JP2005230707A - Electrochemical reaction method and apparatus - Google Patents

Electrochemical reaction method and apparatus Download PDF

Info

Publication number
JP2005230707A
JP2005230707A JP2004043750A JP2004043750A JP2005230707A JP 2005230707 A JP2005230707 A JP 2005230707A JP 2004043750 A JP2004043750 A JP 2004043750A JP 2004043750 A JP2004043750 A JP 2004043750A JP 2005230707 A JP2005230707 A JP 2005230707A
Authority
JP
Japan
Prior art keywords
electrochemical reaction
aqueous solution
catalyst
anode
electric signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004043750A
Other languages
Japanese (ja)
Inventor
Masamichi Asano
昌道 浅野
Masayuki Tabata
雅之 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2004043750A priority Critical patent/JP2005230707A/en
Publication of JP2005230707A publication Critical patent/JP2005230707A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrochemical reaction method and apparatus capable of effectively producing an objective substance at low costs by reducing waste of power supply due to overvoltage. <P>SOLUTION: The electrochemical reaction apparatus 10 is equipped with an anode member 13 and a cathode member 14 oppositely disposed in a solution inside an electrolytic cell 15, and an electric signal generater for applying electric signals superimposed with positive pulse high voltage component and direct voltage component between these electrodes. In the apparatus, the solution in the vicinity of the electrode interface is subjected to the electrochemical reaction by the application of the electric signals. In the electrochemical reaction apparatus 10, the anode member 13 has a structure of supporting catalysts on a substrate formed with conductive materials. The catalysts are oxidized on the surface of the anode member 13 by the application of the electric signals to be a highly oxidized state, which are metals or metal oxides capable of oxidizing organic matters in the solution. The catalysts may preferably be Ru, Fe, Os, Mn, Mo, Co, Ir, Ni, or W, or an oxide of one of them or a mixture of their oxides. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、水溶液に浸漬配置した電極間に所定の電気信号を印加して水溶液に電気化学的処理を施す電気化学反応方法及び該装置に関し、特に水溶液中に含有される有機物、窒素化合物又は難分解性物質等の分解除去等をなし得る電気化学反応方法及び該装置に関する。   The present invention relates to an electrochemical reaction method and an apparatus for applying a predetermined electrical signal between electrodes immersed in an aqueous solution to subject the aqueous solution to an electrochemical treatment, and particularly to an organic substance, a nitrogen compound, or a difficulty contained in the aqueous solution. The present invention relates to an electrochemical reaction method capable of decomposing and removing decomposable substances and the like and the apparatus.

従来、廃水処理設備などにおいて有機物等を水溶液中から除去する方法として、例えば特公昭51−48387号公報(特許文献1)のように、触媒と酸化剤を利用して分解除去する方法がある。これは、次亜塩素酸ナトリウムを酸化剤として用い、過酸化ニッケル系触媒又は過酸化コバルト系触媒の充填層に水溶液を通液してこれらの物質を除去するものであるが、かかる方法では、難分解性有機物に対しては分解困難であり、また有機物を低濃度まで完全分解させるためには化学量論量に対して過剰の次亜塩素酸ナトリウムを使用する必要があるという問題を有していた。   Conventionally, as a method of removing organic substances and the like from an aqueous solution in a wastewater treatment facility or the like, there is a method of decomposing and removing using a catalyst and an oxidizing agent as disclosed in, for example, Japanese Patent Publication No. 51-48387 (Patent Document 1). In this method, sodium hypochlorite is used as an oxidizing agent, and these substances are removed by passing an aqueous solution through a packed bed of a nickel peroxide-based catalyst or a cobalt peroxide-based catalyst. It has difficulty in decomposing difficult-to-decompose organic substances, and it is necessary to use an excess amount of sodium hypochlorite with respect to the stoichiometric amount in order to completely decompose organic substances to a low concentration. It was.

また、電気分解と触媒層を組み合わせた処理方法として、特開2003−251357号公報(特許文献2)等がある。かかる方法は、被酸化性物質含有水を塩化物イオン存在下で電気分解処理する工程と、遊離残留塩素存在下で金属酸化物触媒と接触させる工程とを行なう方法であるが、電解槽と触媒層が別々に配置されているため、電解槽で発生する次亜塩素酸以外の寿命の短いラジカル活性種は触媒層で効率良く利用できないといった問題があり、さらに電気分解ではダイヤモンド電極を使用しているため、高コスト及び剥離という問題があった。   Moreover, there exists Unexamined-Japanese-Patent No. 2003-251357 (patent document 2) etc. as a processing method which combined electrolysis and a catalyst layer. This method is a method in which an oxidizable substance-containing water is electrolyzed in the presence of chloride ions, and a step of contacting the metal oxide catalyst in the presence of free residual chlorine. Since the layers are arranged separately, there is a problem that radical active species with a short lifetime other than hypochlorous acid generated in the electrolytic cell cannot be used efficiently in the catalyst layer. Furthermore, in electrolysis, diamond electrodes are used. Therefore, there was a problem of high cost and peeling.

さらに、電気化学反応を利用して有機物等を分解除去する方法が特開2001−286866号公報(特許文献3)等に開示されている。かかる方法は、酸化チタン、酸化コバルト、酸化スズ、酸化イリジウム、酸化ニッケル、酸化鉄等の活性種を陽極に担持して、直流またはパルス的に電気分解する方法である。しかし、このように直流で電気分解した場合、陽極の表面に担持されている触媒種が剥離するといった問題や酸化活性種の生成効率が低いといった問題があった。また、パルス電解では、電圧印加停止時に逆電流が流れ、印加電圧が逆になるため電圧印加時に生成した活性種が拡散してしまい消費されずに無駄になってしまうという問題があった。   Furthermore, a method for decomposing and removing organic substances using an electrochemical reaction is disclosed in Japanese Patent Application Laid-Open No. 2001-286866 (Patent Document 3). Such a method is a method in which an active species such as titanium oxide, cobalt oxide, tin oxide, iridium oxide, nickel oxide, and iron oxide is supported on the anode and electrolyzed in a direct current or pulse manner. However, when electrolysis is performed with direct current in this way, there are problems such as separation of the catalyst species supported on the surface of the anode and low generation efficiency of oxidation active species. Further, in the pulse electrolysis, a reverse current flows when the voltage application is stopped, and the applied voltage is reversed, so that the active species generated when the voltage is applied is diffused and is not consumed and is wasted.

特公昭51−48387号公報Japanese Patent Publication No. 51-48387 特開2003−251357号公報JP 2003-251357 A 特開2001−286866号公報JP 2001-286866 A

このように、水溶液中に含有される有機物、窒素化合物又は難分解性物質等を除去するにあたり、次亜塩素酸ナトリウム等の酸化剤や触媒による酸化分解処理のみでは、酸化剤の使用量過多による処理コストの増大が問題となるため、電気化学反応を利用した処理が有効な方法とされている。特に、水溶液を電気化学反応することにより生成される酸化ラジカルやヒドロキシラジカル等の強酸化力を有するラジカル活性種は、ダイオキシン類、PCB等の難分解性物質を容易に酸化分解することができ、またこれらの被酸化物質を分解する次亜塩素酸や過酸化水素等の酸化剤を生成することができるため、大幅な分解反応効率の向上が達成できる。   Thus, in removing organic substances, nitrogen compounds, or hardly decomposable substances contained in the aqueous solution, only the oxidative decomposition treatment with an oxidizing agent or catalyst such as sodium hypochlorite is due to excessive use of the oxidizing agent. Since the increase in processing cost becomes a problem, processing using an electrochemical reaction is regarded as an effective method. In particular, radical active species having strong oxidizing power such as oxidized radicals and hydroxy radicals generated by electrochemical reaction of aqueous solutions can easily oxidize and decompose hardly decomposable substances such as dioxins and PCBs, Further, since an oxidizing agent such as hypochlorous acid or hydrogen peroxide that decomposes these oxidizable substances can be generated, a significant improvement in the decomposition reaction efficiency can be achieved.

しかしながら、上記したようにラジカル活性種は安定性が低く寿命が短いため、従来の処理方法では効率良く分解反応を制御することができなかった。また、反応効率を向上させるために印加電圧を高く設定した場合には、投入した電力の大半が過電圧として熱エネルギーに逃げてしまい、経済的にも成立し難いという問題点を有していた。
従って、本発明は上記従来技術の問題点に鑑み、過電圧による供給電力の無駄を低減し、目的とする物質生成をより効率的にかつ安価に行なうことができる電気化学反応方法及び該装置を提供することを目的とする。
However, as described above, since radically active species have low stability and short life, the conventional treatment method cannot efficiently control the decomposition reaction. Further, when the applied voltage is set high in order to improve the reaction efficiency, most of the input electric power escapes to thermal energy as an overvoltage, which is difficult to establish economically.
Accordingly, the present invention provides an electrochemical reaction method and apparatus capable of reducing the waste of supplied power due to overvoltage and generating a target substance more efficiently and inexpensively in view of the above-mentioned problems of the prior art. The purpose is to do.

まず一般の電気化学反応の概念を説明する。図7に示すように、一般に、電気化学反応は、電極部材と水溶液との界面における反応を伴う電子移動過程と、水溶液側から電極部材までに反応物質が輸送されてくる物質輸送過程とから構成されている。次に図8に示すように、陽極について見れば、電源から正電圧が印加されると水溶液中に存在するマイナスイオンが陽極近傍に集まり、陽極における正電荷の薄い層と、水溶液中のマイナスイオンによる負電荷の薄い層が向き合った電気二重層が形成され、水溶液中の電界が中和される。印加される正電圧の値が数[V]程度の小さい値の場合には、電極表面近傍に形成される電気二重層により、水溶液内部にはほとんど電界が掛からない。   First, the concept of a general electrochemical reaction will be described. As shown in FIG. 7, in general, an electrochemical reaction is composed of an electron transfer process involving a reaction at the interface between an electrode member and an aqueous solution, and a material transport process in which the reactant is transported from the aqueous solution side to the electrode member. Has been. Next, as shown in FIG. 8, in the case of the anode, when a positive voltage is applied from the power source, negative ions present in the aqueous solution gather in the vicinity of the anode, and the positively charged thin layer in the anode and the negative ions in the aqueous solution are collected. As a result, an electric double layer is formed in which the negatively charged thin layers face each other, and the electric field in the aqueous solution is neutralized. When the value of the applied positive voltage is a small value of about several [V], an electric field is hardly applied inside the aqueous solution due to the electric double layer formed in the vicinity of the electrode surface.

そのまま、電圧を掛け続けると電極表面では、電気化学反応により電子移動が起こって反応前駆体物質濃度が減少し、その分、電荷の不均衡が生じる(電子移動過程)。その電荷の不均衡を補うために、新たなる反応前駆体が水溶液中から供給されてくる(物質輸送過程)。この場合、電極電圧としては、電気化学反応に必要な電圧より少し高い値を設置しておけば電気化学反応を起すことができ、投入電力分を電気化学反応に寄与させることができる。しかし、電極電圧(過電圧分)が小さいと、水溶液中に印加される電界強度は小さく新たなる反応前駆体を供給する物質輸送過程における駆動力は小さく、中々反応は進まない。   If the voltage is continuously applied as it is, electron transfer occurs on the electrode surface due to an electrochemical reaction, and the concentration of the reaction precursor material decreases, resulting in a charge imbalance (electron transfer process). In order to compensate for the charge imbalance, a new reaction precursor is supplied from the aqueous solution (mass transport process). In this case, if the electrode voltage is set to a value slightly higher than the voltage necessary for the electrochemical reaction, the electrochemical reaction can be caused, and the input power can be contributed to the electrochemical reaction. However, when the electrode voltage (overvoltage) is small, the electric field strength applied to the aqueous solution is small, and the driving force in the mass transport process for supplying a new reaction precursor is small, so that the reaction does not proceed moderately.

一方、水溶液中の反応前駆体であるイオンを外部電界により強制的に駆動するためには、電気二重層で打ち消される電界以上の高電圧を印加する必要がある。しかし、この場合には、電気化学反応で必要な電圧数[V]程度(例えば、水分解では1.2[V])に対し、それ以上の印加電圧分は過電圧となりジュール熱として消費されるため投入電力エネルギーが無駄になってしまう。   On the other hand, in order to forcibly drive ions, which are reaction precursors in an aqueous solution, by an external electric field, it is necessary to apply a high voltage higher than the electric field canceled by the electric double layer. However, in this case, the applied voltage higher than the number of voltages [V] required for the electrochemical reaction (for example, 1.2 [V] in water splitting) becomes an overvoltage and consumed as Joule heat. Therefore, the input power energy is wasted.

そこで、本発明者らは先に出願した特開2003−211165号公報、特願2003−16456号にて、処理対象の水溶液を貯水する電解処理槽内に設置した陽極部材と陰極部材との間に、正パルス高電圧成分と直流正電圧成分とを重ね合わせた電気信号を印加し、前記正パルス高電圧成分の電気信号の印加によって、前記陽極部材と前記陰極部材と水溶液との界面に電気二重層を形成させていき、前記直流正電圧成分の電気信号の印加によって、前記陽極部材界面近傍と前記陰極部材界面近傍の水溶液を電気化学反応させることを提案している。   In view of this, the present inventors disclosed in Japanese Patent Application Laid-Open No. 2003-211165 and Japanese Patent Application No. 2003-16456 previously filed between an anode member and a cathode member installed in an electrolytic treatment tank for storing an aqueous solution to be treated. In addition, an electrical signal in which a positive pulse high voltage component and a DC positive voltage component are superimposed is applied, and an electrical signal is applied to the interface between the anode member, the cathode member, and the aqueous solution by applying the electrical signal of the positive pulse high voltage component. It has been proposed that a double layer is formed and an aqueous solution in the vicinity of the anode member interface and in the vicinity of the cathode member interface is caused to undergo an electrochemical reaction by applying an electric signal of the DC positive voltage component.

この構成によれば、正パルス高電圧成分のパルス幅分だけの電圧が陽極部材および陰極部材間に印加された時間幅の間に、電解処理槽内の水溶液の陰イオンを陽極部材表面に引き寄せ水溶液との界面に電気二重層を形成させ、その直後に、引き寄せられた陰イオンと陽極部材との界面で電気化学反応を起すことができる直流正電圧を印加することによって、引き寄せた陰イオンを電気化学反応させることができるようになる。従って、過電圧による供給電力の無駄を低減して希望する物質生成をより効率的に行なうことができるようになる。   According to this configuration, the anion of the aqueous solution in the electrolytic treatment tank is attracted to the surface of the anode member during the time width in which the voltage corresponding to the pulse width of the positive pulse high voltage component is applied between the anode member and the cathode member. An electric double layer is formed at the interface with the aqueous solution, and immediately after that, by applying a positive DC voltage capable of causing an electrochemical reaction at the interface between the attracted anion and the anode member, the attracted anion is An electrochemical reaction can be performed. Accordingly, it is possible to reduce the waste of supplied power due to overvoltage and to generate a desired substance more efficiently.

さらに本発明では特開2003−211165号公報、特願2003−16456号を発展させ、かかる電気化学反応をより効率よく行なわせる方法として、
第1の発明は、電解処理槽内の水溶液中に対向配置された陽極部材と陰極部材との間に、正パルス高電圧成分と直流電圧成分とを重畳した電気信号を印加し、該電気信号の印加により電極界面近傍の水溶液を電気化学反応させる方法において、
前記陽極部材が導電性材料で形成された基板上に金属若しくは金属酸化物からなる触媒を担持させた構造を有しており、該陽極部材に電気信号を印加することにより該陽極部材の表面上で前記触媒を高酸化状態とし、該高酸化状態の触媒により水溶液中の有機物を酸化することを特徴とする電気化学反応方法を提案する。
また、かかる方法を好適に実施する装置として、電解処理槽内の水溶液中に対向配置された陽極部材及び陰極部材と、これらの電極間に正パルス高電圧成分と直流電圧成分とを重畳した電気信号を印加する電気信号発生器と、を備え、前記電気信号の印加により電極界面近傍の水溶液を電気化学反応させる電気化学反応装置において、
前記陽極部材が導電性材料で形成された基板上に触媒を担持させた構造を有しており、該触媒は、前記陽極部材の表面上にて前記電気信号の印加により酸化されて高酸化状態となり水溶液中の有機物を酸化可能な金属若しくは金属酸化物であることを特徴とする電気化学反応装置を提案する。
このとき、前記触媒は、Ti、Sn、Pb又はこれらの酸化物のうち、何れか一種類若しくはこれらの混合物とすることが好適である。
Furthermore, in the present invention, as a method for developing Japanese Patent Application Laid-Open No. 2003-211165 and Japanese Patent Application No. 2003-16456, and performing such electrochemical reaction more efficiently,
1st invention applies the electrical signal which superimposed the positive pulse high voltage component and the direct-current voltage component between the anode member and cathode member which were opposingly arranged in the aqueous solution in an electrolytic treatment tank, and this electrical signal In the method of causing an electrochemical reaction of an aqueous solution near the electrode interface by applying
The anode member has a structure in which a catalyst made of metal or metal oxide is supported on a substrate formed of a conductive material, and an electric signal is applied to the anode member to The electrochemical reaction method is characterized in that the catalyst is brought into a highly oxidized state and an organic substance in the aqueous solution is oxidized by the catalyst in the highly oxidized state.
In addition, as an apparatus for suitably carrying out such a method, an anode member and a cathode member which are disposed opposite to each other in an aqueous solution in an electrolytic treatment tank, and an electric pulse in which a positive pulse high voltage component and a DC voltage component are superimposed between these electrodes. In an electrochemical reaction device comprising an electrical signal generator for applying a signal, and electrochemically reacting an aqueous solution in the vicinity of an electrode interface by applying the electrical signal,
The anode member has a structure in which a catalyst is supported on a substrate formed of a conductive material, and the catalyst is oxidized on the surface of the anode member by application of the electric signal to be in a highly oxidized state. Then, an electrochemical reaction device is proposed, which is a metal or metal oxide capable of oxidizing an organic substance in an aqueous solution.
At this time, it is preferable that the catalyst is any one of Ti, Sn, Pb, and oxides thereof, or a mixture thereof.

本発明は、上記したように、触媒として価数が異なる状態が可能な金属又は金属酸化物を用いており、これにより下記反応式(1)乃至(4)に示されるような反応がおこる。
MO+HO → MO(・OH)+H+e …(1)
MO(・OH) → MOx+1+H+e …(2)
MOx+1 → MO+1/2O …(3)
MOx+1+R →MO+RO …(4)
即ち、低酸素状態の金属は、化学吸着した・OHラジカル(ヒドロキシラジカル)を経由して、高酸化状態の金属を生成する。この高酸化状態の金属により、有機物(上記式(4)においてRで記載)が酸化される。この反応は、MO/MOx+1酸化還元電位で起こるため、高酸化状態がO/HO酸化還元電位(1.23V vs RHE)とHO/H酸化還元電位(1.77V
vs RHE)の電位領域内に存在することが望ましい。
As described above, the present invention uses a metal or metal oxide that can be in a state of different valences as a catalyst, thereby causing reactions as shown in the following reaction formulas (1) to (4).
MO x + H 2 O → MO x (.OH) + H + + e (1)
MO x (.OH) → MO x + 1 + H + + e (2)
MO x + 1 → MO x + 1 / 2O 2 (3)
MO x + 1 + R → MO x + RO (4)
That is, a low-oxygen state metal produces a highly oxidized metal via a chemisorbed .OH radical (hydroxy radical). An organic substance (described as R in the above formula (4)) is oxidized by the highly oxidized metal. Since this reaction occurs at the MO x / MO x + 1 redox potential, the high oxidation state is O 2 / H 2 O redox potential (1.23 V vs RHE) and H 2 O / H 2 O 2 redox potential (1.77 V).
vs RHE) is desirable.

別の発明として第2の発明は、電解処理槽内の水溶液中に対向配置された陽極部材と陰極部材との間に、正パルス高電圧成分と直流電圧成分とを重畳した電気信号を印加し、該電気信号の印加により電極界面近傍の水溶液を電気化学反応させる方法において、
前記陽極部材が導電性材料で形成された基板上に金属若しくは金属酸化物からなる触媒を担持させた構造を有するとともに高い酸素過電圧を有し、該陽極部材に電気信号を印加することにより該陽極部材の表面上でヒドロキシラジカルを含むラジカル活性種の生成反応を促進させて水溶液中の有機物を酸化することを特徴とする電気化学反応方法を提案する。
また、電解処理槽内の水溶液中に対向配置された陽極部材及び陰極部材と、これらの電極間に正パルス高電圧成分と直流電圧成分とを重畳した電気信号を印加する電気信号発生器と、を備え、前記電気信号の印加により電極界面近傍の水溶液を電気化学反応させる電気化学反応装置において、
前記陽極部材が導電性材料で形成された基板上に触媒を担持させた構造を有しており、該触媒は、酸素過電圧が高く、ヒドロキシラジカルを含むラジカル活性種の生成反応を促進する金属若しくは金属酸化物であることを特徴とする。
さらに好適には前記触媒を、Ti、Sn、Pb又はこれらの酸化物のうち、何れか一種類若しくはこれらの混合物とすると良い。
As another invention, in the second invention, an electrical signal in which a positive pulse high voltage component and a DC voltage component are superimposed is applied between an anode member and a cathode member which are disposed to face each other in an aqueous solution in an electrolytic treatment tank. In the method of electrochemically reacting the aqueous solution near the electrode interface by applying the electric signal,
The anode member has a structure in which a catalyst made of a metal or a metal oxide is supported on a substrate formed of a conductive material, has a high oxygen overvoltage, and applies an electric signal to the anode member. An electrochemical reaction method is proposed which oxidizes organic substances in an aqueous solution by promoting the formation reaction of radical active species including hydroxy radicals on the surface of a member.
Further, an anode member and a cathode member that are disposed opposite to each other in the aqueous solution in the electrolytic treatment tank, and an electrical signal generator that applies an electrical signal in which a positive pulse high voltage component and a DC voltage component are superimposed between these electrodes, In an electrochemical reaction device for electrochemically reacting an aqueous solution in the vicinity of an electrode interface by applying the electrical signal,
The anode member has a structure in which a catalyst is supported on a substrate formed of a conductive material, and the catalyst has a high oxygen overvoltage and promotes a generation reaction of radical active species including hydroxy radicals. It is a metal oxide.
More preferably, the catalyst may be any one of Ti, Sn, Pb, and oxides thereof, or a mixture thereof.

このように、前記陽極部材に酸素過電圧が高く、ヒドロキシラジカルを含むラジカル活性種の生成反応を促進する金属若しくは金属酸化物を担持させた構造とすることにより、下記反応式(5)、(6)に示した反応機構により有機物をCOまで分解することができる。
MO+HO → MO(・OH)+H+e …(5)
MO(・OH)+R → MO+mCO+H+e …(6)
即ち、前記金属又は金属酸化物の表面に物理吸着した・OHラジカルが生成され、この・OHラジカルが有機物を酸化分解する。本反応は、Hを中間体とした反応であり、 HO/H酸化還元電位(1.77V vs RHE)で起こる。
In this way, the anode member has a structure in which a metal or metal oxide that has a high oxygen overpotential and promotes a reaction of generating radical active species including a hydroxy radical is supported, whereby the following reaction formulas (5), (6 The organic substance can be decomposed to CO 2 by the reaction mechanism shown in FIG.
MO x + H 2 O → MO x (.OH) + H + + e (5)
MO x (.OH) + R → MO x + mCO 2 + H + + e (6)
That is, OH radicals physically adsorbed on the surface of the metal or metal oxide are generated, and the OH radicals oxidize and decompose organic substances. This reaction is a reaction using H 2 O 2 as an intermediate, and occurs at an H 2 O / H 2 O 2 redox potential (1.77 V vs RHE).

また、第3の発明は、電解処理槽内の水溶液中に対向配置された陽極部材と陰極部材との間に、正パルス高電圧成分と直流電圧成分とを重畳した電気信号を印加し、該電気信号の印加により電極界面近傍の水溶液を電気化学反応させる方法において、
前記陽極部材が導電性材料で形成された基板上に金属若しくは金属酸化物からなる触媒を担持させた構造を有しており、該陽極部材に電気信号を印加することにより該陽極部材の表面上で酸素解離を促進させて水溶液中の有機物を酸化することを特徴とする電気化学反応方法を提案する。
さらに、電解処理槽内の水溶液中に対向配置された陽極部材及び陰極部材と、これらの電極間に正パルス高電圧成分と直流電圧成分とを重畳した電気信号を印加する電気信号発生器と、を備え、前記電気信号の印加により電極界面近傍の水溶液を電気化学反応させる電気化学反応装置において、
前記陽極が導電性材料で形成された基板上に触媒を担持させた構造を有しており、該触媒は、酸素解離を促進する金属若しくは金属酸化物であることを特徴とする。
このとき、前記触媒が、Pt、Pd又はこれらの酸化物のうち、何れか一種類若しくはこれらの混合物であることが好適である。かかる発明によれば、酸素解離を促進することにより、有機物の分解効率を向上させることができる。
Further, the third invention applies an electrical signal in which a positive pulse high voltage component and a direct current voltage component are superimposed between an anode member and a cathode member which are disposed opposite to each other in an aqueous solution in an electrolytic treatment tank, In the method of causing an electrochemical reaction of an aqueous solution near the electrode interface by applying an electric signal,
The anode member has a structure in which a catalyst made of metal or metal oxide is supported on a substrate formed of a conductive material, and an electric signal is applied to the anode member to We propose an electrochemical reaction method characterized in that oxygen dissociation is promoted to oxidize organic substances in an aqueous solution.
Furthermore, an anode member and a cathode member that are arranged opposite to each other in the aqueous solution in the electrolytic treatment tank, and an electrical signal generator that applies an electrical signal in which a positive pulse high voltage component and a DC voltage component are superimposed between these electrodes, In an electrochemical reaction device for electrochemically reacting an aqueous solution in the vicinity of an electrode interface by applying the electrical signal,
The anode has a structure in which a catalyst is supported on a substrate formed of a conductive material, and the catalyst is a metal or a metal oxide that promotes oxygen dissociation.
At this time, it is preferable that the catalyst is any one of Pt, Pd, and oxides thereof, or a mixture thereof. According to this invention, the decomposition efficiency of organic matter can be improved by promoting oxygen dissociation.

このように本第1発明乃至第3発明の構成とすることにより、過電圧による供給電力の無駄を低減して希望する物質生成をより効率的に行なうことができるようになるとともに、陽極部材に担持させた触媒の作用により有機物等の被酸化物質を高効率で以って分解除去することができる。
尚、これらの発明において、被酸化物質が比較的容易に分解可能な成分の場合には、第1発明を利用することにより有機物を分解可能であるが、ダイオキシン類、PCB、酢酸等の難分解性有機物が含有する場合には、前記第1発明では完全分解させるのは困難であるため、第2発明に属する金属又は金属酸化物の混合物を混入させ、酸化力の強い・OHラジカルを生成することにより、高効率で分解することが可能となる。また・OHラジカルは水素引抜き反応を起こすため、有機物の自動酸化反応を起こすことができる。また、これらの発明に、前記第3発明を適用して酸素解離を促進することにより、さらに分解効率が向上する。
このように、対象とする水溶液性状によって前記発明を組み合わせることが望ましいが、これらの発明に示した触媒からそれぞれ1種類以上含まれることが望ましい。
As described above, by adopting the configurations of the first to third inventions, it is possible to reduce the waste of supplied power due to overvoltage and to generate a desired substance more efficiently, and to support the anode member. Oxidized substances such as organic substances can be decomposed and removed with high efficiency by the action of the catalyst.
In these inventions, when the oxidizable substance is a component that can be decomposed relatively easily, the organic substance can be decomposed by using the first invention, but dioxins, PCBs, acetic acid and the like are hardly decomposed. In the case where the organic organic substance is contained, it is difficult to completely decompose in the first invention. Therefore, a mixture of a metal or metal oxide belonging to the second invention is mixed to generate a strong oxidizing power / OH radical. This makes it possible to decompose with high efficiency.・ OH radicals cause a hydrogen abstraction reaction, which can cause an auto-oxidation reaction of organic matter. Moreover, by applying the third invention to these inventions to promote oxygen dissociation, the decomposition efficiency is further improved.
As described above, it is desirable to combine the above-mentioned inventions depending on the properties of the target aqueous solution, but it is desirable that at least one of the catalysts shown in these inventions is included.

また、本第1発明乃至第3発明において、
前記陽極基板が、チタン又はチタン合金、活性炭等の炭素材料、導電性セラミックのうち何れかであることを特徴とし、これにより耐食性が高く寿命の長い電極を提供することができる。
また、前記陽極基板と前記触媒との間に、シリカ化合物、アルミナ、チタニアの少なくとも何れか一種類を含む誘電層を介装したことを特徴とし、これにより電極の静電容量が増大し、高効率でラジカル活性種を発生させることが可能である。
さらに、前記陽極部材と前記陰極部材との間に、該陽極部材と略同様の構造を有する犠牲電極を配置したことを特徴とする。かかる発明によれば、陽極の面積が大きくなるため、反応場を広げることができる。
また、前記陽極部材と前記陰極部材との間に、チタニア、シリカ、アルミナ、又はこれらの化合物材料、若しくは炭素材料のうち何れか一以上で形成した基板上に触媒を担持した担体を配置したことを特徴とする。これによれば、酸化活性種を反応場全体で生成することができ、反応効率を向上することが可能となる。
In the first to third inventions,
The anode substrate is any one of titanium, a titanium alloy, a carbon material such as activated carbon, or a conductive ceramic, whereby an electrode having high corrosion resistance and a long life can be provided.
In addition, a dielectric layer containing at least one of silica compound, alumina, and titania is interposed between the anode substrate and the catalyst, thereby increasing the capacitance of the electrode, It is possible to generate radically active species with efficiency.
Furthermore, a sacrificial electrode having a structure substantially similar to that of the anode member is disposed between the anode member and the cathode member. According to this invention, since the area of an anode becomes large, a reaction field can be expanded.
Also, a carrier carrying a catalyst is disposed between the anode member and the cathode member on a substrate formed of at least one of titania, silica, alumina, a compound material thereof, or a carbon material. It is characterized by. According to this, the oxidation active species can be generated in the entire reaction field, and the reaction efficiency can be improved.

さらにまた、前記水溶液の塩化物イオン濃度が約1000mg/L以上となるように調整する手段を備えたことを特徴とする。これにより、水溶液中に酸化力の強い次亜塩素酸が形成され、水溶液中の酸化活性種濃度が増大し、被酸化物質を高効率で分解することができる。
また、前記酸化分解反応を促進させるために、前記水溶液に、空気、オゾン、過酸化水素、次亜塩素酸のうち少なくとも何れか一以上の酸化剤を供給する手段を設けることが好適であり、これにより、水溶液中の酸化活性種濃度を高めることができ、被酸化物質の分解反応を促進することができる。
Still further, there is provided a means for adjusting the chloride ion concentration of the aqueous solution to be about 1000 mg / L or more. Thereby, hypochlorous acid having strong oxidizing power is formed in the aqueous solution, the concentration of the active species in the aqueous solution is increased, and the substance to be oxidized can be decomposed with high efficiency.
In order to promote the oxidative decomposition reaction, it is preferable to provide means for supplying at least one oxidizing agent of air, ozone, hydrogen peroxide, hypochlorous acid to the aqueous solution, Thereby, the oxidation active species density | concentration in aqueous solution can be raised, and the decomposition reaction of a to-be-oxidized substance can be accelerated | stimulated.

さらに、電気化学反応の際に被酸化物質の酸化反応が進行すると、Hを放出してpHが下がり、酸化反応を阻害する場合がある。その場合には、前記水溶液中のpH値を測定する手段と、該測定されたpH値に基づきpH調整剤を添加して水溶液のpH値を弱酸性からアルカリ性の範囲内に維持する手段を設けることが好ましい。
尚、本発明に基づく電気化学反応方法及び装置は、有機物を含有するし尿、家畜糞尿、メタン発酵液、生活廃水、工場廃水、埋立地浸出水、食品工場廃水、繊維工場廃水、洗濯廃水等の廃水処理設備に設置し、廃水中に含まれる有機物、難分解性物質、窒素分等を除去することも可能である。
Furthermore, when the oxidation reaction of the substance to be oxidized proceeds during the electrochemical reaction, H + is released to lower the pH, which may inhibit the oxidation reaction. In that case, there are provided means for measuring the pH value in the aqueous solution and means for adding a pH adjuster based on the measured pH value to maintain the pH value of the aqueous solution within a weakly acidic to alkaline range. It is preferable.
The electrochemical reaction method and apparatus according to the present invention includes organic matter-containing human waste, livestock manure, methane fermentation liquid, domestic wastewater, factory wastewater, landfill leachate, food factory wastewater, textile factory wastewater, laundry wastewater, etc. It can be installed in a wastewater treatment facility to remove organic substances, persistent substances, nitrogen, etc. contained in the wastewater.

以上記載のごとく本発明によれば、過電圧による供給電力の無駄を低減して希望する物質生成をより効率的に行なうことができるようになるとともに、陽極部材に担持させた触媒の作用により有機物等の被酸化物質を高効率で以って分解除去することができる。   As described above, according to the present invention, it is possible to more efficiently generate a desired substance by reducing waste of supplied power due to an overvoltage, and organic substances and the like by the action of a catalyst supported on an anode member. It is possible to decompose and remove oxidizable substances with high efficiency.

以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。
図1乃至図5は本発明に係る電気化学反応装置の概略構成図、図6は本実施形態に係る電気化学反応装置を用いた時の被酸化物質の除去率を示す表である。
尚、図1に示す電気化学反応装置は実施例1〜実施例8、実施例11に適用され、図2示す電気化学反応装置は実施例9に適用され、図3に示す電気化学反応装置は実施例10に適用され、図4に示す電気化学反応装置は実施例12、実施例13に適用され、図5に示す電気化学反応装置は実施例14に適用される。
Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Not too much.
1 to 5 are schematic configuration diagrams of an electrochemical reaction apparatus according to the present invention, and FIG. 6 is a table showing a removal rate of an oxidizable substance when the electrochemical reaction apparatus according to the present embodiment is used.
The electrochemical reaction apparatus shown in FIG. 1 is applied to Examples 1 to 8 and Example 11, the electrochemical reaction apparatus shown in FIG. 2 is applied to Example 9, and the electrochemical reaction apparatus shown in FIG. The electrochemical reaction apparatus shown in FIG. 4 applied to Example 10 is applied to Examples 12 and 13, and the electrochemical reaction apparatus shown in FIG. 5 is applied to Example 14.

まず、図1を参照して本実施例1に係る電気化学反応装置10の構成について説明する。図1に示した電気化学反応装置10は、電気信号波形を生成する関数発生器11と、電気信号を所定の電流条件に増幅する電力増幅器12と、対象液を貯水する電解処理槽15と、該電解処理槽15内に対向配置された陽極13及び陰極14と、を主要構成としている。対象液は、各種工場から排出された廃水、海水、又は食塩等の塩化物イオンを添加した水溶液を用いることができる。前記関数発生器11では、正パルス高電圧成分と直流電圧成分とを重畳させた電気信号発生させる。   First, the structure of the electrochemical reaction apparatus 10 according to the first embodiment will be described with reference to FIG. The electrochemical reaction apparatus 10 shown in FIG. 1 includes a function generator 11 that generates an electric signal waveform, a power amplifier 12 that amplifies the electric signal to a predetermined current condition, an electrolytic treatment tank 15 that stores a target liquid, The anode 13 and the cathode 14 disposed opposite to each other in the electrolytic treatment tank 15 are the main components. As the target liquid, wastewater discharged from various factories, seawater, or an aqueous solution to which chloride ions such as salt are added can be used. The function generator 11 generates an electric signal in which a positive pulse high voltage component and a DC voltage component are superimposed.

本実施例では、前記関数発生器11及び電力増幅器12からなる電気信号発生器により発生されたパルス成分を重畳させた電気信号を前記陽極13と前記陰極14との間に印加することにより、対象液を電気化学反応させ、処理液中に含まれる有機物、窒素化合物及び難分解性物質を分解除去する。
ここで、電気化学反応装置10による電気化学反応の作用を説明する。
まず、前記電気信号発生器により正パルス高電圧成分の電気信号が印加されているときには、電解処理槽10内の水溶液中では、イオンが移動して電気二重層を形成していく。この電気二重槽の形成途中では、水溶液内部の電気シールドが不十分であるため、電極13、14の表面よりも離れた水溶液内部まで電界が十分に掛かり、反応前駆体としてのイオンの物質移動を促進される。従って、正パルス高電圧成分の電気信号を印加することによって、水溶液内部に電界を発生させ効率よく反応前駆体となるイオンを電極表面に引き寄せ、さらに、正パルス高電圧として供給された電力は、電気二重層の静電容量分の電荷として電極表面側に蓄積させることができる。
In the present embodiment, an electric signal on which a pulse component generated by an electric signal generator composed of the function generator 11 and the power amplifier 12 is superimposed is applied between the anode 13 and the cathode 14, thereby The liquid is electrochemically reacted to decompose and remove organic substances, nitrogen compounds and hardly decomposable substances contained in the treatment liquid.
Here, the action of the electrochemical reaction by the electrochemical reaction device 10 will be described.
First, when an electric signal of a positive pulse high voltage component is applied by the electric signal generator, ions move in the aqueous solution in the electrolytic treatment tank 10 to form an electric double layer. During the formation of this electric double tank, since the electric shield inside the aqueous solution is insufficient, an electric field is sufficiently applied to the inside of the aqueous solution farther from the surfaces of the electrodes 13 and 14, and the mass transfer of ions as a reaction precursor is performed. Be promoted. Therefore, by applying an electric signal of a positive pulse high voltage component, an electric field is generated inside the aqueous solution to efficiently attract ions serving as reaction precursors to the electrode surface, and the power supplied as a positive pulse high voltage is: It can be accumulated on the electrode surface side as a charge corresponding to the electrostatic capacity of the electric double layer.

尚、正パルス高電圧成分の電気信号により電極表面に集められた反応前駆体としてのイオンが、正パルス高電圧成分を印加した後に水溶液中に濃度拡散し、減少してしまう前に、次の正パルス高電圧を印加するのが好ましい。また、電気二重層が形成されるまでの時間は、正パルス高電圧成分の電圧値とパルス幅に依存する。そのため、電圧値を決めればパルス幅としては、電気二重層が形成され電気的に充電が完了されるまでの時間で十分である。もっともエネルギー的には無駄になるため好ましくはないが、高い電圧で電気二重層を形成させるまでの時間よりもパルス幅を長くしてもよい。   The ions as reaction precursors collected on the electrode surface by the electrical signal of the positive pulse high voltage component are diffused in the aqueous solution after the positive pulse high voltage component is applied and reduced before the following. It is preferable to apply a positive pulse high voltage. The time until the electric double layer is formed depends on the voltage value and pulse width of the positive pulse high voltage component. Therefore, if the voltage value is determined, the time required until the electric double layer is formed and the electric charging is completed is sufficient as the pulse width. Although it is not preferable because it is wasted in terms of energy, the pulse width may be made longer than the time until the electric double layer is formed at a high voltage.

また、正パルス高電圧成分の電圧値は、10V以上が好ましい。この電圧値は、高くするほどイオン移動度が大きくなるため、電気二重層形成時間を短縮できるとともに、電気二重層を構成するイオンを高濃度にできる。しかしながら、高い電圧値では、印加後に電気化学反応に寄与できないものは、水溶液側に濃度拡散してしまい無駄になってしまう。そのため、正パルス高電圧成分の電気信号で引き寄せられた反応前駆体としてのイオンが、直流電圧印加時に、できるだけ反応消費されるように、電圧値、パルス幅およびパルス間隔を処理溶液性状に合わせ設定するのが望ましい。   The voltage value of the positive pulse high voltage component is preferably 10 V or more. Since the ion mobility increases as the voltage value increases, the time for forming the electric double layer can be shortened, and ions constituting the electric double layer can be made high in concentration. However, at a high voltage value, those that cannot contribute to the electrochemical reaction after application are wasted and diffused to the aqueous solution side. Therefore, the voltage value, pulse width, and pulse interval are set according to the properties of the treatment solution so that ions as a reaction precursor attracted by the electrical signal of the positive pulse high voltage component are consumed as much as possible when a DC voltage is applied. It is desirable to do.

一方、直流正電圧成分の電気信号は、正パルス高電圧成分の電気信号の印加後に、前記正パルス高電圧成分の電気信号で引き寄せられたイオンが、濃度拡散により水溶液中に拡散し、電気二重層を形成していた電極の電荷が解放されてしまうのを防止するとともに電気化学反応に寄与させる。つまり、回路的には、正パルス高電圧成分の電気信号の印加後に陽極部材と陰極部材との間を結ぶ電源側に流れる逆電流を阻止する直流電圧分を印加しておくことによって、電極板に溜まった電荷が電源側に逆電流として流れず、水溶液側の電気化学反応に寄与させることができる。   On the other hand, the electrical signal of the DC positive voltage component is such that after application of the electrical signal of the positive pulse high voltage component, ions attracted by the electrical signal of the positive pulse high voltage component diffuse into the aqueous solution by concentration diffusion, and This prevents the charge of the electrode forming the multilayer from being released and contributes to the electrochemical reaction. That is, in terms of circuit, by applying a DC voltage component that blocks a reverse current flowing to the power source side connecting the anode member and the cathode member after application of an electric signal of a positive pulse high voltage component, the electrode plate Thus, the electric charge accumulated in the water does not flow as a reverse current to the power source side, and can contribute to the electrochemical reaction on the aqueous solution side.

本実施例における電気化学反応装置10では、電気二重層が形成される時間だけの正パルス高電圧成分の電気信号を印加して、反応前駆体となるイオンを電極表面近傍に濃縮させ、正パルス高電圧成分の電気信号印加後に、目的とする反応生成に適した電気化学的電位以上の直流電圧成分の電気信号を電極に印加する。そのため、正パルス高電圧成分の電気信号印加時に電気二重層として電極表面側に貯められた電荷を、電極表面側に保持し、電気化学反応に寄与させることができる。
この直流電圧成分の電気信号印加時は、正パルス高電圧成分の電気信号印加時に電極に溜まった電荷による逆電流を抑え、この間の電源からの電流供給は殆んどなく、非常に効率よく電力を電気化学反応に寄与させることができる。なお、電源からの供給電力は、電圧×電流である。直流正電圧成分のみの場合は、電源からの電流はゼロに近い値に調整できるため、この間の電力供給はほとんど無い状態にできる。
In the electrochemical reaction apparatus 10 in the present embodiment, an electric signal having a positive pulse high voltage component only for the time during which the electric double layer is formed is applied to concentrate ions serving as reaction precursors in the vicinity of the electrode surface. After applying the electric signal of the high voltage component, an electric signal of a DC voltage component equal to or higher than the electrochemical potential suitable for the target reaction generation is applied to the electrode. Therefore, the electric charge stored on the electrode surface side as an electric double layer when an electric signal of a positive pulse high voltage component is applied can be held on the electrode surface side and contribute to the electrochemical reaction.
When applying an electric signal of this DC voltage component, the reverse current due to the charge accumulated on the electrode when applying an electric signal of a positive pulse high voltage component is suppressed, and there is almost no current supply from the power source during this time, and the power is very efficient. Can contribute to the electrochemical reaction. The power supplied from the power source is voltage × current. In the case of only the DC positive voltage component, the current from the power source can be adjusted to a value close to zero, so that there is almost no power supply during this period.

そのため、本実施例の電気化学反応装置の制御では、正パルス高電圧成分の電気信号による電力供給だけが必要であるため、少ない電力消費で、効率よく電気化学反応を行わせることができるようになる。
前記電極13、14に電圧が印加されてからの電気二重層の形成は、水溶液中のイオンの移動に伴って起こるため、電気二重層が形成されるまでの時間は、対象とする水溶液のpH、導電率、イオン種、濃度に依存し、マイクロ秒〜数十ミリ秒となることが実験で確かめられている。また、この時間内では、電気二重層による電気シールドが不十分であるため、水溶液内部まで電界が掛かり、反応前駆体の物質移動を促進させることができる。
従って、電気二重層が形成されるまでの時間幅であるマイクロ秒〜数十ミリ秒のパルス高電圧を印加すれば、水溶液内部に電界を発生させ効率よく反応前駆体となるイオンを電極表面に引き寄せ、さらに、電気二重層の静電容量分の電荷を電極13、14に蓄積させることができる。
Therefore, in the control of the electrochemical reaction apparatus of this embodiment, it is only necessary to supply electric power with an electric signal of a positive pulse high voltage component, so that an electrochemical reaction can be performed efficiently with low power consumption. Become.
Since the formation of the electric double layer after the voltage is applied to the electrodes 13 and 14 occurs with the movement of ions in the aqueous solution, the time until the electric double layer is formed depends on the pH of the target aqueous solution. Depending on conductivity, ion species, and concentration, it has been confirmed by experiments that the time is from microseconds to several tens of milliseconds. Moreover, since the electric shield by the electric double layer is insufficient within this time, an electric field is applied to the inside of the aqueous solution, and the mass transfer of the reaction precursor can be promoted.
Therefore, if a pulse high voltage of microseconds to several tens of milliseconds, which is a time width until the electric double layer is formed, is applied, an electric field is generated inside the aqueous solution and ions serving as reaction precursors are efficiently applied to the electrode surface. In addition, charges corresponding to the electrostatic capacity of the electric double layer can be accumulated in the electrodes 13 and 14.

なお、前記直流正電圧成分は、2つの前記正パルス高電圧成分間に印加され、電極13、14と水溶液との界面近傍に集められた反応前駆体が、前記界面近傍から水溶液中に濃度拡散によって減少するのを防止するとともに電気化学反応するのに必要な電圧とする。また、前記正パルス高電圧成分と前記直流正電圧成分との重ね合わせは、各成分の関数波形同士を重ね合わせて発生させたり、各成分を交互に出力することによって発生させたりするようにしてもよい。さらに、前記陽極13の電圧、又は後述する犠牲電極20の電圧が、前記直流正電圧成分によって、目的とする反応生成に適した電気化学的電位を少なくとも有するのが好ましい。   The DC positive voltage component is applied between the two positive pulse high voltage components, and the reaction precursor collected near the interface between the electrodes 13 and 14 and the aqueous solution diffuses into the aqueous solution from the vicinity of the interface. And a voltage necessary for electrochemical reaction. Further, the superposition of the positive pulse high voltage component and the DC positive voltage component is generated by superimposing the function waveforms of the respective components or by alternately outputting the respective components. Also good. Furthermore, it is preferable that the voltage of the anode 13 or the voltage of the sacrificial electrode 20 described later has at least an electrochemical potential suitable for the intended reaction generation due to the DC positive voltage component.

よって、正パルス高電圧成分と直流正電圧成分とを重ね合わせた電気信号を印加することにより、正パルス高電圧成分の電気信号の印加のみの場合に生じていた問題、例えば、電気信号で引き寄せられたイオンが、濃度拡散により水溶液中に拡散し、電気二重層を形成していた電極の電荷が解放されてしまい、反応効率が低下するといった問題や、印加後に陽極部材と陰極部材との間を結ぶ電源側に流れる逆電流が、酸化反応により生成した活性種を還元してしまい、活性種を無駄に消費してしまうといった問題を解決することができる。
また直流正電圧成分のみの場合に対しても、水溶液中に印加される電界強度は小さく、新たな反応前駆体を供給する物質輸送過程における駆動力が小さいといった問題、時間が経過するにつれて電極界面で新たな反応前駆体が低濃度となり、競合反応が起きるため、活性種生成の電流効率が下がるといった問題を解決することができる。
Therefore, by applying an electric signal in which a positive pulse high voltage component and a DC positive voltage component are superimposed, a problem that has occurred when only an electric signal of a positive pulse high voltage component is applied, for example, pulling by an electric signal. The diffused ions diffuse into the aqueous solution due to concentration diffusion, and the charge of the electrode forming the electric double layer is released, resulting in a decrease in reaction efficiency and between the anode member and the cathode member after application. It is possible to solve the problem that the reverse current that flows on the power source side connecting the active species reduces the active species generated by the oxidation reaction and wastes the active species.
In addition, even when only the DC positive voltage component is used, the electric field strength applied to the aqueous solution is small, and the driving force in the mass transport process for supplying a new reaction precursor is small. Thus, since the concentration of the new reaction precursor becomes low and a competitive reaction occurs, the problem that the current efficiency of active species generation decreases can be solved.

また、本実施例の特徴とする構成として、前記陽極13が導電性材料で形成された基板上に触媒を担持させた構造を有し、該触媒を、前記陽極部材の表面上にて前記電気信号の印加により酸化されて高酸化状態となり水溶液中の有機物を酸化可能な金属若しくは金属酸化物としている。このとき、好適には該触媒としてRu、Fe、Os、Mn、Mo、Co、Ir、Ni、W又はこれらの酸化物のうち、何れか一種類若しくはこれらの混合物を用いると良い。
これにより、下記反応式(1)乃至(4)に示されるような反応がおこる。
MO+HO → MO(・OH)+H+e …(1)
MO(・OH) → MOx+1+H+e …(2)
MOx+1 → MO+1/2O …(3)
MOx+1+R →MO+RO …(4)
即ち、低酸素状態の金属は、化学吸着した・OHラジカル(ヒドロキシラジカル)を経由して、高酸化状態の金属を生成する。この高酸化状態の金属により、有機物(上記式(4)においてRで記載)が酸化される。この反応は、MO/MOx+1酸化還元電位で起こるため、高酸化状態がO/HO酸化還元電位(1.23V vs RHE)とHO/H酸化還元電位(1.77V
vs RHE)の電位領域内に存在することが望ましい。
Further, as a characteristic feature of the present embodiment, the anode 13 has a structure in which a catalyst is supported on a substrate formed of a conductive material, and the catalyst is placed on the surface of the anode member. Oxidized by application of a signal to become a highly oxidized state, an organic substance in an aqueous solution is made a metal or metal oxide that can be oxidized. At this time, it is preferable to use Ru, Fe, Os, Mn, Mo, Co, Ir, Ni, W, or any of these oxides or a mixture thereof as the catalyst.
Thereby, reactions as shown in the following reaction formulas (1) to (4) occur.
MO x + H 2 O → MO x (.OH) + H + + e (1)
MO x (.OH) → MO x + 1 + H + + e (2)
MO x + 1 → MO x + 1 / 2O 2 (3)
MO x + 1 + R → MO x + RO (4)
That is, a low-oxygen state metal produces a highly oxidized metal via a chemisorbed .OH radical (hydroxy radical). An organic substance (described as R in the above formula (4)) is oxidized by the highly oxidized metal. Since this reaction occurs at the MO x / MO x + 1 redox potential, the high oxidation state is O 2 / H 2 O redox potential (1.23 V vs RHE) and H 2 O / H 2 O 2 redox potential (1.77 V).
vs RHE) is desirable.

また、前記触媒として、酸素過電圧が高く、ヒドロキシラジカルを含むラジカル活性種の生成反応を促進する金属若しくは金属酸化物を利用しても良く、好適にはTi、Sn、Pb又はこれらの酸化物のうち、何れか一種類若しくはこれらの混合物が挙げられる。
これにより、下記反応式(5)、(6)に示した反応機構により有機物をCOまで分解することができる。
MO+HO → MO(・OH)+H+e …(5)
MO(・OH)+R → MO+mCO+H+e …(6)
即ち、前記金属又は金属酸化物の表面に物理吸着した・OHラジカルが生成され、この・OHラジカルが有機物を酸化分解する。本反応は、Hを中間体とした反応であり、 HO/H酸化還元電位(1.77V vs RHE)で起こる。
Further, as the catalyst, a metal or a metal oxide that has a high oxygen overvoltage and promotes a reaction of generating a radical active species including a hydroxy radical may be used, preferably Ti, Sn, Pb, or these oxides. Among these, any one kind or a mixture thereof is mentioned.
Thus, the following reaction formula (5), it is possible to break down organic matter to CO 2 by reaction mechanism shown in (6).
MO x + H 2 O → MO x (.OH) + H + + e (5)
MO x (.OH) + R → MO x + mCO 2 + H + + e (6)
That is, OH radicals physically adsorbed on the surface of the metal or metal oxide are generated, and the OH radicals oxidize and decompose organic substances. This reaction is a reaction using H 2 O 2 as an intermediate, and occurs at an H 2 O / H 2 O 2 redox potential (1.77 V vs RHE).

さらに、前記触媒として、酸素解離を促進する金属若しくは金属酸化物を用いることもでき、好適にはPt、Pd又はこれらの酸化物のうち、何れか一種類若しくはこれら混合物が挙げられる。これにより、酸素解離を促進することにより、有機物の分解効率を向上させることができる。
また、これらの触媒を複数組み合わせて用いても良い。
Furthermore, a metal or a metal oxide that promotes oxygen dissociation can be used as the catalyst, and Pt, Pd, or any of these oxides or a mixture thereof can be preferably used. Thereby, the decomposition efficiency of organic substance can be improved by promoting oxygen dissociation.
A combination of these catalysts may also be used.

本実施例1では、上記触媒から選択した複数の触媒を組み合わせて担持させた陽極13を用い、被酸化物質を含有する対象液に電気化学的処理を施す試験を行なった。前記触媒にはRuO2、IrO2、TiO2、Ptを用い、該触媒をチタン基板表面に担持させた陽極13と、チタン若しくはチタン合金からなる陰極14とを、前記電解処理槽15内に電極間隔30mmとして設置した。さらに、電解処理槽の処理容積は0.5Lである。対象液は、し尿とした。
かかる試験は、電解処理槽15内に対象液を注入した後、関数発生器11より下記電解条件となるように電気信号を発信した後、電力増幅器12により所定の電流条件まで増幅し、電極13、14間に印加して試験を開始した。電解条件は、ピーク電流:150mA/cm2、ベース電流:1μA/cm2、周波数:100kHz、パルス幅:1μsec とし、電解時間を60分として試験を行なった。
In Example 1, a test was performed in which an anode 13 on which a plurality of catalysts selected from the above catalysts were supported in combination was subjected to an electrochemical treatment on a target liquid containing an oxidizable substance. RuO 2 , IrO 2 , TiO 2 , and Pt are used as the catalyst, and an anode 13 having the catalyst supported on a titanium substrate surface and a cathode 14 made of titanium or a titanium alloy are provided in the electrolytic treatment tank 15 as electrodes. Installed at an interval of 30 mm. Furthermore, the treatment volume of the electrolytic treatment tank is 0.5L. The target liquid was human waste.
In this test, after injecting the target liquid into the electrolytic treatment tank 15, an electric signal is transmitted from the function generator 11 so as to satisfy the following electrolysis conditions, and then amplified by the power amplifier 12 to a predetermined current condition. , 14 was applied to start the test. The electrolysis conditions were as follows: peak current: 150 mA / cm 2 , base current: 1 μA / cm 2 , frequency: 100 kHz, pulse width: 1 μsec, and electrolysis time of 60 minutes.

試験結果を図6に示す。これによれば、COD濃度が1980mg/lから842mg/lまで減少し、COD除去率は57%であった。またNH4-N濃度も2200mg/lから492mg/lまで減少し、NH4-N除去率は78%であった。このように、陽極にRuO2、IrO2、TiO2、Ptの触媒成分を担持したことにより、有機物の分解が促進し、かつ直流成分とパルス成分を重畳した電場により、電荷が効率良く利用され、有機物を高効率で分解を行うことができた。 The test results are shown in FIG. According to this, the COD concentration decreased from 1980 mg / l to 842 mg / l, and the COD removal rate was 57%. The NH 4 -N concentration also decreased from 2200 mg / l to 492 mg / l, and the NH 4 -N removal rate was 78%. In this way, RuO 2 , IrO 2 , TiO 2 , and Pt catalyst components are supported on the anode, so that the decomposition of organic matter is promoted, and the electric field is efficiently used by the electric field that superimposes the DC component and the pulse component. It was possible to decompose organic substances with high efficiency.

以下、本実施例2乃至実施例8では、かかる実施例1の電気化学反応装置10と略同様の構成を有し、実施例1と触媒成分の構成又は電極構造のみを変更した例を説明する。従って、前記実施例1と同様の構成については説明を省略する。   Hereinafter, in Examples 2 to 8, an example in which the configuration is substantially the same as that of the electrochemical reaction apparatus 10 of Example 1 and only the configuration of the catalyst component or the electrode structure of Example 1 is changed will be described. . Therefore, the description of the same configuration as in the first embodiment is omitted.

本実施例2では、電解処理槽内15に、陽極13としてチタン基板表面にV2O5、IrO2、TiO2、Ptを担持した部材、陰極14としてチタン若しくはチタン合金を、電極間隔を30mmとして設置した。さらに電解処理槽15の処理容積は0.5Lとし、対象液をし尿として該対象液に電気化学的処理を施す試験を行った。
かかる試験は、電解処理槽15内に対象液を注入した後、関数発生器11より下記電解条件となるように電気信号を発信した後、電力増幅器12により所定の電流条件まで増幅し、電極13、14に印加して試験を開始した。電解条件はピーク電流:150mA/cm2、ベース電流:1μA/cm2、周波数:100kHz、パルス幅:1μsecとし、電解時間を60分として試験を行なった。
In Example 2, a member in which V 2 O 5 , IrO 2 , TiO 2 , and Pt are supported on the surface of a titanium substrate as the anode 13 in the electrolytic treatment tank 15, titanium or a titanium alloy as the cathode 14, and an electrode interval of 30 mm. Was installed as. Further, the treatment volume of the electrolytic treatment tank 15 was set to 0.5 L, and a test was performed in which the target liquid was subjected to electrochemical treatment as the urine.
In this test, after injecting the target liquid into the electrolytic treatment tank 15, an electric signal is transmitted from the function generator 11 so as to satisfy the following electrolysis conditions, and then amplified by the power amplifier 12 to a predetermined current condition. , 14 to start the test. The electrolysis was carried out at a peak current of 150 mA / cm 2 , a base current of 1 μA / cm 2 , a frequency of 100 kHz, a pulse width of 1 μsec, and an electrolysis time of 60 minutes.

試験結果を図6に示す。これによれば、COD濃度が1980mg/lから654mg/lまで減少し、COD除去率は67%であった。またNH4-N濃度も2200mg/lから360mg/lまで減少し、NH4-N除去率は84%であった。このように、陽極13にV、Ir、Ti、Ptの触媒成分を担持したことにより、有機物の分解が促進し、かつ直流成分とパルス成分を重畳した電場により、電荷が効率良く利用され、有機物を高効率で分解を行うことができた。 The test results are shown in FIG. According to this, the COD concentration decreased from 1980 mg / l to 654 mg / l, and the COD removal rate was 67%. The NH 4 -N concentration also decreased from 2200 mg / l to 360 mg / l, and the NH 4 -N removal rate was 84%. Thus, by supporting the catalyst component of V, Ir, Ti, and Pt on the anode 13, the decomposition of the organic substance is promoted, and the electric field is efficiently utilized by the electric field in which the direct current component and the pulse component are superimposed. Could be decomposed with high efficiency.

本実施例3では、電解処理槽15内に陽極13としてチタン基板表面にNiO、Co2O4、TiO2、Ptを担持した部材、陰極14としてチタンを、電極間隔を30mmとして設置した。さらに電解処理槽の処理容積を0.5Lとし、対象液をし尿として該対象液に電気化学的処理を施す試験を行った。
かかる試験は、電解処理槽15内に対象液を注入した後、関数発生器11より下記電解条件となるように電気信号を発信した後、電力増幅器12により所定の電流条件まで増幅し、電極間に印加して試験を開始した。電解条件はピーク電流:150mA/cm2、ベース電流:1μA/cm2、周波数:100kHz、パルス幅:1μsecとし、電解時間を60分として試験を行なった。
In Example 3, a member having NiO, Co 2 O 4 , TiO 2 , and Pt supported on the surface of a titanium substrate as the anode 13 in the electrolytic treatment tank 15, titanium as the cathode 14, and an electrode interval of 30 mm were installed. Further, a test was conducted in which the treatment volume of the electrolytic treatment tank was 0.5 L, and the target liquid was subjected to electrochemical treatment as urine.
In such a test, after injecting the target liquid into the electrolytic treatment tank 15, an electric signal is transmitted from the function generator 11 so as to satisfy the following electrolysis conditions, and then amplified to a predetermined current condition by the power amplifier 12. To start the test. The electrolysis was carried out at a peak current of 150 mA / cm 2 , a base current of 1 μA / cm 2 , a frequency of 100 kHz, a pulse width of 1 μsec, and an electrolysis time of 60 minutes.

試験結果を図6に示す。これによれば、COD濃度が1980mg/lから990mg/lまで減少し、COD除去率は50%であった。また、NH4-N濃度も2200mg/lから858mg/lまで減少し、NH4-N除去率は61%であった。このように、陽極にNi、Co、Ti、Ptの触媒成分を担持したことにより、有機物の分解が促進し、かつ直流成分とパルス成分を重畳した電場により、電荷が効率良く利用され、有機物を高効率で分解を行うことができた。 The test results are shown in FIG. According to this, the COD concentration decreased from 1980 mg / l to 990 mg / l, and the COD removal rate was 50%. The NH 4 -N concentration also decreased from 2200 mg / l to 858 mg / l, and the NH4-N removal rate was 61%. In this way, by supporting the catalyst components of Ni, Co, Ti, and Pt on the anode, the decomposition of the organic matter is promoted, and the electric field is efficiently utilized by the electric field in which the direct current component and the pulse component are superimposed. The decomposition could be performed with high efficiency.

本実施例4では、電解処理槽15内に、陽極としてチタン基板表面にMnO2、NiO、TiO2、Ptを担持した部材、陰極14としてチタンを、電極間隔を30mmとして設置した。さらに電解処理槽の処理容積を0.5Lとし、対象液をし尿として該対象液に電気化学的処理を施す試験を行った。
かかる試験は、電解処理槽15内に対象液を注入した後、関数発生器11より下記電解条件となるように電気信号を発信した後、電力増幅器12により所定の電流条件まで増幅し、電極間に印加して試験を開始した。電解条件はピーク電流:150mA/cm2、ベース電流:1μA/cm2、周波数:100kHz、パルス幅:1μsecとし、電解時間を60分として試験を行なった。
In Example 4, a member in which MnO 2 , NiO, TiO 2 and Pt were supported on the surface of a titanium substrate as an anode, titanium as a cathode 14, and an electrode interval of 30 mm were installed in an electrolytic treatment tank 15. Further, a test was conducted in which the treatment volume of the electrolytic treatment tank was 0.5 L, and the target liquid was subjected to electrochemical treatment as urine.
In such a test, after injecting the target liquid into the electrolytic treatment tank 15, an electric signal is transmitted from the function generator 11 so as to satisfy the following electrolysis conditions, and then amplified to a predetermined current condition by the power amplifier 12. To start the test. The electrolysis was carried out at a peak current of 150 mA / cm 2 , a base current of 1 μA / cm 2 , a frequency of 100 kHz, a pulse width of 1 μsec, and an electrolysis time of 60 minutes.

試験結果を図6に示す。これによれば、COD濃度が1980mg/lから1024mg/lまで減少し、COD除去率は48%であった。また、NH4-N濃度も2200mg/lから648mg/lまで減少し、NH4-N除去率は71%であった。このように、陽極13にMn、Ni、Ti、Ptの触媒成分を担持したことにより、有機物の分解が促進し、かつ直流成分とパルス成分を重畳した電場により、電荷が効率良く利用され、有機物を高効率で分解を行うことができた。 The test results are shown in FIG. According to this, the COD concentration decreased from 1980 mg / l to 1024 mg / l, and the COD removal rate was 48%. In addition, the NH 4 —N concentration also decreased from 2200 mg / l to 648 mg / l, and the NH 4 —N removal rate was 71%. Thus, by supporting the catalyst components of Mn, Ni, Ti, and Pt on the anode 13, the decomposition of the organic matter is promoted, and the electric field is efficiently utilized by the electric field in which the direct current component and the pulse component are superimposed. Could be decomposed with high efficiency.

本実施例5では、電解処理槽14内に、陽極としてチタン基板表面にRuO2、IrO2、PbO2、Ptを担持した部材、陰極としてチタンを、電極間隔を30mmとして設置した。さらに電解処理槽の処理容積を0.5Lとし、対象液をし尿として該対象液に電気化学的処理を施す試験を行った。
かかる試験は、電解処理槽15内に対象液を注入した後、関数発生器11より下記電解条件となるように電気信号を発信した後、電力増幅器12により所定の電流条件まで増幅し、電極間に印加して試験を開始した。電解条件はピーク電流:150mA/cm2、ベース電流:1μA/cm2、周波数:100kHz、パルス幅:1μsecとし、電解時間を60分として試験を行なった。
In Example 5, a member having RuO 2 , IrO 2 , PbO 2 , and Pt supported on the surface of a titanium substrate as an anode, titanium as a cathode, and an electrode interval of 30 mm were installed in the electrolytic treatment tank 14. Further, a test was conducted in which the treatment volume of the electrolytic treatment tank was 0.5 L, and the target liquid was subjected to electrochemical treatment as urine.
In such a test, after injecting the target liquid into the electrolytic treatment tank 15, an electric signal is transmitted from the function generator 11 so as to satisfy the following electrolysis conditions, and then amplified to a predetermined current condition by the power amplifier 12. To start the test. The electrolysis was carried out at a peak current of 150 mA / cm 2 , a base current of 1 μA / cm 2 , a frequency of 100 kHz, a pulse width of 1 μsec, and an electrolysis time of 60 minutes.

試験結果を図6に示す。これによれば、COD濃度が1980mg/lから974mg/lまで減少し、COD除去率は51%であった。またNH4-N濃度も2200mg/lから576mg/lまで減少し、NH4-N除去率は74%であった。このように、陽極13にRu、Ir、Pb、Ptの触媒成分を担持したことにより、有機物の分解が促進し、かつ直流成分とパルス成分を重畳した電場により、電荷が効率良く利用され、有機物を高効率で分解を行うことができた。 The test results are shown in FIG. According to this, the COD concentration decreased from 1980 mg / l to 974 mg / l, and the COD removal rate was 51%. The NH 4 -N concentration also decreased from 2200 mg / l to 576 mg / l, and the NH 4 -N removal rate was 74%. As described above, by supporting the catalyst components of Ru, Ir, Pb, and Pt on the anode 13, the decomposition of the organic matter is promoted, and the electric field is efficiently utilized by the electric field in which the direct current component and the pulse component are superimposed. Could be decomposed with high efficiency.

本実施例6では、電解処理槽15内に、陽極13としてチタン基板表面にV2O5、RuO2、SnO2、Ptを担持した部材、陰極14としてチタンを、電極間隔を20mmとして設置した。さらに電解処理槽の処理容積を0.5Lとし、対象液をし尿として該対象液に電気化学的処理を施す試験を行った。
かかる試験は、電解処理槽15内に対象液を注入した後、関数発生器11より下記電解条件となるように電気信号を発信した後、電力増幅器12により所定の電流条件まで増幅し、電極間に印加して試験を開始した。電解条件はピーク電流:150mA/cm2、ベース電流:1μA/cm2、周波数:100kHz、パルス幅:1μsecとし、電解時間を60分として試験を行なった。
In this Example 6, a member having V 2 O 5 , RuO 2 , SnO 2 , and Pt supported on the surface of a titanium substrate as the anode 13, titanium as the cathode 14, and an electrode spacing of 20 mm were installed in the electrolytic treatment tank 15. . Further, a test was conducted in which the treatment volume of the electrolytic treatment tank was 0.5 L, and the target liquid was subjected to electrochemical treatment as urine.
In such a test, after injecting the target liquid into the electrolytic treatment tank 15, an electric signal is transmitted from the function generator 11 so as to satisfy the following electrolysis conditions, and then amplified to a predetermined current condition by the power amplifier 12. To start the test. The electrolysis was carried out at a peak current of 150 mA / cm 2 , a base current of 1 μA / cm 2 , a frequency of 100 kHz, a pulse width of 1 μsec, and an electrolysis time of 60 minutes.

試験結果を図6に示す。これによれば、COD濃度が1980mg/lから796mg/lまで減少し、COD除去率は60%であった。また、NH4-N濃度も2200mg/lから429mg/lまで減少し、NH4-N除去率は81%であった。このように、陽極13にV、Ru、Sn、Ptの触媒成分を担持したことにより、有機物の分解が促進し、かつ直流成分とパルス成分を重畳した電場により、電荷が効率良く利用され、有機物を高効率で分解を行うことができた。 The test results are shown in FIG. According to this, the COD concentration decreased from 1980 mg / l to 796 mg / l, and the COD removal rate was 60%. Further, the NH 4 -N concentration was also reduced from 2200 mg / l to 429 mg / l, and the NH 4 -N removal rate was 81%. Thus, by supporting the catalyst components of V, Ru, Sn, and Pt on the anode 13, the decomposition of the organic matter is promoted, and the electric field is efficiently utilized by the electric field in which the direct current component and the pulse component are superimposed. Could be decomposed with high efficiency.

本実施例7では、電解処理槽15内に、陽極13としてチタン基板表面にV2O5、IrO2、TiO2、WO3、Ptを担持した部材、陰極14としてチタンを、電極間隔を20mmとして設置した。さらに電解処理槽の処理容積を0.5Lとし、対象液をし尿として該対象液に電気化学的処理を施す試験を行った。
かかる試験は、電解処理槽15内に対象液を注入した後、関数発生器11より下記電解条件となるように電気信号を発信した後、電力増幅器12により所定の電流条件まで増幅し、電極間に印加して試験を開始した。電解条件はピーク電流:150mA/cm2、ベース電流:1μA/cm2、周波数:100kHz、パルス幅:1μsecとし、電解時間を60分として試験を行なった。
In this Example 7, in the electrolytic treatment tank 15, a member carrying V 2 O 5 , IrO 2 , TiO 2 , WO 3 , Pt on the titanium substrate surface as the anode 13, titanium as the cathode 14, and electrode spacing of 20 mm Was installed as. Further, a test was conducted in which the treatment volume of the electrolytic treatment tank was 0.5 L, and the target liquid was subjected to electrochemical treatment as urine.
In such a test, after injecting the target liquid into the electrolytic treatment tank 15, an electric signal is transmitted from the function generator 11 so as to satisfy the following electrolysis conditions, and then amplified to a predetermined current condition by the power amplifier 12. To start the test. The electrolysis was carried out at a peak current of 150 mA / cm 2 , a base current of 1 μA / cm 2 , a frequency of 100 kHz, a pulse width of 1 μsec, and an electrolysis time of 60 minutes.

試験結果を図6に示す。これによれば、COD濃度が1980mg/lから694mg/lまで減少し、COD除去率は65%であった。また、NH4-N濃度も2200mg/lから393mg/lまで減少し、NH4-N除去率は82%であった。このように、陽極13にV、Ir、Ti、W、Ptの触媒成分を担持したことにより、有機物の分解が促進し、かつ直流成分とパルス成分を重畳した電場により、電荷が効率良く利用され、有機物を高効率で分解を行うことができた。 The test results are shown in FIG. According to this, the COD concentration decreased from 1980 mg / l to 694 mg / l, and the COD removal rate was 65%. Further, the NH 4 -N concentration was also reduced from 2200 mg / l to 393 mg / l, and the NH 4 -N removal rate was 82%. As described above, by supporting the catalyst components of V, Ir, Ti, W, and Pt on the anode 13, the decomposition of the organic matter is promoted, and the electric field is efficiently used by the electric field in which the DC component and the pulse component are superimposed. It was possible to decompose organic substances with high efficiency.

本実施例8は、前記実施例1と同様に、図1に示す電気化学反応装置10の構成を有するとともに、前記陽極13の導電性物質で形成された前記基材と、前記触媒層との間に、シリカ化合物、アルミナ、チタニアの何れか一種類以上の混合物からなる誘電層(不図示)を介装させた構造とする。このように、誘電層を介在させた構成とすることにより、パルス成分により供給される電荷を保持し、陽極表面に担持されている触媒活性種の機能を効率良く発揮することができる。また、かかる構造によれば静電容量を大きくすることが可能であるため、高効率でラジカル活性種を発生させることができ、一回の反応量も大きくすることができる。該誘電層の厚さは、1〜10μmが望ましい。薄すぎると、上記効果が期待できなくなり、厚すぎると、過電圧が大きくなり、熱エネルギーとして消費されてしまい、経済的に成り立ちにくくなる。   As in Example 1, Example 8 has the structure of the electrochemical reaction device 10 shown in FIG. 1 and includes the base material formed of the conductive material of the anode 13 and the catalyst layer. A dielectric layer (not shown) made of a mixture of at least one of silica compound, alumina, and titania is interposed therebetween. In this way, by adopting a configuration in which the dielectric layer is interposed, the charge supplied by the pulse component can be retained, and the function of the catalytically active species supported on the anode surface can be efficiently exhibited. Further, according to such a structure, it is possible to increase the capacitance, so that radical active species can be generated with high efficiency, and the amount of reaction can be increased. The thickness of the dielectric layer is desirably 1 to 10 μm. If it is too thin, the above effect cannot be expected, and if it is too thick, the overvoltage increases and is consumed as thermal energy, making it difficult to achieve economically.

本実施例における一例として、電解処理槽15内に、陽極13としてチタン基板表面にシリカ化合物からなる誘電層を設けて、その上にV2O5、IrO2、TiO2、 Ptを担持した部材、陰極14としてチタンを、電極間隔を30mmとして設置し、さらに電解処理槽の処理容積を0.5Lとし、対象液をし尿として該対象液に電気化学的処理を施す試験を行った。
かかる試験は、電解処理槽15内に対象液を注入した後、関数発生器11より下記電解条件となるように電気信号を発信した後、電力増幅器12により所定の電流条件まで増幅し、電極間に印加して試験を開始した。電解条件はピーク電流:170mA/cm2、ベース電流:1μA/cm2、周波数:100kHz、パルス幅:1μsecとし、電解時間を60分として試験を行なった。
As an example in the present embodiment, a member in which a dielectric layer made of a silica compound is provided on the surface of a titanium substrate as an anode 13 in an electrolytic treatment tank 15 and V 2 O 5 , IrO 2 , TiO 2 , Pt is supported thereon. In addition, a test was conducted in which titanium was set as the cathode 14, the electrode interval was set to 30 mm, the treatment volume of the electrolytic treatment tank was 0.5 L, and the target liquid was subjected to electrochemical treatment as the urine.
In such a test, after injecting the target liquid into the electrolytic treatment tank 15, an electric signal is transmitted from the function generator 11 so as to satisfy the following electrolysis conditions, and then amplified to a predetermined current condition by the power amplifier 12. To start the test. The electrolysis was conducted under the conditions of peak current: 170 mA / cm 2 , base current: 1 μA / cm 2 , frequency: 100 kHz, pulse width: 1 μsec, and electrolysis time of 60 minutes.

試験結果を図6に示す。これによれば、COD濃度が1980mg/lから261mg/lまで減少し、COD除去率は87%であった。また、NH4-N濃度も2200mg/lから256mg/lまで減少し、NH4-N除去率は88%であった。このように、電極内に誘電層を設けることにより電極の静電容量が大きくなり、処理効率が向上し、処理時間を短縮することができた。 The test results are shown in FIG. According to this, the COD concentration decreased from 1980 mg / l to 261 mg / l, and the COD removal rate was 87%. Further, the NH 4 -N concentration was also reduced from 2200 mg / l to 256 mg / l, and the NH 4 -N removal rate was 88%. Thus, by providing the dielectric layer in the electrode, the capacitance of the electrode is increased, the processing efficiency is improved, and the processing time can be shortened.

本実施例9に係る電気化学反応装置10を図2に示す。本実施例9は、図1の前記実施例1と略同様に構成を有しているため、同様の構成部位については説明を省略する。
かかる電気化学反応装置10は、電解処理槽15内の水溶液中に対向配置した陽極13と陰極14との間に、前記陽極13と略同様の構造を有する犠牲電極20を少なくとも1以上配置した構成としている。これは、前記陽極13と陰極14との間に該陽極13と同じ構造の電極を配置することにより、陽極面積が大きくなるため、反応場を広げることができる。ここで陽極側に面した側は、陰極として機能するため、陽極として機能する側のみに触媒層を担持することができる。これにより、触媒量を低減することができ、電極製造のコストを削減することができる。
An electrochemical reaction apparatus 10 according to Example 9 is shown in FIG. Since the ninth embodiment has the same configuration as that of the first embodiment shown in FIG. 1, the description of the same components is omitted.
The electrochemical reaction apparatus 10 has a configuration in which at least one or more sacrificial electrodes 20 having a structure substantially similar to that of the anode 13 are disposed between the anode 13 and the cathode 14 which are disposed to face each other in the aqueous solution in the electrolytic treatment tank 15. It is said. This is because, by arranging an electrode having the same structure as that of the anode 13 between the anode 13 and the cathode 14, the area of the anode is increased, so that the reaction field can be expanded. Here, since the side facing the anode side functions as a cathode, the catalyst layer can be supported only on the side functioning as the anode. Thereby, the amount of catalyst can be reduced and the cost of electrode production can be reduced.

本実施例における一例として、電解処理槽15内に、陽極13としてチタン基板表面にV2O5、IrO2、TiO2、 Ptを担持した部材、陰極14としてチタンを、電極間隔を30mmとして設置し、陽極13と陰極14との間に4枚を陽極と同構造の犠牲電極20を配置した。さらに電解処理槽の処理容積を0.5Lとし、対象液をし尿として該対象液に電気化学的処理を施す試験を行った。
かかる試験は、電解処理槽15内に対象液を注入した後、関数発生器11より下記電解条件となるように電気信号を発信した後、電力増幅器12により所定の電流条件まで増幅し、電極間に印加して試験を開始した。電解条件はピーク電流:150mA/cm2、ベース電流:1μA/cm2、周波数:100kHz、パルス幅:1μsecとし、電解時間を60分として試験を行なった。
As an example in the present embodiment, an electrolytic treatment tank 15 is provided with a member carrying V 2 O 5 , IrO 2 , TiO 2 , Pt on the surface of a titanium substrate as an anode 13, titanium as a cathode 14, and an electrode interval of 30 mm. Then, four sacrificial electrodes 20 having the same structure as the anode were arranged between the anode 13 and the cathode 14. Further, a test was conducted in which the treatment volume of the electrolytic treatment tank was 0.5 L, and the target liquid was subjected to electrochemical treatment as urine.
In such a test, after injecting the target liquid into the electrolytic treatment tank 15, an electric signal is transmitted from the function generator 11 so as to satisfy the following electrolysis conditions, and then amplified to a predetermined current condition by the power amplifier 12. To start the test. The electrolysis was carried out at a peak current of 150 mA / cm 2 , a base current of 1 μA / cm 2 , a frequency of 100 kHz, a pulse width of 1 μsec, and an electrolysis time of 60 minutes.

試験結果を図6に示す。これによれば、COD濃度が1980mg/lから450mg/lまで減少し、COD除去率は77%であった。また、NH4-N濃度も2200mg/lから504mg/lまで減少し、NH4-N除去率は77%であった。陽極と陰極との間に、陽極と同様の触媒の担持された金属を配置したことにより、活性面が大きくなり、反応が促進した。 The test results are shown in FIG. According to this, the COD concentration decreased from 1980 mg / l to 450 mg / l, and the COD removal rate was 77%. Further, the NH 4 —N concentration was also reduced from 2200 mg / l to 504 mg / l, and the NH 4 —N removal rate was 77%. By disposing a metal carrying a catalyst similar to the anode between the anode and the cathode, the active surface became large and the reaction was promoted.

本実施例10に係る電気化学反応装置10を図3に示す。本実施例10は、図1の前記実施例1と略同様に構成を有しているため、同様の構成部位については説明を省略する。
かかる電気化学反応装置10は、電解処理槽15内の水溶液中に対向配置した陽極13と陰極14との間に、チタニア、シリカ、アルミナ、若しくはこれらの化合物材料、炭素材料のうち何れか一以上で形成した基板上に触媒を担持した担体21を配置している。前記基板は、チタニア化合物、シリカ化合物、アルミナ、活性炭、グラシーカーボン、炭素繊維、カーボンブラックのうちいずれかであることが好適である。また、前記触媒は、Ru、Fe、Os、Mn、Mo、Co、Ir、Ni、W、Ti、Sn、Pb、Pt、Pd又はこれらの酸化物が好ましい。また、前記電解処理槽15に処理水タンク23を併設し、前記電解処理槽15から引き抜き処理水タンク23に貯水した処理液を循環ポンプ22により前記処理槽14に返送し、循環させるようにした。
このように、前記担体21を陽極13と陰極14間に配置することにより、酸化活性種を反応場全体で生成することができ、反応効率が向上する。
An electrochemical reaction apparatus 10 according to Example 10 is shown in FIG. Since the tenth embodiment has substantially the same configuration as that of the first embodiment shown in FIG. 1, the description of the same components is omitted.
Such an electrochemical reaction device 10 includes one or more of titania, silica, alumina, a compound material thereof, and a carbon material between an anode 13 and a cathode 14 that are disposed to face each other in an aqueous solution in an electrolytic treatment tank 15. A carrier 21 carrying a catalyst is disposed on the substrate formed in step (b). The substrate is preferably one of a titania compound, a silica compound, alumina, activated carbon, glassy carbon, carbon fiber, and carbon black. The catalyst is preferably Ru, Fe, Os, Mn, Mo, Co, Ir, Ni, W, Ti, Sn, Pb, Pt, Pd or an oxide thereof. Further, a treatment water tank 23 is provided in the electrolytic treatment tank 15, and the treatment liquid drawn out from the electrolytic treatment tank 15 and stored in the treatment water tank 23 is returned to the treatment tank 14 by the circulation pump 22 and circulated. .
Thus, by arranging the carrier 21 between the anode 13 and the cathode 14, oxidation active species can be generated in the entire reaction field, and the reaction efficiency is improved.

本実施例における一例として、電解処理槽15内に、陽極13としてチタン基板表面にV2O5、IrO2、TiO2、 Ptを担持した部材、陰極14としてチタンを、電極間隔を30mmとして設置した。また本実施例では、電極13、14間に触媒を担持した担体21を配置した。該担体21は、粒径3mmのTiO2粒子に塩化ルテニウム(III)、塩化イリジウム(III)、塩化白金(VI)酸をモル比=1:1:6で溶解させたメタノールブタノールを含浸させ、25〜100℃の範囲内で乾燥させた後、大気中で500℃で焼結させて製造した。 As an example in the present embodiment, an electrolytic treatment tank 15 is provided with a member carrying V 2 O 5 , IrO 2 , TiO 2 , Pt on the surface of a titanium substrate as an anode 13, titanium as a cathode 14, and an electrode interval of 30 mm. did. In this embodiment, a carrier 21 carrying a catalyst is disposed between the electrodes 13 and 14. The support 21 is impregnated with methanol butanol in which ruthenium chloride (III), iridium chloride (III), and platinum chloride (VI) acid are dissolved in a molar ratio = 1: 1: 6 to TiO 2 particles having a particle diameter of 3 mm. After drying in the range of 25 to 100 ° C., it was manufactured by sintering at 500 ° C. in the atmosphere.

さらに電解処理槽の処理容積を0.5Lとし、対象液をし尿として該対象液に電気化学的処理を施す試験を行った。
かかる試験は、電解処理槽15内に対象液を注入した後、関数発生器11より下記電解条件となるように電気信号を発信した後、電力増幅器12により所定の電流条件まで増幅して電極間に印加し、同時に循環ポンプにより電解処理槽15と処理水タンク23の水を循環して試験を開始した。電解条件はピーク電流:150mA/cm2、ベース電流:1μA/cm2、周波数:100kHz、パルス幅:1μsecとし、電解時間を60分として試験を行なった。
Further, a test was conducted in which the treatment volume of the electrolytic treatment tank was 0.5 L, and the target liquid was subjected to electrochemical treatment as urine.
In such a test, after injecting the target liquid into the electrolytic treatment tank 15, an electrical signal is transmitted from the function generator 11 so that the following electrolysis conditions are satisfied, and then the power amplifier 12 amplifies to a predetermined current condition and interelectrodes. At the same time, the test was started by circulating water in the electrolytic treatment tank 15 and the treated water tank 23 with a circulation pump. The electrolysis was carried out at a peak current of 150 mA / cm 2 , a base current of 1 μA / cm 2 , a frequency of 100 kHz, a pulse width of 1 μsec, and an electrolysis time of 60 minutes.

試験結果を図6に示す。これによれば、COD濃度が1980mg/lから363mg/lまで減少し、COD除去率は82%であった。また、NH4-N濃度も2200mg/lから288mg/lまで減少し、NH4-N除去率は87%であった。このように、電極13、14間に配置した担体21上の触媒により、被酸化性物質と触媒の接触効率が向上し、かつ酸化活性種を反応場全体で生成させることができるため、COD分解率を向上させることができた。 The test results are shown in FIG. According to this, the COD concentration decreased from 1980 mg / l to 363 mg / l, and the COD removal rate was 82%. Further, the NH 4 -N concentration was also reduced from 2200 mg / l to 288 mg / l, and the NH 4 -N removal rate was 87%. As described above, the catalyst on the carrier 21 arranged between the electrodes 13 and 14 improves the contact efficiency between the oxidizable substance and the catalyst and can generate the oxidation active species in the entire reaction field. The rate could be improved.

本実施例11に係る電気化学反応装置10は図1に示す。本実施例11は、図1の前記実施例1と略同様に構成を有しているため、同様の構成部位については説明を省略する。
かかる電気化学反応装置10は、電解処理槽15内の塩化物イオン濃度を1、000mg/l以上の濃度とする構成としている。
一般に、塩化物イオンが存在しない系で酸素過電圧が高い材質を陽極13として電気分解を行った場合、陽極13では下記反応式(7)、(8)、(9)により、過酸化水素、オゾン、ヒドロキシラジカル等の酸化活性種が発生する。
2HO ⇔ HO+2H+2e=1.763V …(7)
+HO ⇔ O+2H+2e
=2.08V …(8)
HO ⇔ ・OH+H+e=1.763V …(9)
An electrochemical reaction apparatus 10 according to Example 11 is shown in FIG. Since the present Example 11 has a structure substantially the same as the said Example 1 of FIG. 1, description is abbreviate | omitted about the same component.
Such an electrochemical reaction device 10 is configured so that the chloride ion concentration in the electrolytic treatment tank 15 is 1,000 mg / l or more.
In general, when electrolysis is performed using a material having a high oxygen overvoltage in a system in which chloride ions are not present as the anode 13, hydrogen peroxide, ozone is expressed at the anode 13 according to the following reaction formulas (7), (8), and (9). Oxidation active species such as hydroxy radicals are generated.
2H 2 O ⇔ H 2 O 2 + 2H + + 2e - E 0 = 1.763V ... (7)
O 2 + H 2 O⇔O 3 + 2H + + 2e
E 0 = 2.08V (8)
H 2 O⇔ · OH + H + + e E 0 = 1.763 V (9)

このとき、過酸化水素、オゾンは安定であり、易分解性の被酸化物質は分解可能であるが、難分解性物質に対しては分解困難である。一方ヒドロキシラジカルは非常に酸化力が強いものの、寿命が短いため対象とする被酸化物質と反応する前に消費されてしまい、反応場を広げることはできない。
そこで塩化物イオンを存在させることにより、下記反応式(10)、(11)の平衡反応が起こる。
・OH+Cl ⇔ HOCl ⇔ OH+Cl・ …(10)
Cl・+Cl ⇔ Cl …(11)
At this time, hydrogen peroxide and ozone are stable, and easily decomposable oxidizable substances can be decomposed, but difficult to decompose substances are difficult to decompose. On the other hand, although the hydroxy radical has a very strong oxidizing power, it has a short lifetime, so it is consumed before reacting with the target substance to be oxidized, and the reaction field cannot be expanded.
Therefore, the presence of chloride ions causes equilibrium reactions of the following reaction formulas (10) and (11).
OH + Cl ⇔ HOCl ⇔ OH + Cl · (10)
Cl · + Cl ⇔ Cl 2 · (11)

陽極13近傍では強酸性状態であるため、(10)式は右へ平衡がずれてCl・の状態で存在するのに対して、陽極13近傍から拡散してバルクのpHが弱酸性〜アルカリ領域であれば、平衡が左へずれて・OHに戻り、非常に強い酸化力を取り戻すことができる。また(11)式においても、陽極13近傍では、(10)式の反応を受けて比較的安定なClの形で存在するが、バルクに拡散することにより、Cl・の濃度が下がるため、左へ平衡がずれる。
また、塩化物イオンは電極反応で塩素分子となった後、溶液中では酸化力の強い次亜塩素酸を形成する。
2Cl ⇔ Cl+2e= 1.396V …(12)
Cl+HO ⇔ HOCl+H+Cl …(13)
よって、処理液内の酸化活性種濃度が高まり、被酸化性物質も自動酸化反応によりラジカルを形成できるため、ラジカル連鎖反応が促進し、被酸化性物質を高効率で分解することができる。
In the vicinity of the anode 13, since it is in a strongly acidic state, the equation (10) exists in the state of Cl. If so, the equilibrium shifts to the left and returns to OH, and a very strong oxidizing power can be recovered. The (11) also in the formula, the anode 13 near the relatively stable Cl 2 · undergo reaction of (10) - is present in the form of, by diffusion into the bulk, decreases the concentration of Cl · Therefore, the balance is shifted to the left.
In addition, after chloride ions are converted into chlorine molecules by the electrode reaction, hypochlorous acid having strong oxidizing power is formed in the solution.
2Cl ClCl 2 + 2e E 0 = 1.396 V (12)
Cl 2 + H 2 O⇔HOCl + H + + Cl (13)
Accordingly, the concentration of the active species in the treatment liquid is increased, and the oxidizable substance can also form radicals by the auto-oxidation reaction. Therefore, the radical chain reaction is promoted, and the oxidizable substance can be decomposed with high efficiency.

本実施例における一例として、電解処理槽15内に、陽極13としてチタン基板表面にV2O5、IrO2、TiO2、 Ptを担持した部材、陰極14としてチタンを、電極間隔を30mmとして設置した。電解処理槽15の処理水量は0.5Lである。今回、対象液としたし尿中の塩化物イオン濃度は1800mg/lであることから、さらに5000mg/lになるようにNaClを添加した液とした。
かかる試験は、電解処理槽15内に対象液を注入した後、関数発生器11より下記電解条件となるように電気信号を発信した後、電力増幅器12により所定の電流条件まで増幅して電極間に印加し、同時に循環ポンプにより電解処理槽15と処理水タンク23の水を循環して試験を開始した。電解条件はピーク電流:150mA/cm2、ベース電流:1μA/cm2、周波数:100kHz、パルス幅:1μsecとし、電解時間を60分として試験を行なった。
As an example in the present embodiment, an electrolytic treatment tank 15 is provided with a member carrying V 2 O 5 , IrO 2 , TiO 2 , Pt on the surface of a titanium substrate as an anode 13, titanium as a cathode 14, and an electrode interval of 30 mm. did. The amount of treated water in the electrolytic treatment tank 15 is 0.5L. This time, the chloride ion concentration in the human urine was 1800 mg / l, so the solution was added with NaCl so as to be 5000 mg / l.
In such a test, after injecting the target liquid into the electrolytic treatment tank 15, an electrical signal is transmitted from the function generator 11 so that the following electrolysis conditions are satisfied, and then the power amplifier 12 amplifies to a predetermined current condition and interelectrodes. At the same time, the test was started by circulating water in the electrolytic treatment tank 15 and the treated water tank 23 with a circulation pump. The electrolysis was carried out at a peak current of 150 mA / cm 2 , a base current of 1 μA / cm 2 , a frequency of 100 kHz, a pulse width of 1 μsec, and an electrolysis time of 60 minutes.

試験結果を図6に示す。これによれば、COD濃度が1980mg/lから674mg/lまで減少し、COD除去率は66%であった。また、NH4-N濃度も2200mg/lから357mg/lまで減少し、NH4-N除去率は84%であった。このように、塩化物イオンを高濃度とすることにより、電解処理槽15内の酸化活性種濃度が高まり、被酸化性物質も自動酸化反応によりラジカルを形成できるため、ラジカル連鎖反応が促進し、被酸化性物質を高効率で分解することができる。 The test results are shown in FIG. According to this, the COD concentration decreased from 1980 mg / l to 674 mg / l, and the COD removal rate was 66%. In addition, the NH 4 -N concentration was reduced from 2200 mg / l to 357 mg / l, and the NH 4 -N removal rate was 84%. In this way, by increasing the concentration of chloride ions, the concentration of active species in the electrolytic treatment tank 15 is increased, and the oxidizable substance can also form radicals by auto-oxidation, thereby promoting the radical chain reaction. An oxidizable substance can be decomposed with high efficiency.

本実施例12に係る電気化学反応装置10を図4に示す。本実施例12は、図1の前記実施例1と略同様に構成を有しているため、同様の構成部位については説明を省略する。
かかる電気化学反応装置10は、電解処理槽15に空気、オゾン、過酸化水素、次亜塩素のうち、何れか一種類以上の酸化剤を貯留する酸化剤タンク24と、前記電解処理槽15の底部に設置された散気管25とを備えた構成としている。そして、前記電気化学反応時に、前記酸化剤タンク24内の酸化剤を前記散気管25より適宜供給するようにした。
このように、オゾン、過酸化水素、次亜塩素酸等の酸化剤を供給することにより、処理液中の酸化活性種濃度を高めることができ、被酸化性物質の分解反応を促進することができる。また、被酸化物質濃度が高い場合、自動酸化反応により溶存酸素が消費され酸素不足状態となるため反応が阻害される。そこで散気管25等で外部より空気、酸素を供給することにより、自動酸化反応を促進することができる。
An electrochemical reaction apparatus 10 according to Example 12 is shown in FIG. Since the present Example 12 has a structure substantially the same as the said Example 1 of FIG. 1, description is abbreviate | omitted about the same component.
The electrochemical reaction apparatus 10 includes an oxidant tank 24 that stores one or more kinds of oxidants among air, ozone, hydrogen peroxide, and hypochlorous acid in the electrolytic treatment tank 15, and the electrolytic treatment tank 15. It is set as the structure provided with the diffuser tube 25 installed in the bottom part. In the electrochemical reaction, the oxidant in the oxidant tank 24 is appropriately supplied from the air diffuser 25.
In this way, by supplying an oxidizing agent such as ozone, hydrogen peroxide, and hypochlorous acid, the concentration of the active species in the treatment liquid can be increased, and the decomposition reaction of the oxidizable substance can be promoted. it can. Further, when the concentration of an oxidizable substance is high, dissolved oxygen is consumed by an auto-oxidation reaction, resulting in an oxygen-deficient state, thereby inhibiting the reaction. Therefore, the auto-oxidation reaction can be promoted by supplying air and oxygen from the outside through the air diffuser 25 or the like.

本実施例における一例として、電解処理槽15内に、陽極13としてチタン基板表面にV2O5、IrO2、TiO2、 Ptを担持した部材、陰極14としてチタンを、電極間隔を30mmとして設置した。電解処理槽の処理水量は0.5Lである。対象液は、導電率を2.0S/mに調製したNaCl水溶液に、スクロースを添加した液(TOC:9980mg/l)とした。
かかる試験は、電解処理槽15内に対象液を注入した後、関数発生器11より下記電解条件となるように電気信号を発信した後、電力増幅器12により所定の電流条件まで増幅して電極間に印加して試験を開始した。電解条件はピーク電流:200mA/cm2、ベース電流:1μA/cm2、周波数:10kHz、パルス幅:10μsecとし、電解時間を6時間として試験を行なった。また、本実施例では、空気を散気管24より1L/minの流量で供給した場合と空気を供給しない場合[比較例1]について比較した。
As an example in the present embodiment, an electrolytic treatment tank 15 is provided with a member carrying V 2 O 5 , IrO 2 , TiO 2 , Pt on the surface of a titanium substrate as an anode 13, titanium as a cathode 14, and an electrode interval of 30 mm. did. The amount of treated water in the electrolytic treatment tank is 0.5L. The target solution was a solution (TOC: 9980 mg / l) in which sucrose was added to an aqueous NaCl solution adjusted to a conductivity of 2.0 S / m.
In such a test, after injecting the target liquid into the electrolytic treatment tank 15, an electrical signal is transmitted from the function generator 11 so that the following electrolysis conditions are satisfied, and then the power amplifier 12 amplifies to a predetermined current condition and interelectrodes. To start the test. The electrolysis was conducted at a peak current of 200 mA / cm 2 , a base current of 1 μA / cm 2 , a frequency of 10 kHz, a pulse width of 10 μsec, and an electrolysis time of 6 hours. Further, in this example, a comparison was made between the case where air was supplied from the air diffuser 24 at a flow rate of 1 L / min and the case where air was not supplied [Comparative Example 1].

試験結果を図6に示す。これによれば、空気を供給しない場合には、処理水中TOC濃度は6420mg/lであり、TOC除去率は36%であったが、空気を供給した場合には、処理水中TOC濃度は5520mg/lであり、TOC除去率は45%であった。このように、空気を供給しない場合と比較して、空気を供給することにより自動酸化反応が促進し、TOC除去率が36%から45%まで向上した。空気を供給しない場合と比較して、空気を供給することにより、自動酸化反応が促進し、TOC除去率が36%から45%まで向上した。   The test results are shown in FIG. According to this, when air was not supplied, the TOC concentration in the treated water was 6420 mg / l and the TOC removal rate was 36%, but when air was supplied, the TOC concentration in the treated water was 5520 mg / l. The TOC removal rate was 45%. Thus, compared to the case where no air was supplied, the auto-oxidation reaction was promoted by supplying air, and the TOC removal rate was improved from 36% to 45%. Compared to the case where no air was supplied, the supply of air promoted the auto-oxidation reaction and improved the TOC removal rate from 36% to 45%.

本実施例13は、図4に示した前記実施例12と略同様の構成を有し、前記陽極13に担持させる触媒の構成を変更するとともに、酸化剤をオゾンにした場合について示している。
本実施例の電気化学反応装置15は、陽極13としてチタン基板表面にRuO2、IrO2、TiO2、Ptを担持した部材、陰極14としてチタンを使用し、電極間隔を20mmとして、電解下部には散気管25を配置し、オゾンを貯留した酸化剤タンク24を併設した。処理容積は0.5Lで、対象液は、導電率を2.0S/mに調製したNaCl水溶液に、スクロースを添加した液(TOC:9980mg/l)とした。
かかる試験は、電解処理槽15内に対象液を注入した後、関数発生器11より下記電解条件となるように電気信号を発信した後、電力増幅器12により所定の電流条件まで増幅して電極間に印加して試験を開始した。電解条件はピーク電流:200mA/cm2、ベース電流:1μA/cm2、周波数:10kHz、パルス幅:10μsecとし、電解時間を6時間として試験を行なった。また本実施例では、オゾン濃度10g/Nm3のオゾン化空気を散気管25より1L/minの流量で供給した。
The present embodiment 13 has a configuration substantially similar to that of the embodiment 12 shown in FIG. 4, and shows a case where the configuration of the catalyst supported on the anode 13 is changed and the oxidizing agent is changed to ozone.
The electrochemical reaction device 15 of this example uses a member carrying RuO 2 , IrO 2 , TiO 2 , and Pt on the surface of a titanium substrate as the anode 13, titanium as the cathode 14, an electrode interval of 20 mm, and a lower part of the electrolysis Has an aeration tube 25 and an oxidant tank 24 storing ozone. The treatment volume was 0.5 L, and the target solution was a solution (TOC: 9980 mg / l) obtained by adding sucrose to an aqueous NaCl solution adjusted to a conductivity of 2.0 S / m.
In such a test, after injecting the target liquid into the electrolytic treatment tank 15, an electrical signal is transmitted from the function generator 11 so that the following electrolysis conditions are satisfied, and then the power amplifier 12 amplifies to a predetermined current condition and interelectrodes. To start the test. The electrolysis was conducted at a peak current of 200 mA / cm 2 , a base current of 1 μA / cm 2 , a frequency of 10 kHz, a pulse width of 10 μsec, and an electrolysis time of 6 hours. In this example, ozonized air having an ozone concentration of 10 g / Nm 3 was supplied from the air diffuser 25 at a flow rate of 1 L / min.

試験結果を図6に示す。これによれば、オゾン化空気を供給しない場合には、処理水中TOC濃度は5520mg/lであり、TOC除去率は45%であったが、オゾン化空気を供給した場合には、処理水中TOC濃度は1440mg/lであり、TOC除去率は86%であった。このように、オゾン化空気を供給することにより、オゾンによりラジカル活性種の生成が促進され、さらに反応後には、酸素となり、溶存酸素濃度増大にも寄与するため、反応率が向上した。   The test results are shown in FIG. According to this, when ozonized air was not supplied, the TOC concentration in the treated water was 5520 mg / l and the TOC removal rate was 45%. The concentration was 1440 mg / l and the TOC removal rate was 86%. Thus, by supplying ozonized air, generation of radical active species is promoted by ozone, and after the reaction, oxygen is generated and contributes to an increase in the dissolved oxygen concentration, so that the reaction rate is improved.

本実施例14に係る電気化学反応装置10を図5に示す。本実施例14は、図1の前記実施例1と略同様に構成を有しているため、同様の構成部位については説明を省略する。
かかる電気化学反応装置10は、電解処理槽15に空気を貯留する酸化剤タンク24と、前記電解処理槽15の底部に設置された散気管25とを備えた構成としている。さらに、前記電解処理槽15内のpH値を測定するpH検出計27と、水酸化ナトリウム等のpH調整剤を貯留する貯留タンク28と、前記pH検出計27の測定値に基づき前記貯留タンク28よりpH調整剤を前記処理槽15内に所定量だけ添加するポンプ29と、を備えた構成とする。
The electrochemical reaction apparatus 10 according to Example 14 is shown in FIG. Since the present Example 14 has a structure substantially the same as the said Example 1 of FIG. 1, description is abbreviate | omitted about the same component.
The electrochemical reaction apparatus 10 includes an oxidant tank 24 that stores air in the electrolytic treatment tank 15, and an air diffuser 25 installed at the bottom of the electrolytic treatment tank 15. Further, a pH detector 27 for measuring the pH value in the electrolytic treatment tank 15, a storage tank 28 for storing a pH adjusting agent such as sodium hydroxide, and the storage tank 28 based on the measured value of the pH detector 27. A pump 29 for adding a predetermined amount of a pH adjuster into the treatment tank 15 is provided.

本実施例では、前記電気化学反応時に、前記酸化剤タンク24内の酸化剤を前記散気管25より適宜供給するとともに、前記pH検出計27にて測定されるpH値が弱酸性〜アルカリ性に維持されるように前記貯留タンク28よりpH調整剤を適宜添加する。
一般に、今回の実験系では、被酸化性物質の酸化反応が進行すると、H+を放出しpHが下がるため、本実施例では水酸化ナトリウム、水酸化間マグネシウム等のpH調整剤を添加して弱酸性〜アルカリ性に維持するようにした。これにより、例えば電極表面での金属酸化物によるレドックス反応において、有機物が酸化される。
In this embodiment, during the electrochemical reaction, the oxidant in the oxidant tank 24 is appropriately supplied from the diffuser tube 25, and the pH value measured by the pH detector 27 is maintained between weakly acidic and alkaline. As described above, a pH adjusting agent is appropriately added from the storage tank 28.
Generally, in this experimental system, when the oxidation reaction of the oxidizable substance proceeds, H + is released and the pH is lowered. Therefore, in this embodiment, a pH adjusting agent such as sodium hydroxide or magnesium hydroxide is added to weaken the pH. The acidity to alkalinity was maintained. Thereby, organic substance is oxidized in the redox reaction by the metal oxide on the electrode surface, for example.

本実施例における一例として、電解処理槽15内に、陽極13としてチタン基板表面にV2O5、IrO2、TiO2、Ptを担持した部材、陰極14としてチタンを、電極間隔を20mmとして設置した。さらに反応槽下部には散気管25を配置した。電解処理槽15の処理容積は0.5Lとし、対象液は、導電率を2.0S/mに調製したNaCl水溶液に、スクロースを添加した液(TOC:9980mg/l)とした。
かかる試験は、電解処理槽15内に対象液を注入した後、関数発生器11より下記電解条件となるように電気信号を発信した後、電力増幅器12により所定の電流条件まで増幅して電極間に印加して試験を開始した。電解条件はピーク電流:200mA/cm2、ベース電流:1μA/cm2、周波数:10kHz、パルス幅:10μsecとし、電解時間を6時間として試験を行なった。また本実施例では、空気を散気管より1L/minの流量で供給し、pHを連続的に計測し、処理液のpH値を7付近に調整するために水酸化ナトリウムを添加した。
As an example in the present embodiment, in the electrolytic treatment tank 15, a member having V 2 O 5 , IrO 2 , TiO 2 , and Pt supported on the titanium substrate surface as the anode 13, titanium as the cathode 14, and an electrode interval of 20 mm. did. Further, an air diffuser 25 was disposed at the lower part of the reaction tank. The treatment volume of the electrolytic treatment tank 15 was 0.5 L, and the target solution was a solution (TOC: 9980 mg / l) obtained by adding sucrose to an aqueous NaCl solution adjusted to 2.0 S / m.
In such a test, after injecting the target liquid into the electrolytic treatment tank 15, an electrical signal is transmitted from the function generator 11 so that the following electrolysis conditions are satisfied, and then the power amplifier 12 amplifies to a predetermined current condition and interelectrodes. To start the test. The electrolysis was conducted at a peak current of 200 mA / cm 2 , a base current of 1 μA / cm 2 , a frequency of 10 kHz, a pulse width of 10 μsec, and an electrolysis time of 6 hours. In this example, air was supplied from the air diffuser at a flow rate of 1 L / min, pH was continuously measured, and sodium hydroxide was added to adjust the pH value of the treatment liquid to around 7.

試験結果を図6に示す。これによれば、pH調整を行っていない実施例12での試験結果では、処理水中のTOC濃度は5520mg/lまでの低減効果であったが、本実施例のようにpHを7.0に調整した場合には、処理水中のTOC濃度は3660mg/lまで低減した。このように、pH調整を行い、電解処理槽15内のpH値を強酸性状態とせずに弱酸性〜アルカリ性に維持することにより、塩素ラジカルよりも酸化力の強いヒドロキシラジカルが生成しやすくなり、高効率で分解反応を進行させることができる。   The test results are shown in FIG. According to this, in the test result in Example 12 where pH adjustment was not performed, the TOC concentration in the treated water was a reduction effect up to 5520 mg / l, but the pH was adjusted to 7.0 as in this example. In some cases, the TOC concentration in the treated water was reduced to 3660 mg / l. Thus, by adjusting the pH and maintaining the pH value in the electrolytic treatment tank 15 from weakly acidic to alkaline without being in a strongly acidic state, it becomes easier to generate hydroxy radicals having stronger oxidizing power than chlorine radicals, The decomposition reaction can proceed with high efficiency.

本発明に基づく電気化学反応装置を、有機物を含有するし尿、家畜糞尿、メタン発酵液、生活廃水、工場廃水、埋立地浸出水、食品工場廃水、繊維工場廃水、洗濯廃水等の廃水処理設備に設置し、廃水中に含まれる有機物、難分解性物質、窒素分等を除去することも可能である。   The electrochemical reaction apparatus according to the present invention is used for wastewater treatment facilities such as human waste containing organic matter, livestock manure, methane fermentation liquid, domestic wastewater, factory wastewater, landfill leachate, food factory wastewater, textile factory wastewater, laundry wastewater, etc. It can be installed to remove organic substances, persistent substances, nitrogen, etc. contained in wastewater.

本発明の実施形態に係る電気化学反応装置の概略構成図を示す。The schematic block diagram of the electrochemical reaction apparatus which concerns on embodiment of this invention is shown. 図1の別の実施形態に係る電気化学反応装置の概略構成図を示す。The schematic block diagram of the electrochemical reaction apparatus which concerns on another embodiment of FIG. 1 is shown. 図1の別の実施形態に係る電気化学反応装置の概略構成図を示す。The schematic block diagram of the electrochemical reaction apparatus which concerns on another embodiment of FIG. 1 is shown. 図1の別の実施形態に係る電気化学反応装置の概略構成図を示す。The schematic block diagram of the electrochemical reaction apparatus which concerns on another embodiment of FIG. 1 is shown. 図1の別の実施形態に係る電気化学反応装置の概略構成図を示す。The schematic block diagram of the electrochemical reaction apparatus which concerns on another embodiment of FIG. 1 is shown. 本実施形態に係る電気化学反応装置を用いた時の被酸化物質の除去率を示す表である。It is a table | surface which shows the removal rate of the to-be-oxidized substance when the electrochemical reaction apparatus which concerns on this embodiment is used. 一般の電気化学反応の概念を説明する図である。It is a figure explaining the concept of a general electrochemical reaction. 一般の電気化学反応の概念を説明する図である。It is a figure explaining the concept of a general electrochemical reaction.

符号の説明Explanation of symbols

10 電気化学反応装置
11 関数発生器
12 電力増幅器
13 陽極
14 陰極
15 電解処理槽
20 犠牲電極
21 担体
24 酸化剤タンク
25 散気管
27 pH検出計
28 貯留タンク
DESCRIPTION OF SYMBOLS 10 Electrochemical reaction apparatus 11 Function generator 12 Power amplifier 13 Anode 14 Cathode 15 Electrolytic processing tank 20 Sacrificial electrode 21 Carrier 24 Oxidant tank 25 Aeration pipe 27 pH detector 28 Storage tank

Claims (22)

電解処理槽内の水溶液中に対向配置された陽極部材と陰極部材との間に、正パルス高電圧成分と直流電圧成分とを重畳した電気信号を印加し、該電気信号の印加により電極界面近傍の水溶液を電気化学反応させる方法において、
前記陽極部材が導電性材料で形成された基板上に金属若しくは金属酸化物からなる触媒を担持させた構造を有しており、該陽極部材に電気信号を印加することにより該陽極部材の表面上で前記触媒を高酸化状態とし、該高酸化状態の触媒により水溶液中の有機物を酸化することを特徴とする電気化学反応方法。
An electric signal in which a positive pulse high voltage component and a DC voltage component are superimposed is applied between an anode member and a cathode member that are arranged opposite to each other in an aqueous solution in an electrolytic treatment tank, and the vicinity of the electrode interface is obtained by applying the electric signal. In a method of electrochemically reacting an aqueous solution of
The anode member has a structure in which a catalyst made of metal or metal oxide is supported on a substrate formed of a conductive material, and an electric signal is applied to the anode member to The electrochemical reaction method is characterized in that the catalyst is brought into a highly oxidized state and an organic substance in the aqueous solution is oxidized by the catalyst in the highly oxidized state.
電解処理槽内の水溶液中に対向配置された陽極部材と陰極部材との間に、正パルス高電圧成分と直流電圧成分とを重畳した電気信号を印加し、該電気信号の印加により電極界面近傍の水溶液を電気化学反応させる方法において、
前記陽極部材が導電性材料で形成された基板上に金属若しくは金属酸化物からなる触媒を担持させた構造を有するとともに高い酸素過電圧を有し、該陽極部材に電気信号を印加することにより該陽極部材の表面上でヒドロキシラジカルを含むラジカル活性種の生成反応を促進させて水溶液中の有機物を酸化することを特徴とする電気化学反応方法。
An electric signal in which a positive pulse high voltage component and a DC voltage component are superimposed is applied between an anode member and a cathode member that are arranged opposite to each other in an aqueous solution in an electrolytic treatment tank, and the vicinity of the electrode interface is obtained by applying the electric signal. In a method of electrochemically reacting an aqueous solution of
The anode member has a structure in which a catalyst made of a metal or a metal oxide is supported on a substrate formed of a conductive material, has a high oxygen overvoltage, and applies an electric signal to the anode member. An electrochemical reaction method characterized by oxidizing an organic substance in an aqueous solution by promoting a generation reaction of radical active species including a hydroxy radical on a surface of a member.
電解処理槽内の水溶液中に対向配置された陽極部材と陰極部材との間に、正パルス高電圧成分と直流電圧成分とを重畳した電気信号を印加し、該電気信号の印加により電極界面近傍の水溶液を電気化学反応させる方法において、
前記陽極部材が導電性材料で形成された基板上に金属若しくは金属酸化物からなる触媒を担持させた構造を有しており、該陽極部材に電気信号を印加することにより該陽極部材の表面上で酸素解離を促進させて水溶液中の有機物を酸化することを特徴とする電気化学反応方法。
An electric signal in which a positive pulse high voltage component and a DC voltage component are superimposed is applied between an anode member and a cathode member that are arranged opposite to each other in an aqueous solution in an electrolytic treatment tank, and the vicinity of the electrode interface is obtained by applying the electric signal. In a method of electrochemically reacting an aqueous solution of
The anode member has a structure in which a catalyst made of metal or metal oxide is supported on a substrate formed of a conductive material, and an electric signal is applied to the anode member to An electrochemical reaction method characterized in that oxygen dissociation is promoted to oxidize organic substances in an aqueous solution.
前記陽極基板と前記触媒との間に、シリカ化合物、アルミナ、チタニアの少なくとも何れか一種類を含む誘電層を介装したことを特徴とする請求項1乃至3の何れかに記載の電気化学反応方法。   The electrochemical reaction according to any one of claims 1 to 3, wherein a dielectric layer containing at least one of silica compound, alumina, and titania is interposed between the anode substrate and the catalyst. Method. 前記陽極部材と前記陰極部材との間に、該陽極部材と略同様の構造を有する犠牲電極を配置したことを特徴とする請求項1乃至3の何れかに記載の電気化学反応方法。   4. The electrochemical reaction method according to claim 1, wherein a sacrificial electrode having a structure substantially the same as that of the anode member is disposed between the anode member and the cathode member. 前記陽極部材と前記陰極部材との間に、チタニア、シリカ、アルミナ、又はこれらの化合物材料、若しくは炭素材料のうち何れか一以上で形成した基板上に触媒を担持した担体を配置したことを特徴とする請求項1乃至3の何れかに記載の電気化学反応方法。   Between the anode member and the cathode member, a carrier carrying a catalyst is disposed on a substrate formed of at least one of titania, silica, alumina, a compound material thereof, or a carbon material. The electrochemical reaction method according to any one of claims 1 to 3. 前記水溶液の塩化物イオン濃度が約1000mg/L以上となるように調整することを特徴とする請求項1乃至3の何れかに記載の電気化学反応方法。   The electrochemical reaction method according to any one of claims 1 to 3, wherein the chloride ion concentration of the aqueous solution is adjusted to be about 1000 mg / L or more. 前記水溶液に、空気、オゾン、過酸化水素、次亜塩素酸のうち少なくとも何れか一以上の酸化剤を供給することを特徴とする請求項1乃至3の何れかに記載の電気化学反応方法。   4. The electrochemical reaction method according to claim 1, wherein at least one oxidizing agent selected from the group consisting of air, ozone, hydrogen peroxide, and hypochlorous acid is supplied to the aqueous solution. 前記水溶液中のpH値を測定し、該測定したpH値に基づきpH調整剤を添加して水溶液のpH値を弱酸性からアルカリ性の範囲内に維持することを特徴とする請求項1乃至3の何れかに記載の電気化学反応方法。   The pH value in the aqueous solution is measured, and a pH adjuster is added based on the measured pH value to maintain the pH value of the aqueous solution within a weakly acidic to alkaline range. The electrochemical reaction method according to any one of the above. 電解処理槽内の水溶液中に対向配置された陽極部材及び陰極部材と、これらの電極間に正パルス高電圧成分と直流電圧成分とを重畳した電気信号を印加する電気信号発生器と、を備え、前記電気信号の印加により電極界面近傍の水溶液を電気化学反応させる電気化学反応装置において、
前記陽極部材が導電性材料で形成された基板上に触媒を担持させた構造を有しており、該触媒は、前記陽極部材の表面上にて前記電気信号の印加により酸化されて高酸化状態となり水溶液中の有機物を酸化可能な金属若しくは金属酸化物であることを特徴とする電気化学反応装置。
An anode member and a cathode member disposed opposite to each other in an aqueous solution in the electrolytic treatment tank, and an electric signal generator that applies an electric signal in which a positive pulse high voltage component and a DC voltage component are superimposed between the electrodes. In an electrochemical reaction device that causes an electrochemical reaction of an aqueous solution near the electrode interface by application of the electrical signal,
The anode member has a structure in which a catalyst is supported on a substrate formed of a conductive material, and the catalyst is oxidized on the surface of the anode member by application of the electric signal to be in a highly oxidized state. An electrochemical reaction device characterized in that it is a metal or metal oxide capable of oxidizing an organic substance in an aqueous solution.
前記触媒が、Ru、Fe、Os、Mn、Mo、Co、Ir、Ni、W又はこれらの酸化物のうち、何れか一種類若しくはこれらの混合物であることを特徴とする請求項10記載の電気化学反応装置。   11. The electricity according to claim 10, wherein the catalyst is any one of Ru, Fe, Os, Mn, Mo, Co, Ir, Ni, W, or an oxide thereof, or a mixture thereof. Chemical reactor. 電解処理槽内の水溶液中に対向配置された陽極部材及び陰極部材と、これらの電極間に正パルス高電圧成分と直流電圧成分とを重畳した電気信号を印加する電気信号発生器と、を備え、前記電気信号の印加により電極界面近傍の水溶液を電気化学反応させる電気化学反応装置において、
前記陽極部材が導電性材料で形成された基板上に触媒を担持させた構造を有しており、該触媒は、酸素過電圧が高く、ヒドロキシラジカルを含むラジカル活性種の生成反応を促進する金属若しくは金属酸化物であることを特徴とする電気化学反応装置。
An anode member and a cathode member disposed opposite to each other in an aqueous solution in the electrolytic treatment tank, and an electric signal generator that applies an electric signal in which a positive pulse high voltage component and a DC voltage component are superimposed between the electrodes. In an electrochemical reaction device that causes an electrochemical reaction of an aqueous solution near the electrode interface by application of the electrical signal,
The anode member has a structure in which a catalyst is supported on a substrate formed of a conductive material, and the catalyst has a high oxygen overvoltage and promotes a generation reaction of radical active species including hydroxy radicals. An electrochemical reaction device characterized by being a metal oxide.
前記触媒が、Ti、Sn、Pb又はこれらの酸化物のうち、何れか一種類若しくはこれらの混合物であることを特徴とする請求項12記載の電気化学反応装置。   The electrochemical reaction device according to claim 12, wherein the catalyst is any one of Ti, Sn, Pb, and oxides thereof, or a mixture thereof. 電解処理槽内の水溶液中に対向配置された陽極部材及び陰極部材と、これらの電極間に正パルス高電圧成分と直流電圧成分とを重畳した電気信号を印加する電気信号発生器と、を備え、前記電気信号の印加により電極界面近傍の水溶液を電気化学反応させる電気化学反応装置において、
前記陽極部材が導電性材料で形成された基板上に触媒を担持させた構造を有しており、該触媒は、酸素解離を促進する金属若しくは金属酸化物であることを特徴とする電気化学反応装置。
An anode member and a cathode member disposed opposite to each other in an aqueous solution in the electrolytic treatment tank, and an electric signal generator that applies an electric signal in which a positive pulse high voltage component and a DC voltage component are superimposed between the electrodes. In an electrochemical reaction device that causes an electrochemical reaction of an aqueous solution near the electrode interface by application of the electrical signal,
The electrochemical reaction characterized in that the anode member has a structure in which a catalyst is supported on a substrate formed of a conductive material, and the catalyst is a metal or a metal oxide that promotes oxygen dissociation. apparatus.
前記触媒が、Pt、Pd又はこれらの酸化物のうち、何れか一種類若しくはこれらの混合物であることを特徴とする請求項14記載の電気化学反応装置。   The electrochemical reaction device according to claim 14, wherein the catalyst is any one of Pt, Pd, or an oxide thereof or a mixture thereof. 前記陽極基板が、チタン又はチタン合金、活性炭等の炭素材料、導電性セラミックのうち何れかであることを特徴とする請求項10、12、14の何れかに記載の電気化学反応装置。   15. The electrochemical reaction device according to claim 10, wherein the anode substrate is any one of titanium, a titanium alloy, a carbon material such as activated carbon, or a conductive ceramic. 前記陽極基板と前記触媒との間に、シリカ化合物、アルミナ、チタニアの少なくとも何れか一種類を含む誘電層を介装したことを特徴とする請求項10、12、14の何れかに記載の電気化学反応装置。   15. The electricity according to claim 10, 12 or 14, wherein a dielectric layer containing at least one of silica compound, alumina and titania is interposed between the anode substrate and the catalyst. Chemical reactor. 前記陽極部材と前記陰極部材との間に、該陽極部材と略同様の構造を有する犠牲電極を配置したことを特徴とする請求項10乃至17の何れかに記載の電気化学反応装置。   The electrochemical reaction device according to any one of claims 10 to 17, wherein a sacrificial electrode having a structure substantially the same as that of the anode member is disposed between the anode member and the cathode member. 前記陽極部材と前記陰極部材との間に、チタニア、シリカ、アルミナ、又はこれらの化合物材料、若しくは炭素材料のうち何れか一以上で形成した基板上に触媒を担持した担体を配置したことを特徴とする請求項10乃至17の何れかに記載の電気化学反応装置。   Between the anode member and the cathode member, a carrier carrying a catalyst is disposed on a substrate formed of at least one of titania, silica, alumina, a compound material thereof, or a carbon material. The electrochemical reaction device according to any one of claims 10 to 17. 前記水溶液の塩化物イオン濃度が約1000mg/L以上となるように調整する手段を備えたことを特徴とする請求項10、12、14の何れかに記載の電気化学反応装置。   The electrochemical reaction device according to any one of claims 10, 12, and 14, further comprising means for adjusting the chloride ion concentration of the aqueous solution to be about 1000 mg / L or more. 前記水溶液に、空気、オゾン、過酸化水素、次亜塩素酸のうち少なくとも何れか一以上の酸化剤を供給する手段を設けたことを特徴とする請求項10、12、14の何れかに記載の電気化学反応装置。   The means for supplying at least one or more oxidizing agents of air, ozone, hydrogen peroxide, and hypochlorous acid to the aqueous solution is provided. Electrochemical reaction device. 前記水溶液中のpH値を測定する手段と、該測定されたpH値に基づきpH調整剤を添加して水溶液のpH値を弱酸性からアルカリ性の範囲内に維持する手段を設けたことを特徴とする請求項10、12、14の何れかに記載の電気化学反応装置。   A means for measuring the pH value in the aqueous solution and a means for adding a pH adjuster based on the measured pH value to maintain the pH value of the aqueous solution within a weakly acidic to alkaline range are provided. The electrochemical reaction device according to any one of claims 10, 12, and 14.
JP2004043750A 2004-02-20 2004-02-20 Electrochemical reaction method and apparatus Pending JP2005230707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004043750A JP2005230707A (en) 2004-02-20 2004-02-20 Electrochemical reaction method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004043750A JP2005230707A (en) 2004-02-20 2004-02-20 Electrochemical reaction method and apparatus

Publications (1)

Publication Number Publication Date
JP2005230707A true JP2005230707A (en) 2005-09-02

Family

ID=35014205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004043750A Pending JP2005230707A (en) 2004-02-20 2004-02-20 Electrochemical reaction method and apparatus

Country Status (1)

Country Link
JP (1) JP2005230707A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100187A (en) * 2005-10-06 2007-04-19 Katsutoshi Ono Electrolysis system
JP2010036062A (en) * 2008-07-31 2010-02-18 Ryukoku Univ Water treatment method
CN101671088B (en) * 2009-10-15 2011-06-22 同济大学 Electrocatalysis wet-type peroxide oxidizing method for high-effect waste water processing and devices thereof
JP2011211976A (en) * 2010-03-31 2011-10-27 Mitsui Eng & Shipbuild Co Ltd Biogas conditioning method, biogas conditioning apparatus and biogas system
CN102897921A (en) * 2012-09-07 2013-01-30 常州大学 Aged refuse participating organic waste water electro-Fenton treatment method
CN103121737A (en) * 2013-02-21 2013-05-29 福建工程学院 Method for electrochemically treating printing and dyeing wastewater
CN104163478A (en) * 2014-08-04 2014-11-26 陈致 Emergency treatment method and emergency treatment device of organic micro-polluted drinking water
CN105271477A (en) * 2014-06-06 2016-01-27 蒋寿悟 Deep treatment method of municipal waste landfill leachate
CN107337262A (en) * 2017-07-05 2017-11-10 合肥工业大学 A kind of method of oxygen impressed current anode catalyzing oxidizing degrading Organic Pollutants In Water under low-voltage
CN108191008A (en) * 2018-03-15 2018-06-22 重庆工商大学 A kind of preparation method and application of Pd/TiN electro catalytic electrodes
CN109161476A (en) * 2018-08-15 2019-01-08 福建农林大学 A kind of apparatus and method of electricity fermentation methane phase
JPWO2018097069A1 (en) * 2016-11-22 2019-07-25 旭化成株式会社 Electrode for electrolysis
KR20190123281A (en) * 2017-03-06 2019-10-31 에보쿠아 워터 테크놀로지스 엘엘씨 Pulsed power supply for sustainable redox material supply for hydrogen reduction during electrochemical hypochlorite production
JP2021025126A (en) * 2019-08-07 2021-02-22 深▲セン▼市耐菲爾醫療器械科技有限公司Nicefeel Medical Device Technology Co., Ltd Anode, preparation method and use thereof, ozone generating system, and dental scaler
CN113019382A (en) * 2019-12-25 2021-06-25 北京国环莱茵环保科技股份有限公司 Electrocatalytic oxidation catalyst for landfill leachate and preparation method and application thereof
CN113149144A (en) * 2021-03-19 2021-07-23 西安建筑科技大学 Preparation and Fenton-like degradation method of sea urchin-shaped composite cathode material
JP2022041327A (en) * 2020-09-01 2022-03-11 守英 天白 Electrode unit of water decomposition gas generator
CN114950089A (en) * 2022-06-11 2022-08-30 华中科技大学 Electrochemical degradation method for chlorine-containing volatile/semi-volatile organic compound
CN115259535A (en) * 2022-08-24 2022-11-01 南京工大环境科技有限公司 Process for efficiently treating epoxy chloropropane saponification wastewater
WO2023153489A1 (en) * 2022-02-10 2023-08-17 積水化学工業株式会社 Electrochemical cell, and carbonyl compound production method

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4562634B2 (en) * 2005-10-06 2010-10-13 勝敏 小野 Electrolysis system
JP2007100187A (en) * 2005-10-06 2007-04-19 Katsutoshi Ono Electrolysis system
JP2010036062A (en) * 2008-07-31 2010-02-18 Ryukoku Univ Water treatment method
CN101671088B (en) * 2009-10-15 2011-06-22 同济大学 Electrocatalysis wet-type peroxide oxidizing method for high-effect waste water processing and devices thereof
JP2011211976A (en) * 2010-03-31 2011-10-27 Mitsui Eng & Shipbuild Co Ltd Biogas conditioning method, biogas conditioning apparatus and biogas system
CN102897921B (en) * 2012-09-07 2013-12-18 常州大学 Mineralized refuse participating organic waste water electro-Fenton treatment method
CN102897921A (en) * 2012-09-07 2013-01-30 常州大学 Aged refuse participating organic waste water electro-Fenton treatment method
CN103121737A (en) * 2013-02-21 2013-05-29 福建工程学院 Method for electrochemically treating printing and dyeing wastewater
CN103121737B (en) * 2013-02-21 2014-05-07 福建工程学院 Method for electrochemically treating printing and dyeing wastewater
CN105271477A (en) * 2014-06-06 2016-01-27 蒋寿悟 Deep treatment method of municipal waste landfill leachate
CN104163478A (en) * 2014-08-04 2014-11-26 陈致 Emergency treatment method and emergency treatment device of organic micro-polluted drinking water
JPWO2018097069A1 (en) * 2016-11-22 2019-07-25 旭化成株式会社 Electrode for electrolysis
KR20190123281A (en) * 2017-03-06 2019-10-31 에보쿠아 워터 테크놀로지스 엘엘씨 Pulsed power supply for sustainable redox material supply for hydrogen reduction during electrochemical hypochlorite production
KR102578933B1 (en) * 2017-03-06 2023-09-14 에보쿠아 워터 테크놀로지스 엘엘씨 Pulse power supply for sustainable redox material supply for hydrogen reduction during electrochemical hypochlorite generation
CN107337262A (en) * 2017-07-05 2017-11-10 合肥工业大学 A kind of method of oxygen impressed current anode catalyzing oxidizing degrading Organic Pollutants In Water under low-voltage
CN108191008A (en) * 2018-03-15 2018-06-22 重庆工商大学 A kind of preparation method and application of Pd/TiN electro catalytic electrodes
CN108191008B (en) * 2018-03-15 2021-04-30 重庆工商大学 Preparation method and application of Pd/TiN electro-catalytic electrode
CN109161476A (en) * 2018-08-15 2019-01-08 福建农林大学 A kind of apparatus and method of electricity fermentation methane phase
JP2021025126A (en) * 2019-08-07 2021-02-22 深▲セン▼市耐菲爾醫療器械科技有限公司Nicefeel Medical Device Technology Co., Ltd Anode, preparation method and use thereof, ozone generating system, and dental scaler
CN113019382A (en) * 2019-12-25 2021-06-25 北京国环莱茵环保科技股份有限公司 Electrocatalytic oxidation catalyst for landfill leachate and preparation method and application thereof
JP2022041327A (en) * 2020-09-01 2022-03-11 守英 天白 Electrode unit of water decomposition gas generator
JP7398109B2 (en) 2020-09-01 2023-12-14 守英 天白 Electrode unit of water splitting gas generator
CN113149144A (en) * 2021-03-19 2021-07-23 西安建筑科技大学 Preparation and Fenton-like degradation method of sea urchin-shaped composite cathode material
WO2023153489A1 (en) * 2022-02-10 2023-08-17 積水化学工業株式会社 Electrochemical cell, and carbonyl compound production method
CN114950089A (en) * 2022-06-11 2022-08-30 华中科技大学 Electrochemical degradation method for chlorine-containing volatile/semi-volatile organic compound
CN115259535A (en) * 2022-08-24 2022-11-01 南京工大环境科技有限公司 Process for efficiently treating epoxy chloropropane saponification wastewater
CN115259535B (en) * 2022-08-24 2023-10-24 南京工大环境科技有限公司 Process for efficiently treating epoxy chloropropane saponification wastewater

Similar Documents

Publication Publication Date Title
JP2005230707A (en) Electrochemical reaction method and apparatus
JP4116726B2 (en) Electrochemical treatment method and apparatus
Zanta et al. Electrochemical oxidation of p-chlorophenol on SnO 2–Sb 2 O 5 based anodes for wastewater treatment
US5439577A (en) Electrochemical device for generating hydroxyl free radicals and oxidizing chemical substances dissolved in water
EP2035599B1 (en) Electrode, method of manufacture and use thereof
da Silva Duarte et al. Evaluation of treatment of effluents contaminated with rifampicin by Fenton, electrochemical and associated processes
KR101812008B1 (en) An electrolyzer having a porous 3-dimensional mono-polar electrodes, and water treatment method using the electrolyzer having the porous 3-dimensional mono-polar electrodes
CN102092820A (en) Method and device for removing organic matters from water by using double-pool double-effect visible light in response to photo-electro-Fenton reaction
Tian et al. Cyanide oxidation by singlet oxygen generated via reaction between H2O2 from cathodic reduction and OCl− from anodic oxidation
CN110759437B (en) Method for electrochemical-UV composite treatment of refractory organic matters
US20120064416A1 (en) Three electrode type of microbial fuel cell and a method for operating the same
de Moura et al. Cl-mediated electrochemical oxidation for treating an effluent using platinum and diamond anodes
Deng et al. A dynamic anode boosting sulfamerazine mineralization via electrochemical oxidation
CN106830204B (en) Method and device for degrading pollutants in water by exciting permanganate through electrochemical cathode
CN110869323A (en) Method of operating a wastewater treatment system
JP4190173B2 (en) Electrochemical treatment method and electrochemical treatment apparatus
JP2009106884A (en) Water treatment and gas treatment apparatus
JP2002361282A (en) Method and apparatus for treating organic waste water
JP3982500B2 (en) Method and apparatus for treating wastewater containing organic compounds
JP2005213620A (en) Hypochlorous acid generation method and apparatus for the same
JP4121322B2 (en) Electrochemical processing equipment
CN110054259B (en) Oxidation electrode, method for manufacturing same, and electrolysis device comprising same
JP2005013858A (en) Method and apparatus for treating wastewater using high voltage pulses
JP2006231177A (en) Endocrine disrupting chemical substance decomposing method and apparatus
JP2006035158A (en) Water treatment method and water treatment apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071005

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080307