JP4562634B2 - Electrolysis system - Google Patents

Electrolysis system Download PDF

Info

Publication number
JP4562634B2
JP4562634B2 JP2005293756A JP2005293756A JP4562634B2 JP 4562634 B2 JP4562634 B2 JP 4562634B2 JP 2005293756 A JP2005293756 A JP 2005293756A JP 2005293756 A JP2005293756 A JP 2005293756A JP 4562634 B2 JP4562634 B2 JP 4562634B2
Authority
JP
Japan
Prior art keywords
drive
anode
cathode
induction
driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005293756A
Other languages
Japanese (ja)
Other versions
JP2007100187A (en
Inventor
勝敏 小野
新司 高山
Original Assignee
勝敏 小野
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 勝敏 小野 filed Critical 勝敏 小野
Priority to JP2005293756A priority Critical patent/JP4562634B2/en
Publication of JP2007100187A publication Critical patent/JP2007100187A/en
Application granted granted Critical
Publication of JP4562634B2 publication Critical patent/JP4562634B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

本発明は、エネルギー関連分野に関わり、特に、水の電気分解による水素の製造をはじめ、塩化ナトリウム、塩化マグネシウム及び酸化アルミニウムなどの電気分解による水酸化ナトリウム、マグネシウム及びアルミニウムなどの製造に用いる電気分解システムに関する。   The present invention relates to energy-related fields, and in particular, the production of hydrogen by electrolysis of water, and the electrolysis used for the production of sodium hydroxide, magnesium, aluminum, etc. by electrolysis of sodium chloride, magnesium chloride, and aluminum oxide. About the system.

電気分解は、世界的に莫大量の電気エネルギーを消費する大規模産業技術として位置づけられており、製造技術の革新による電力効率の改善の必要性は論を待たない。
水素製造のための水電気分解における電力効率一つ取り上げてもその抜本的改善は、将来の燃料として水素エネルギー社会の実現を左右する課題である。又、これに対してここに言う電力効率の改善とは、現在の電気分解技術の改良による所謂電気エネルギー消費量の単なる低減ではなく、電気分解システムの作動原理そのものに新規な要素を加えることによる電力消費の著しい低減であることが必要不可欠である。
Electrolysis is positioned as a large-scale industrial technology that consumes enormous amounts of electrical energy worldwide, and the need for improved power efficiency through innovations in manufacturing technology cannot be overlooked.
Even if we take up one power efficiency in water electrolysis for hydrogen production, the drastic improvement is an issue that will affect the realization of a hydrogen energy society as a future fuel. On the other hand, the improvement of the power efficiency mentioned here is not a mere reduction of the so-called electric energy consumption by the improvement of the current electrolysis technology, but by adding a new element to the operation principle itself of the electrolysis system. It is essential that the power consumption be significantly reduced.

本発明は、従来技術に係る電気分解に比して、その消費電力を大きく削減できる新たな構成と新たな原理に基づく電気分解システムを提供することを目的とする。   An object of the present invention is to provide an electrolysis system based on a new configuration and a new principle capable of greatly reducing the power consumption as compared with the electrolysis according to the prior art.

本明細書では、従来の一つの直流電源1による電気分解を「1電源電気分解」、本発明で提案する独立した2つの直流電源を併用する電気分解を「2電源電気分解」と定義する。   In this specification, the conventional electrolysis by one DC power source 1 is defined as “one power source electrolysis”, and the electrolysis using two independent DC power sources proposed in the present invention is defined as “two power source electrolysis”.

一般に、化合物の電気分解は、分解反応が自発的に進行し得ない物理化学的条件下にある化合物を、電気化学リアクター内で電気エネルギーを化学エネルギーへ変換することにより、分解反応を起こさせるためのエネルギー変換技術の一種である。実用的には、水や塩化ナトリウムの電気分解のように、常温付近の水溶液電気分解と、例えばアルミニウム、マグネシウム、希土類元素やウラン、トリウムなどの金属単体を、それぞれの化合物を分解して析出させる高温の溶融塩電気分解などがあり、いずれも100%電気エネルギーを用いて採取されている。まず図12〜図14を用いて、1電源電気分解の機構を説明する(図12に示すような、一つの直流電源1を陽極3aと陰極3bの一対の電極に接続する電気分解が、上記定義による1電源電気分解に対応する。)。
(ステップ1) 電気分解しようとする化合物を水又は溶融塩中に溶解して正負のイオンに解離し、これを電解液4とする。
In general, electrolysis of a compound causes a decomposition reaction by converting electrical energy into chemical energy in an electrochemical reactor for a compound under physicochemical conditions where the decomposition reaction cannot proceed spontaneously. Is a kind of energy conversion technology. Practically, aqueous solution electrolysis near room temperature, such as electrolysis of water and sodium chloride, and simple metals such as aluminum, magnesium, rare earth elements, uranium, and thorium are decomposed and deposited. There are high temperature molten salt electrolysis and the like, all of which are collected using 100% electrical energy. First, the mechanism of one power source electrolysis will be described with reference to FIGS. 12 to 14 (the electrolysis in which one DC power source 1 is connected to a pair of electrodes of an anode 3a and a cathode 3b as shown in FIG. 1 power electrolysis by definition).
(Step 1) A compound to be electrolyzed is dissolved in water or a molten salt and dissociated into positive and negative ions.

(ステップ2) 一対の平板形状の導電体を垂直もしくは水平に対向して電解液4の中に浸漬し、一方を陽極3a、他方を陰極3bとする。それぞれの端子を直流電源1の正及び負の端子と導線2a,2bで接続する。   (Step 2) A pair of plate-shaped conductors are immersed vertically or horizontally in the electrolytic solution 4, and one is used as an anode 3a and the other as a cathode 3b. The respective terminals are connected to the positive and negative terminals of the DC power source 1 through the conducting wires 2a and 2b.

(ステップ3) 直流電源1の出力電圧(直流電源電圧)を0から増加して陽極3aと陰極3bの間に電位差を与えていくと、ある特定の電圧までは電極反応は起こらず、したがって電気分解回路に電流は流れない。一般に、電極反応が起こり電解液4の中の化合物の分解が起こり始める直前の閾値電圧を「分解電圧」と称すが、本明細書では、この閾値電圧を、「飽和電気二重層形成電圧E」と定義する。飽和電気二重層形成電圧Eは、分解しようとする化合物に特有の値であり、温度、圧力及び化合物の濃度などの熱力学的条件によって影響を受ける。 (Step 3) When the output voltage (DC power supply voltage) of the DC power supply 1 is increased from 0 and a potential difference is applied between the anode 3a and the cathode 3b, the electrode reaction does not occur up to a certain voltage, and therefore the electrical No current flows through the decomposition circuit. In general, a threshold voltage immediately before an electrode reaction occurs and decomposition of a compound in the electrolytic solution 4 begins to occur is referred to as “decomposition voltage”. In this specification, this threshold voltage is referred to as “saturated electric double layer formation voltage E D Is defined. The saturated electric double layer formation voltage E D is a value specific to the compound to be decomposed, and is affected by thermodynamic conditions such as temperature, pressure and compound concentration.

(ステップ4) 閾値電圧(飽和電気二重層形成電圧)Eを超えて電圧を電極間に加えると電気分解電流が流れ、1電源電気分解が開始する。実際に電気分解電流が流れているときの電圧を「電解電圧EE」、実際に電気分解電流を流すために必要となる飽和電気二重層形成電圧Eからの超過分の電圧を「過電圧ΔE」と定義する。電解液4の中では解離して存在している正負のイオンが、回路の導体中では電子が電流の担体となっている。各ステップを通して化合物の分解・析出を行う電気分解に特有の電圧―電流の関係(V−I曲線)は図13のように電圧と電流が比例しない非線形である。
ステップ3において直流電源電圧を0から立ち上げていくと、陽極3a中の電子は直流電源1の駆動力により導線2a,2bを通って陰極3bへ流れ込み、陰極3bの表面は過剰の電子により負の電荷が、陽極3aの表面は電子の欠乏した状態の正の電荷が、そのときの直流電源電圧に応じた密度(電極の表面電荷密度)で現れる。その結果、陽極3aと接する電解液4の界面には電解液4の中の負イオンが、陰極3b側には正イオンが引き付けられ、電気回路のコンデンサに類似した電気二重層が形成される。図12は電気二重層をイメージとして描いた模式図である。電気二重層の構造は実際には極めて複雑であり、その実態は現在も学術的に解明し尽くされているとは言い難いが、その実在は古くから実証されており、本発明はこの電気二重層の存在に基礎を置いている。
更に、ステップ3において、両極の間に与えられている電圧(電位差)が飽和電気二重層形成電圧Eよりも低い段階では、陽極3a表面の正電荷は近傍の電解液4の負イオンを引き付けているが、未だ両者は結合するに至らない。同様に陰極3bでも表面負電荷は正イオンを引き付けているが、両者が結合するには未だ電界強度(電気力線の本数)が足りない。電極の表面電荷と電解液4のイオンとの結合、即ち電極反応を開始させるためには、引き続き電極間に与える電圧を増加して飽和電気二重層形成電圧Eを超過しなければならない。飽和電気二重層形成電圧Eでは界面の電気二重層が飽和に達し、界面における静電的な電界強度(電気力線の本数)が極大になる。言い換えれば電極の表面電荷密度が飽和に達している。直流電源電圧を更に加えてこの飽和表面電荷密度を超えて電荷を増強しようとすると、超過分の電荷は遂にイオンと結合するようになる。これが所謂電極反応であり、分子や中性の単体が電極上に析出する。水の電気分解を例に電極反応を表せば、陽極3aでは:
OH = (1/2)O + H + 2e ・・・・・(1)
の酸化反応が起こり、陰極3bでは:
2H + 2e = H ・・・・・(2)
の還元反応となる。
以上の如く電極反応は、両極界面における飽和電気二重層の存在の上に成り立つもので、そのために直流電源1によって電極反応に必要な最小限の飽和電気二重層形成電圧E Dを両極間に加えるともに、同時に電極反応の駆動に必要な過電圧ΔEを上乗せして与えなければならない。即ち:
E = (ED + ΔE) ・・・・・(3)
が電解電圧EEと呼ばれるものであり、電気分解反応が行われているときに陽極3aと陰極3bの間に掛かっている電位差に相当する。
飽和電気二重層は陽極3aと陰極3bの間に飽和電気二重層形成電圧Eを加えることによって電極の界面に形成され、電圧を掛けている限り安定的に維持されているが、静電的に成り立っているため回路に電流は流れない。したがって、一度飽和電気二重層がセットされると直流電源1は電力を消費しない。しかし、電圧を下げると消滅していくので、実際に電極反応を起こさせるには、直流電源1の出力電圧としての如く飽和電気二重層形成電圧Eと過電圧ΔEの和即ち電解電圧EEを加えることが不可欠である。したがって、一つの直流電源1でこれを行う場合、図14に示すように飽和電気二重層形成電圧E Dに過電圧ΔEを追加すると、電気分解のための電流値としてI(A)が回路に流れて直流電源1の消費電力P1は:
1 = (E + ΔE)I ・・・・・(4)
となる。
(Step 4) When a voltage exceeding the threshold voltage (saturated electric double layer forming voltage) E D is applied between the electrodes, an electrolysis current flows, and one power source electrolysis starts. The voltage when the electrolysis current is actually flowing is defined as “electrolysis voltage E E ”, and the excess voltage from the saturated electric double layer formation voltage E D required for actually flowing the electrolysis current is defined as “overvoltage ΔE”. Is defined. Positive and negative ions that are dissociated in the electrolyte 4 are electrons, and electrons are current carriers in the conductors of the circuit. The voltage-current relationship (VI curve) peculiar to the electrolysis in which the compound is decomposed / deposited through each step is nonlinear as shown in FIG.
When the DC power supply voltage is raised from 0 in Step 3, the electrons in the anode 3a flow into the cathode 3b through the conducting wires 2a and 2b by the driving force of the DC power supply 1, and the surface of the cathode 3b is negatively charged by excess electrons. The positive charge in the electron deficient state appears on the surface of the anode 3a at a density (surface charge density of the electrode) corresponding to the DC power supply voltage at that time. As a result, negative ions in the electrolytic solution 4 are attracted to the interface of the electrolytic solution 4 in contact with the anode 3a, and positive ions are attracted to the cathode 3b side, and an electric double layer similar to a capacitor of an electric circuit is formed. FIG. 12 is a schematic diagram depicting an electric double layer as an image. The structure of the electric double layer is actually extremely complicated, and it is difficult to say that the actual situation has been clarified academically, but its existence has been proven for a long time. It is based on the existence of multiple layers.
Further, in step 3, in the lower stage than it is given by and the voltage (potential difference) is saturated electric double layer formed voltage E D between the two electrodes, positive charge of the anode 3a surface attracts negative ions of the electrolytic solution 4 in the vicinity However, both have not yet joined. Similarly, even in the cathode 3b, the negative surface charge attracts positive ions, but the electric field strength (number of lines of electric force) is still insufficient to combine the two. Binding of the surface charge of the electrodes and the electrolytic solution 4 ions, i.e. to initiate the electrode reaction must exceed the saturation electric double layer formed voltage E D by increasing the voltage subsequently applied to between the electrodes. Saturated electric double layer formed voltage E electric double layer at the interface in D reaches saturation, electrostatic field strength at the interface (the number of electric lines of force) becomes maximal. In other words, the surface charge density of the electrode reaches saturation. If a further DC power supply voltage is applied to increase the charge beyond this saturated surface charge density, the excess charge will eventually bind to the ions. This is a so-called electrode reaction, in which molecules and neutral simple substances are deposited on the electrode. If the electrode reaction is represented by water electrolysis as an example, the anode 3a:
OH = (1/2) O 2 + H + + 2e (1)
Oxidation reaction takes place at the cathode 3b:
2H + + 2e = H 2 (2)
This is a reduction reaction.
As described above, the electrode reaction is based on the presence of the saturated electric double layer at the bipolar electrode interface. For this reason, the minimum saturated electric double layer forming voltage E D necessary for the electrode reaction is applied between the two electrodes by the DC power source 1. In both cases, an overvoltage ΔE necessary for driving the electrode reaction must be added at the same time. That is:
E E = (E D + ΔE) (3)
Is called the electrolysis voltage E E, and corresponds to a potential difference applied between the anode 3a and the cathode 3b when the electrolysis reaction is performed.
Saturated electric double layer is formed at the interface of the electrode by the addition of saturated electric double layer formed voltage E D between the anode 3a and the cathode 3b, have been stably maintained as long as over voltage, electrostatic Therefore, no current flows in the circuit. Therefore, once the saturated electric double layer is set, the DC power supply 1 does not consume power. However, since it disappears when the voltage is lowered, in order to actually cause the electrode reaction, the sum of the saturated electric double layer formation voltage E D and the overvoltage ΔE, that is, the electrolysis voltage E E as the output voltage of the DC power source 1 is set. It is essential to add. Therefore, when this is done with one DC power supply 1, when an overvoltage ΔE is added to the saturated electric double layer forming voltage E D as shown in FIG. 14, I (A) flows as a current value for electrolysis into the circuit. The power consumption P 1 of the DC power supply 1 is:
P 1 = (E D + ΔE ) I ····· (4)
It becomes.

本発明の第1の態様は、(イ)電解液中に挿入され、電解液中の負イオンを介して酸化反応を行う駆動陽極と、(ロ)この駆動陽極と直接対向し、且つ互いに平行に電解液中に挿入され、電解液中の正イオンを介して還元反応を行う駆動陰極と、(ハ)駆動陽極から駆動陰極に向かう駆動電気力線と同一方向の誘導電気力線を駆動電気力線に重畳する誘導電気力線生成手段とを備える電気分解システムであることを要旨とする。そしてこの電気分解システムでは、駆動電気力線と誘導電気力線との重畳による駆動陽極と駆動陰極の間に生じる電位差により、酸化反応及び還元反応を開始させることを特徴とする。   The first aspect of the present invention includes (a) a drive anode that is inserted into the electrolyte and performs an oxidation reaction via negative ions in the electrolyte, and (b) is directly opposite to the drive anode and is parallel to each other. And (c) driving electric field lines in the same direction as the driving electric field lines directed from the driving anode to the driving cathode. The gist of the present invention is an electrolysis system including induction electric field lines generating means for superimposing the field lines. The electrolysis system is characterized in that the oxidation reaction and the reduction reaction are started by a potential difference generated between the drive anode and the drive cathode due to the superposition of the drive electric field lines and the induction electric field lines.

本発明の第1の態様は、式(3)で示したように、電解電圧EEを飽和電気二重層形成電圧EDと過電圧ΔEとに分離し、両者を独立した閉回路として駆動・制御する2電源電気分解のシステムである。2電源により分離した2つの閉回路を構成し、分離した2つの閉回路より駆動電気力線と誘導電気力線とを重畳(代数和)することにより、電解電圧EEを達成している。後述するように、一方の電源で駆動される駆動陽極と駆動陰極との間で電気分解が起こっているときは、誘導電気力線生成手段を構成する誘導陽極と駆動陽極との間、及び駆動陰極と誘導電気力線生成手段を構成する誘導陰極との間では理論的のみならず実際的にも電気分解は起こり得ない。したがって、2電源を構成する他方の電源により駆動される誘導電気力線生成手段で消費される電力を0とすることができるので、その消費電力は、従来技術に係る1電源電気分解に比して、大きく削減できる。本発明の第1の態様において適用する過電圧ΔEを小さくすればするほど2電源電気分解の消費電力は従来技術に係る1電源電気分解に比して、大きく削減できる。 A first aspect of the present invention, as shown in equation (3), the electrolysis voltage E E separated into a saturated electric double layer formed voltage E D and overvoltage Delta] E, independent drive-controlled as a closed circuit both This is a dual power supply electrolysis system. The two closed circuits separated by the two power sources are constituted, and the electrolysis voltage EE is achieved by superimposing (algebraic sum) the driving electric field lines and the induction electric field lines from the two separated closed circuits. As will be described later, when electrolysis occurs between the drive anode and the drive cathode driven by one power source, between the induction anode and the drive anode constituting the induction electric field line generating means, and the drive Electrolysis cannot occur theoretically as well as practically between the cathode and the induction cathode constituting the induction electric field line generating means. Therefore, since the electric power consumed by the induction electric field lines generating means driven by the other power source constituting the two power sources can be reduced to zero, the power consumption is smaller than that of the one power source electrolysis according to the prior art. Can be greatly reduced. As the overvoltage ΔE applied in the first aspect of the present invention is reduced, the power consumption of the two-source electrolysis can be greatly reduced as compared with the one-source electrolysis according to the prior art.

本発明の第2の態様は、(イ)電解液中に挿入され、電解液中の負イオンを介して酸化反応を行う駆動陽極と、(ロ)この駆動陽極と直接対向し、且つ互いに平行に電解液中に挿入され、電解液中の正イオンを介して還元反応を行う駆動陰極と、(ハ)駆動陽極から駆動陰極に向かう駆動電気力線と同一方向の誘導電気力線を駆動電気力線に重畳する誘導電気力線生成手段とを備える電気分解ユニットを複数備える電気分解システムであることを要旨とする。そしてこの電気分解システムのそれぞれの電気分解ユニットにおいて、駆動電気力線と誘導電気力線との重畳による駆動陽極と駆動陰極の間に生じる電位差により、酸化反応及び還元反応を駆動し、且つ、それぞれの電気分解ユニットの駆動陽極と駆動陰極とからなる駆動電極ペアが、互いに電気的に直列に接続されていることを特徴とする。   The second aspect of the present invention includes (a) a drive anode inserted in the electrolyte solution and performing an oxidation reaction via negative ions in the electrolyte solution, and (b) directly facing the drive anode and parallel to each other. And (c) driving electric field lines in the same direction as the driving electric field lines directed from the driving anode to the driving cathode. The gist of the present invention is an electrolysis system including a plurality of electrolysis units each including an inductive electric field line generating unit that is superimposed on a field line. And in each electrolysis unit of this electrolysis system, the oxidation reaction and the reduction reaction are driven by the potential difference generated between the drive anode and the drive cathode due to the superposition of the drive electric field lines and the induction electric field lines, and A drive electrode pair composed of a drive anode and a drive cathode of the electrolysis unit is electrically connected in series with each other.

本発明の第2の態様は、本発明の第1の態様で説明した電気分解システムを電気分解ユニットを複数個多段接続した電気分解システムに対応し、本発明の第1の態様の説明と同様に、消費電力を従来技術に係る1電源電気分解に比して、大きく削減させることができる。   The second aspect of the present invention corresponds to an electrolysis system in which a plurality of electrolysis units are connected to the electrolysis system described in the first aspect of the present invention, and is similar to the description of the first aspect of the present invention. In addition, the power consumption can be greatly reduced as compared with the single power source electrolysis according to the prior art.

本発明の第3の態様は、(イ)電解液中に挿入され、電解液中の負イオンを介して酸化反応を行う駆動陽極、この駆動陽極と直接対向し、且つ互いに平行に電解液中に挿入され、電解液中の正イオンを介して還元反応を行う駆動陰極からなる駆動電極ペアを複数、電気的に直列接続した多段駆動電極構造と、(ロ)それぞれの駆動電極ペアにおいて、駆動陽極から駆動陰極に向かう駆動電気力線と同一方向の誘導電気力線を駆動電気力線に重畳する誘導電気力線生成手段とを備える電気分解システムであることを要旨とする。そしてこの電気分解システムでは、それぞれの駆動電極ペアにおいて、駆動電気力線と誘導電気力線との重畳による駆動陽極と駆動陰極の間に生じる電位差により、酸化反応及び還元反応を開始させることを特徴とする。   The third aspect of the present invention is: (a) a drive anode that is inserted into the electrolyte solution and performs an oxidation reaction via negative ions in the electrolyte solution, directly facing the drive anode and parallel to each other in the electrolyte solution A multi-stage drive electrode structure in which a plurality of drive electrode pairs consisting of drive cathodes inserted into the electrolyte and performing a reduction reaction via positive ions in the electrolyte are electrically connected in series, and (b) drive in each drive electrode pair The gist of the present invention is an electrolysis system comprising induction electric field lines generating means for superimposing driving electric field lines in the same direction as the driving electric field lines directed from the anode to the driving cathode. In this electrolysis system, in each drive electrode pair, the oxidation reaction and the reduction reaction are started by the potential difference generated between the drive anode and the drive cathode due to the superposition of the drive electric force lines and the induction electric force lines. And

本発明の第3の態様は、本発明の第2の態様と同様に、本発明の第1の態様で説明した電気分解システムを電気分解ユニットを複数個多段接続した電気分解システムに対応し、消費電力を従来技術に係る1電源電気分解に比して、大きく削減させることができる。   The third aspect of the present invention corresponds to an electrolysis system in which a plurality of electrolysis units are connected to the electrolysis system described in the first aspect of the present invention, as in the second aspect of the present invention. The power consumption can be greatly reduced as compared with the single power source electrolysis according to the prior art.

本発明によれば、従来技術に係る電気分解に比して、その消費電力を大きく削減できる新たな構成と新たな原理に基づく電気分解システムを提供することができる。   According to the present invention, it is possible to provide an electrolysis system based on a new configuration and a new principle capable of greatly reducing the power consumption compared to the electrolysis according to the prior art.

次に、図面を参照して、本発明の第1〜第3の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。但し、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。又、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。又、以下に示す第1〜第3の実施の形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記のものに特定するものでない。本発明の技術的思想は、特許請求の範囲に記載された技術的範囲内において、種々の変更を加えることができる。   Next, first to third embodiments of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic, and the relationship between the thickness and the planar dimensions, the ratio of the thickness of each layer, and the like are different from the actual ones. Therefore, specific thicknesses and dimensions should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings. The first to third embodiments described below exemplify apparatuses and methods for embodying the technical idea of the present invention, and the technical idea of the present invention is The material, shape, structure, arrangement, etc. are not specified below. The technical idea of the present invention can be variously modified within the technical scope described in the claims.

(第1の実施の形態)
本発明の第1の実施の形態に係る電気分解システムは、図1の概念図に示すように、電解液4中に挿入され、電解液4中の負イオンを介して酸化反応を行う駆動陽極21と、この駆動陽極21と直接対向し、且つ互いに平行に電解液4中に挿入され、電解液4中の正イオンを介して還元反応を行う駆動陰極22と、駆動陽極21から駆動陰極22に向かう駆動電気力線と同一方向の誘導電気力線を駆動電気力線に重畳する誘導電気力線生成手段(11,12)とを備える。ここで、誘導電気力線生成手段(11,12)は、駆動陽極21と駆動陰極22とからなる駆動電極ペアを挟み、平行に対向して電解液4中に挿入される誘導陽極11及び誘導陰極12を備える。図1では、原理の説明の便宜上、誘導陽極11,誘導陰極12,駆動陽極21及び駆動陰極22は、電解液4を収納する電解槽6中に等間隔に設置しているが、等間隔に設置された配置に限定されるものではない。電解槽6はプラスチックやセラミック等の絶縁体で構成されている。
(First embodiment)
As shown in the conceptual diagram of FIG. 1, the electrolysis system according to the first embodiment of the present invention is a drive anode that is inserted into an electrolyte solution 4 and performs an oxidation reaction via negative ions in the electrolyte solution 4. 21, a driving cathode 22 that is directly opposed to the driving anode 21 and is inserted into the electrolyte solution 4 in parallel with each other, and performs a reduction reaction via positive ions in the electrolyte solution 4, and the driving anode 21 to the driving cathode 22. Inductive electric force line generating means (11, 12) for superimposing the induced electric force lines in the same direction as the driving electric force lines toward the driving electric force lines. Here, the induction electric force line generating means (11, 12) sandwiches the drive electrode pair composed of the drive anode 21 and the drive cathode 22, and the induction anode 11 and the induction inserted into the electrolytic solution 4 facing each other in parallel. A cathode 12 is provided. In FIG. 1, for convenience of explanation of the principle, the induction anode 11, the induction cathode 12, the drive anode 21, and the drive cathode 22 are installed at regular intervals in the electrolytic cell 6 that stores the electrolytic solution 4. It is not limited to the installed arrangement. The electrolytic cell 6 is made of an insulator such as plastic or ceramic.

第1の実施の形態に係る電気分解システムにおいては、駆動電気力線と誘導電気力線との重畳による駆動陽極21と駆動陰極22の間に生じる電位差により、駆動陽極21における酸化反応及び駆動陰極22における還元反応を開始させ、更にこれらの酸化反応及び還元反応を必要時間維持する。このため、誘導陽極11にプラスの端子を接続し、誘導陰極12にマイナスの端子を接続し、誘導陽極11と誘導陰極12との間に誘導電気力線を生じさせ、駆動陽極21と駆動陰極22との間に、飽和電気二重層形成電圧を生じさせる第1直流電源PS1と、駆動陽極21にプラスの端子を接続し、駆動陰極22にマイナスの端子を接続し、飽和電気二重層が誘導された状態で、駆動陽極21と駆動陰極22の間に過電圧分の電位差を増加させる、第1直流電源PS1とは独立した第2直流電源PS2とを更に備える。   In the electrolysis system according to the first embodiment, the oxidation reaction and the driving cathode in the driving anode 21 are caused by the potential difference generated between the driving anode 21 and the driving cathode 22 due to the superposition of the driving electric field lines and the induction electric field lines. The reduction reaction at 22 is started, and these oxidation reaction and reduction reaction are maintained for a necessary time. Therefore, a positive terminal is connected to the induction anode 11, a negative terminal is connected to the induction cathode 12, an induction electric field line is generated between the induction anode 11 and the induction cathode 12, and the drive anode 21 and the drive cathode are connected. The first DC power source PS1 that generates a saturated electric double layer forming voltage and the positive terminal connected to the drive anode 21, the negative terminal connected to the drive cathode 22, and the saturated electric double layer induced In this state, a second DC power supply PS2 that is independent of the first DC power supply PS1 and increases the potential difference corresponding to the overvoltage between the drive anode 21 and the drive cathode 22 is further provided.

即ち、第1の実施の形態に係る電気分解システムでは、図1に示すように、電極界面に飽和電気二重層を誘導する第1直流電源PS1と電気分解反応を開始させる第2直流電源PS2の2つの直流電源PS1,PS2に分離された構造に特徴がある。図1において中央で対向する駆動陽極21と駆動陰極22は、実際に電極反応が起こる電極となり、電気分解は駆動陽極21と駆動陰極22との間のチャンネルで行われる。   That is, in the electrolysis system according to the first embodiment, as shown in FIG. 1, the first DC power source PS1 that induces a saturated electric double layer at the electrode interface and the second DC power source PS2 that starts an electrolysis reaction are provided. The structure is divided into two DC power sources PS1 and PS2. In FIG. 1, the driving anode 21 and the driving cathode 22 facing each other at the center are electrodes in which an electrode reaction actually occurs, and electrolysis is performed in a channel between the driving anode 21 and the driving cathode 22.

駆動陽極21と駆動陰極22からなる駆動電極ペアの外側に位置する誘導陽極11と誘導陰極12は、中央の駆動陽極21と駆動陰極22の間に飽和電気二重層形成電圧Eに相当する電位差を与え、それによって飽和電気二重層を誘導し安定化させるための誘導電気力線生成手段(11,12)である。誘導陽極11と駆動陽極21との間の極間距離、及び誘導陰極12と駆動陰極22の間の極間距離は、それぞれ、その間隙に電解液4が浸入し得、且つ両者が短絡する恐れが無い限り接近させることができる。 Induction anode 11 and the induction cathode 12 located on the outer side of the driving electrode pairs consisting of the drive anode 21 and drive the cathode 22 corresponds to the saturation electric double layer formed voltage E D between the center of the drive anode 21 and the driving cathode 22 potential And thereby induced electric field lines generating means (11, 12) for inducing and stabilizing the saturated electric double layer. The inter-electrode distance between the induction anode 11 and the drive anode 21 and the inter-electrode distance between the induction cathode 12 and the drive cathode 22 may cause the electrolyte 4 to enter the gap, and the two may be short-circuited. As long as there is no, it can be approached.

誘導陽極11と誘導陰極12は、電極界面飽和電気二重層を誘導する第1直流電源PS1に接続されており、駆動陽極21と駆動陰極22は、電気分解反応を開始させる第2直流電源PS2に、接続されているが、それぞれの回路は電解液4を介して相互に非接触である。   The induction anode 11 and the induction cathode 12 are connected to a first DC power source PS1 that induces an electrode interface saturated electric double layer, and the drive anode 21 and the drive cathode 22 are connected to a second DC power source PS2 that starts an electrolysis reaction. Are connected, but the respective circuits are not in contact with each other via the electrolytic solution 4.

本発明の第1の実施の形態に係る電気分解システムにおける電気分解の作動原理は以下のように要約される:
(ステップ1)分解せんとする化合物を水又は溶融塩中に溶解して正負のイオンに解離し、これを電解液4とする。
The principle of operation of electrolysis in the electrolysis system according to the first embodiment of the present invention is summarized as follows:
(Step 1) A compound to be decomposed is dissolved in water or a molten salt and dissociated into positive and negative ions.

(ステップ2)2対の平板形状の導電体を垂直もしくは水平に対向して電解液4の中に浸漬する。外側に位置する誘導陽極11を第1直流電源PS1のプラス出力端子に、外側に位置する誘導陰極12を第1直流電源PS1をマイナス出力端子に導線で接続する。次に、中央に位置する駆動陽極21と駆動陰極22のうち、誘導陽極11に隣接する駆動陽極21を第2直流電源PS2のプラス出力端子に導線で接続し、誘導陰極12に隣接する駆動陰極22を、第2直流電源PS2のマイナス出力端子に導線で接続する。   (Step 2) Two pairs of flat conductors are immersed in the electrolytic solution 4 so as to face each other vertically or horizontally. The induction anode 11 located outside is connected to the plus output terminal of the first DC power source PS1, and the induction cathode 12 located outside is connected to the first DC power source PS1 via the lead wire. Next, of the drive anode 21 and the drive cathode 22 located at the center, the drive anode 21 adjacent to the induction anode 11 is connected to the plus output terminal of the second DC power supply PS2 by a conductor, and the drive cathode adjacent to the induction cathode 12 is connected. 22 is connected to the minus output terminal of the second DC power supply PS2 with a conductive wire.

(ステップ3) 図2(a)において、第2直流電源PS2の出力電圧を0に保ったまま、第1直流電源PS1の出力電圧を0から立ち上げ、誘導陽極11と誘導陰極12の間の誘導電気力線の本数(電界強度)を増加し、誘導陽極11と誘導陰極12の間の電位差を増加していくと、誘導陽極11と駆動陽極21との間,駆動陽極21と駆動陰極22との間,誘導陰極12と駆動陰極22との間のそれぞれの電位差も自動的に増加する。誘導陽極11,誘導陰極12,駆動陽極21及び駆動陰極22は等間隔に設置されているので、図2(b)の各電極の電位プロファイルが示すように、これらの電位差は飽和電気二重層形成電圧Eに相当する電位差で等しくなる。このとき誘導陽極11と誘導陰極12との間の電位差は3Eの値を示している。このようにして、対向する駆動陽極21と駆動陰極22が仕切るチャンネルに、電気分解反応が起こるための必要条件である飽和電気二重層が形成されたことになる。 (Step 3) In FIG. 2A, while maintaining the output voltage of the second DC power supply PS2 at 0, the output voltage of the first DC power supply PS1 is raised from 0, and between the induction anode 11 and the induction cathode 12 When the number of induction electric lines of force (electric field strength) is increased and the potential difference between the induction anode 11 and the induction cathode 12 is increased, the drive anode 21 and the drive cathode 22 are interposed between the induction anode 11 and the drive anode 21. , The potential difference between the induction cathode 12 and the drive cathode 22 automatically increases. Since the induction anode 11, the induction cathode 12, the drive anode 21 and the drive cathode 22 are arranged at equal intervals, as shown in the potential profile of each electrode in FIG. equal in potential difference corresponding to the voltage E D. The potential difference between the induction cathode 12 and the induction anode 11 at this time indicates a value of 3E D. In this way, a saturated electric double layer, which is a necessary condition for causing an electrolysis reaction, is formed in a channel partitioned by the opposed drive anode 21 and drive cathode 22.

(ステップ4) 次に、第1直流電源PS1の出力はステップ3の電圧そのままにして、第2直流電源PS2の出力電圧を0から加えていき、駆動陽極21と駆動陰極22との間の駆動電気力線の本数を増加すると、誘導電気力線と同一方向の駆動電気力線が誘導電気力線線に重畳され、図2(c)に示すように駆動陽極21と駆動陰極22の間の電位差は飽和電気二重層形成電圧Eを越えて過電圧ΔEが加わったことになり、駆動陽極21と駆動陰極22の間に電極反応が開始する。逆に、誘導陽極11と駆動陽極21との間及び誘導陰極12と駆動陰極22の間の電位差は飽和電気二重層形成電圧Eよりも低下していくために電気分解反応は起こり得ず、第2直流電源PS2の回路のみに電気分解電流が流れ始める。即ち、駆動陽極21の表面に近接する電解液4の中の負イオンが電子を駆動陽極21へ放出して分子又は単体を析出し、駆動陰極22の表面では正イオンが駆動陰極22から電子を受け取って分子又は単体として析出する。 (Step 4) Next, the output of the first DC power supply PS1 is left as it is in Step 3, and the output voltage of the second DC power supply PS2 is added from 0 to drive between the drive anode 21 and the drive cathode 22. When the number of electric lines of force is increased, driving electric lines of force in the same direction as the induced electric lines of force are superimposed on the induced electric lines of force, and as shown in FIG. 2C, between the driving anode 21 and the driving cathode 22 potential difference will be applied excess voltage ΔE over the saturated electric double layer formed voltage E D, the electrode reaction is initiated between the driving anode 21 and drive the cathode 22. Conversely, the potential difference between the between and induction cathode 12 and the driving cathode 22 and the induction anode 11 and the drive anode 21 is electrolysis reaction is not occur because going lower than the saturated electric double layer formed voltage E D, The electrolysis current starts to flow only in the circuit of the second DC power supply PS2. That is, negative ions in the electrolyte solution 4 adjacent to the surface of the drive anode 21 emit electrons to the drive anode 21 to precipitate molecules or simple substances, and positive ions from the drive cathode 22 cause electrons to be emitted from the surface of the drive cathode 22. It is received and precipitated as a molecule or simple substance.

以上のように、第1の実施の形態に係る電気分解システムでは誘導電気力線により、駆動陽極21の表面の負イオンと駆動陰極22の表面の正イオンとからなる電気二重層を、酸化反応及び還元反応が開始する直前の飽和状態にする飽和電気二重層形成電圧を、駆動陽極21と駆動陰極22との間に生じさせ、駆動電気力線が駆動陽極21と駆動陰極22との間に生じさせる過電圧を、飽和電気二重層形成電圧に重畳することにより、酸化反応及び還元反応を駆動している。   As described above, in the electrolysis system according to the first embodiment, the electric double layer composed of the negative ions on the surface of the drive anode 21 and the positive ions on the surface of the drive cathode 22 is oxidized by the induced electric field lines. And a saturated electric double layer forming voltage to be saturated immediately before the start of the reduction reaction is generated between the drive anode 21 and the drive cathode 22, and the drive electric lines of force are generated between the drive anode 21 and the drive cathode 22. The oxidation reaction and the reduction reaction are driven by superimposing the generated overvoltage on the saturation electric double layer formation voltage.

第1の実施の形態に係る電気分解システムにおいては、電極界面での電気二重層の形成は、クーロン力の働く静電界による仕事であるため、それを維持するため誘導電気力線を形成していれば良く、回路に電流を流すことを要しない。したがって、この仕事を受け持つ第1直流電源PS1は電力を消費しない。一方、出力として電気分解反応の駆動力を受け持つ第2直流電源PS2は、駆動電気力線により過電圧ΔEを与え電気分解電流が流れるので電力を消費する。この場合の電力値は:
2 = I ΔE ・・・・・(5)
で表される。
In the electrolysis system according to the first embodiment, since the formation of the electric double layer at the electrode interface is a work due to an electrostatic field in which the Coulomb force acts, inductive electric lines of force are formed to maintain it. There is no need to pass a current through the circuit. Therefore, the first DC power supply PS1 responsible for this work does not consume power. On the other hand, the second DC power source PS2, which takes the driving force of the electrolysis reaction as an output, consumes electric power because an electrolysis current flows by applying an overvoltage ΔE by the driving electric force line. In this case, the power value is:
P 2 = I ΔE (5)
It is represented by

第1の実施の形態に係る電気分解システムにおける2電源電気分解で消費する電力P2を、電気分解反応にとって本質的な飽和電気二重層形成電圧E D 及び過電圧ΔEを用いて、従来の1電源電気分解に対する(4)式で示されるP1との比率で比較すると、同じ電気分解電流値に対して:
2 /P1 = ΔE / (E + ΔE) ・・・・・(6)
と書ける。飽和電気二重層形成電圧Eの値が大きい場合、過電圧ΔEを小さくすれば2電源電気分解による消費電力低減の効果は格段に顕著になる。
A conventional single power supply is used by using the electric power P 2 consumed by the two-power supply electrolysis in the electrolysis system according to the first embodiment, using a saturated electric double layer forming voltage E D and an overvoltage ΔE essential for the electrolysis reaction. Comparing with the ratio of P 1 shown in equation (4) for electrolysis, for the same electrolysis current value:
P 2 / P 1 = ΔE / (E D + ΔE) ····· (6)
Can be written. If the value of the saturation electric double layer formed voltage E D is large, reduce the power consumption by the second power supply electrolysis by reducing the overvoltage ΔE becomes remarkably noticeable.

一般に電気分解は、分解しようとする化合物を水溶液もしくは溶融塩の形態の電解液4の中でイオンに解離させ、電解液4の中に浸漬した導電性の陽極と陰極の間に電位差を与えて単体又は分子として析出させる電気化学操作である。   Generally, in electrolysis, a compound to be decomposed is dissociated into ions in an electrolytic solution 4 in the form of an aqueous solution or a molten salt, and a potential difference is applied between a conductive anode and a cathode immersed in the electrolytic solution 4. It is an electrochemical operation that deposits as a simple substance or as a molecule.

本発明は、電気分解を司る駆動陽極21と駆動陰極22のそれぞれの背面に対向するように、誘導陽極11と誘導陰極12を配置し、電気分解反応の駆動用の第2直流電源PS2とは別の、第1直流電源PS1を用いて誘導陽極11と誘導陰極12に電位差を与え、電解液4を介して化合物の電解電圧EEを駆動陽極21と駆動陰極22の間に誘導する新しい電気分解の形態である。 In the present invention, the induction anode 11 and the induction cathode 12 are arranged so as to be opposed to the back surfaces of the drive anode 21 and the drive cathode 22 that are responsible for electrolysis, and the second DC power source PS2 for driving the electrolysis reaction is A new electric power that induces an electrolysis voltage E E of the compound between the drive anode 21 and the drive cathode 22 through the electrolytic solution 4 by applying a potential difference between the induction anode 11 and the induction cathode 12 using another first DC power source PS1. It is a form of decomposition.

電気分解を司る駆動陽極21と駆動陰極22に対する誘導陽極11と誘導陰極12の形状及び幾何学的配置は主として気体、液体、固体の析出物形態、それらの電解液4に対する比重並びに導電性等によって決定されるべきものである。例えば、水素製造の水電気分解やマグネシウム電気分解の場合は、析出物は水電気分解が気体分子、マグネシウム電気分解が気体と液体であるが、いずれも電解液4より軽いために析出と同時に気体は気泡、液体は液滴となって電極面から離れ、電解液4の中を上昇する。このような析出物の挙動を示す電気分解においては、誘導陽極11,誘導陰極12,駆動陽極21及び駆動陰極22は平板状をなし、電解液4の中に垂直・平行に浸漬されることが望ましい。   The shape and geometric arrangement of the induction anode 11 and the induction cathode 12 with respect to the drive anode 21 and the drive cathode 22 that control the electrolysis mainly depend on the form of deposits of gas, liquid and solid, their specific gravity with respect to the electrolyte solution 4 and conductivity. To be determined. For example, in the case of water electrolysis or magnesium electrolysis for hydrogen production, the deposits are gas molecules for water electrolysis and gases and liquids for magnesium electrolysis. Is a bubble, and the liquid is a droplet that leaves the electrode surface and rises in the electrolyte 4. In the electrolysis showing the behavior of such precipitates, the induction anode 11, the induction cathode 12, the drive anode 21 and the drive cathode 22 have a flat plate shape and may be immersed vertically and in parallel in the electrolytic solution 4. desirable.

<2電源電気分解の実証>
図3及び図4を用いて、第1の実施の形態に係る電気分解システムにおいて、2電源電気分解が原理の通り作動していることを実証する。このため、図3に示す回路構成において、第1直流電源PS1による誘導電気力線により、駆動陽極21と駆動陰極22の間に飽和電気二重層形成電圧E=1.80Vを与え、その上に電気分解反応駆動用の第2直流電源PS2を用いて駆動電気力線に重畳し、これにより過電圧ΔEを加え駆動陽極21と駆動陰極22との間の電位差と電気分解電流を測定したとき、図4に示すように、1電源電気分解の電圧―電流曲線と一致することを説明する。
図3は、図1に示した第1の実施の形態に係る電気分解システムの概念図に対応するが、図4に示す電圧―電流曲線を得るため、より具体的に、スイッチS、直流電流計71、72及び直流電圧計82、83,84を付加した回路構成を説明するための、略図である。誘導陽極11,駆動陽極21,駆動陰極22及び誘導陰極12の4つの板状電極は電解液4への浸漬表面積が等しく7.5cm2であり、相互に垂直・平行に配置されている。したがって、電解液4は3等分に仕切られており、誘導陽極11,駆動陽極21,駆動陰極22及び誘導陰極12の各電極からの電気力線の漏洩を防止するため、各部屋間の流通はいささかも無いように、電極板の周辺は絶縁体で完全にシールされている。即ち、図3(b)に示すように、矩形で、平板状の誘導陽極11,駆動陽極21,駆動陰極22及び誘導陰極12のそれぞれが、電解液4を収納する電解槽6の底面及び対向する2つの側壁に接し、これにより、電解液4の一部を密閉して収納する3つの容器に分離されている(図3(b)では、駆動陽極21について例示しているが、誘導陽極11,駆動陰極22及び駆動陽極21についても同様であることは勿論である。)。
<Demonstration of dual power source electrolysis>
Using FIG. 3 and FIG. 4, it is demonstrated that the two-source electrolysis is operating according to the principle in the electrolysis system according to the first embodiment. For this reason, in the circuit configuration shown in FIG. 3, a saturated electric double layer formation voltage E D = 1.80 V is applied between the drive anode 21 and the drive cathode 22 by the induced electric field lines generated by the first DC power supply PS1, When the potential difference and the electrolysis current between the drive anode 21 and the drive cathode 22 are measured by applying an overvoltage ΔE using the second DC power source PS2 for electrolysis reaction driving, As shown in FIG. 4, it will be explained that the voltage-current curve of one power source electrolysis is consistent.
FIG. 3 corresponds to the conceptual diagram of the electrolysis system according to the first embodiment shown in FIG. 1, but in order to obtain the voltage-current curve shown in FIG. It is the schematic for demonstrating the circuit structure which added the total 71,72 and the direct-current voltmeters 82,83,84. The four plate-like electrodes of the induction anode 11, the drive anode 21, the drive cathode 22 and the induction cathode 12 have an equal immersion surface area of 7.5 cm 2 in the electrolytic solution 4, and are arranged vertically and parallel to each other. Therefore, the electrolyte solution 4 is divided into three equal parts, and the flow between the rooms is prevented in order to prevent leakage of electric lines of force from the electrodes of the induction anode 11, the drive anode 21, the drive cathode 22, and the induction cathode 12. In no way, the periphery of the electrode plate is completely sealed with an insulator. That is, as shown in FIG. 3B, each of the rectangular and flat induction anode 11, drive anode 21, drive cathode 22, and induction cathode 12 is opposed to the bottom surface of the electrolytic cell 6 that stores the electrolytic solution 4. Are separated into three containers for sealing and storing a part of the electrolyte solution 4 (in FIG. 3B, the drive anode 21 is illustrated, but the induction anode 11. Of course, the same applies to the drive cathode 22 and the drive anode 21.)

図3に示すように、本発明の第1の実施の形態に係る電気分解システムは2つの電気回路からなっている。第1電源回路 は、第1直流電源PS1のプラス端子―直流電流計71―誘導陽極11―電解液4―駆動陽極21―電解液4―駆動陰極22−電解液4―誘導陰極12―スイッチS―第1直流電源PS1のマイナス端子の経路をなしている。一方、第2電源回路は、第2直流電源PS2のプラス端子―直流電流計72―駆動陽極21―電解液4―駆動陰極22―第2直流電源PS2のマイナス端子のサイクルをなしている。又、
誘導陽極11と駆動陽極21との間の電位差を直流電圧計82により、駆動陽極21と駆動陰極22との間の電位差を直流電圧計83により、駆動陰極22と誘導陰極12との間の電位差を直流電圧計84により測定する。電解液4は、温度25Cの10%NaOH水溶液であり、それに浸漬する誘導陽極11,駆動陽極21,駆動陰極22及び誘導陰極12は酸化防止のためニッケル(Ni)めっき鋼板を用いる。
(イ)図3に示す回路構成において、まず、スイッチSを開放して第2電源回路のみで駆動陽極21と駆動陰極22の間で通常の1電源電気分解を行い、駆動陽極21−駆動陰極22間の電位差EJと回路電流I2との関係を測定する。測定結果の1例を、白抜きの丸印で図4に示す通り、典型的な1電源電気分解の挙動が認められ、電気分解条件下で水の飽和電気二重層形成電圧Eは、1.80Vを示した。25Cにおける水の理論電解電圧Etheory=1.23Vに対して実際に電気分解反応はかなり高い電圧で起こっていることが分かる。飽和電気二重層形成電圧E以上の電位差でほぼ直線で表される領域が実際の定常状態での1電源電気分解の条件である。図4に示す電圧―電流曲線の勾配の逆数は抵抗である。この抵抗は、1電源電気分解では、ほぼ電極界面での電気二重層による抵抗(分極抵抗)と電解液4抵抗の和である。
As shown in FIG. 3, the electrolysis system according to the first embodiment of the present invention includes two electric circuits. The first power supply circuit includes a positive terminal of the first DC power supply PS1, a DC ammeter 71, an induction anode 11, an electrolyte solution 4, a driving anode 21, an electrolyte solution 4, a driving cathode 22, an electrolyte solution 4, an induction cathode 12, and a switch S. -It is the path of the negative terminal of the first DC power supply PS1. On the other hand, the second power supply circuit has a cycle of a plus terminal of the second DC power supply PS2, a DC ammeter 72, a drive anode 21, an electrolyte solution 4, a drive cathode 22, and a minus terminal of the second DC power supply PS2. or,
The potential difference between the induction anode 11 and the drive anode 21 is measured by a DC voltmeter 82, the potential difference between the drive anode 21 and the drive cathode 22 is converted by a DC voltmeter 83, and the potential difference between the drive cathode 22 and the induction cathode 12 is converted by a DC voltage. Measured with a pressure gauge 84. The electrolytic solution 4 is a 10% NaOH aqueous solution having a temperature of 25 ° C., and the induction anode 11, the drive anode 21, the drive cathode 22 and the induction cathode 12 immersed therein are made of nickel (Ni) -plated steel plates for preventing oxidation.
(A) In the circuit configuration shown in FIG. 3, first, the switch S is opened, and the normal one-power supply electrolysis is performed between the drive anode 21 and the drive cathode 22 only by the second power supply circuit. The relationship between the potential difference E J between 22 and the circuit current I 2 is measured. As shown in FIG. 4 with an open circle, an example of the measurement result shows a typical single power source electrolysis behavior. Under the electrolysis conditions, the saturated electric double layer formation voltage E D of water is 1 .80V was shown. It can be seen that the electrolysis reaction actually takes place at a fairly high voltage for the theoretical electrolysis voltage E theory = 1.23 V of water at 25 ° C. Region represented by substantially linear saturated electric double layer formed voltage E D above potential difference is 1 power electrolysis conditions in the actual steady state. The reciprocal of the slope of the voltage-current curve shown in FIG. 4 is resistance. This resistance is approximately the sum of the resistance due to the electric double layer at the electrode interface (polarization resistance) and the resistance of the electrolyte solution 4 in one power source electrolysis.

(ロ)次に、図3における第1電源回路のスイッチSを閉じ、第2直流電源PS2の出力電圧を0にしたまま第1直流電源PS1を昇圧し、駆動陽極21と駆動陰極22との間の電位差が丁度1.80Vになる電圧に一旦保持する。又、この間第1電源回路の電流I1及び第2電源回路電流I2は0のままであった。更に、このときの各電極間の電位差を、直流電圧計82、83,84で測定したところ、誘導陽極11と誘導陰極12との間の電位差は5.44Vを、誘導陽極11と駆動陽極21との間は1.83V、駆動陰極22と誘導陰極12との間は1.80Vを示し、原理通りの電圧値であった。 (B) Next, the switch S of the first power supply circuit in FIG. 3 is closed, the first DC power supply PS1 is boosted while the output voltage of the second DC power supply PS2 is kept at 0, and the drive anode 21 and the drive cathode 22 The potential difference between them is once held at a voltage of just 1.80V. During this period, the current I 1 and the second power circuit current I 2 of the first power circuit remained 0. Further, when the potential difference between the electrodes at this time was measured with a DC voltmeter 82, 83, 84, the potential difference between the induction anode 11 and the induction cathode 12 was 5.44 V, and the induction anode 11 and the drive anode 21 The voltage value was 1.83 V between the drive cathode 22 and the induction cathode 12, and 1.80 V.

(ハ)次に、第2直流電源PS2を用いて駆動電気力線に重畳し、駆動陽極21と駆動陰極22との間の初期電位差1.80Vの上に新たに電位差を加えて電気分解反応を開始させ、その都度電気分解電流I2を測定すると共に、誘導陽極11と駆動陽極21との間の電位差も測定する。そして、駆動陽極21と駆動陰極22との間の電位差と電気分解電流の関係を、図4に重ねてプロットする。 (C) Next, the second DC power source PS2 is used to superimpose on the driving electric force lines, and an electric potential difference is newly added on the initial potential difference 1.80 V between the driving anode 21 and the driving cathode 22 to perform an electrolysis reaction. The electrolysis current I 2 is measured each time, and the potential difference between the induction anode 11 and the drive anode 21 is also measured. Then, the relationship between the potential difference between the drive anode 21 and the drive cathode 22 and the electrolysis current is plotted superimposed on FIG.

図4から明らかなように、黒塗りの丸印で示した2電源電気分解における電圧―電流の関係は、白抜きの丸印で示した1電源電気分解の電圧―電流の関係と一致している。又、電気分解反応が起こる電圧領域における誘導陽極11と駆動陽極21との間の極間電圧EAは、図5に見られるように駆動陽極21と駆動陰極22との間の極間電圧EJの増加と共に減少するので、駆動陽極21と駆動陰極22との間で電気分解が起こっているときは、誘導陽極11と駆動陽極21との間、及び駆動陰極22と誘導陰極12との間では理論的のみならず実際的にも電気分解は起こり得ず、したがって、第1電源回路の電流I1は0である。以上の測定結果を勘案するならば、第1の実施の形態に係る電気分解システムにおいて、2電源電気分解はその原理に従って機能しているものと見なして差し支えない。 As is clear from FIG. 4, the voltage-current relationship in the two-source electrolysis indicated by the black circle is in agreement with the voltage-current relationship in the one-source electrolysis indicated by the white circle. Yes. Further, the interelectrode voltage E A between the induction anode 11 and the drive anode 21 in the voltage region where the electrolysis reaction occurs is the interelectrode voltage E between the drive anode 21 and the drive cathode 22 as shown in FIG. Since it decreases as J increases, when electrolysis occurs between the drive anode 21 and the drive cathode 22, it is between the induction anode 11 and the drive anode 21, and between the drive cathode 22 and the induction cathode 12. Then, electrolysis cannot occur theoretically as well as practically. Therefore, the current I 1 of the first power supply circuit is zero. If the above measurement results are taken into consideration, in the electrolysis system according to the first embodiment, it can be considered that the two-source electrolysis functions according to the principle.

<2電源電気分解の原理とその消費電力>
第1の実施の形態に係る電気分解システムにおける2電源電気分解の原理とその消費電力を、図6に示す等価回路を用いて以下に説明する。図6は第2電源回路に対する等価回路を描いたものであり、第2直流電源PS2と電気分解部よりなる。第2直流電源PS2はダイオードによる整流回路であるか又はトランジスタによる整流回路であるかは問わない。図ではダイオードで代表している。これらの整流器の特性として、順方向に電流は流れ得るが、逆方向には流れない。電気分解部の構成要素は、図1〜図3に示した駆動陽極21、駆動陰極22及び電解液4であるが、駆動陽極21と駆動陰極22には外部から化合物の飽和電気二重層形成電圧Eに相当する一定の電位差が非接触で与えられているので、電解液との界面に電気二重層が存在する。そのため界面の電気的性質には飽和電気二重層容量CDをもつコンデンサに類似した成分がある。その上に、実際に電極反応が進行している状況の下では、電極反応進行の抵抗となるファラデーインピーダンスZFと呼ばれる成分が存在するので、結局、駆動陽極21,駆動陰極22と電解液4との界面の電気的性質は、飽和電気二重層容量CDをファラデーインピーダンスZFで短絡したモデルが適当であると考えられている。ファラデーインピーダンスZFは更に、界面でのイオンの移動抵抗RSとイオン濃度勾配に基づく容量(電気分解容量)CSからなっている。これらの電気的成分に直列に電解液4自体の抵抗Rsolnが繋がっている。電気分解システムにおけるこれらの電気的性質は電気分解反応速度を律する要因であるが、図4に示したように1電源電気分解と2電源電気分解の電気分解において電圧―電流曲線に違いが無いことから、両者の電気分解そのもののメカニズムは同一であると判断される。
第2直流電源PS2の整流回路は本発明の電気分解プロセスの原理と密接な係わり合いがある。即ち、図6のようにダイオードの順方向が駆動陽極21に直結しているので、誘導陽極11と誘導陰極12との間に飽和電気二重層形成電圧Eの3倍の電位差3Eを与えると、駆動陽極21から駆動陰極22へダイオードを通って電子が流れ込み、図2(b)に示すように駆動陽極21と駆動陰極22との間に飽和電気二重層形成電圧Eに相当する電位差が生じる。もしダイオードの逆方向に接続した場合は、駆動陽極21と駆動陰極22との間に飽和電気二重層形成電圧Eは現れない。
次には、本発明の2電源電気分解が消費する電力を通常の1電源電気分解と比較すると以下のようになる。一般に電気分解で消費される電力は、第1直流電源PS1の電力効率及び第1直流電源PS1から電解槽6までの導線の抵抗、導線と電極との接触抵抗、電極そのものの抵抗などによるジュール熱損失を考慮に入れる必要がある。しかしここでは、電気分解に本質的な要素により消費される電力に限定することにする。
この場合、式(6)が1電源電気分解に対する2電源電気分解の消費電力の比P/Pであり、ここで用いている過電圧ΔEはあくまで、駆動陽極21と駆動陰極22との間に与えられ電気分解反応に寄与している電圧を指している。又、式(6)は、同じ電流値即ち水素の生産速度の比較になっている。表1は本発明の実施の形態の25Cの水電気分解において、飽和電気二重層形成電圧E=1.80Vに対する過電圧ΔEと消費電力比P/P比の理論値である。

Figure 0004562634
<Principle of two-source electrolysis and its power consumption>
The principle of dual power source electrolysis and its power consumption in the electrolysis system according to the first embodiment will be described below using the equivalent circuit shown in FIG. FIG. 6 illustrates an equivalent circuit for the second power supply circuit, and includes a second DC power supply PS2 and an electrolysis unit. It does not matter whether the second DC power source PS2 is a diode rectifier circuit or a transistor rectifier circuit. In the figure, it is represented by a diode. As a characteristic of these rectifiers, current can flow in the forward direction, but not in the reverse direction. The components of the electrolysis part are the drive anode 21, the drive cathode 22 and the electrolyte 4 shown in FIGS. 1 to 3, and the drive anode 21 and the drive cathode 22 have a saturated electric double layer forming voltage of the compound from the outside. since constant potential difference corresponding to E D is given in a non-contact, an electric double layer is present at the interface with the electrolyte. Therefore the electrical properties of the interface is similar to components in a capacitor having a saturation electric double layer capacitor C D. In addition, under a situation where the electrode reaction is actually progressing, there is a component called Faraday impedance Z F which becomes a resistance of the electrode reaction progress, so that eventually the driving anode 21, the driving cathode 22 and the electrolyte 4 electrical properties of the interface between the model shorted saturated electric double layer capacitor C D Faraday impedance Z F is considered appropriate. The Faraday impedance Z F is further composed of an ion movement resistance R S at the interface and a capacity (electrolytic capacity) C S based on the ion concentration gradient. In series with these electrical components, the resistance R soln of the electrolyte 4 itself is connected. These electrical properties in the electrolysis system are factors that govern the electrolysis reaction rate. As shown in FIG. 4, there is no difference in the voltage-current curve between the electrolysis of one power source electrolysis and the two power source electrolysis. Therefore, the electrolysis mechanism of both is judged to be the same.
The rectifier circuit of the second DC power source PS2 is closely related to the principle of the electrolysis process of the present invention. That is, since the forward a diode as shown in Figure 6 is directly connected to the drive anode 21, giving a 3-fold difference 3E D saturated electric double layer formed voltage E D between the induction anode 11 and the induction cathode 12 When, electrons flow through the diode from the drive anode 21 to drive the cathode 22, a potential difference corresponding to the saturation electric double layer formed voltage E D between the drive anode 21 as shown in FIG. 2 (b) and driving the cathode 22 Occurs. If the diodes are connected in the opposite direction, the saturated electric double layer forming voltage E D does not appear between the drive anode 21 and the drive cathode 22.
Next, the power consumed by the two-source electrolysis of the present invention is compared with the normal one-source electrolysis as follows. In general, the electric power consumed by the electrolysis is Joule heat due to the power efficiency of the first DC power source PS1, the resistance of the conductive wire from the first DC power source PS1 to the electrolytic cell 6, the contact resistance between the conductive wire and the electrode, the resistance of the electrode itself, and the like. The loss needs to be taken into account. However, here we will limit the power consumed by the elements essential to electrolysis.
In this case, the expression (6) is the ratio P 2 / P 1 of the power consumption of the two power source electrolysis to the one power source electrolysis, and the overvoltage ΔE used here is only between the drive anode 21 and the drive cathode 22. The voltage that is given to and contributes to the electrolysis reaction. Equation (6) is a comparison of the same current value, that is, hydrogen production rate. Table 1 shows the theoretical values of the overvoltage ΔE and the power consumption ratio P 2 / P 1 ratio with respect to the saturated electric double layer formation voltage E D = 1.80 V in the water electrolysis of 25 ° C. according to the embodiment of the present invention.
Figure 0004562634

表1から明らかなように、適用する過電圧ΔEを小さくすればするほど2電源電気分解の消費電力は大きく削減される。又、電気分解では一般に過電圧ΔEを小さくして電流密度を低下させると電力効率が向上する。したがって、理論的には低い過電圧ΔEの電気分解がエネルギーの観点から有利である。しかし反面、小さな過電圧ΔEと電流密度は電解槽6の大型化に繋がるため、工業的には総合的に判断して適切な過電圧ΔEを採用しなければならない。
(第2の実施の形態)
第1の実施の形態に係る電気分解システムでは4枚の矩形の平行平板で、誘導陽極11,駆動陽極21,駆動陰極22及び誘導陰極12を構成する例を示したが、誘導陽極11,駆動陽極21,駆動陰極22及び誘導陰極12の形状は、平板に限定されるものではない。即ち、本発明の第2の実施の形態に係る電気分解システムは、図7の概念図に示すように、電解液4を収納する円筒状の側壁を有する絶縁体の電解槽6と、電解液4中に挿入され、電解液4中の負イオンを介して酸化反応を行う円筒状の駆動陽極21と、この駆動陽極21の内側に、駆動陽極21と直接対向し、且つ駆動陽極21と互いに同心円状に平行に電解液4中に挿入され、電解液4中の正イオンを介して還元反応を行う円筒状の駆動陰極22と、駆動陽極21から駆動陰極22に向かう駆動電気力線と同一方向の誘導電気力線を駆動電気力線に重畳する誘導電気力線生成手段(11,12)とを備える。ここで、誘導電気力線生成手段(11,12)は、円筒状の駆動陽極21の外側を同心円状に周回するように配置された円筒状の誘導陽極11と、円筒状の駆動陰極22の中心位置に配置された円柱状の誘導陰極12を備える。誘導陽極11と誘導陰極12とは、両側から駆動陽極21と駆動陰極22とからなる駆動電極ペアを挟むように、互いに同心円状に平行に対向し、電解液4中に挿入されている。図7では、誘導陽極11に複数のスリット11Sが設けられているが、スリット11Sが設けられた構造に限定されるものではない。
As is clear from Table 1, the power consumption of the two power source electrolysis is greatly reduced as the applied overvoltage ΔE is reduced. In electrolysis, generally, when the overvoltage ΔE is reduced to reduce the current density, the power efficiency is improved. Therefore, theoretically, electrolysis with a low overvoltage ΔE is advantageous from the viewpoint of energy. However, on the other hand, a small overvoltage ΔE and a current density lead to an increase in the size of the electrolytic cell 6, so that an appropriate overvoltage ΔE must be adopted from an industrial viewpoint.
(Second Embodiment)
In the electrolysis system according to the first embodiment, an example in which the induction anode 11, the drive anode 21, the drive cathode 22, and the induction cathode 12 are configured by four rectangular parallel plates is shown. The shapes of the anode 21, the drive cathode 22, and the induction cathode 12 are not limited to flat plates. That is, as shown in the conceptual diagram of FIG. 7, the electrolysis system according to the second embodiment of the present invention includes an insulating electrolytic cell 6 having a cylindrical side wall for containing the electrolytic solution 4, and an electrolytic solution. 4, a cylindrical driving anode 21 inserted in the electrolytic solution 4 and performing an oxidation reaction via negative ions in the electrolyte 4, and directly inside the driving anode 21, directly facing the driving anode 21 and mutually connected to the driving anode 21. A cylindrical driving cathode 22 that is inserted into the electrolyte solution 4 in a concentric parallel manner and performs a reduction reaction via positive ions in the electrolyte solution 4 is the same as the driving electric force lines that run from the driving anode 21 toward the driving cathode 22. Inductive electric field lines generating means (11, 12) for superimposing the direction electric field lines on the driving electric field lines are provided. Here, the induction electric force line generating means (11, 12) includes a cylindrical induction anode 11 arranged so as to concentrically circulate around the outer side of the cylindrical drive anode 21, and a cylindrical drive cathode 22. A cylindrical induction cathode 12 is provided at a central position. The induction anode 11 and the induction cathode 12 are concentrically and parallelly opposed to each other so as to sandwich a drive electrode pair composed of the drive anode 21 and the drive cathode 22 from both sides, and are inserted into the electrolytic solution 4. In FIG. 7, the induction anode 11 is provided with a plurality of slits 11S, but is not limited to the structure in which the slits 11S are provided.

誘導陽極11に複数のスリット11Sが設けられた構造では、電解液4は円筒状の駆動陽極21及び駆動陰極22により、3等分に仕切られており、電気力線の漏洩を防止するため、各部屋間の流通はいささかも無いように、駆動陽極21及び駆動陰極22の周辺は絶縁体で完全にシールされている。即ち、図7に示すように、円筒状の駆動陽極21,駆動陰極22のそれぞれの底辺が、電解液4を収納する電解槽6の底面に接し、これにより、電解液4の一部を密閉して収納する3つの容器に分離されている。   In the structure in which the plurality of slits 11S are provided in the induction anode 11, the electrolyte solution 4 is divided into three equal parts by the cylindrical drive anode 21 and the drive cathode 22, in order to prevent leakage of electric lines of force. The periphery of the drive anode 21 and the drive cathode 22 is completely sealed with an insulator so that there is no significant flow between the rooms. That is, as shown in FIG. 7, the bottom sides of the cylindrical drive anode 21 and the drive cathode 22 are in contact with the bottom surface of the electrolytic cell 6 that stores the electrolyte solution 4, thereby partly sealing the electrolyte solution 4. Are separated into three containers for storage.

第2の実施の形態に係る電気分解システムにおいても、第1の実施の形態に係る電気分解システムと同様に、駆動電気力線と誘導電気力線との重畳による駆動陽極21と駆動陰極22の間に生じる電位差により、駆動陽極21における酸化反応及び駆動陰極22における還元反応を開始させ、更にこれらの酸化反応及び還元反応を必要時間維持する。このため、誘導陽極11にプラスの端子を接続し、誘導陰極12にマイナスの端子を接続し、誘導陽極11と誘導陰極12との間に誘導電気力線を生じさせ、駆動陽極21と駆動陰極22との間に、飽和電気二重層形成電圧を生じさせる第1直流電源PS1と、駆動陽極21にプラスの端子を接続し、駆動陰極22にマイナスの端子を接続し、飽和電気二重層が誘導された状態で、駆動陽極21と駆動陰極22の間に過電圧分の電位差を増加させる、第1直流電源PS1とは独立した第2直流電源PS2とを更に備えている。   Similarly to the electrolysis system according to the first embodiment, the electrolysis system according to the second embodiment also includes the drive anode 21 and the drive cathode 22 formed by superimposing the drive electric field lines and the induction electric field lines. Due to the potential difference generated between them, the oxidation reaction at the drive anode 21 and the reduction reaction at the drive cathode 22 are started, and these oxidation reaction and reduction reaction are maintained for a necessary time. Therefore, a positive terminal is connected to the induction anode 11, a negative terminal is connected to the induction cathode 12, an induction electric field line is generated between the induction anode 11 and the induction cathode 12, and the drive anode 21 and the drive cathode are connected. The first DC power source PS1 that generates a saturated electric double layer forming voltage and the positive terminal connected to the drive anode 21, the negative terminal connected to the drive cathode 22, and the saturated electric double layer induced In this state, a second DC power supply PS2 independent of the first DC power supply PS1 is further provided to increase the potential difference corresponding to the overvoltage between the drive anode 21 and the drive cathode 22.

第2の実施の形態に係る電気分解システムにおいても、式(6)に示す1電源電気分解に対する2電源電気分解の消費電力の比P/Pの関係が成立し、第1の実施の形態の表1と同様に、駆動陽極21と駆動陰極22との間に印加する過電圧ΔEを小さくすればするほど2電源電気分解の消費電力は大きく削減される。 Also in the electrolysis system according to the second embodiment, the relationship P 2 / P 1 of the power consumption of the two power source electrolysis with respect to the one power source electrolysis shown in Expression (6) is established, and the first embodiment As in Table 1 of the embodiment, the power consumption of the two power source electrolysis is greatly reduced as the overvoltage ΔE applied between the drive anode 21 and the drive cathode 22 is reduced.

<第2の実施の形態の第1変形例>
本発明の第2の実施の形態の第1変形例に係る電気分解システムは、図8の概念図に示すように、電解槽を兼ねる円筒状の側壁を有する誘導陽極11と、誘導陽極11に収納された電解液4中に挿入され、電解液4中の負イオンを介して酸化反応を行う円筒状の駆動陽極21と、この駆動陽極21の内側に、駆動陽極21と直接対向し、且つ駆動陽極21と互いに同心円状に平行に電解液4中に挿入され、電解液4中の正イオンを介して還元反応を行う円筒状の駆動陰極22と、駆動陽極21から駆動陰極22に向かう駆動電気力線と同一方向の誘導電気力線を駆動電気力線に重畳する誘導電気力線生成手段(11,12)とを備える。ここで、誘導電気力線生成手段(11,12)は、円筒状の駆動陽極21の外側を同心円状に周回するように配置された円筒状の誘導陽極11と、円筒状の駆動陰極22の中心位置に配置された円柱状の誘導陰極12を備える。誘導陽極11と誘導陰極12とは、両側から駆動陽極21と駆動陰極22とからなる駆動電極ペアを挟むように、互いに同心円状に平行に対向し、電解液4中に挿入されている。
<First Modification of Second Embodiment>
As shown in the conceptual diagram of FIG. 8, the electrolysis system according to the first modification of the second embodiment of the present invention includes an induction anode 11 having a cylindrical side wall that also serves as an electrolytic cell, and an induction anode 11. A cylindrical driving anode 21 that is inserted into the stored electrolyte 4 and that undergoes an oxidation reaction via negative ions in the electrolyte 4, and directly faces the driving anode 21 inside the driving anode 21, and A cylindrical driving cathode 22 that is inserted into the electrolytic solution 4 concentrically and parallel to the driving anode 21 and performs a reduction reaction via positive ions in the electrolytic solution 4, and driving from the driving anode 21 toward the driving cathode 22. Inductive electric force line generating means (11, 12) for superimposing the induced electric force lines in the same direction as the electric force lines on the driving electric force lines is provided. Here, the induction electric force line generating means (11, 12) includes a cylindrical induction anode 11 arranged so as to concentrically circulate around the outer side of the cylindrical drive anode 21, and a cylindrical drive cathode 22. A cylindrical induction cathode 12 is provided at a central position. The induction anode 11 and the induction cathode 12 are concentrically and parallelly opposed to each other so as to sandwich a drive electrode pair composed of the drive anode 21 and the drive cathode 22 from both sides, and are inserted into the electrolytic solution 4.

第2の実施の形態の第1変形例に係る電気分解システムにおいても、第1及び第2の実施の形態に係る電気分解システムと同様に、駆動電気力線と誘導電気力線との重畳による駆動陽極21と駆動陰極22の間に生じる電位差により、駆動陽極21における酸化反応及び駆動陰極22における還元反応を開始させ、更にこれらの酸化反応及び還元反応を必要時間維持する。このため、誘導陽極11にプラスの端子を接続し、誘導陰極12にマイナスの端子を接続し、誘導陽極11と誘導陰極12との間に誘導電気力線を生じさせ、駆動陽極21と駆動陰極22との間に、飽和電気二重層形成電圧を生じさせる第1直流電源PS1と、駆動陽極21にプラスの端子を接続し、駆動陰極22にマイナスの端子を接続し、飽和電気二重層が誘導された状態で、駆動陽極21と駆動陰極22の間に過電圧分の電位差を増加させる、第1直流電源PS1とは独立した第2直流電源PS2とを更に備えている。   In the electrolysis system according to the first modified example of the second embodiment, similarly to the electrolysis systems according to the first and second embodiments, the driving electric field lines and the induction electric field lines are superimposed. Due to the potential difference generated between the drive anode 21 and the drive cathode 22, the oxidation reaction at the drive anode 21 and the reduction reaction at the drive cathode 22 are started, and these oxidation reaction and reduction reaction are maintained for a necessary time. Therefore, a positive terminal is connected to the induction anode 11, a negative terminal is connected to the induction cathode 12, an induction electric field line is generated between the induction anode 11 and the induction cathode 12, and the drive anode 21 and the drive cathode are connected. The first DC power source PS1 that generates a saturated electric double layer forming voltage and the positive terminal connected to the drive anode 21, the negative terminal connected to the drive cathode 22, and the saturated electric double layer induced In this state, a second DC power supply PS2 independent of the first DC power supply PS1 is further provided to increase the potential difference corresponding to the overvoltage between the drive anode 21 and the drive cathode 22.

図8の構造では、誘導陽極11が電解槽を兼ねているが、円筒状の側壁のみを金属で構成し、底部を絶縁体で構成すれば良い。図7と同様に、電気力線の漏洩を防止するため、各部屋間の流通はいささかも無いように、円筒状の駆動陽極21,駆動陰極22のそれぞれの底辺が、電解液4を収納する電解槽6の底面に接し、これにより、電解液4の一部を密閉して収納する3つの容器に分離されている。   In the structure of FIG. 8, the induction anode 11 also serves as an electrolytic cell, but only the cylindrical side wall may be made of metal and the bottom may be made of an insulator. Similarly to FIG. 7, in order to prevent leakage of electric lines of force, the bottoms of the cylindrical drive anode 21 and the drive cathode 22 contain the electrolyte solution 4 so that there is no significant flow between the rooms. In contact with the bottom surface of the electrolytic cell 6, the container is separated into three containers for containing a part of the electrolytic solution 4 in a sealed manner.

第2の実施の形態の第1変形例に係る電気分解システムにおいても、式(6)に示す1電源電気分解に対する2電源電気分解の消費電力の比P/Pの関係が成立し、第1の実施の形態で説明した表1と同様に、駆動陽極21と駆動陰極22との間に印加する過電圧ΔEを小さくすればするほど2電源電気分解の消費電力は大きく削減される。 Also in the electrolysis system according to the first modification of the second embodiment, the relationship of the power consumption ratio P 2 / P 1 of the two power source electrolysis with respect to the one power source electrolysis shown in Expression (6) is established, Similar to Table 1 described in the first embodiment, the power consumption of the two power supply electrolysis is greatly reduced as the overvoltage ΔE applied between the drive anode 21 and the drive cathode 22 is reduced.

<第2の実施の形態の第2変形例>
本発明の第2の実施の形態の第2変形例に係る電気分解システムは、図8の概念図に示すように、電解槽を兼ねる円筒状の側壁を有する誘導陰極12と、誘導陰極12に収納された電解液4中に挿入され、電解液4中の正イオンを介して還元反応を行う円筒状の誘導陰極22と、この誘導陰極22の内側に、誘導陰極22と直接対向し、且つ誘導陰極22と互いに同心円状に平行に電解液4中に挿入され、電解液4中の負イオンを介して酸化反応を行う円筒状の駆動陽極21と、誘導陰極22から駆動陽極21に向かう駆動電気力線と同一方向の誘導電気力線を駆動電気力線に重畳する誘導電気力線生成手段(11,12)とを備える。ここで、誘導電気力線生成手段(11,12)は、円筒状の誘導陰極22の外側を同心円状に周回するように配置された円筒状の誘導陰極12と、円筒状の駆動陽極21の中心位置に配置された円柱状の誘導陽極11を備える。誘導陰極12と誘導陽極11とは、両側から誘導陰極22と駆動陽極21とからなる駆動電極ペアを挟むように、互いに同心円状に平行に対向し、電解液4中に挿入されている。
<Second Modification of Second Embodiment>
The electrolysis system according to the second modification of the second embodiment of the present invention includes an induction cathode 12 having a cylindrical side wall that also serves as an electrolytic cell, and an induction cathode 12 as shown in the conceptual diagram of FIG. A cylindrical induction cathode 22 which is inserted into the accommodated electrolyte solution 4 and performs a reduction reaction via positive ions in the electrolyte solution 4; directly inside the induction cathode 22; directly opposite the induction cathode 22; A cylindrical driving anode 21 that is inserted into the electrolyte solution 4 concentrically and parallel to the induction cathode 22, and performs an oxidation reaction via negative ions in the electrolyte solution 4, and driving from the induction cathode 22 toward the drive anode 21. Inductive electric force line generating means (11, 12) for superimposing the induced electric force lines in the same direction as the electric force lines on the driving electric force lines is provided. Here, the induction electric field line generating means (11, 12) includes a cylindrical induction cathode 12 arranged so as to concentrically circulate around the outside of the cylindrical induction cathode 22, and a cylindrical drive anode 21. A cylindrical induction anode 11 is provided at the central position. The induction cathode 12 and the induction anode 11 are inserted into the electrolytic solution 4 so as to face each other concentrically in parallel so as to sandwich a drive electrode pair composed of the induction cathode 22 and the drive anode 21 from both sides.

第2の実施の形態の第2変形例に係る電気分解システムにおいても、第1及び第2の実施の形態に係る電気分解システムと同様に、駆動電気力線と誘導電気力線との重畳により、誘導陰極22と駆動陽極21の間に生じる電位差により、誘導陰極22における酸化反応及び駆動陽極21における還元反応を開始させ、更にこれらの酸化反応及び還元反応を必要時間維持する。このため、誘導陰極12にプラスの端子を接続し、誘導陽極11にマイナスの端子を接続し、誘導陰極12と誘導陽極11との間に誘導電気力線を生じさせ、誘導陰極22と駆動陽極21との間に、飽和電気二重層形成電圧を生じさせる第1直流電源PS1と、誘導陰極22にプラスの端子を接続し、駆動陽極21にマイナスの端子を接続し、飽和電気二重層が誘導された状態で、誘導陰極22と駆動陽極21の間に過電圧分の電位差を増加させる、第1直流電源PS1とは独立した第2直流電源PS2とを更に備えている。   Also in the electrolysis system according to the second modification of the second embodiment, the driving electric field lines and the induction electric field lines are superimposed, as in the electrolysis systems according to the first and second embodiments. Due to the potential difference generated between the induction cathode 22 and the drive anode 21, the oxidation reaction at the induction cathode 22 and the reduction reaction at the drive anode 21 are started, and these oxidation reaction and reduction reaction are maintained for a necessary time. Therefore, a positive terminal is connected to the induction cathode 12, a negative terminal is connected to the induction anode 11, an induction electric field line is generated between the induction cathode 12 and the induction anode 11, and the induction cathode 22 and the driving anode are generated. The first DC power source PS1 that generates a saturated electric double layer forming voltage and the induction cathode 22 are connected to the positive terminal, the negative terminal is connected to the drive anode 21, and the saturated electric double layer is induced. In this state, a second DC power supply PS2 independent of the first DC power supply PS1 is further provided between the induction cathode 22 and the drive anode 21 to increase the potential difference corresponding to the overvoltage.

図9の構造は、誘導陽極11が電解槽を兼ねているが、図8の構造と同様に、円筒状の側壁のみを金属で構成し、底部を絶縁体で構成すれば良い。図7及び図8と同様に、電気力線の漏洩を防止するため、各部屋間の流通はいささかも無いように、円筒状の駆動陽極21,駆動陰極22のそれぞれの底辺が、電解液4を収納する電解槽6の底面に接し、これにより、電解液4の一部を密閉して収納する3つの容器に分離されている。   In the structure of FIG. 9, the induction anode 11 also serves as an electrolytic cell. However, like the structure of FIG. 8, only the cylindrical side wall is made of metal and the bottom is made of an insulator. 7 and 8, in order to prevent leakage of electric lines of force, the bottoms of the cylindrical drive anode 21 and the drive cathode 22 are formed on the electrolyte solution 4 so that there is no significant flow between the rooms. In contact with the bottom surface of the electrolytic cell 6, thereby separating a part of the electrolytic solution 4 into three containers for hermetically storing.

第2の実施の形態の第2変形例に係る電気分解システムにおいても、式(6)に示す1電源電気分解に対する2電源電気分解の消費電力の比P/Pの関係が成立し、第1の実施の形態で説明した表1と同様に、誘導陰極22と駆動陽極21との間に印加する過電圧ΔEを小さくすればするほど2電源電気分解の消費電力は大きく削減される。 Also in the electrolysis system according to the second modification of the second embodiment, the relationship of the power consumption ratio P 2 / P 1 of the two power source electrolysis with respect to the one power source electrolysis shown in Expression (6) is established, Similar to Table 1 described in the first embodiment, the power consumption of the two power source electrolysis is greatly reduced as the overvoltage ΔE applied between the induction cathode 22 and the drive anode 21 is reduced.

(第3の実施の形態)
本発明の第3の実施の形態に係る電気分解システムは、図10の概念図に示すように、電解液4中に挿入され、電解液4中の負イオンを介して酸化反応を行う駆動陽極21r(r=1〜2n+1)と、この駆動陽極21rと直接対向し、且つ互いに平行に電解液4中に挿入され、電解液4中の正イオンを介して還元反応を行う駆動陰極22rと、駆動陽極21rから駆動陰極22rに向かう駆動電気力線と同一方向の誘導電気力線を駆動電気力線に重畳する誘導電気力線生成手段(11s,12s:s=1〜n+1)とを備える電気分解ユニット(11s,12s;21r,22r)を複数(2n+1)個備える。ここで、nは1以上の正の整数である。それぞれの電気分解ユニット(11s,12s;21r,22r)において、駆動電気力線と誘導電気力線との重畳による駆動陽極21rと駆動陰極22rの間に生じる電位差により、酸化反応及び還元反応を駆動し、且つ、図10に示すように、それぞれの電気分解ユニット(11s,12s;21r,22r)の駆動陽極21rと駆動陰極22rとからなる駆動電極ペア(21r,22r)が、互いに電気的に直列に接続されている。ここで、それぞれの電気分解ユニット(11s,12s;21r,22r)において、誘導電気力線生成手段(11s,12s)は、電気分解ユニット(11s,12s;21r,22r)を構成する駆動電極ペア(21r,22r)を挟み、平行に対向して電解液4中に挿入される誘導陽極11s及び誘導陰極12sを備える。
(Third embodiment)
The electrolysis system according to the third embodiment of the present invention is a drive anode that is inserted into the electrolyte solution 4 and performs an oxidation reaction via negative ions in the electrolyte solution 4 as shown in the conceptual diagram of FIG. 21 r (r = 1 to 2n + 1) and a driving cathode 22 which is directly opposed to the driving anode 21 r and inserted in the electrolytic solution 4 in parallel with each other, and performs a reduction reaction via positive ions in the electrolytic solution 4. r and induced electric field lines generating means (11 s , 12 s : s = 1) that superimposes the induced electric field lines in the same direction as the driving electric field lines directed from the driving anode 21 r toward the driving cathode 22 r on the driving electric field lines. ˜n + 1) and a plurality (2n + 1) of electrolysis units (11 s , 12 s ; 21 r , 22 r ). Here, n is a positive integer of 1 or more. In each electrolysis unit (11 s , 12 s ; 21 r , 22 r ), oxidation is caused by a potential difference generated between the driving anode 21 r and the driving cathode 22 r due to the superposition of the driving electric field lines and the induction electric field lines. reaction and to drive the reduction reaction, and, as shown in FIG. 10, each of the electrolysis unit (11 s, 12 s; 21 r, 22 r) drive electrode comprising a driving anode 21 r and drive the cathode 22 r of The pair (21 r , 22 r ) is electrically connected to each other in series. Here, in each electrolysis unit (11 s , 12 s ; 21 r , 22 r ), the induction electric field line generating means (11 s , 12 s ) is the electrolysis unit (11 s , 12 s ; 21 r). , 22 r ), and an induction anode 11 s and an induction cathode 12 s which are inserted into the electrolytic solution 4 so as to face each other and sandwich the drive electrode pair (21 r , 22 r ).

別の見方をすれば、図10に示す第3の実施の形態に係る電気分解システムは、電解液4中に挿入され、電解液4中の負イオンを介して酸化反応を行う駆動陽極21p(p=1〜2n+1)この駆動陽極21pと直接対向し、且つ互いに平行に電解液4中に挿入され、電解液4中の正イオンを介して還元反応を行う駆動陰極22pからなる駆動電極ペア(21p,22p)を複数、電気的に直列接続した(2n+1)段の多段駆動電極構造と、それぞれの駆動電極ペア(21p,22p)において、駆動陽極21pから駆動陰極22pに向かう駆動電気力線と同一方向の誘導電気力線を駆動電気力線に重畳する誘導電気力線生成手段(11q,12q)とを備える(前述したように、nは1以上の正の整数である。)。そして、それぞれの駆動電極ペア(21p,22p)において、駆動電気力線と誘導電気力線との重畳による駆動陽極21pと駆動陰極22pの間に生じる電位差により、酸化反応及び還元反応を開始させる。誘導電気力線生成手段(11q,12q)は、図10に示すように、それぞれの駆動電極ペア(21p,22p)を挟み、平行に対向して電解液4中に挿入される誘導陽極11q(q=1〜n+1)と誘導陰極12qとからなる誘導電極ペア(11q,12q)を備え、この誘導電極ペア(11q,12q)が電気的に並列接続されている。図10では、互いに隣接する駆動電極ペア(212j-1,222j-1;212j,222j)のそれぞれの駆動陰極222j-1;222jを、誘導陰極の一つ12j-1を挟んで互いに対向させ、挟まれた誘導陰極の一つ12j-1を隣接する駆動電極ペア(212j-1,222j-1;212j,222j)に共通の誘導陰極12jとしている。例えば、図10に示すように、互いに隣接する駆動電極ペア(211,221;212,222)のそれぞれの駆動陰極221;222を、誘導陰極121を挟んで互いに対向させ、挟まれた誘導陰極121を隣接する駆動電極ペア(211,221;212,222)に共通の誘導陰極121とし、互いに隣接する駆動電極ペア(213,223;214,224)のそれぞれの駆動陰極223;224を、誘導陰極122を挟んで互いに対向させ、挟まれた誘導陰極122を隣接する駆動電極ペア(213,223;214,224)に共通の誘導陰極122としている。 Viewed another way, the electrolysis system according to a third embodiment shown in FIG. 10 is inserted in the electrolyte 4, the drive anode 21 p performing oxidation reaction via the negative ions in the electrolyte solution 4 (p = 1~2n + 1) opposite the drive anode 21 p directly, and is inserted parallel to the electrolyte solution 4 from each other, a driving cathode 22 p to perform a reduction reaction through the positive ions in the electrolyte solution 4 drive In the (2n + 1) -stage multi-stage drive electrode structure in which a plurality of electrode pairs (21 p , 22 p ) are electrically connected in series, and in each drive electrode pair (21 p , 22 p ), the drive anode 21 p to the drive cathode Inductive electric force line generating means (11 q , 12 q ) for superimposing the induced electric force lines in the same direction as the driving electric force lines toward 22 p on the driving electric force lines (as described above, n is 1 or more) Is a positive integer.) In each drive electrode pair (21 p , 22 p ), an oxidation reaction and a reduction reaction are caused by a potential difference generated between the drive anode 21 p and the drive cathode 22 p due to the superposition of the drive electric field lines and the induction electric field lines. To start. As shown in FIG. 10, the induction electric field lines generating means (11 q , 12 q ) are inserted into the electrolyte solution 4 with the respective drive electrode pairs (21 p , 22 p ) sandwiched therebetween and facing each other in parallel. An induction electrode pair (11 q , 12 q ) including an induction anode 11 q (q = 1 to n + 1) and an induction cathode 12 q is provided, and the induction electrode pair (11 q , 12 q ) is electrically connected in parallel. ing. In FIG. 10, each of the drive cathodes 22 2j-1 ; 22 2j of the drive electrode pairs (21 2j-1 , 22 2j-1 ; 21 2j , 22 2j ) adjacent to each other is replaced with one induction cathode 12 j-1. As an induction cathode 12 j common to adjacent drive electrode pairs (21 2j-1 , 22 2j-1 ; 21 2j , 22 2j ), one of the sandwiched induction cathodes 12 j-1 is opposed to each other. Yes. For example, as shown in FIG. 10, the drive cathodes 22 1 ; 22 2 of the drive electrode pairs (21 1 , 22 1 ; 21 2 , 22 2 ) adjacent to each other are opposed to each other across the induction cathode 12 1. , driving electrode pairs adjacent the induction cathode 12 1 sandwiched between (21 1, 22 1; 21 2, 22 2) to a common inductive cathode 12 1, the driving electrode pairs adjacent to each other (21 3, 22 3; 21 4 , 22 4 ) of the drive cathodes 22 3 ; 22 4 are opposed to each other with the induction cathode 12 2 interposed therebetween, and the sandwiched induction cathode 12 2 is adjacent to the adjacent drive electrode pair (21 3 , 22 3 ; 21 4 , 22 4 ) is a common induction cathode 12 2 .

又、互いに隣接する駆動電極ペア(212j,222j;212j+1,222j+1)のそれぞれの駆動陽極212j;212j+1を、誘導陽極の一つ11j+1を挟んで互いに対向させ、挟まれた誘導陽極一つ11j+1を、隣接する駆動電極ペア(21i,22i)に共通の誘導陽極11j+1としている。例えば、図10に示すように、互いに隣接する駆動電極ペア(212,222;213,223)のそれぞれの駆動陽極212;213を、誘導陽極112を挟んで互いに対向させ、挟まれた誘導陽極112を、隣接する駆動電極ペア(21i,22i)に共通の誘導陽極112とし、互いに隣接する駆動電極ペア(214,224;215,225)のそれぞれの駆動陽極214;215を、誘導陽極113を挟んで互いに対向させ、挟まれた誘導陽極113を、隣接する駆動電極ペア(21i,22i)に共通の誘導陽極113としている。 Further, the drive anodes 21 2j ; 21 2j + 1 of the drive electrode pairs (21 2j , 22 2j ; 21 2j + 1 , 22 2j + 1 ) adjacent to each other are sandwiched between one induction anode 11 j + 1 . Each of the induction anodes 11 j + 1 that are opposed to each other in FIG. 11 is used as an induction anode 11 j + 1 that is common to adjacent drive electrode pairs (21 i , 22 i ). For example, as shown in FIG. 10, the drive anodes 21 2 ; 21 3 of the drive electrode pairs (21 2 , 22 2 ; 21 3 , 22 3 ) adjacent to each other are opposed to each other across the induction anode 11 2. The induction anode 11 2 sandwiched between the adjacent drive electrode pairs (21 i , 22 i ) is a common induction anode 11 2, and the drive electrode pairs (21 4 , 22 4 ; 21 5 , 22 5 ) are adjacent to each other. The drive anodes 21 4 ; 21 5 are opposed to each other across the induction anode 11 3 , and the sandwiched induction anode 11 3 is shared by the adjacent drive electrode pair (21 i , 22 i ). 3 and so on.

図10においては、平板状の駆動陽極21p、駆動陰極22p、誘導陽極11q及び誘導陰極12qが、それぞれ電解液4を収納する電解槽6の底面に対して垂直に配置されることにより、互いに平行となり、且つ、駆動陽極21p、駆動陰極22p、誘導陽極11q及び誘導陰極12qのそれぞれが、電解槽6の底面及び対向する2つの側壁に接し、これにより、電解液4の一部をそれぞれ密閉して収納する独立した複数の容器をなしている。電解槽6は絶縁体で構成されている。密閉して収納する独立した複数の容器を構成することにより、駆動陽極21p、駆動陰極22p、誘導陽極11q及び誘導陰極12qからの電気力線の漏洩を防止している。 In FIG. 10, the plate-like drive anode 21 p , drive cathode 22 p , induction anode 11 q and induction cathode 12 q are arranged perpendicular to the bottom surface of the electrolytic cell 6 that stores the electrolyte 4. Accordingly, the driving anode 21 p , the driving cathode 22 p , the induction anode 11 q and the induction cathode 12 q are in contact with the bottom surface of the electrolytic cell 6 and the two opposite side walls, thereby the electrolyte solution. A plurality of independent containers for hermetically sealing a part of 4 are formed. The electrolytic cell 6 is made of an insulator. By constituting a plurality of independent containers that are sealed and housed, leakage of electric lines of force from the drive anode 21 p , drive cathode 22 p , induction anode 11 q and induction cathode 12 q is prevented.

第3の実施の形態に係る電気分解システムにおいても、第1及び第2の実施の形態に係る電気分解システムと同様に、それぞれの駆動電極ペア(21p,22p)において、駆動電気力線と誘導電気力線との重畳による駆動陽極21pと駆動陰極22pの間に生じる電位差により、駆動陽極21pにおける酸化反応及び駆動陰極22pにおける還元反応を開始させ、更にこれらの酸化反応及び還元反応を必要時間維持する。このため、それぞれの駆動電極ペア(21p,22p)に対応する、誘導陽極11qにプラスの端子を接続し、誘導陰極12qにマイナスの端子を接続し、誘導陽極11qと誘導陰極12qとの間に誘導電気力線を生じさせ、駆動陽極21pと駆動陰極22pとの間に、飽和電気二重層形成電圧を生じさせる第1直流電源PS1が、それぞれの駆動電極ペア(21p,22p)に対し並列接続されている。一方、駆動陽極21pにプラスの端子を接続し、駆動陰極22pにマイナスの端子を接続し、飽和電気二重層が誘導された状態で、駆動陽極21pと駆動陰極22pの間に過電圧分の電位差を増加させる、第1直流電源PS1とは独立した第2直流電源PS2は、それぞれの駆動電極ペア(21p,22p)を電気的に直列接続している閉回路に直列接続されている。 In the electrolysis system according to the third embodiment, as in the electrolysis systems according to the first and second embodiments, the drive electric lines of force are generated in the respective drive electrode pairs (21 p , 22 p ). Is caused by the potential difference between the driving anode 21 p and the driving cathode 22 p due to the superimposition of the electric field lines and the induced electric field lines, and the oxidation reaction at the driving anode 21 p and the reduction reaction at the driving cathode 22 p are started. The reduction reaction is maintained for the required time. Therefore, a positive terminal is connected to the induction anode 11 q corresponding to each drive electrode pair (21 p , 22 p ), a negative terminal is connected to the induction cathode 12 q , and the induction anode 11 q and the induction cathode are connected. The first direct current power source PS1 that generates an induction electric field line between 12 q and a saturated electric double layer forming voltage between the drive anode 21 p and the drive cathode 22 p is connected to each drive electrode pair ( 21 p , 22 p ). On the other hand, to connect the positive terminal to the drive anode 21 p, connect the negative terminal to the drive the cathode 22 p, while the saturation electric double layer is induced overvoltage between the driving anode 21 p and the driving cathode 22 p The second DC power supply PS2 that is independent of the first DC power supply PS1 and increases the potential difference is connected in series to a closed circuit that electrically connects the drive electrode pairs (21 p , 22 p ) in series. ing.

第3の実施の形態に係る電気分解システムにおいても、式(6)に示す1電源電気分解に対する2電源電気分解の消費電力の比P/Pの関係が成立し、第1の実施の形態で説明した表1と同様に、駆動陽極21pと駆動陰極22pとの間に印加する過電圧ΔEを小さくすればするほど2電源電気分解の消費電力は大きく削減される。 Also in the electrolysis system according to the third embodiment, the relationship of the power consumption ratio P 2 / P 1 of the two- power-source electrolysis to the one-power-source electrolysis shown in Expression (6) is established, and the first embodiment Similar to Table 1 described in the embodiment, the power consumption of the two power supply electrolysis is greatly reduced as the overvoltage ΔE applied between the drive anode 21 p and the drive cathode 22 p is reduced.

図10に示すように、複数の電気分解ユニットを、長さ方向のシーケンスとして配列し、多段に構成し、誘導陽極11qと誘導陰極12qは並列接続にて第1直流電源PS1へ、駆動陽極21pと駆動陰極22pを、直列接続にて第2直流電源PS2へ向かう構造とすれば、工業的生産用装置に好適な電気分解システムが提供できる。 As shown in FIG. 10, a plurality of electrolysis units are arranged as a sequence in the length direction, are configured in multiple stages, and the induction anode 11 q and the induction cathode 12 q are driven in parallel to the first DC power source PS1. If the anode 21 p and the drive cathode 22 p are configured to be connected in series to the second DC power source PS2, an electrolysis system suitable for an industrial production apparatus can be provided.

<第3の実施の形態の変形例>
本発明の第3の実施の形態の変形例に係る電気分解システムは、図11の概念図に示すように、電解液4中に挿入され、電解液4中の負イオンを介して酸化反応を行う駆動陽極21p(p=1〜2n+1)この駆動陽極21pと直接対向し、且つ互いに平行に電解液4中に挿入され、電解液4中の正イオンを介して還元反応を行う駆動陰極22pからなる駆動電極ペア(21p,22p)を複数、電気的に直列接続した(2n+1)段の多段駆動電極構造と、それぞれの駆動電極ペア(21p,22p)において、駆動陽極21pから駆動陰極22pに向かう駆動電気力線と同一方向の誘導電気力線を駆動電気力線に重畳する誘導電気力線生成手段(11q,12q)とを備える(前述したように、nは1以上の正の整数である。)。そして、それぞれの駆動電極ペア(21p,22p)において、駆動電気力線と誘導電気力線との重畳による駆動陽極21pと駆動陰極22pの間に生じる電位差により、酸化反応及び還元反応を開始させ、更にこれらの酸化反応及び還元反応を必要時間維持する。誘導電気力線生成手段(11q,12q)は、図11に示すように、それぞれの駆動電極ペア(21p,22p)を挟み、平行に対向して電解液4中に挿入される誘導陽極11q(q=1〜n+1)と誘導陰極12qとからなる誘導電極ペア(11q,12q)を備え、この誘導電極ペア(11q,12q)が電気的に並列接続されている。図11では、互いに隣接する駆動電極ペア(212j-1,222j-1;212j,222j)のそれぞれの駆動陰極222j-1;222jを、誘導陰極の一つ12j-1を挟んで互いに対向させ、挟まれた誘導陰極の一つ12j-1を隣接する駆動電極ペア(212j-1,222j-1;212j,222j)に共通の誘導陰極12jとし、互いに隣接する駆動電極ペア(212j,222j;212j+1,222j+1)のそれぞれの駆動陽極212j;212j+1を、誘導陽極の一つ11j+1を挟んで互いに対向させ、挟まれた誘導陽極一つ11j+1を、隣接する駆動電極ペア(21i,22i)に共通の誘導陽極11j+1としている点では図10に示した構造と同様である。
<Modification of Third Embodiment>
An electrolysis system according to a modification of the third embodiment of the present invention is inserted into the electrolytic solution 4 and performs an oxidation reaction via negative ions in the electrolytic solution 4 as shown in the conceptual diagram of FIG. Driving anode 21 p to be performed (p = 1 to 2n + 1) Driving cathode 21 p which is directly opposed to the driving anode 21 p and is inserted into the electrolytic solution 4 in parallel with each other, and performs a reduction reaction via positive ions in the electrolytic solution 4 22 p a driving electrode pair (21 p, 22 p) a plurality, in electrically connected in series (2n + 1) and the multi-stage drive electrode structure of stage, each of the drive electrodes pair (21 p, 22 p), the drive anode Inductive electric force line generating means (11 q , 12 q ) for superimposing the induced electric force lines in the same direction as the driving electric force lines directed from 21 p to the driving cathode 22 p on the driving electric force lines (as described above) , N is a positive integer greater than or equal to 1.) In each drive electrode pair (21 p , 22 p ), an oxidation reaction and a reduction reaction are caused by a potential difference generated between the drive anode 21 p and the drive cathode 22 p due to the superposition of the drive electric field lines and the induction electric field lines. In addition, these oxidation and reduction reactions are maintained for the necessary time. As shown in FIG. 11, the induction electric field lines generating means (11 q , 12 q ) are inserted into the electrolytic solution 4 so as to face each other in parallel with the drive electrode pairs (21 p , 22 p ) interposed therebetween. An induction electrode pair (11 q , 12 q ) including an induction anode 11 q (q = 1 to n + 1) and an induction cathode 12 q is provided, and the induction electrode pair (11 q , 12 q ) is electrically connected in parallel. ing. In FIG. 11, each of the drive cathodes 22 2j-1 ; 22 2j of the drive electrode pair (21 2j-1 , 22 2j-1 ; 21 2j , 22 2j ) adjacent to each other is replaced with one induction cathode 12 j-1. And one of the sandwiched induction cathodes 12 j-1 is used as an induction cathode 12 j common to adjacent drive electrode pairs (21 2j-1 , 22 2j-1 ; 21 2j , 22 2j ). The drive anodes 21 2j ; 21 2j + 1 of the drive electrode pairs (21 2j , 22 2j ; 21 2j + 1 , 22 2j + 1 ) adjacent to each other sandwiching one induction anode 11 j + 1 . together not face to the induction anode one 11 j + 1 sandwiched, as with in terms that the induction anode 11 j + 1 common to the adjacent drive electrodes pair (21 i, 22 i) of FIG. 10 structure It is.

第3の実施の形態の変形例に係る電気分解システムにおいても、第1及び第2の実施の形態に係る電気分解システムと同様に、それぞれの駆動電極ペア(21p,22p)において、駆動電気力線と誘導電気力線との重畳による駆動陽極21pと駆動陰極22pの間に生じる電位差により、駆動陽極21pにおける酸化反応及び駆動陰極22pにおける還元反応を開始させ、更にこれらの酸化反応及び還元反応を必要時間維持する。このため、それぞれの駆動電極ペア(21p,22p)に対応する、誘導陽極11qにプラスの端子を接続し、誘導陰極12qにマイナスの端子を接続し、誘導陽極11qと誘導陰極12qとの間に誘導電気力線を生じさせ、駆動陽極21pと駆動陰極22pとの間に、飽和電気二重層形成電圧を生じさせる第1直流電源PS1が、それぞれの駆動電極ペア(21p,22p)に対し、図10と同様に、並列接続されている。しかし、図10とは異なり、駆動陽極21pにプラスの端子を接続し、駆動陰極22pにマイナスの端子を接続し、飽和電気二重層が誘導された状態で、駆動陽極21pと駆動陰極22pの間に過電圧分の電位差を増加させる、第1直流電源PS1とは独立した第2直流電源PS2は、それぞれの駆動電極ペア(21p,22p)と並列接続している。 Also in the electrolysis system according to the modification of the third embodiment, each drive electrode pair (21 p , 22 p ) is driven similarly to the electrolysis system according to the first and second embodiments. The oxidation reaction at the drive anode 21 p and the reduction reaction at the drive cathode 22 p are started by the potential difference generated between the drive anode 21 p and the drive cathode 22 p due to the superposition of the electric field lines and the induction electric field lines. Oxidation and reduction reactions are maintained for the required time. Therefore, a positive terminal is connected to the induction anode 11 q corresponding to each drive electrode pair (21 p , 22 p ), a negative terminal is connected to the induction cathode 12 q , and the induction anode 11 q and the induction cathode are connected. The first direct current power source PS1 that generates an induction electric field line between 12 q and a saturated electric double layer forming voltage between the drive anode 21 p and the drive cathode 22 p is connected to each drive electrode pair ( 21 p , 22 p ) as in FIG. However, unlike FIG. 10, connect the positive terminal to the drive anode 21 p, connect the negative terminal to the drive the cathode 22 p, while the saturation electric double layer is induced, the driving cathode and driving anode 21 p 22 p increases the potential difference between the overvoltage periods during, the second DC power source PS2 that is independent of the first DC power source PS1 is connected in parallel with each of the drive electrodes pair (21 p, 22 p).

第3の実施の形態の変形例に係る電気分解システムにおいても、式(6)に示す1電源電気分解に対する2電源電気分解の消費電力の比P/Pの関係が成立し、第1の実施の形態で説明した表1と同様に、駆動陽極21pと駆動陰極22pとの間に印加する過電圧ΔEを小さくすればするほど2電源電気分解の消費電力は大きく削減される。 Also in the electrolysis system according to the modification of the third embodiment, the relationship P 2 / P 1 of the power consumption of the two power source electrolysis with respect to the one power source electrolysis shown in Expression (6) is established, and the first As in Table 1 described in the above embodiment, the power consumption of the two power source electrolysis is greatly reduced as the overvoltage ΔE applied between the drive anode 21 p and the drive cathode 22 p is reduced.

図11に示すように、複数の電気分解ユニットを、長さ方向のシーケンスとして配列し、多段に構成し、誘導陽極11qと誘導陰極12qは並列接続にて第1直流電源PS1へ、駆動陽極21pと駆動陰極22pを、並列接続にて第2直流電源PS2へ向かう構造としても、工業的生産用装置に好適な電気分解システムが提供できる。 As shown in FIG. 11, a plurality of electrolysis units are arranged as a sequence in the length direction and are configured in multiple stages. The induction anode 11 q and the induction cathode 12 q are driven in parallel to the first DC power source PS1. Even when the anode 21 p and the driving cathode 22 p are connected in parallel to the second DC power source PS2, an electrolysis system suitable for an industrial production apparatus can be provided.

更に、図10に示した回路構成と図11に示した回路構成を組み合わせ、複数の電気分解ユニットを、多段に構成し、誘導陽極11qと誘導陰極12qは並列接続にて第1直流電源PS1へ、駆動陽極21pと駆動陰極22pを、直列接続と並列接続とを併用して、第2直流電源PS2へ向かう構造とすれば、大型の工業的生産用装置に好適な電気分解システムが提供できる。 Furthermore, the circuit configuration shown in FIG. 10 and the circuit configuration shown in FIG. 11 are combined to form a plurality of electrolysis units in multiple stages, and the induction anode 11 q and the induction cathode 12 q are connected in parallel to the first DC power supply. If the drive anode 21 p and the drive cathode 22 p are connected to the PS 1 in combination with a series connection and a parallel connection and are directed to the second DC power source PS2, an electrolysis system suitable for a large industrial production apparatus. Can be provided.

(その他の実施の形態)
上記のように、本発明は第1〜第3の実施の形態によって記載したが、この開示の一部をなす論述及び図面は本発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
(Other embodiments)
As described above, the present invention has been described according to the first to third embodiments. However, it should not be understood that the description and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.

例えば、誘導陽極11,駆動陽極21,駆動陰極22及び誘導陰極12にNiめっき鋼板を用いる場合を例示したが、駆動陽極21には、電解液の性質に応じて、白金(Pt)、ルテニウム(Ru)、ロジウム(Rh)、タンタル(Ta)、イリジウム(Ir)、パラジウム(Pd)、オスミウム(Os)などの酸化物の薄膜で被覆(コーティング)したチタン(Ti)、タンタル(Ta)、ニオブ(Nb)、ジルコニウム(Zr)等の金属電極を不溶性陽極として採用可能である。誘導陽極11,駆動陰極22及び駆動陽極21にも、これらの金属酸化物の薄膜で被覆(コーティング)した金属電極を用いても良いが、水の電気分解等であれば、ステンレス鋼等を用いても良い。   For example, the case where Ni plated steel plates are used for the induction anode 11, the drive anode 21, the drive cathode 22 and the induction cathode 12 is illustrated, but the drive anode 21 has platinum (Pt), ruthenium ( Ru (Ru), rhodium (Rh), tantalum (Ta), iridium (Ir), palladium (Pd), osmium (Os), etc. coated (coated) with titanium (Ti), tantalum (Ta), niobium A metal electrode such as (Nb) or zirconium (Zr) can be used as the insoluble anode. The induction anode 11, the drive cathode 22, and the drive anode 21 may be metal electrodes coated (coated) with a thin film of these metal oxides, but stainless steel or the like is used for electrolysis of water or the like. May be.

又、第1〜第3の実施の形態においては、概念的な模式図で説明したが、例えば、電解槽6には攪拌装置が備えられていても良く、電解液4の温度を制御する加熱装置や温度制御装置等が含まれていても構わないことは勿論である。   Moreover, in 1st-3rd Embodiment, although demonstrated by the conceptual schematic diagram, the electrolytic vessel 6 may be equipped with the stirring apparatus, for example, is heating which controls the temperature of the electrolyte solution 4 Of course, a device, a temperature control device, and the like may be included.

又、第1の実施の形態の説明においては誘導陽極11,駆動陽極21,駆動陰極22及び誘導陰極12の各電極からの電気力線の漏洩を防止するため、各部屋間の流通はいささかも無いように、電極板の周辺は絶縁体で完全にシールされていると説明したが、誘導陽極11,駆動陽極21,駆動陰極22及び誘導陰極12にそれぞれの電極間距離の1/10以下の径の開口部があっても、静電的に電気力線の漏洩を遮蔽(シールド)可能であるので、必ずしも、完全密閉構造に限定されるものでもない。要は、各電極からの電気力線の漏洩を防止できる電極構造であれば良いのである。このことは、第2及び第3の実施の形態においても同様である。   In the description of the first embodiment, in order to prevent the leakage of electric lines of force from the electrodes of the induction anode 11, the drive anode 21, the drive cathode 22 and the induction cathode 12, the flow between the rooms is not easy. As described above, the periphery of the electrode plate is completely sealed with an insulator. However, the induction anode 11, the drive anode 21, the drive cathode 22 and the induction cathode 12 are each 1/10 or less of the distance between the electrodes. Even if there is an opening having a diameter, the leakage of electric lines of force can be shielded (shielded) electrostatically, so that it is not necessarily limited to a completely sealed structure. In short, any electrode structure that can prevent leakage of lines of electric force from each electrode is sufficient. The same applies to the second and third embodiments.

このように、本発明はここでは記載していない様々な実施の形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。   As described above, the present invention naturally includes various embodiments not described herein. Accordingly, the technical scope of the present invention is defined only by the invention specifying matters according to the scope of claims reasonable from the above description.

本発明の第1の実施の形態に係る電気分解システムの構成を示す模式図である。It is a mimetic diagram showing the composition of the electrolysis system concerning a 1st embodiment of the present invention. 本発明の第1の実施の形態に係る電気分解システムにおいて、2電源電気分解が作動した際の電極電位分布を定性的に表した図である。In the electrolysis system concerning a 1st embodiment of the present invention, it is a figure which expressed qualitatively electrode potential distribution at the time of 2 power supply electrolysis operating. 本発明の第1の実施の形態に係る電気分解システムにおいて各電極間の電位を測定しながら、水の電気分解を行うための回路構成を示す模式図である。It is a schematic diagram which shows the circuit structure for performing the electrolysis of water, measuring the electric potential between each electrode in the electrolysis system which concerns on the 1st Embodiment of this invention. 25Cの水電気分解において電極間電圧に対して流れる電気分解電流を、1電源電気分解の場合と2電源電気分解の場合とで比較する図である。It is a figure which compares the electrolysis current which flows with respect to the voltage between electrodes in the water electrolysis of 25 oC in the case of 1 power source electrolysis and the case of 2 power source electrolysis. 2電源電気分解において駆動陽極と駆動陰極において、電気分解が行われているとき、誘導陽極と誘導陰極に接続される閉回路に電流は流れないことを説明するために、誘導陽極と駆動陽極との間の極間電圧EAと、駆動陽極と駆動陰極との間の極間電圧EJの関係を示す図である。In order to explain that no current flows in the closed circuit connected to the induction anode and the induction cathode when the electrolysis is performed in the drive anode and the drive cathode in the two-source electrolysis, the induction anode and the drive anode and inter-electrode voltage E a between a diagram showing the relationship between inter-electrode voltage E J between the driving anode and driving cathode. 2電源電気分解における駆動陽極と駆動陰極とを含む閉回路の電気化学的な等価回路を示す図である。It is a figure which shows the electrochemical equivalent circuit of the closed circuit containing the drive anode and drive cathode in 2 power supply electrolysis. 本発明の第2の実施の形態に係る電気分解システムの構成を示す模式図である。It is a schematic diagram which shows the structure of the electrolysis system which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施の形態の第1変形例に係る電気分解システムの構成を示す模式図である。It is a schematic diagram which shows the structure of the electrolysis system which concerns on the 1st modification of the 2nd Embodiment of this invention. 本発明の第2の実施の形態の第2変形例に係る電気分解システムの構成を示す模式図である。It is a schematic diagram which shows the structure of the electrolysis system which concerns on the 2nd modification of the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係る電気分解システムの構成を示す模式図である。It is a schematic diagram which shows the structure of the electrolysis system based on the 3rd Embodiment of this invention. 本発明の第3の実施の形態の変形例に係る電気分解システムの構成を示す模式図である。It is a schematic diagram which shows the structure of the electrolysis system which concerns on the modification of the 3rd Embodiment of this invention. 1電源電気分解の原理を説明する模式図で、化合物の分解を目的とする電気分解に特有の、電極と電解液との界面に形成される電気二重層を示している。1 is a schematic diagram for explaining the principle of one-power-source electrolysis, and shows an electric double layer formed at the interface between an electrode and an electrolytic solution, which is peculiar to electrolysis intended to decompose a compound. 化合物の分解を目的とする電気分解に特有の電極間電圧と電気分解電流との関係を定性的に描いた図である。It is the figure which drew qualitatively the relationship between the electrode voltage peculiar to the electrolysis for the purpose of decomposition | disassembly of a compound, and an electrolysis current. 化合物の分解を目的とする電気分解において、化合物に固有の飽和電気二重層形成電圧EDが存在し、飽和電気二重層形成電圧EDに過電圧ΔEを加えた電圧EEで初めて電気分解電流が流れ始めることを説明するための図である。In electrolysis for the purpose of decomposition of the compound, there are inherent saturation electric double layer formed voltage E D compounds, first electrolysis current at a voltage E E plus overvoltage ΔE saturated electric double layer formed voltage E D is It is a figure for demonstrating starting to flow.

符号の説明Explanation of symbols

1…直流電源
2a,2b…導線
3a…陽極
3b…陰極
4…電解液
6…電解槽
11,11j,11q,11s…誘導陽極
11S…スリット
12,12j,12q,12s…誘導陰極
21,21p,21r…駆動陽極
22,22p,22r…駆動陰極
71,72…直流電流計
82,83,84…直流電圧計
L…負荷
S…移動抵抗
soln…抵抗
S…スイッチ
F…ファラデーインピーダンス
PS1…第1直流電源
PS2…第2直流電源
1 ... DC power source 2a, 2b ... conductor 3a ... anode 3b ... cathode 4 ... electrolyte 6 ... electrolyzer 11,11 j, 11 q, 11 s ... induction anode 11S ... slit 12,12 j, 12 q, 12 s ... Induction cathode 21, 21 p , 21 r ... driving anode 22, 22 p , 22 r ... driving cathode 71, 72 ... DC ammeter 82, 83, 84 ... DC voltmeter R L ... load R S ... movement resistance R soln ... resistance S ... switch Z F ... Faraday impedance PS1 ... first DC power source PS2 ... second DC power supply

Claims (9)

電解液中に浮遊電位となるように挿入され、前記電解液中の負イオンを介して酸化反応を行う駆動陽極と、
該駆動陽極と直接対向し、且つ互いに平行に前記電解液中に浮遊電位となるように挿入され、前記電解液中の正イオンを介して還元反応を行う駆動陰極と、
前記駆動陽極と前記駆動陰極とからなる駆動電極ペアを挟み、平行に対向して前記電解液中に挿入される誘導陽極及び誘導陰極を有し、前記駆動陽極と前記駆動陰極との間に誘導電位差を発生させ、前記駆動陽極から前記駆動陰極に向かう駆動電気力線と同一方向の誘導電気力線を前記駆動電気力線に重畳する誘導電気力線生成手段
とを備え、前記駆動電気力線と前記誘導電気力線との重畳による前記駆動陽極と前記駆動陰極の間に生じる重畳電位差により、前記酸化反応及び前記還元反応を開始させることを特徴とする電気分解システム。
A drive anode that is inserted in the electrolyte so as to have a floating potential, and performs an oxidation reaction via negative ions in the electrolyte;
A driving cathode that is directly opposed to the driving anode and parallel to each other so as to have a floating potential in the electrolyte, and performs a reduction reaction via positive ions in the electrolyte;
A drive electrode pair comprising the drive anode and the drive cathode is sandwiched between the drive anode and the drive cathode. An induced electric field line generating means for generating an electric potential difference and superimposing an induced electric field line in the same direction as a driving electric field line directed from the driving anode toward the driving cathode on the driving electric field line, and the driving electric field line The oxidation reaction and the reduction reaction are started by a superimposed potential difference generated between the driving anode and the driving cathode due to superimposition of the electric field lines and the induced electric field lines.
前記誘導電気力線により、前記駆動陽極の表面の負イオンと前記駆動陰極の表面の正イオンとからなる電気二重層を、前記酸化反応及び前記還元反応が開始する直前の飽和状態にする飽和電気二重層形成電圧を、前記駆動陽極と前記駆動陰極との間に生じさせ、
前記駆動電気力線が前記駆動陽極と前記駆動陰極との間に生じさせる過電圧を、前記飽和電気二重層形成電圧に重畳することにより、前記酸化反応及び前記還元反応を開始させることを特徴とする請求項1に記載の電気分解システム。
Saturated electricity that causes the electric double layer composed of negative ions on the surface of the driving anode and positive ions on the surface of the driving cathode to be in a saturated state immediately before the start of the oxidation reaction and the reduction reaction by the induced electric field lines. A double layer forming voltage is generated between the drive anode and the drive cathode;
The oxidation reaction and the reduction reaction are started by superimposing an overvoltage generated between the drive anode and the drive cathode on the saturation electric double layer formation voltage by the drive electric lines of force. The electrolysis system according to claim 1.
前記誘導陽極にプラスの端子を接続し、前記誘導陰極にマイナスの端子を接続し、前記誘導陽極と前記誘導陰極との間に前記誘導電気力線を生じさせ、前記駆動陽極と前記駆動陰極との間に、前記飽和電気二重層形成電圧を生じさせる第1直流電源と、
前記駆動陽極にプラスの端子を接続し、前記駆動陰極にマイナスの端子を接続し、前記飽和電気二重層が誘導された状態で、前記駆動陽極と前記駆動陰極の間に前記過電圧分の電位差を増加させる、前記第1直流電源とは独立した第2直流電源
とを更に備えることを特徴とする請求項1又は2に記載の電気分解システム。
A positive terminal is connected to the induction anode, a negative terminal is connected to the induction cathode, the induction electric lines of force are generated between the induction anode and the induction cathode, and the drive anode and the drive cathode A first DC power source for generating the saturated electric double layer forming voltage,
A positive terminal is connected to the driving anode, a negative terminal is connected to the driving cathode, and a potential difference corresponding to the overvoltage is generated between the driving anode and the driving cathode in a state where the saturated electric double layer is induced. increasing, electrolysis system according to claim 1 or 2, further comprising a second DC power source that is independent of the said first direct current power source.
平板状の前記駆動陽極及び前記駆動陰極のそれぞれが、前記電解液を収納する電解槽の底面及び対向する2つの側壁に接し、これにより、前記電解液の一部を密閉して収納する一つの容器をなすことを特徴とする請求項1〜3のいずれか1項に記載の電気分解システム。   Each of the plate-like driving anode and the driving cathode is in contact with the bottom surface of the electrolytic cell for storing the electrolytic solution and the two opposing side walls, whereby one part of the electrolytic solution is sealed and stored. The electrolysis system according to claim 1, wherein the electrolysis system is a container. 電解液中に浮遊電位となるように挿入され、前記電解液中の負イオンを介して酸化反応を行う駆動陽極と、
該駆動陽極と直接対向し、且つ互いに平行に前記電解液中に浮遊電位となるように挿入され、前記電解液中の正イオンを介して還元反応を行う駆動陰極と、
前記電気分解ユニットを構成する前記駆動電極ペアを挟み、平行に対向して前記電解液中に挿入される誘導陽極及び誘導陰極を有し、前記駆動陽極と前記駆動陰極との間に誘導電位差を発生させ、前記駆動陽極から前記駆動陰極に向かう駆動電気力線と同一方向の誘導電気力線を前記駆動電気力線に重畳する誘導電気力線生成手段
とを備える電気分解ユニットを複数備え、
それぞれの電気分解ユニットにおいて、前記駆動電気力線と前記誘導電気力線との重畳による前記駆動陽極と前記駆動陰極の間に生じる重畳電位差により、前記酸化反応及び前記還元反応を駆動し、且つ、
それぞれの電気分解ユニットの前記駆動陽極と前記駆動陰極とからなる駆動電極ペアが、互いに電気的に直列に接続されていることを特徴とする電気分解システム。
A drive anode that is inserted in the electrolyte so as to have a floating potential, and performs an oxidation reaction via negative ions in the electrolyte;
A driving cathode that is directly opposed to the driving anode and parallel to each other so as to have a floating potential in the electrolyte, and performs a reduction reaction via positive ions in the electrolyte;
An induction anode and an induction cathode that are inserted into the electrolyte solution in parallel across the drive electrode pair that constitutes the electrolysis unit, and an induced potential difference is provided between the drive anode and the drive cathode. A plurality of electrolysis units comprising: an induced electric force line generating means that superimposes an induced electric force line in the same direction as a driving electric force line directed from the driving anode toward the driving cathode;
In each electrolysis unit, the oxidation reaction and the reduction reaction are driven by a superimposed potential difference generated between the drive anode and the drive cathode due to the overlap of the drive electric force lines and the induction electric force lines, and
An electrolysis system, wherein a drive electrode pair including the drive anode and the drive cathode of each electrolysis unit is electrically connected in series with each other.
電解液中に浮遊電位となるように挿入され、前記電解液中の負イオンを介して酸化反応を行う駆動陽極、該駆動陽極と直接対向し、且つ互いに平行に前記電解液中に浮遊電位となるように挿入され、前記電解液中の正イオンを介して還元反応を行う駆動陰極からなる駆動電極ペアを複数、電気的に直列接続した多段駆動電極構造と、
それぞれの前記駆動電極ペアにおいて、前記駆動陽極と前記駆動陰極との間に誘導電位差を発生させ、前記駆動陽極から前記駆動陰極に向かう駆動電気力線と同一方向の誘導電気力線を前記駆動電気力線に重畳する誘導電気力線生成手段
とを備え、前記誘導電気力線生成手段が、それぞれの前記駆動電極ペアを挟み、平行に対向して前記電解液中に挿入される誘導陽極と誘導陰極とからなる誘導電極ペアを備え、該誘導電極ペアが電気的に並列接続され、それぞれの前記駆動電極ペアにおいて、前記駆動電気力線と前記誘導電気力線との重畳による前記駆動陽極と前記駆動陰極の間に生じる重畳電位差により、前記酸化反応及び前記還元反応を開始させることを特徴とする電気分解システム。
A drive anode inserted in the electrolyte so as to have a floating potential, and performing an oxidation reaction via negative ions in the electrolyte, directly opposed to the drive anode, and parallel to each other with the floating potential in the electrolyte A multi-stage drive electrode structure in which a plurality of drive electrode pairs consisting of drive cathodes that are inserted so as to perform a reduction reaction via positive ions in the electrolyte solution are electrically connected in series;
In each of the drive electrode pairs, an induced potential difference is generated between the drive anode and the drive cathode, and an induced electric force line in the same direction as a drive electric force line directed from the drive anode toward the drive cathode is applied to the drive electric field. Induction electric field lines generating means for superimposing on the force lines, the induction electric field lines generating means sandwiching each of the drive electrode pairs and in parallel with the induction anode inserted into the electrolytic solution and induction An induction electrode pair composed of a cathode, and the induction electrode pair is electrically connected in parallel, and in each of the drive electrode pairs, the drive anode and the induction electric force lines are overlapped with each other. An electrolysis system, wherein the oxidation reaction and the reduction reaction are started by a superimposed potential difference generated between driving cathodes.
互いに隣接する駆動電極ペアのそれぞれの駆動陰極を、前記誘導陰極の1を挟んで互いに対向させ、挟まれた前記誘導陰極の1を前記隣接する駆動電極ペアに共通の誘導陰極としたことを特徴とする請求項に記載の電気分解システム。 The drive cathodes of the drive electrode pairs adjacent to each other are made to face each other with the induction cathode 1 interposed therebetween, and the sandwiched induction cathode 1 is set as an induction cathode common to the adjacent drive electrode pairs. The electrolysis system according to claim 6 . 互いに隣接する駆動電極ペアのそれぞれの駆動陽極を、前記誘導陽極の1を挟んで互いに対向させ、挟まれた前誘導陽極の1を、前記隣接する駆動電極ペアに共通の誘導陽極としたことを特徴とする請求項に記載の電気分解システム。 The drive anodes of the drive electrode pairs adjacent to each other are made to face each other with the induction anode 1 interposed therebetween, and the sandwiched front induction anode is set as an induction anode common to the adjacent drive electrode pairs. The electrolysis system according to claim 6 . 平板状の前記駆動陽極、前記駆動陰極、誘導陽極及び誘導陰極が、それぞれ前記電解液を収納する電解槽の底面に対して垂直に配置されることにより、互いに平行となり、且つ、
前記駆動陽極、前記駆動陰極、誘導陽極及び誘導陰極のそれぞれが、前記電解槽の底面及び対向する2つの側壁に接し、これにより、前記電解液の一部をそれぞれ密閉して収納する独立した複数の容器をなすことを特徴とする請求項6〜8のいずれか1項に記載の電気分解システム。
The plate-like drive anode, the drive cathode, the induction anode and the induction cathode are arranged perpendicular to the bottom surface of the electrolytic cell containing the electrolytic solution, respectively, and are parallel to each other, and
Each of the driving anode, the driving cathode, the induction anode, and the induction cathode is in contact with the bottom surface of the electrolytic cell and the two opposing side walls, thereby independently storing a plurality of the electrolyte solutions. The electrolysis system according to any one of claims 6 to 8 , wherein said electrolysis system is formed.
JP2005293756A 2005-10-06 2005-10-06 Electrolysis system Expired - Fee Related JP4562634B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005293756A JP4562634B2 (en) 2005-10-06 2005-10-06 Electrolysis system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005293756A JP4562634B2 (en) 2005-10-06 2005-10-06 Electrolysis system

Publications (2)

Publication Number Publication Date
JP2007100187A JP2007100187A (en) 2007-04-19
JP4562634B2 true JP4562634B2 (en) 2010-10-13

Family

ID=38027408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005293756A Expired - Fee Related JP4562634B2 (en) 2005-10-06 2005-10-06 Electrolysis system

Country Status (1)

Country Link
JP (1) JP4562634B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100925754B1 (en) 2007-09-18 2009-11-11 삼성전기주식회사 Reactor cover, apparatus for generating hydrogen and fuel cell power generation system having the same
JP5557434B2 (en) * 2008-08-29 2014-07-23 学校法人同志社 Method for fixing carbon in carbon dioxide
JP5836016B2 (en) * 2011-08-31 2015-12-24 株式会社日立製作所 Water electrolyzer
CN109790637B (en) * 2016-10-12 2022-02-01 新南创新私人有限公司 Method and apparatus for controlling an electrochemical process
NL2018056B1 (en) * 2016-12-23 2018-07-02 Univ Delft Tech Hybrid battery and electrolyser

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005127721A (en) * 2003-10-21 2005-05-19 National Institute Of Advanced Industrial & Technology Ionic conductance measuring instrument
WO2005072020A1 (en) * 2004-01-22 2005-08-04 Matsushita Electric Works, Ltd. Discharge lamp operating device, illuminator and projector
JP2005230707A (en) * 2004-02-20 2005-09-02 Mitsubishi Heavy Ind Ltd Electrochemical reaction method and apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58171587A (en) * 1982-04-02 1983-10-08 Japan Carlit Co Ltd:The Method for supplying electricity to bipolar electrolytic cell of filter press type
GB9012186D0 (en) * 1990-05-26 1990-07-18 Atomic Energy Authority Uk Electrochemical ion exchange

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005127721A (en) * 2003-10-21 2005-05-19 National Institute Of Advanced Industrial & Technology Ionic conductance measuring instrument
WO2005072020A1 (en) * 2004-01-22 2005-08-04 Matsushita Electric Works, Ltd. Discharge lamp operating device, illuminator and projector
JP2005230707A (en) * 2004-02-20 2005-09-02 Mitsubishi Heavy Ind Ltd Electrochemical reaction method and apparatus

Also Published As

Publication number Publication date
JP2007100187A (en) 2007-04-19

Similar Documents

Publication Publication Date Title
AU2015225569B2 (en) Method and system to maintain electrolyte stability for all-iron redox flow batteries
US10892511B2 (en) Stand-alone system for clamping a high-temperature SOEC/SOFC stack
Mazloomi et al. Influencing factors of water electrolysis electrical efficiency
TWI611615B (en) Battery stack, and redox flow battery
JP4562634B2 (en) Electrolysis system
US9096939B2 (en) Electrolysis transistor
Rocha et al. Pulsed water electrolysis: A review
JP6865436B2 (en) Electrochemical device
JP5836016B2 (en) Water electrolyzer
Opu Effect of operating parameters on performance of alkaline water electrolysis
WO2015025961A1 (en) Vanadium electrolyte, method for producing same and vanadium redox battery
CN101772594B (en) Improved electrochemical system for metal recovery
JPWO2014208019A1 (en) Methanol generating apparatus, method for generating methanol, and electrode for methanol generation
JP2019167579A (en) Electrochemical device, and method of controlling electrochemical device
US3994798A (en) Module electrode assembly for electrolytic cells
CN117242210A (en) Electrolysis device
CN113853455B (en) Control method for organic hydride generation system and organic hydride generation system
US20230014927A1 (en) Organic hydride generation system, control device for organic hydride generation system, and control method for organic hydride generation system
AU2021227715B2 (en) Application of high conductivity electrodes in the electrolysis of water
JP2010159458A (en) Solid oxide electrolysis cell and method for operating solid oxide electrolysis cell
US4085027A (en) Hybrid bipolar electrode
Peng et al. Achieving low voltage half electrolysis with a supercapacitor electrode
JP2008255409A (en) Electrolysis apparats
CN110767928A (en) Thermal regeneration ammonia battery based on electric field enhanced mass transfer and preparation method
JP7038375B2 (en) Electrochemical devices and methods for controlling electrochemical devices

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100727

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4562634

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees