic Cell and Electrode Electrode Manufacturing Method
JP6506983B2 (en) Negative electrode for hydrogen generation and method for producing the same
TWI432608B (en) Cathode, electrolytic cell for electrolysis of alkali metal chloride, and manufacturing method of cathode
US20170067172A1 (en) Catalyst coating and process for production thereof
JP5681343B2 (en) Electrode for electrolysis
CN107002261B (en) Cathode for electrolysis, method for producing same, and electrolytic cell for electrolysis
WO2018131519A1 (en) Electrode for electrolysis, electrolytic cell, electrode laminate and method for renewing electrode
JP2016204732A (en) Electrode for electrolysis
US20220018032A1 (en) Electrode For Electrolysis
WO2023249011A1 (en) Electrolysis electrode and electrolysis tank
JP2010065311A (en) Electrode for electrolysis
KR102576668B1 (en) Electrode for Electrolysis
RU2818275C1 (en) Oxygen generation electrode
TW202407154A (en) Electrodes and electrolytic cells for electrolysis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17873862

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018552551

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197013662

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019010219

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2019115501

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2017873862

Country of ref document: EP

Effective date: 20190624

ENP Entry into the national phase

Ref document number: 112019010219

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190520