JP2005127721A - Ionic conductance measuring instrument - Google Patents

Ionic conductance measuring instrument Download PDF

Info

Publication number
JP2005127721A
JP2005127721A JP2003360320A JP2003360320A JP2005127721A JP 2005127721 A JP2005127721 A JP 2005127721A JP 2003360320 A JP2003360320 A JP 2003360320A JP 2003360320 A JP2003360320 A JP 2003360320A JP 2005127721 A JP2005127721 A JP 2005127721A
Authority
JP
Japan
Prior art keywords
pipe
conductivity
measurement
solution
constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003360320A
Other languages
Japanese (ja)
Other versions
JP4025875B2 (en
Inventor
Jun Shiroma
純 城間
Hajime Matsumoto
一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003360320A priority Critical patent/JP4025875B2/en
Publication of JP2005127721A publication Critical patent/JP2005127721A/en
Application granted granted Critical
Publication of JP4025875B2 publication Critical patent/JP4025875B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ionic conductance measuring method and a measuring instrument for performing measurement even with restrictions on the type of an electrode. <P>SOLUTION: This ionic conductance measuring instrument is equipped with a double-pipe structure formed out of two straight pipes being outer and inner pipes, and comprises an anode chamber within the inner pipe and a cathode chamber formed between the outer and inner pipes. By fixing the pipe diameters of straight pipe parts in an overlapping portion, the cross section area of a liquid part can be fixed. Further, by changing the extent to which the inner pipe is inserted into the outer pipe, the length of the straight pipe parts in the overlapping portion is changed. In keeping with the change, a cell constant can be changed at a definite rate. A method is provided for using the ionic conductance measuring method. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、いくつかのイオン種を含む液体中の、伝導度(とりわけ、特定イオン伝導度)を測定するための方法および装置に関する。   The present invention relates to a method and apparatus for measuring conductivity (especially specific ionic conductivity) in a liquid containing several ionic species.

デバイス内に含まれるイオン種全体によるイオン伝導のうち、そのデバイスの性能を表す、目的イオンの寄与分(例えばリチウムイオン電池におけるリチウムイオン伝導度、酸溶液を使用する燃料電池における水素イオン伝導度など)を測定および評価することは、デバイス開発上重要である。   Of the ionic conduction by the entire ionic species contained in the device, the contribution of the target ion that represents the performance of the device (for example, lithium ion conductivity in a lithium ion battery, hydrogen ion conductivity in a fuel cell using an acid solution, etc. ) Is important for device development.

従来のイオン伝導度の測定方法としては、4端子法(4極式セル)および2端子法が挙げら
れる。これらいずれの方法においてもセル形状に違いはなく、測定方法をかえることによって全イオン伝導度または特定イオン伝導度の測定を行うことができる。ここでは、着目しているイオンのみの伝導度を「特定イオン伝導度」と表現し、通常用いられる意味でのイオン伝導度を「全イオン伝導度」とする。
Conventional methods for measuring ionic conductivity include the 4-terminal method (4-pole cell) and the 2-terminal method. There is no difference in the cell shape in any of these methods, and the total ion conductivity or specific ion conductivity can be measured by changing the measurement method. Here, the conductivity of only the ions of interest is expressed as “specific ionic conductivity”, and the ionic conductivity in the commonly used meaning is “total ionic conductivity”.

4端子法の最も原則的な測定方法としては、図1に示すように、電流印加用電極(アノード、カソード)と電位測定用電極(参照電極)2個を用い、流れているイオン電流と、参照電極間の電位差との関係からイオン伝導度を算出する方法がある(セル定数については、実
際には寸法からではなく既知の伝導度を持つ標準溶液の測定から求める)。このとき、単
一イオン種のみが電極反応に関与するような電極を用い(図1の例では、アノードでは水素ガス酸化による水素イオン発生、カソードでは水素イオン還元による水素ガス発生)、直
流電流を流し始めてから充分時間が経過し、系全体が定常状態となった後に測定することで、特定イオン伝導度(図1の例では水素イオン伝導度)が測定される。一方、直流電流を
流し始めた直後や、交流電流を流した場合には、測定部の液中では全イオン種がイオン電流に関与しているため、全イオン伝導度が測定される。
As shown in FIG. 1, the most basic measurement method of the four-terminal method uses two electrodes for current application (anode and cathode) and two electrodes for potential measurement (reference electrodes), and the flowing ionic current, There is a method of calculating the ionic conductivity from the relationship with the potential difference between the reference electrodes (the cell constant is actually obtained from the measurement of a standard solution having a known conductivity, not from the dimensions). At this time, an electrode in which only a single ion species is involved in the electrode reaction is used (in the example of FIG. 1, hydrogen ions are generated by hydrogen gas oxidation at the anode and hydrogen gas is generated by hydrogen ion reduction at the cathode), and a direct current is The specific ion conductivity (hydrogen ion conductivity in the example of FIG. 1) is measured by measuring after a sufficient time has elapsed since the start of flow and the entire system is in a steady state. On the other hand, immediately after starting to pass a direct current or when an alternating current is passed, all ion species are involved in the ion current in the liquid of the measurement unit, and thus the total ion conductivity is measured.

4端子法は、厳密であるが、電極数が多くセルも複雑である。また、アノード、カソー
ド間の距離を短くできないため、測定対象液体の伝導度が低い場合、高い電圧を印加する必要がある。
The four-terminal method is strict, but it has many electrodes and complicated cells. In addition, since the distance between the anode and the cathode cannot be shortened, it is necessary to apply a high voltage when the conductivity of the liquid to be measured is low.

4端子法を用いて全イオン伝導度を求めることはごく一般的に行われ、 [非特許文献1]に、直流分極による測定原理が述べられている。   It is very common to obtain the total ionic conductivity using the four-terminal method, and [Non-Patent Document 1] describes the measurement principle by DC polarization.

4端子法を用いて特定イオン伝導度を測定した例としては、[非特許文献2]において、
常温溶融塩中の水素イオン伝導度を測定している。
As an example of measuring the specific ion conductivity using the 4-terminal method, [Non-Patent Document 2]
The hydrogen ion conductivity in the ambient temperature molten salt is measured.

2端子法においては、図2に示すように、平行な2枚の平板電極を用いて測定する。この
とき、4端子法と同様、目的イオンのみの伝導度を測定するためには、目的イオンのみ移
動している直流定常状態を作り出すことが必要である。
In the two-terminal method, the measurement is performed using two parallel plate electrodes as shown in FIG. At this time, as in the four-terminal method, in order to measure the conductivity of only the target ions, it is necessary to create a DC steady state in which only the target ions are moving.

また、2端子法では4端子法と異なり界面での電気化学反応の抵抗(電荷移動抵抗)も測定電圧に含まれるので、これを除くため、直流電流に交流成分を重畳させてイオン移動抵抗と電荷移動抵抗とを分離する方法(インピーダンス法)、または、直流電流を瞬間的に遮断することによりイオン移動抵抗のみ取り出す方法(カレントインタラプト法)が使用される。   Also, unlike the 4-terminal method, the resistance of the electrochemical reaction at the interface (charge transfer resistance) is also included in the measured voltage in the 2-terminal method, so in order to exclude this, the AC component is superimposed on the DC current and A method of separating the charge transfer resistance (impedance method) or a method of taking out only the ion transfer resistance by instantaneously interrupting a direct current (current interrupt method) is used.

一方、直流成分を含まない交流を印加して測定した場合には、全イオン伝導度の測定となる。   On the other hand, when measurement is performed by applying an alternating current that does not include a direct current component, the total ion conductivity is measured.

2端子法を用いて全イオン伝導度を求めることはごく一般的に行われるが、例えば、[非特許文献3]に、交流インピーダンス法による解析が紹介されている。   Although it is very common to obtain the total ionic conductivity using the two-terminal method, for example, [Non-Patent Document 3] introduces an analysis by an AC impedance method.

2端子法を用いて特定イオン伝導度を求めた例としては、[非特許文献4]において、リ
チウム電極を用いた定常直流分極状態でのインピーダンス測定によるリチウムイオン伝導度の測定がある。
・目的イオンのみ移動している直流定常状態を作り出す方法
図2に示すリチウム電池用電解液におけるリチウムイオン伝導度測定の場合、アノード
・カソードは、実際に電池で用いられている平板電極を用いればよいが、図1に示すような、燃料電池用電解液における水素イオン伝導度を測定するためには、アノードをガス電極としなければならず、また、カソードではガス発生が起こるため、単純な平板電極とすることは事実上不可能であり、2端子法での測定は困難であった。
・原理
図3に示すように、カレントインタラプト法(あるいはインピーダンス法)を用いる2極式セルにおいて、断面積が一定である部分の長さを変えることができれば、電極部の形状が複雑でセル全体のセル定数が不明であっても、セル定数の変化分は正確に算出できる。したがって、測定結果(溶液抵抗)の変化分から伝導度を算出することが可能となる。
・問題点
しかしながら、図3に示すような、「規定された部分」以外が全く同一であるセルを複
数作製することは困難である。従って、この方法を実現するには、「規定された部分」を自由に伸縮させることができる機構を備えたセルを作製する必要がある。これは技術的に困難であり、また測定対象のイオン伝導液体が溶融塩などの場合、高温で測定するため、セルの材質はガラスなどに限定され、さらに困難である。
An example of obtaining specific ion conductivity using the two-terminal method is measurement of lithium ion conductivity by impedance measurement in a steady DC polarization state using a lithium electrode in [Non-Patent Document 4].
・ Method of creating a DC steady state in which only the target ions are moving In the case of measuring lithium ion conductivity in the electrolyte solution for lithium batteries shown in Fig. 2, the anode and cathode should be the flat electrodes actually used in the battery. However, in order to measure the hydrogen ion conductivity in the electrolyte for a fuel cell as shown in FIG. 1, the anode must be a gas electrode, and gas generation occurs at the cathode. It was practically impossible to use an electrode, and measurement by the two-terminal method was difficult.
・ Principle As shown in Fig. 3, in a bipolar cell using the current interrupt method (or impedance method), if the length of the part with a constant cross-sectional area can be changed, the shape of the electrode part is complicated and the entire cell Even if the cell constant is unknown, the change in the cell constant can be calculated accurately. Therefore, the conductivity can be calculated from the change in the measurement result (solution resistance).
However, it is difficult to produce a plurality of cells that are exactly the same except for the “specified part” as shown in FIG. Therefore, in order to realize this method, it is necessary to produce a cell having a mechanism capable of freely expanding and contracting the “specified portion”. This is technically difficult, and when the ionic conductive liquid to be measured is a molten salt or the like, the cell material is limited to glass or the like because the measurement is performed at a high temperature, which is further difficult.

全イオン伝導度は、電極の形状についての制約が少なく、すでに簡便な測定装置が存在するのに対し、特定イオン伝導度を測定するためには、電極の様式(イオン電流を作り出
すための電極反応と、それに伴う電極形状)が限定され、このことが測定を困難にしてい
る。
伊豆津公佑「非水溶液の電気化学」(培風館、1995)p.128 「第9回燃料電池シンポジウム講演予稿集」(燃料電池開発情報センター、2002.5.15)A1-23P 電気化学会「電気化学測定マニュアル 実践編」(丸善、2002)p.15 「電気化学会第67回大会要旨集」(2000.4)2B17
Total ion conductivity has few restrictions on the shape of the electrode, and there is already a simple measuring device.On the other hand, in order to measure specific ion conductivity, the electrode type (electrode reaction to generate ionic current) The electrode shape associated therewith is limited, which makes measurement difficult.
Izutsu Park “Electrochemistry of non-aqueous solutions” (Baifukan, 1995) p.128 "9th Fuel Cell Symposium Proceedings" (Fuel Cell Development Information Center, 2002.5.15) A1-23P The Electrochemical Society "Electrochemical Measurement Manual: Practice" (Maruzen, 2002) p.15 "Summary of the 67th Annual Meeting of the Electrochemical Society of Japan" (2000.4) 2B17

本発明は、電極の様式に関する制約があっても測定可能な、イオン伝導度の測定方法および測定装置を提供することを目的とする。   An object of this invention is to provide the measuring method and measuring apparatus of an ionic conductivity which can be measured even if there are restrictions regarding the mode of the electrode.

本発明のイオン伝導度測定装置は、図4に示すように2本の直管である外管および内管によって形成される2重管構造を備え、内管の内部のアノード室および外管と内管の間に形
成されるカソード室を有する。また、図4中に(a)で表される「直管部の重なり部分」の管の径を一定にすることにより、液体部の断面積を一定にすることが可能である。ここで、液体部の断面積とは、すなわち外管の断面積(内のり)から内管の断面積(外のり)を引いたものを指す。さらに、内管を外管に差し込む程度を変化させることで「直管部の重なる部分」の長さ変化に伴って、セル定数を一定の割合で変化させることを特徴とする。
すなわち、直管部において、内管の外径をr1、外管の内径r2、重なり部分の長さをdとす
ると、dの変化に伴うセル定数の変化は、理論上
The ion conductivity measuring device of the present invention comprises a double pipe structure formed by two outer pipes and an inner pipe, as shown in FIG. 4, and an anode chamber and an outer pipe inside the inner pipe, A cathode chamber is formed between the inner tubes. Further, by making the pipe diameter of the “overlapping portion of the straight pipe portion” represented by (a) in FIG. 4 constant, the cross-sectional area of the liquid portion can be made constant. Here, the cross-sectional area of the liquid portion refers to a value obtained by subtracting the cross-sectional area of the inner tube (outer glue) from the cross-sectional area of the outer pipe (inner glue). Furthermore, the cell constant is changed at a constant rate in accordance with the change in the length of the “overlapping portion of the straight pipe portion” by changing the degree of inserting the inner pipe into the outer pipe.
That is, in the straight pipe section, if the outer diameter of the inner pipe is r 1 , the inner diameter r 2 of the outer pipe, and the length of the overlapping portion is d, the change in cell constant accompanying the change of d is theoretically

Figure 2005127721
Figure 2005127721

である。 It is.

図5に、「直管部の重なり部分」におけるイオン流の詳細を示す。   FIG. 5 shows details of the ion flow in the “overlapping portion of the straight pipe portion”.

本発明に係るイオン伝導度測定装置の外管および内管の各径の大きさは、特に制限されないが、外管と内管の隙間の寸法が、イオンが流れる他の部分よりもある程度小さいことが好ましい。具体的には、内管の内径r0は2mm〜50mm程度、好ましくは2mm〜20mm程度であり、外管の内径と内管の外径の差r2−r1は、1mm以上であって、r0の1/2以下が好
ましい。ここで、図4および図5からわかるように、イオン流の「折り返し点」より下の部分(b)の長さも、二重管の出し入れに伴い変化することになるが、このような(b)部の長さ変化がセル定数に影響を与えると、本セルの特徴は失われる。ただし、(b)部の長さを
充分に確保すれば、実質的に(b)部に流れ込むイオン流はゼロと想定することができ、
(b)部の長さが変化してもセル定数には影響を与えないと考えられる。従って、(b)部の長さ変化による影響を微小にするため、(b)の長さが最も小さい時でも充分な長さを確保
することが必須である。確保すべき(b)部の長さの目安は、測定精度にもよるが、おおむ
ね、管の間隙の長さと比べて1桁以上長いことが望ましい。好ましくは、r2−r1の10倍
以上であって、100倍以下である。
The size of each diameter of the outer tube and the inner tube of the ion conductivity measuring device according to the present invention is not particularly limited, but the size of the gap between the outer tube and the inner tube is somewhat smaller than other parts through which ions flow. Is preferred. Specifically, the inner diameter r 0 of the inner tube is about 2 mm to 50 mm, preferably about 2 mm to 20 mm, and the difference r 2 -r 1 between the inner diameter of the outer tube and the outer diameter of the inner tube is 1 mm or more. , R 0 or less is preferable. Here, as can be seen from FIGS. 4 and 5, the length of the portion (b) below the `` turning point '' of the ion flow also changes as the double tube is taken in and out. The characteristics of this cell are lost if the change in the length of the) part affects the cell constant. However, if the length of the (b) part is sufficiently secured, the ion flow flowing into the (b) part can be assumed to be substantially zero,
It is thought that the cell constant is not affected even if the length of the (b) part is changed. Accordingly, in order to minimize the influence of the change in the length of the portion (b), it is essential to secure a sufficient length even when the length of (b) is the smallest. The length of the portion (b) to be secured is preferably about one digit longer than the gap length of the tube, although it depends on the measurement accuracy. Preferably, it is 10 times or more of r 2 -r 1 and 100 times or less.

本発明のセルは、測定溶液と反応せず、かつ導電性のない素材、例えばガラス、樹脂、ゴム、セラミック等から構成されることが好ましい。   The cell of the present invention is preferably composed of a material that does not react with the measurement solution and has no electrical conductivity, such as glass, resin, rubber, or ceramic.

本発明の電圧印可用電極は、測定するのイオンの種類によって使い分ける。例えば、
・酸性水溶液中の水素イオンの場合:白金+水素ガスまたはイリジウム+水素ガス
・非水溶液中のリチウムイオンの場合:リチウム、コバルト酸リチウムまたはリチ ウムグラファイト
・アルカリ性水溶液中の水酸化物イオンの場合:白金+水素ガス、水酸化カドミウ ムまたは水酸化ニッケル
・水溶液中の塩化物イオンの場合:白金+塩素ガスまたは塩化銀
などが挙げられるが、上記に限定されない。
The voltage application electrode of the present invention is selectively used depending on the type of ions to be measured. For example,
・ Hydrogen ions in acidic aqueous solution: platinum + hydrogen gas or iridium + hydrogen gas
-Lithium ions in non-aqueous solution: Lithium, lithium cobaltate or lithium graphite-Hydroxide ions in alkaline aqueous solution: Platinum + hydrogen gas, cadmium hydroxide or nickel hydroxide-Chloride in aqueous solution In the case of ions: platinum + chlorine gas or silver chloride may be mentioned, but not limited to the above.

本発明に係る測定装置に使用される電極の厚みは、0.01mm〜5.00mm程度、 好ましくは0.05mm〜2.00mm程度である。   The thickness of the electrode used in the measuring apparatus according to the present invention is about 0.01 mm to 5.00 mm, preferably about 0.05 mm to 2.00 mm.

本発明に係る測定装置に使用される電流量は、測定溶液の種類によって異なる。一般に、電流値は大きい方が測定誤差が少なくて良いが、電流を多くすると電圧も高くなり、測定対象溶液が分解する等の不都合が生じる。従って、予備実験として「測定溶液の分解等が起こらない電圧」で定電圧を印加し、充分時間が経過した後に電流値を測定し、本実験では、それよりも少し小さい電流、すなわち、測定対象溶液が分解し始める電圧の50〜90%程度、好ましくは70〜80%程度の電圧を印加する。「測定溶液の分解が起こらない電圧」は、あらかじめ他の電気化学的な方法により、測定対象溶液が耐えうる電位の範囲を調べることにより、設定することができる。   The amount of current used in the measurement apparatus according to the present invention varies depending on the type of measurement solution. In general, the larger the current value, the smaller the measurement error may be. However, when the current is increased, the voltage also increases, resulting in problems such as decomposition of the solution to be measured. Therefore, as a preliminary experiment, a constant voltage is applied at “voltage that does not cause decomposition of the measurement solution” and the current value is measured after a sufficient amount of time has elapsed. A voltage of about 50 to 90%, preferably about 70 to 80% of the voltage at which the solution begins to decompose is applied. The “voltage at which the measurement solution does not decompose” can be set in advance by examining the potential range that the solution to be measured can withstand by another electrochemical method.

本発明に係る測定装置に使用される電源は、電流遮断を行うため、定電流電源に関数発生装置を組み合わせて用いるか、または電流遮断機能付き定電流装置(カレントインタラプター)を使用することが好ましい。   Since the power source used in the measuring apparatus according to the present invention cuts off the current, a function generator may be used in combination with a constant current power source, or a constant current device with a current breaking function (current interrupter) may be used. preferable.

また、二重管の出し入れに伴うカソード室の形状変化がイオン流に影響を与えないようにするため、カソードは、カソード室の下端に設置することが好ましい。   Further, it is preferable to install the cathode at the lower end of the cathode chamber so that the change in shape of the cathode chamber accompanying the insertion and removal of the double tube does not affect the ion flow.

本発明の測定対象は、イオン伝導性の液体であればよく電解質の水溶液、非水溶媒溶液またはイオン性液体が挙げられる。電解質の水溶液としては、HCl、KCl、HNO3、H2SO4
の水溶液があげられる。非水溶媒溶液の電解質塩としては、リチウム塩、ナトリウム塩、カリウム塩等のアルカリ金属塩、マグネシウム塩、カルシウム塩等のアルカリ土類金属塩、またはアルミニウム塩等があり、単独または混合して使用することができる。リチウム塩としては、LiN(C25SO22、LiN(CF3SO22、LiClO4、LiPF6、LiBF4等を例示することができる。また溶媒としては、カーボネート類、ラクトン類、エーテル類、ケトン類、ニトリル類、アミド類、スルホン系化合物、エステル類、芳香族炭化水素等の単独または2種以上の混合溶媒が使用でき、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、γ−ブチロラクトン、γ−ジメトキシエタン、テトラヒドロフラン、アニソール、1,4−ジオキサン、4−メチル−2−ペンタノン、シクロヘキサノン、アセトニトリル、プロピオニトリル、ジメチルホルムアミド、スルホラン、蟻酸メチル、蟻酸エチル、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸エチル等が例示できる。イオン性液体としては、1−エチル−3−メチルイミダゾリウムイオン、1−ブチル−3−メチルイミダゾリウムイオン、n-ブチルピリジニウムイオン、トリメチルヘキシルアンモニウムイオン、トリブチルメチルアンモニウムイオン等をカチオン種、テトラフルオロボレートイオン、ヘキサフルオロボレートイオン、ビス(トリフルオロメチルスルホニル)イミドイオン、トリフルオロ酢酸イオン等をアニオン種として含む溶融塩全般があげられる。
The measurement object of the present invention may be an ion conductive liquid, and examples thereof include an aqueous electrolyte solution, a non-aqueous solvent solution, and an ionic liquid. Examples of the aqueous electrolyte solution include aqueous solutions of HCl, KCl, HNO 3 , H 2 SO 4 and the like. Examples of the electrolyte salt of the non-aqueous solvent solution include alkali metal salts such as lithium salt, sodium salt and potassium salt, alkaline earth metal salts such as magnesium salt and calcium salt, or aluminum salt, which are used alone or in combination. can do. Examples of the lithium salt include LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , LiClO 4 , LiPF 6 , LiBF 4 and the like. As the solvent, carbonates, lactones, ethers, ketones, nitriles, amides, sulfone compounds, esters, aromatic hydrocarbons and the like can be used alone or in combination of two or more, and ethylene carbonate. , Propylene carbonate, butylene carbonate, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, γ-butyrolactone, γ-dimethoxyethane, tetrahydrofuran, anisole, 1,4-dioxane, 4-methyl-2-pentanone, cyclohexanone, acetonitrile, propio Nitrile, dimethylformamide, sulfolane, methyl formate, ethyl formate, methyl acetate, ethyl acetate, propyl acetate, ethyl propionate and the like can be exemplified. Examples of the ionic liquid include 1-ethyl-3-methylimidazolium ion, 1-butyl-3-methylimidazolium ion, n-butylpyridinium ion, trimethylhexylammonium ion, tributylmethylammonium ion, and the like as cationic species, tetrafluoro Examples include general molten salts containing borate ions, hexafluoroborate ions, bis (trifluoromethylsulfonyl) imide ions, trifluoroacetate ions and the like as anionic species.

本発明のイオン伝導度測定装置は、酸溶液中での水素イオン伝導度、アルカリ水溶液中での水酸化物イオン伝導度、常温溶融塩中の水素イオン伝導度などの測定に適用され得る。   The ion conductivity measuring apparatus of the present invention can be applied to measurement of hydrogen ion conductivity in an acid solution, hydroxide ion conductivity in an alkaline aqueous solution, hydrogen ion conductivity in a room temperature molten salt, and the like.

本実験に係るイオン伝導度の測定は、以下の手順によって行われる。   The measurement of ion conductivity according to this experiment is performed according to the following procedure.

(予備実験)
1.セルを図6−aのように定電圧装置につなぎ、測定対象溶液が分解しない程度の電
圧で定電圧印加を行う。「測定対象溶液が分解しない程度の電圧」とは、例えば硫酸水溶液の場合、1.23V以上で水の電気分解が始まるため、それ以下の電圧(本発明の実施例に
おいては0.9V)を指す。
2.充分時間が経過し、電流値が変化しなくなった時の電流値を読み取る。
(Preliminary experiment)
1. The cell is connected to a constant voltage device as shown in FIG. 6A, and a constant voltage is applied at a voltage that does not decompose the solution to be measured. For example, in the case of an aqueous sulfuric acid solution, the “voltage at which the measurement target solution does not decompose” refers to a voltage lower than that (0.9 V in the embodiment of the present invention) since water electrolysis starts at 1.23 V or higher.
2. Read the current value when sufficient time has passed and the current value no longer changes.

(本実験)
3.図6−bに示すように、電流を瞬時に遮断できる機能をもつ定電流装置をセルにつ
なぎ、予備実験で得られた電流値よりも少ない電流値で定電流を流し、電圧が一定になるまで待つ。
4.セル電圧の瞬時の変化を読み取るためにオシロスコープをつなぎ、電流を瞬間的に遮断する。このときの瞬間的な電圧変化を読み取る(例えば、遮断後1μsにおける電流
値を読む)。
5.「直間部重なり部分」の長さを変えながら、上記3および4を繰り返す。
6.5の作業を伝導度が既知の標準溶液(濃度を正確に決めたKCl溶液等)を用いて行
うことにより、下記式(式II)からセル定数の変化分を算出することができる。

Figure 2005127721
ΔRは電気抵抗[Ω]の変化分を表す。
σは伝導度[S/cm]を表し、その逆数1/σは、比抵抗[Ω・cm]を表す。
Δd/Sは、セル定数[cm-1]の変化分を表す。
7.5の作業を測定対象溶液を用いて行うことにより、6で算出したセル定数変化分を用いて伝導度を算出することができる。 (This experiment)
3. As shown in FIG. 6B, a constant current device having a function capable of instantaneously interrupting the current is connected to the cell, and the constant current is supplied with a current value smaller than the current value obtained in the preliminary experiment, so that the voltage becomes constant. Wait until.
4). An oscilloscope is connected to read the instantaneous change in cell voltage, and the current is cut off instantaneously. The instantaneous voltage change at this time is read (for example, the current value at 1 μs after the cutoff is read).
5). The above 3 and 4 are repeated while changing the length of the “directly overlapping portion”.
By performing the operation of 6.5 using a standard solution with known conductivity (such as a KCl solution whose concentration is accurately determined), the change in cell constant can be calculated from the following formula (formula II).
Figure 2005127721
ΔR represents a change in electrical resistance [Ω].
σ represents conductivity [S / cm], and its reciprocal 1 / σ represents specific resistance [Ω · cm].
Δd / S represents a change in the cell constant [cm −1 ].
By performing the operation of 7.5 using the measurement target solution, the conductivity can be calculated using the cell constant change calculated in 6.

本発明の測定装置により、電極の様式が限定される場合における特定イオン伝導度を測定することが可能となる。   With the measuring device of the present invention, it is possible to measure the specific ion conductivity when the electrode type is limited.

また、全イオン伝導度の測定においても、電極反応上の制約があって単純な電極を用いることができない場合(たとえば電流を流すと電極表面での気体発生が避けられない場合
など)においては、本発明を用いることによって問題を解決することができる。
In addition, in the measurement of total ion conductivity, when there is a restriction on electrode reaction and a simple electrode cannot be used (for example, when gas generation on the electrode surface is unavoidable when current is passed), The problem can be solved by using the present invention.

以下、実施例を挙げて説明する。   Hereinafter, an example is given and demonstrated.

・セルの作製
図4に示した原理を具体化したものとして、酸水溶液中での水素イオン伝導度の測定を
するためのガラスセルを図7のように作製した。(a)は外側管であり、内径8 mm、長さ40 mmの「直管部」と、その上部で、白金電極(カソード)を備えたカソード室から成る。(b)は内側管であり、外径6 mm、内径4 mm、長さ30 mmの「直管部」と、
その上部で、白金黒メッキした白金メッシュ電極 (アノード)を備えたアノード室から成
る。アノードおよびカソードのリードは白金である。アノード反応は水素ガス酸化であるため、アノード室には、水素ガスをバブリングするための細管があり、白金メッシュ電極を気泡が通過するように配置されている。また、ガスバブリングのため、水素ガス供給口と排気口が設けられている。外側管に被測定液である酸水溶液を入れ、内側管を差し込み、アノード室の溶液に30分間水素ガスを通じて充分溶解させ、水素飽和状態にした。「直管部重なり部分」は、(c)、(d)に示すように、内側管を出入りさせることにより変化させることができる。
-Manufacture of cell As a materialization of the principle shown in Fig. 4, a glass cell for measuring hydrogen ion conductivity in an acid aqueous solution was manufactured as shown in Fig. 7. (a) is an outer tube, which consists of a “straight tube portion” having an inner diameter of 8 mm and a length of 40 mm, and a cathode chamber provided with a platinum electrode (cathode) at the upper portion thereof. (b) is an inner tube, which is a `` straight tube '' with an outer diameter of 6 mm, an inner diameter of 4 mm, and a length of 30 mm;
On top of that, it consists of an anode chamber with a platinum mesh electrode (anode) plated with platinum. The anode and cathode leads are platinum. Since the anode reaction is hydrogen gas oxidation, the anode chamber has a thin tube for bubbling hydrogen gas, and is arranged so that bubbles pass through the platinum mesh electrode. Further, a hydrogen gas supply port and an exhaust port are provided for gas bubbling. An acid aqueous solution as a solution to be measured was put in the outer tube, the inner tube was inserted, and the solution in the anode chamber was sufficiently dissolved through hydrogen gas for 30 minutes to obtain a hydrogen saturated state. The “straight tube portion overlapping portion” can be changed by moving the inner tube in and out as shown in (c) and (d).

・被測定溶液の調製
測定対象である水素イオンの濃度が等しく、それ以外のイオンの濃度が異なる、
(A) 0.05 M H2SO4
( H+: 0.1 M, SO4 2-: 0.05 M )
(B) 0.05 M H2SO4 + 0.05 M K2SO4
( H+: 0.1 M, K+: 0.1 M, SO4 2-: 0.1 M )
(C) 0.05 M H2SO4 + 0.1 M K2SO4
( H+: 0.1 M, K+: 0.2 M, SO4 2-: 0.15 M )
の3種類の溶液を調製した。このうち、溶液(A)は硫酸のみの水溶液であるが、文献により水素イオン伝導度が分かるため、溶液(A)の測定結果からセル定数を決定し、溶液(B), (C)の測定結果を用いて本測定の妥当性を検討した。
・セル定数の決定
溶液(A)液を用いた測定結果を図8(a)に示す。測定はカレントインタラプト法を用い、
電流値は0.4 mAとした。図8は、「直管部重なり部分」の長さと溶液抵抗による電圧降下
をプロットしたものである。この結果より、「長さ」および「電圧降下」の2つの量の間
に、傾き61.0 mV/cmを持つ直線関係が成り立つことが分かった。
・ Preparation of solution to be measured The concentration of hydrogen ions to be measured is the same, and the concentration of other ions is different.
(A) 0.05 MH 2 SO 4
(H + : 0.1 M, SO 4 2- : 0.05 M)
(B) 0.05 MH 2 SO 4 + 0.05 MK 2 SO 4
(H + : 0.1 M, K + : 0.1 M, SO 4 2- : 0.1 M)
(C) 0.05 MH 2 SO 4 + 0.1 MK 2 SO 4
(H + : 0.1 M, K + : 0.2 M, SO 4 2- : 0.15 M)
Three types of solutions were prepared. Of these, the solution (A) is an aqueous solution containing only sulfuric acid, but since the hydrogen ion conductivity is known from the literature, the cell constant is determined from the measurement results of the solution (A), and the solutions (B) and (C) are measured. The validity of this measurement was examined using the results.
-Determination of cell constant The measurement results using the solution (A) are shown in FIG. 8 (a). Measurement uses the current interrupt method,
The current value was 0.4 mA. FIG. 8 is a plot of the voltage drop due to the length of the “straight pipe portion overlapping portion” and the solution resistance. From this result, it was found that a linear relationship with a slope of 61.0 mV / cm was established between the two quantities of “length” and “voltage drop”.

文献より、0.1M H2SO4の伝導度が0.0251 S/cm、極限イオンモル伝導率から予想されるH+の輸率が約0.81であることから、0.1 M H2SO4中でのH+伝導度は0.0204 S/cmと見積もら
れる(電気化学協会「電気化学便覧 第4版」(丸善、1985)p. 81, 82)。従って、2重管部
分の有効断面積は
0.4 mA ÷ 61.0 mV/cm ÷ 0.0204 S/cm = 0.321 cm2
と求められる。
From the literature, the conductivity of 0.1MH 2 SO 4 is 0.0251 S / cm, and the H + transport number expected from the ultimate ionic molar conductivity is about 0.81, so the H + conductivity in 0.1 MH 2 SO 4 is Is estimated to be 0.0204 S / cm (The Electrochemical Society "Electrochemical Handbook 4th Edition" (Maruzen, 1985) p. 81, 82). Therefore, the effective cross-sectional area of the double pipe part is
0.4 mA ÷ 61.0 mV / cm ÷ 0.0204 S / cm = 0.321 cm 2
Is required.

・混合溶液の測定
(A)液と同様の方法で溶液(B)および(C)の測定を行った。結果を図8(b),(c)に示す。(B)液では、電流値を0.3 mAとしてカレントインタラプト法による測定を行ったところ、傾き46.6 mV/cmが得られた。(C)液では、同じく0.3 mAにおいて、傾き43.9 mV/cmが得られた
。以上の結果と、前節で求めたセル定数を用いて、(B)液、(C)液の水素イオン伝導度を求めると、
(B)液: 0.3 mA ÷ 46.6 mV/cm ÷ 0.321 cm2 = 0.0201 S/cm
(C)液: 0.3 mA ÷ 43.9 mV/cm ÷ 0.321 cm2 = 0.0213 S/cm
となる。
・ Measurement of mixed solution
The solutions (B) and (C) were measured in the same manner as the (A) solution. The results are shown in FIGS. 8 (b) and (c). For solution (B), the current value was 0.3 mA, and measurement was performed by the current interrupt method. As a result, a slope of 46.6 mV / cm was obtained. In solution (C), a slope of 43.9 mV / cm was obtained at 0.3 mA. Using the above results and the cell constants obtained in the previous section, the hydrogen ion conductivity of the (B) liquid and (C) liquid is determined.
(B) Solution: 0.3 mA ÷ 46.6 mV / cm ÷ 0.321 cm 2 = 0.0201 S / cm
(C) Solution: 0.3 mA ÷ 43.9 mV / cm ÷ 0.321 cm 2 = 0.0213 S / cm
It becomes.

以上の結果をグラフにしたものが図9である。また、比較のため、通常の伝導率計(東亜電波CV-40M)を用いて測定した全イオン伝導度も同時に示す。(A)→(B)→(C)の順に全イオン量は増加するので全イオン伝導度は高くなるが、H+ 濃度は一定であるため、H+ 伝導度の測定結果はほぼ一定の値を示すことがわかる。以上のことから、本発明のセルにおいて、水素イオン伝導度が測定されていること、また、これが、電極形状が単純でないにもかかわらず可能であることが示された。電極形状が単純とは、金属の平板のような、表面が平滑である、イオンを流したい向きに垂直な平面をつくることができる、イオンを流す断面積Sと同じ面積につくることができる、気泡などが入らない等の条件を満たす電極を指す。これに対し、電極が粉末からなる場合は、表面を平滑につくることができず、ガス供給を要する場合は、金属メッシュまたはスポンジ状の電極となり、上記の条件を満たさない。 FIG. 9 is a graph showing the above results. For comparison, the total ion conductivity measured using a normal conductivity meter (Toa Radio CV-40M) is also shown. Since the total ion content increases in the order of (A) → (B) → (C), the total ion conductivity increases, but the H + concentration is constant, so the measurement result of H + conductivity is almost constant. It can be seen that From the above, it was shown that hydrogen ion conductivity was measured in the cell of the present invention, and that this was possible even though the electrode shape was not simple. The simple electrode shape means that the surface is smooth, such as a metal flat plate, a plane perpendicular to the direction in which ions want to flow can be made, and the cross-sectional area S for flowing ions can be made the same area. An electrode that satisfies the condition that bubbles do not enter. On the other hand, when the electrode is made of powder, the surface cannot be made smooth. When gas supply is required, the electrode becomes a metal mesh or sponge-like electrode, and the above conditions are not satisfied.

図1は、4端子法(4極式セル)の測定装置の断面図を表す。FIG. 1 shows a cross-sectional view of a four-terminal method (four-pole cell) measuring apparatus. 図2は、2端子法(2極式セル)の測定装置の断面図およびカレントインタラプト法における電流と時間または電圧と時間との関係をグラフである。FIG. 2 is a cross-sectional view of a two-terminal method (bipolar cell) measuring apparatus and a graph showing the relationship between current and time or voltage and time in the current interrupt method. 図3は、可変長連結部を持つセル(仮想)での2端子法を表す。FIG. 3 shows a two-terminal method in a cell (virtual) having a variable-length connection part. 図4は、本発明に係る2重管によるセル定数可変機構の断面図を表す。FIG. 4 is a sectional view of a cell constant variable mechanism using a double pipe according to the present invention. 図5は、本発明に係る2重管における直管部でのイオンの流れを示す。図中r0は、内管の内径、r1は内管の外径、r2は外管の内径を表す。FIG. 5 shows the flow of ions in the straight tube portion of the double tube according to the present invention. In the figure, r 0 represents the inner diameter of the inner tube, r 1 represents the outer diameter of the inner tube, and r 2 represents the inner diameter of the outer tube. 図6−aは、イオン伝導度測定における予備実験で使用した電気回路を表す。FIG. 6A represents an electric circuit used in a preliminary experiment in ion conductivity measurement. 図6−bは、イオン伝導度測定における本実験で使用した電気回路を表す。FIG. 6B shows the electrical circuit used in this experiment for measuring ionic conductivity. 本発明に係るセルの、(a)外側管、(b)内側管、(c)、(d)それらに非測定液を入れて組み立てた図。(d)は(c)に比べ、内管を引き上げることにより、直管部重なり部分を少なくした場合を示す。(A) Outer tube, (b) Inner tube, (c), (d) The cell which concerns on this invention, put the non-measurement liquid in them, and assembled. (D) shows the case where the straight pipe part overlap part is reduced by pulling up the inner pipe as compared with (c). 「直管部重なり長さ」とカレントインタラプトによる電圧降下分の関係を表すグラフである。(a):(A)液を用い、電流値は0.4mAとした。(b):(B)液を用い、電流値は0.3mAとした。(c):(C)液を用い、電流は0.3mAとした。It is a graph showing the relationship between the "straight-pipe part overlap length" and the voltage drop part by a current interrupt. (A): Liquid (A) was used, and the current value was 0.4 mA. (B): The liquid (B) was used, and the current value was 0.3 mA. (C): The liquid (C) was used, and the current was 0.3 mA. 本発明に係るセルを用いたH+伝導度測定結果および、通常の伝導計を用いた全イオン種による伝導度測定結果を表すグラフである。It is a graph showing the H <+> conductivity measurement result using the cell which concerns on this invention, and the conductivity measurement result by all the ion species using a normal conductivity meter.

Claims (2)

内管および外管からなる2重管構造を有し、内管の内部のアノード室および外管と内管との間に形成されるカソード室を備え、かつ2つの直管の重なり部分の長さを変化させる機構を備えたイオン伝導度測定装置。 A double tube structure comprising an inner tube and an outer tube, comprising an anode chamber inside the inner tube and a cathode chamber formed between the outer tube and the inner tube, and the length of the overlapping portion of the two straight tubes An ion conductivity measuring device having a mechanism for changing the thickness. 請求項1に記載されたるイオン伝導度測定装置の2つの直管部の重なり部分の径を一定にすることによって、液体部の断面積を一定にし、直管の重なり部分の長さを変化させることによって、以下の式より求められる一定の割合で変化するセル定数の変化から、前記液体部に含まれる液体のイオン伝導度を測定する方法:
Figure 2005127721
ここで、r1は直管部における内管の外径を示し、r2は外管の内径を示し、dは重なり
部分の長さを示す。



By making the diameter of the overlapping part of the two straight pipe parts of the ion conductivity measuring apparatus according to claim 1 constant, the cross-sectional area of the liquid part is made constant, and the length of the overlapping part of the straight pipe is changed. Thus, a method for measuring the ionic conductivity of a liquid contained in the liquid part from a change in cell constant that changes at a constant rate obtained from the following formula:
Figure 2005127721
Here, r 1 indicates the outer diameter of the inner pipe in the straight pipe portion, r 2 indicates the inner diameter of the outer pipe, and d indicates the length of the overlapping portion.



JP2003360320A 2003-10-21 2003-10-21 Ion conductivity measuring device Expired - Lifetime JP4025875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003360320A JP4025875B2 (en) 2003-10-21 2003-10-21 Ion conductivity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003360320A JP4025875B2 (en) 2003-10-21 2003-10-21 Ion conductivity measuring device

Publications (2)

Publication Number Publication Date
JP2005127721A true JP2005127721A (en) 2005-05-19
JP4025875B2 JP4025875B2 (en) 2007-12-26

Family

ID=34640661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003360320A Expired - Lifetime JP4025875B2 (en) 2003-10-21 2003-10-21 Ion conductivity measuring device

Country Status (1)

Country Link
JP (1) JP4025875B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100187A (en) * 2005-10-06 2007-04-19 Katsutoshi Ono Electrolysis system
JP2010230339A (en) * 2009-03-26 2010-10-14 National Institute Of Advanced Industrial Science & Technology Instrument and method for separately measuring ion current or electron current of electrode material for battery
JP2014098699A (en) * 2012-11-13 2014-05-29 Korea Atomic Energy Research Inst Method for measuring electrical conductivity and system for measuring electrical conductivity using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100187A (en) * 2005-10-06 2007-04-19 Katsutoshi Ono Electrolysis system
JP4562634B2 (en) * 2005-10-06 2010-10-13 勝敏 小野 Electrolysis system
JP2010230339A (en) * 2009-03-26 2010-10-14 National Institute Of Advanced Industrial Science & Technology Instrument and method for separately measuring ion current or electron current of electrode material for battery
JP2014098699A (en) * 2012-11-13 2014-05-29 Korea Atomic Energy Research Inst Method for measuring electrical conductivity and system for measuring electrical conductivity using the same

Also Published As

Publication number Publication date
JP4025875B2 (en) 2007-12-26

Similar Documents

Publication Publication Date Title
Girard et al. Electrochemical and physicochemical properties of small phosphonium cation ionic liquid electrolytes with high lithium salt content
KR101739625B1 (en) Three electrode cell
CN103776880B (en) A kind of with titanium silk solid reference electrode that is base material and preparation method thereof
US1001589A (en) Electrolytic cell.
JP2009158240A (en) Electrolytic solution for lithium ion battery
JP2006114487A (en) Direct methanol fuel cell, fuel liquid level detection method and methanol concentration detection method
Lewandowski et al. Lithium-metal potential in Li+ containing ionic liquids
Alwast et al. Ionic liquid electrolytes for metal-air batteries: interactions between O2, Zn2+ and H2O impurities
JP4025875B2 (en) Ion conductivity measuring device
JP6271275B2 (en) Non-aqueous organic electrolyte for lithium primary battery and lithium primary battery
CN104964965A (en) Portable liquid cathode glow discharge element analyzer
Xu et al. In Situ Li‐Plating Diagnosis for Fast‐Charging Li‐Ion Batteries Enabled by Relaxation‐Time Detection
JPH0130102B2 (en)
US9506021B2 (en) Glass-electrode responsive-glass cleaning liquid and method for cleaning glass-electrode responsive-glass
Wu et al. Enhanced electrochemical performance of non-aqueous Li-O2 batteries with triethylene glycol dimethyl ether-based electrolyte
JP2010129495A (en) Air battery
KR100821861B1 (en) Reference Electrode Member for Measurement of Electrode Potential in 3-Electrode System
KR101836336B1 (en) Cell for measuring ion conductivity of ion exchange membrane and method for measuring ion conductivity using the same
JP2018200874A (en) Phosphonium-based ionic liquid for lithium metal-based battery
JP2003172723A (en) Electrochemical carbon dioxide sensor
CN108226781A (en) Single-cell electrodes potential measurement method in proton or anion-exchange membrane fuel cells pile
CN114935598A (en) Detection method for gas-liquid phase product after SF6 degradation
Zhao et al. Thermodynamic, Kinetic, and Transport Contributions to Hydrogen Evolution Activity and Electrolyte-Stability Windows for Water-in-Salt Electrolytes
JP4217077B2 (en) Stabilization method of diaphragm type electrode
US8888987B2 (en) Gas sensor testing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070911

R150 Certificate of patent or registration of utility model

Ref document number: 4025875

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term