JP2008255409A - Electrolysis apparats - Google Patents

Electrolysis apparats Download PDF

Info

Publication number
JP2008255409A
JP2008255409A JP2007098326A JP2007098326A JP2008255409A JP 2008255409 A JP2008255409 A JP 2008255409A JP 2007098326 A JP2007098326 A JP 2007098326A JP 2007098326 A JP2007098326 A JP 2007098326A JP 2008255409 A JP2008255409 A JP 2008255409A
Authority
JP
Japan
Prior art keywords
circuit
electrolytic
thyristor
electrode pair
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007098326A
Other languages
Japanese (ja)
Inventor
Koji Sasaki
耕司 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2007098326A priority Critical patent/JP2008255409A/en
Publication of JP2008255409A publication Critical patent/JP2008255409A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrolysis apparatus excellent in power consumption efficiency. <P>SOLUTION: The electrolysis apparatus is provided with: four stages of electrolytic circuits E1-E4 which respectively include a linear circuit formed by linearly connecting an electrode pair dipped in an electrolyte and a capacitor for storing current flowing in the electrode pair and a thyristor having a main cable path linearly connected to the linear circuit; and final stage electrolytic circuit E5 which includes an electrode pair dipped in the electrolyte and a thyristor having a main capable path linearly connected to the electrode pair and is connected to the subsequent stage of the four stage electrolytic circuits E1 and E4. A trigger control circuit 19 controls to connect from the thyristor included in the initial stage at first in five electrolytic circuits E1-E5, subsequently to the thyristor 42, 43, 44 included in the electrolytic circuit E2, E3, E4 and finally to the thyristor 45 included in the final stage of the electrolytic circuit 5. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電解液の電気分解を行う電気分解装置に関し、例えば水の電気分解や金属の電解精錬に適用することができる。   The present invention relates to an electrolysis apparatus that performs electrolysis of an electrolytic solution, and can be applied to, for example, electrolysis of water and electrolytic refining of metals.

電解質を溶解した水溶液などの電解液に電極を接触させて所定の電圧を印加することにより、電気化学的に酸化還元反応が生じ、その結果電流が流れる現象は電気分解(電解)として広く知られている。電気分解を工業分野に応用した例としては金属の電解精錬が挙げられ(例えば、特許文献1)、例えばアルミニウムはボーキサイトを原料として電気分解によって生産するのが一般的である。   The phenomenon in which an oxidation-reduction reaction occurs electrochemically when an electrode is brought into contact with an electrolytic solution such as an aqueous solution in which an electrolyte is dissolved and a predetermined voltage is applied, and as a result the current flows is widely known as electrolysis (electrolysis). ing. An example of applying electrolysis to the industrial field is electrolytic refining of metals (for example, Patent Document 1). For example, aluminum is generally produced by electrolysis using bauxite as a raw material.

特開2004−197124号公報Japanese Patent Laid-Open No. 2004-197124

しかしながら、金属を電気分解によって精錬する手法は大量の電力を消費する。このため、例えば日本のように安価な電力供給が困難な立地においては、電気分解によってアルミニウムなどの金属を量産することは極めて困難であった。   However, the technique of refining metals by electrolysis consumes a large amount of power. For this reason, it has been extremely difficult to mass-produce metals such as aluminum by electrolysis in a location where it is difficult to supply inexpensive power, such as in Japan.

本発明は、上記課題に鑑みてなされたものであり、電力消費効率に優れた電気分解装置を提供することを目的とする。   This invention is made | formed in view of the said subject, and aims at providing the electrolyzer excellent in power consumption efficiency.

上記課題を解決するため、請求項1の発明は、電解液の電気分解を行う電気分解装置において、電解液を収容する電解槽と、電気分解のための電力を供給する直流電源と、前記電解液中に浸漬された電極対および当該電極対を流れる電流を蓄電するコンデンサを直列に接続した直列回路並びに当該直列回路に直列接続された主電路を有するサイリスタをそれぞれが含んで互いに縦続接続された複数の電解回路と、前記電解液中に浸漬された電極対および当該電極対に直列に接続された主電路を有するサイリスタを含み、前記複数の電解回路のさらに後段に接続された最終電解回路と、前記複数の電解回路および前記最終電解回路に含まれるサイリスタを順次導通させるトリガー制御回路と、を備えることを特徴とする。   In order to solve the above-mentioned problems, an invention of claim 1 is an electrolysis apparatus for electrolyzing an electrolytic solution, wherein an electrolytic cell for storing the electrolytic solution, a direct current power source for supplying electric power for electrolysis, and the electrolysis A series circuit in which a pair of electrodes immersed in a liquid and a capacitor for storing current flowing through the electrode pair are connected in series and a thyristor having a main circuit connected in series to the series circuit are respectively connected in cascade. A final electrolytic circuit including a plurality of electrolytic circuits, a thyristor having a pair of electrodes immersed in the electrolytic solution and a main electric circuit connected in series to the electrode pairs, and further connected to a subsequent stage of the plurality of electrolytic circuits; And a trigger control circuit for sequentially conducting the thyristors included in the plurality of electrolysis circuits and the final electrolysis circuit.

また、請求項2の発明は、請求項1の発明に係る電気分解装置において、前記複数の電解回路のそれぞれに含まれるコンデンサの一端および前記最終電解回路に含まれる電極対の一端を前記直流電源の帰路端に接続し、縦続接続された前記複数の電解回路のうちの初段の電解回路におけるサイリスタの主電路の一端を前記直流電源の出力端に接続するとともに、前記複数の電解回路のうちの残余の電解回路におけるサイリスタの主電路の一端を直前の電解回路における電極対とコンデンサとの接続点に接続し、前記最終電解回路に含まれるサイリスタの主電路の一端を前記複数の電解回路のうちの最後段の電解回路における電極対とコンデンサとの接続点に接続し、前記トリガー制御回路は、前記複数の電解回路のうちの前記初段の電解回路に含まれるサイリスタから順次後段の電解回路に含まれるサイリスタを導通させ、最後に前記最終電解回路に含まれるサイリスタを導通させることを特徴とする。   According to a second aspect of the present invention, in the electrolysis apparatus according to the first aspect of the present invention, one end of a capacitor included in each of the plurality of electrolytic circuits and one end of an electrode pair included in the final electrolytic circuit are connected to the DC power source. One end of the main circuit of the thyristor in the first stage electrolysis circuit of the plurality of electrolysis circuits connected in cascade, and connected to the output end of the DC power supply, and of the plurality of electrolysis circuits One end of the main circuit of the thyristor in the remaining electrolysis circuit is connected to a connection point between the electrode pair and the capacitor in the immediately preceding electrolysis circuit, and one end of the main circuit of the thyristor included in the final electrolysis circuit is connected among the plurality of electrolysis circuits The trigger control circuit is connected to the connection point between the electrode pair and the capacitor in the last stage electrolysis circuit, and the first stage electrolysis circuit of the plurality of electrolysis circuits It is conducting thyristor included in sequentially subsequent electrolysis circuit thyristor included, characterized in that for conducting the thyristor included in finally the final electrolysis circuit.

また、請求項3の発明は、電解質を溶解した電解液の電気分解を行う電気分解装置において、電解液を収容する電解槽と、電気分解のための電力を供給する直流電源と、前記電解液中に浸漬された第1電極対および当該第1電極対を流れる電流を蓄電するコンデンサを直列に接続した直列回路並びに当該直列回路に直列接続された主電路を有する第1サイリスタを含む第1の電解回路と、前記電解液中に浸漬された第2電極対および当該第2電極対に直列に接続された主電路を有する第2サイリスタを含む第2の電解回路と、前記第1サイリスタから前記第2サイリスタの順に順次導通させるトリガー制御回路と、を備え、前記コンデンサの一端および前記第2電極対の一端を前記直流電源の帰路端に接続し、前記第1サイリスタの主電路の一端を前記直流電源の出力端に接続し、前記第2サイリスタの主電路の一端を前記第1の電解回路における前記第1電極対と前記コンデンサとの接続点に接続することを特徴とする。   According to a third aspect of the present invention, there is provided an electrolysis apparatus that performs electrolysis of an electrolytic solution in which an electrolyte is dissolved, an electrolytic tank that stores the electrolytic solution, a DC power source that supplies power for electrolysis, and the electrolytic solution A first circuit including a first thyristor having a first electrode pair immersed therein and a series circuit in which a capacitor for storing current flowing through the first electrode pair is connected in series; and a main electric circuit connected in series to the series circuit. A second electrolytic circuit including an electrolytic circuit, a second electrode pair immersed in the electrolytic solution, and a second thyristor having a main electric circuit connected in series to the second electrode pair; and from the first thyristor A trigger control circuit for sequentially conducting in order of the second thyristor, one end of the capacitor and one end of the second electrode pair are connected to a return path end of the DC power supply, and a main circuit of the first thyristor Connect the end to the output end of the DC power supply, characterized by connecting a main electrical circuit of the one end of the second thyristor to a connection point between the first the first electrode pair and the capacitor in the electrolytic circuit.

本発明によれば、電気分解反応によって流れた電流を一旦コンデンサに蓄電し、その蓄電による電圧を新たな電極対に印加することによって再度電気分解反応を生じさせることとなるため、電力を再利用して電気分解を行うことができ、電力消費効率を格段に優れたものとすることができる。   According to the present invention, the electric current that has flowed through the electrolysis reaction is temporarily stored in the capacitor, and the electrolysis reaction is caused again by applying the voltage from the storage to a new electrode pair. Thus, electrolysis can be performed, and the power consumption efficiency can be remarkably improved.

以下、図面を参照しつつ本発明の実施の形態について詳細に説明する。本明細書中において「電解液」とは、電気伝導性を有する液体の総称であり、電解質が溶媒中に溶解した溶液の他に、溶媒を含まずにイオンのみからなる液体であるいわゆる溶融塩(またはイオン液体)をも含む。また、溶液の溶媒は、水に限定されるものではなく、有機溶媒であっても良い。なお、電解液としては単なる水であっても良いが、その水には意図的或いは不可避的に電解質が溶解しており、電解質が溶媒中に溶解した溶液の一種である。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the present specification, the “electrolytic solution” is a general term for liquids having electrical conductivity, and in addition to a solution in which an electrolyte is dissolved in a solvent, a so-called molten salt that is a liquid consisting only of ions without containing a solvent. (Or ionic liquid). The solvent of the solution is not limited to water, and may be an organic solvent. The electrolytic solution may be simple water, but the electrolyte is intentionally or inevitably dissolved in the water, and is a kind of solution in which the electrolyte is dissolved in a solvent.

図1は、本発明に係る電気分解装置1の回路構成を示す図である。また、図2は、電極を配置した電解セル(電解槽)の一例を示す斜視図である。電気分解装置1は、電解セル10、直流電源15、複数の電解回路E1〜E5およびトリガー制御回路19を備える。   FIG. 1 is a diagram showing a circuit configuration of an electrolyzer 1 according to the present invention. FIG. 2 is a perspective view showing an example of an electrolysis cell (electrolyzer) in which electrodes are arranged. The electrolysis apparatus 1 includes an electrolytic cell 10, a DC power supply 15, a plurality of electrolytic circuits E1 to E5, and a trigger control circuit 19.

電解セル10には電気分解の対象となる電解液11が収容されている。電解液11が高温の溶融塩である場合には、電解セル10に塩を融解するための加熱機構が付設されていても良い。   The electrolytic cell 10 contains an electrolytic solution 11 to be electrolyzed. When the electrolytic solution 11 is a high-temperature molten salt, the electrolytic cell 10 may be provided with a heating mechanism for melting the salt.

直流電源15は、通常、交流電源に接続された整流回路およびその整流回路の出力を平滑化して直流を得る平滑回路によって構成されており、電解液11を電気分解するための電力(直流)を供給する。   The DC power supply 15 is usually composed of a rectifier circuit connected to an AC power supply and a smoothing circuit that obtains a direct current by smoothing the output of the rectifier circuit, and uses electric power (DC) for electrolyzing the electrolytic solution 11. Supply.

5つの電解回路E1〜E5は互いに縦続接続された回路であり、それぞれは電解セル10に貯留された電解液11の電気分解を行う。これらのうち4つの電解回路E1〜E4は、電極対21〜24、コンデンサ31〜34およびサイリスタ41〜44をそれぞれ備え、縦続接続の初段から第4段を構成する。また、電解回路E5は、電極対25およびサイリスタ45を備え、縦続接続の最終段を構成する。   The five electrolytic circuits E <b> 1 to E <b> 5 are cascade-connected circuits, and each performs electrolysis of the electrolytic solution 11 stored in the electrolytic cell 10. Of these, four electrolytic circuits E1 to E4 include electrode pairs 21 to 24, capacitors 31 to 34, and thyristors 41 to 44, respectively, and form the first to fourth stages of cascade connection. The electrolytic circuit E5 includes the electrode pair 25 and the thyristor 45, and constitutes the final stage of the cascade connection.

初段の電解回路E1は、電極対21とコンデンサ31とを直列に接続した直列回路およびその直列回路に直列接続された主電路を有するサイリスタ41を有する。サイリスタ41の主電路の一端(アノード側)は直流電源15のプラス端(出力端)に接続され、他端(カソード側)は電極対21の陽極21aと接続される。また、コンデンサ31の一端は直流電源15のマイナス端(帰路端)に接続され、他端は電極対21の陰極21bと接続される。酸化反応が生じる陽極21aおよび還元反応が生じる陰極21bにて構成される電極対21は電解セル10の電解液11中に浸漬される。   The first-stage electrolytic circuit E1 includes a thyristor 41 having a series circuit in which the electrode pair 21 and the capacitor 31 are connected in series, and a main electric circuit connected in series to the series circuit. One end (anode side) of the main circuit of the thyristor 41 is connected to the plus end (output end) of the DC power supply 15, and the other end (cathode side) is connected to the anode 21 a of the electrode pair 21. One end of the capacitor 31 is connected to the negative end (return path end) of the DC power supply 15, and the other end is connected to the cathode 21 b of the electrode pair 21. An electrode pair 21 composed of an anode 21 a that undergoes an oxidation reaction and a cathode 21 b that undergoes a reduction reaction is immersed in the electrolytic solution 11 of the electrolytic cell 10.

縦続接続のうちの第2段〜第4段を構成する電解回路E2,E3,E4は、それぞれ電極対22,23,24とコンデンサ32,33,34とを直列に接続した直列回路およびその直列回路に直列接続された主電路を有するサイリスタ42,43,44を有する。サイリスタ42〜44の主電路の一端(アノード側)は、上記縦続接続における直前の電解回路における電極対とコンデンサとの接続点に接続される。すなわち、電解回路E2のサイリスタ42の一端は直前の電解回路E1における電極対21とコンデンサ31との接続点に接続され、電解回路E3のサイリスタ43の一端は直前の電解回路E2における電極対22とコンデンサ32との接続点に接続され、同様に電解回路E4のサイリスタ44の一端は直前の電解回路E3における電極対23とコンデンサ33との接続点に接続される。また、サイリスタ42,43,44の主電路の他端(カソード側)は、それぞれ電極対22,23,24の陽極22a,23a,24aと接続される。さらに、コンデンサ32,33,34の一端は直流電源15のマイナス端(帰路端)に接続され、他端は電極対22,23,24の陰極22b,23b,24bとそれぞれ接続される。電解回路E2,E3,E4の電極対22,23,24は全て電解セル10の電解液11中に浸漬される。   The electrolysis circuits E2, E3, E4 constituting the second to fourth stages of the cascade connection are a series circuit in which the electrode pairs 22, 23, 24 and the capacitors 32, 33, 34 are connected in series and the series thereof. It has thyristors 42, 43, 44 having a main electric circuit connected in series to the circuit. One end (anode side) of the main electric circuit of the thyristors 42 to 44 is connected to a connection point between the electrode pair and the capacitor in the electrolytic circuit immediately before the cascade connection. That is, one end of the thyristor 42 of the electrolytic circuit E2 is connected to a connection point between the electrode pair 21 and the capacitor 31 in the immediately preceding electrolytic circuit E1, and one end of the thyristor 43 of the electrolytic circuit E3 is connected to the electrode pair 22 in the immediately preceding electrolytic circuit E2. Similarly, one end of the thyristor 44 of the electrolytic circuit E4 is connected to the connection point between the electrode pair 23 and the capacitor 33 in the immediately preceding electrolytic circuit E3. The other end (cathode side) of the main electric circuit of the thyristors 42, 43, 44 is connected to the anodes 22a, 23a, 24a of the electrode pairs 22, 23, 24, respectively. Further, one end of each of the capacitors 32, 33, and 34 is connected to the negative end (return path end) of the DC power supply 15, and the other end is connected to the cathodes 22b, 23b, and 24b of the electrode pairs 22, 23, and 24, respectively. The electrode pairs 22, 23, 24 of the electrolytic circuits E 2, E 3, E 4 are all immersed in the electrolytic solution 11 of the electrolytic cell 10.

縦続接続の最終段を構成する電解回路E5は、電極対25および電極対25に直列に接続された主電路を有するサイリスタ45を有する。サイリスタ45の主電路の一端(アノード側)は直前の電解回路E4(つまり、コンデンサを有する電解回路E1〜E4の最後段の電解回路)における電極対24とコンデンサ34との接続点に接続される。サイリスタ45の主電路の他端(カソード側)は電極対25の陽極25aと接続される。また、電極対25の陰極25bは直流電源15のマイナス端(帰路端)に直接接続される。電解回路E5の電極対25も電解セル10の電解液11中に浸漬される。   The electrolysis circuit E <b> 5 constituting the final stage of the cascade connection includes an electrode pair 25 and a thyristor 45 having a main electric circuit connected in series to the electrode pair 25. One end (anode side) of the main electric circuit of the thyristor 45 is connected to a connection point between the electrode pair 24 and the capacitor 34 in the immediately preceding electrolytic circuit E4 (that is, the last electrolytic circuit of the electrolytic circuits E1 to E4 having a capacitor). . The other end (cathode side) of the main electric circuit of the thyristor 45 is connected to the anode 25 a of the electrode pair 25. The cathode 25b of the electrode pair 25 is directly connected to the negative end (return path end) of the DC power supply 15. The electrode pair 25 of the electrolytic circuit E5 is also immersed in the electrolytic solution 11 of the electrolytic cell 10.

電解回路E1〜E5におけるサイリスタ41,42,43,44,45のそれぞれのゲートにはトリガー制御回路19の出力端が個別に接続されている。トリガー制御回路19は、サイリスタ41,42,43,44,45のそれぞれのゲートに個別にトリガー信号を印加することができる。   The output terminals of the trigger control circuit 19 are individually connected to the gates of the thyristors 41, 42, 43, 44, and 45 in the electrolysis circuits E1 to E5. The trigger control circuit 19 can individually apply a trigger signal to each gate of the thyristors 41, 42, 43, 44, 45.

次に、上記の構成を有する電気分解装置1の動作について説明する。直流電源15がオンの状態にて、トリガー制御回路19が最初に電解回路E1に含まれるサイリスタ41のゲートのみにトリガー信号を印加する。そうすると、直流電源15からサイリスタ41の主電路を介して電極対21の陽極21aと陰極21bとの間に所定の電圧が印加される。その結果、陽極21aでは酸化反応が生じる一方、陰極21bでは還元反応が生じ、これらの電気分解反応が進行することによって陽極21aと陰極21bとの間に電流が流れる。なお、陽極21aと陰極21bとの間に印加される電圧は直流電源15の端子間電圧に等しく、電解液11の電気分解が生じる電圧(例えば、電解液11が水であれば1.23V)よりも高いことは勿論である。   Next, operation | movement of the electrolyzer 1 which has said structure is demonstrated. With the DC power supply 15 turned on, the trigger control circuit 19 first applies a trigger signal only to the gate of the thyristor 41 included in the electrolytic circuit E1. Then, a predetermined voltage is applied between the anode 21a and the cathode 21b of the electrode pair 21 from the DC power supply 15 via the main electric circuit of the thyristor 41. As a result, an oxidation reaction occurs at the anode 21a, while a reduction reaction occurs at the cathode 21b, and an electric current flows between the anode 21a and the cathode 21b as these electrolysis reactions proceed. Note that the voltage applied between the anode 21a and the cathode 21b is equal to the voltage between the terminals of the DC power supply 15, and a voltage at which electrolysis of the electrolyte 11 occurs (for example, 1.23V if the electrolyte 11 is water). Of course, it is higher.

電極対21を流れた電流はコンデンサ31に蓄電される。コンデンサ31の両端間の電圧が所定値を超えるとサイリスタ41の導通が停止する。この時点ではコンデンサ31に電荷が蓄積されており、それによって第2段の電解回路E2に電圧が印加されることとなる。   The current flowing through the electrode pair 21 is stored in the capacitor 31. When the voltage across the capacitor 31 exceeds a predetermined value, the thyristor 41 stops conducting. At this time, the electric charge is accumulated in the capacitor 31, whereby a voltage is applied to the second stage electrolysis circuit E <b> 2.

次に、トリガー制御回路19が電解回路E2に含まれるサイリスタ42のゲートのみにトリガー信号を印加する。そうすると、コンデンサ31が電源として機能し、コンデンサ31からサイリスタ42の主電路を介して電極対22の陽極22aと陰極22bとの間に所定の電圧が印加される。その結果、陽極22aおよび陰極22bにて電気分解反応が生じ、両極間に電流が流れる。電極対22を流れた電流はコンデンサ32に蓄電される。コンデンサ32の両端間の電圧が所定値を超えるとサイリスタ42の導通が停止する。この時点ではコンデンサ32に電荷が蓄積されており、それによって第3段の電解回路E3に電圧が印加されることとなる。   Next, the trigger control circuit 19 applies a trigger signal only to the gate of the thyristor 42 included in the electrolysis circuit E2. Then, the capacitor 31 functions as a power source, and a predetermined voltage is applied from the capacitor 31 via the main electric circuit of the thyristor 42 between the anode 22a and the cathode 22b of the electrode pair 22. As a result, an electrolysis reaction occurs at the anode 22a and the cathode 22b, and a current flows between both electrodes. The current flowing through the electrode pair 22 is stored in the capacitor 32. When the voltage across the capacitor 32 exceeds a predetermined value, the thyristor 42 stops conducting. At this time, the electric charge is accumulated in the capacitor 32, whereby a voltage is applied to the third stage electrolysis circuit E3.

続いて、トリガー制御回路19が電解回路E3に含まれるサイリスタ43のゲートのみにトリガー信号を印加する。そうすると、コンデンサ32が電源として機能し、コンデンサ32からサイリスタ43の主電路を介して電極対23の陽極23aと陰極23bとの間に所定の電圧が印加される。その結果、陽極23aおよび陰極23bにて電気分解反応が生じ、両極間に電流が流れる。電極対23を流れた電流はコンデンサ33に蓄電される。コンデンサ33の両端間の電圧が所定値を超えるとサイリスタ43の導通が停止する。この時点ではコンデンサ33に電荷が蓄積されており、それによって第4段の電解回路E4に電圧が印加されることとなる。   Subsequently, the trigger control circuit 19 applies a trigger signal only to the gate of the thyristor 43 included in the electrolysis circuit E3. Then, the capacitor 32 functions as a power source, and a predetermined voltage is applied from the capacitor 32 via the main electric circuit of the thyristor 43 between the anode 23a and the cathode 23b of the electrode pair 23. As a result, an electrolysis reaction occurs at the anode 23a and the cathode 23b, and a current flows between both electrodes. The current flowing through the electrode pair 23 is stored in the capacitor 33. When the voltage across the capacitor 33 exceeds a predetermined value, the conduction of the thyristor 43 stops. At this time, the electric charge is accumulated in the capacitor 33, whereby a voltage is applied to the fourth stage electrolysis circuit E4.

その後同様に、トリガー制御回路19は電解回路E4に含まれるサイリスタ44のゲートのみにトリガー信号を印加する。そうすると、コンデンサ33が電源として機能し、コンデンサ33からサイリスタ44の主電路を介して電極対24の陽極24aと陰極24bとの間に所定の電圧が印加される。その結果、陽極24aおよび陰極24bにて電気分解反応が生じ、両極間に電流が流れる。電極対24を流れた電流はコンデンサ34に蓄電される。コンデンサ34の両端間の電圧が所定値を超えるとサイリスタ44の導通が停止する。この時点ではコンデンサ34に電荷が蓄積されており、それによって最終段の電解回路E5に電圧が印加されることとなる。   Thereafter, similarly, the trigger control circuit 19 applies a trigger signal only to the gate of the thyristor 44 included in the electrolysis circuit E4. Then, the capacitor 33 functions as a power source, and a predetermined voltage is applied from the capacitor 33 via the main electric circuit of the thyristor 44 between the anode 24a and the cathode 24b of the electrode pair 24. As a result, an electrolysis reaction occurs at the anode 24a and the cathode 24b, and a current flows between both electrodes. The current flowing through the electrode pair 24 is stored in the capacitor 34. When the voltage across the capacitor 34 exceeds a predetermined value, the conduction of the thyristor 44 is stopped. At this time, the electric charge is accumulated in the capacitor 34, whereby a voltage is applied to the final stage electrolytic circuit E5.

最後に、トリガー制御回路19は電解回路E5に含まれるサイリスタ45のゲートのみにトリガー信号を印加する。そうすると、コンデンサ34が電源として機能し、コンデンサ34からサイリスタ45の主電路を介して電極対25の陽極25aと陰極25bとの間に所定の電圧が印加される。その結果、陽極25aおよび陰極25bにて電気分解反応が生じ、両極間に電流が流れる。最終段の電解回路E5にはコンデンサが設けられていないため、電極対25を流れた電流が蓄電されることはない。なお、コンデンサ34によって電極対25に印加される電圧も電解液11の電気分解が生じる電圧より高い。   Finally, the trigger control circuit 19 applies a trigger signal only to the gate of the thyristor 45 included in the electrolysis circuit E5. Then, the capacitor 34 functions as a power source, and a predetermined voltage is applied from the capacitor 34 via the main electric circuit of the thyristor 45 between the anode 25a and the cathode 25b of the electrode pair 25. As a result, an electrolysis reaction occurs at the anode 25a and the cathode 25b, and a current flows between both electrodes. Since the final stage electrolytic circuit E5 is not provided with a capacitor, the current flowing through the electrode pair 25 is not stored. Note that the voltage applied to the electrode pair 25 by the capacitor 34 is also higher than the voltage at which the electrolytic solution 11 is electrolyzed.

以上のように、本実施形態において、電気分解装置1は、電解液11を収容する電解セル10と、電気分解のための電力を供給する直流電源15と、電解液11中に浸漬された電極対および当該電極対を流れる電流を蓄電するコンデンサを直列に接続した直列回路並びに当該直列回路に直列接続された主電路を有するサイリスタをそれぞれが含んで互いに縦続接続された4段の電解回路E1〜E4と、電解液11中に浸漬された電極対および当該電極対に直列に接続された主電路を有するサイリスタを含み、4段の電解回路E1〜E4のさらに後段に接続された最終段の電解回路E5と、電解回路E1〜E4および電解回路E5に含まれるサイリスタを順次導通させるトリガー制御回路19と、を備えて構成される。また、4段の電解回路E1〜E4のそれぞれに含まれるコンデンサの一端および最終の電解回路E5に含まれる電極対25の一端を直流電源15の帰路端に接続し、縦続接続された4段の電解回路E1〜E4のうちの初段の電解回路E1におけるサイリスタ41の主電路の一端を直流電源15の出力端に接続するとともに、残余の電解回路E2〜E4におけるサイリスタの主電路の一端を直前の電解回路における電極対とコンデンサとの接続点に接続し、最終の電解回路E5に含まれるサイリスタ45の主電路の一端を上記4段の電解回路のうちの最後段の電解回路E4における電極対24とコンデンサ34との接続点に接続している。   As described above, in the present embodiment, the electrolysis apparatus 1 includes the electrolytic cell 10 that contains the electrolytic solution 11, the DC power supply 15 that supplies power for electrolysis, and the electrode immersed in the electrolytic solution 11. Four stages of electrolysis circuits E1 to E1 that are cascade-connected to each other, each including a series circuit in which a pair and a capacitor that stores current flowing through the electrode pair are connected in series, and a thyristor having a main circuit connected in series to the series circuit E4, a thyristor having a pair of electrodes immersed in the electrolyte solution 11 and a main electric circuit connected in series to the electrode pair, and the final stage electrolysis connected to the subsequent stage of the four-stage electrolytic circuits E1 to E4 A circuit E5, and a trigger control circuit 19 for sequentially conducting the thyristors included in the electrolysis circuits E1 to E4 and the electrolysis circuit E5 are configured. In addition, one end of the capacitor included in each of the four stages of electrolysis circuits E1 to E4 and one end of the electrode pair 25 included in the final electrolysis circuit E5 are connected to the return path end of the DC power supply 15, and cascaded four stages are connected. One end of the main circuit of the thyristor 41 in the first stage electrolysis circuit E1 of the electrolysis circuits E1 to E4 is connected to the output terminal of the DC power supply 15, and one end of the main circuit of the thyristor in the remaining electrolysis circuits E2 to E4 is connected immediately before. One end of the main circuit of the thyristor 45 included in the final electrolytic circuit E5 is connected to the connection point between the electrode pair and the capacitor in the electrolytic circuit, and the electrode pair 24 in the final electrolytic circuit E4 of the four-stage electrolytic circuit. And a capacitor 34 are connected to the connection point.

そして、トリガー制御回路19が5つの電解回路E1〜E5のうちの初段の電解回路E1に含まれるサイリスタ41から順次後段の電解回路E2,E3,E4に含まれるサイリスタ42,43,44を導通させ、最後に最終段の電解回路E5に含まれるサイリスタ45を導通させている。これにより、電解回路E1〜E5が順次動作することとなり、電極対21〜25において順次断続的に電気分解反応が進行する。このことは、前段の電極対にて生じた電気分解反応によって流れた電流をコンデンサに蓄電し、その蓄電による電圧をサイリスタを導通して後段の電極対に印加することによって再度電気分解反応を生じさせるという現象を繰り返していることに他ならない。要するに、電気分解反応によって流れた電流をコンデンサに蓄電し、それをサイリスタによって順次後段の電極対に送ることを繰り返すことによって一度電気分解に使用された電力の再利用を行っているのである。よって、従来の電気分解に比較して電力消費効率を格段に優れたものとすることができる。   Then, the trigger control circuit 19 makes the thyristors 42, 43, 44 included in the subsequent electrolytic circuits E2, E3, E4 sequentially from the thyristor 41 included in the first electrolytic circuit E1 among the five electrolytic circuits E1-E5. Finally, the thyristor 45 included in the final stage electrolytic circuit E5 is made conductive. As a result, the electrolysis circuits E1 to E5 sequentially operate, and the electrolysis reaction proceeds sequentially and intermittently in the electrode pairs 21 to 25. This is because the current flowing by the electrolysis reaction generated in the electrode pair in the previous stage is stored in the capacitor, and the electrolysis reaction occurs again by applying the voltage from the stored electricity to the electrode pair in the subsequent stage through the thyristor. It is nothing but repeating the phenomenon of making it happen. In short, the electric power once used for the electrolysis is reused by repeatedly storing the current flowing through the electrolysis reaction in the capacitor and sending it sequentially to the subsequent electrode pair by the thyristor. Therefore, the power consumption efficiency can be remarkably improved as compared with the conventional electrolysis.

本発明に係る電気分解装置1を水の電気分解に適用した場合には、少ない消費電力にて安価に水素を得ることができる。水素は次世代のパワー源として期待されている燃料電池の燃料となりうるものであり、安価な水素の提供は燃料電池の普及促進に繋がる。また、電気分解装置1をアルミニウムやチタンなどの精錬に適用した場合には、少ない消費電力にて電気分解反応を進行させることができ、安価な電力供給が困難な立地においてもアルミニウムなどの金属を生産することが可能となる。   When the electrolyzer 1 according to the present invention is applied to water electrolysis, hydrogen can be obtained at low cost with low power consumption. Hydrogen can be a fuel for fuel cells, which is expected as a next-generation power source, and the provision of inexpensive hydrogen leads to the popularization of fuel cells. In addition, when the electrolysis apparatus 1 is applied to refining aluminum, titanium, etc., the electrolysis reaction can proceed with low power consumption, and a metal such as aluminum can be used even in a location where inexpensive power supply is difficult. It becomes possible to produce.

以上、本発明の実施の形態について説明したが、この発明はその趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。例えば、上記実施形態においては、電解回路E1〜E5を5段に縦続接続していたが、これに限定されるものではなく、縦続接続する電解回路の段数は2段以上であれば良い。但し、縦続接続する電解回路の最終段はコンデンサを備えていない上記電解回路E5と同様のものとする。従って、上記実施形態の初段の電解回路E1に直接電解回路E5を接続する2段構成としても良い。この場合、電解回路E5に含まれるサイリスタ45の主電路の一端は電解回路E1における電極対21とコンデンサ31との接続点に接続される。なお、電解回路を多段に縦続接続すると後段の電解回路における電極対ほど印加電圧が低下することとなるが、少なくとも最終段における電極対の印加電圧が電解液11の電気分解が生じる電圧より高くなる段数および直流電源15を選択する必要がある。   While the embodiments of the present invention have been described above, the present invention can be modified in various ways other than those described above without departing from the spirit of the present invention. For example, in the above-described embodiment, the electrolysis circuits E1 to E5 are cascaded in five stages, but the present invention is not limited to this, and the number of stages of the electrolysis circuit to be cascaded may be two or more. However, the last stage of the electrolysis circuit to be connected in cascade is the same as the electrolysis circuit E5 not provided with a capacitor. Accordingly, a two-stage configuration in which the electrolytic circuit E5 is directly connected to the first-stage electrolytic circuit E1 of the above embodiment may be employed. In this case, one end of the main electric circuit of the thyristor 45 included in the electrolytic circuit E5 is connected to a connection point between the electrode pair 21 and the capacitor 31 in the electrolytic circuit E1. When the electrolytic circuits are cascaded in multiple stages, the applied voltage decreases as the electrode pair in the subsequent electrolytic circuit decreases, but at least the applied voltage of the electrode pair in the final stage is higher than the voltage at which the electrolytic solution 11 is electrolyzed. It is necessary to select the number of stages and the DC power supply 15.

また、上記実施形態においては、電解回路E1〜E5の電極対21〜25を相互に異なるものとしていたが、これを電解回路E1〜E5に共通の1つの電極対としても良い。また、電極の形状は平板状や棒状など任意の形状とすることができる。   In the above embodiment, the electrode pairs 21 to 25 of the electrolysis circuits E1 to E5 are different from each other. However, this may be one electrode pair common to the electrolysis circuits E1 to E5. The shape of the electrode can be any shape such as a flat plate shape or a rod shape.

また、上記実施形態においては、サイリスタ41〜45の導通によって電極対21〜25に電圧を印加するようにしていたが、サイリスタに代えて回路の一部をON/OFF可能な他のスイッチング素子を使用するようにしても良い。この場合、各スイッチング素子を制御する導通制御回路が前段の電解回路に含まれるスイッチング素子から順次後段の電解回路に含まれるスイッチング素子を導通させるとともに、各電解回路に含まれるコンデンサの電圧が所定値を超えた時点で導通を遮断するようにする。   In the above embodiment, a voltage is applied to the electrode pairs 21 to 25 by the conduction of the thyristors 41 to 45. However, instead of the thyristors, other switching elements that can turn on / off a part of the circuit are used. It may be used. In this case, the conduction control circuit for controlling each switching element sequentially turns on the switching element included in the subsequent electrolytic circuit from the switching element included in the previous electrolytic circuit, and the voltage of the capacitor included in each electrolytic circuit is a predetermined value. The continuity is cut off when exceeding.

本発明に係る電気分解装置の回路構成を示す図である。It is a figure which shows the circuit structure of the electrolyzer which concerns on this invention. 電極を配置した電解セルの一例を示す斜視図である。It is a perspective view which shows an example of the electrolytic cell which has arrange | positioned the electrode.

符号の説明Explanation of symbols

1 電気分解装置
10 電解セル
11 電解液
15 直流電源
19 トリガー制御回路
21〜25 電極対
21a〜25a 陽極
21b〜25b 陰極
31〜34 コンデンサ
41〜45 サイリスタ
E1〜E5 電解回路
DESCRIPTION OF SYMBOLS 1 Electrolyzer 10 Electrolytic cell 11 Electrolytic solution 15 DC power supply 19 Trigger control circuit 21-25 Electrode pair 21a-25a Anode 21b-25b Cathode 31-34 Capacitor 41-45 Thyristor E1-E5 Electrolytic circuit

Claims (3)

電解液の電気分解を行う電気分解装置であって、
電解液を収容する電解槽と、
電気分解のための電力を供給する直流電源と、
前記電解液中に浸漬された電極対および当該電極対を流れる電流を蓄電するコンデンサを直列に接続した直列回路並びに当該直列回路に直列接続された主電路を有するサイリスタをそれぞれが含んで互いに縦続接続された複数の電解回路と、
前記電解液中に浸漬された電極対および当該電極対に直列に接続された主電路を有するサイリスタを含み、前記複数の電解回路のさらに後段に接続された最終電解回路と、
前記複数の電解回路および前記最終電解回路に含まれるサイリスタを順次導通させるトリガー制御回路と、
を備えることを特徴とする電気分解装置。
An electrolysis apparatus for electrolyzing an electrolyte solution,
An electrolytic cell containing an electrolytic solution;
A direct current power source for supplying power for electrolysis;
Each includes a series circuit in which an electrode pair immersed in the electrolytic solution and a capacitor for storing current flowing through the electrode pair are connected in series, and a thyristor having a main circuit connected in series to the series circuit. A plurality of electrolytic circuits,
A final electrolytic circuit including a thyristor having an electrode pair immersed in the electrolytic solution and a main electric circuit connected in series to the electrode pair, and further connected to a subsequent stage of the plurality of electrolytic circuits;
A trigger control circuit for sequentially conducting thyristors included in the plurality of electrolytic circuits and the final electrolytic circuit;
An electrolysis apparatus comprising:
請求項1記載の電気分解装置において、
前記複数の電解回路のそれぞれに含まれるコンデンサの一端および前記最終電解回路に含まれる電極対の一端を前記直流電源の帰路端に接続し、
縦続接続された前記複数の電解回路のうちの初段の電解回路におけるサイリスタの主電路の一端を前記直流電源の出力端に接続するとともに、前記複数の電解回路のうちの残余の電解回路におけるサイリスタの主電路の一端を直前の電解回路における電極対とコンデンサとの接続点に接続し、
前記最終電解回路に含まれるサイリスタの主電路の一端を前記複数の電解回路のうちの最後段の電解回路における電極対とコンデンサとの接続点に接続し、
前記トリガー制御回路は、前記複数の電解回路のうちの前記初段の電解回路に含まれるサイリスタから順次後段の電解回路に含まれるサイリスタを導通させ、最後に前記最終電解回路に含まれるサイリスタを導通させることを特徴とする電気分解装置。
The electrolyzer according to claim 1.
Connecting one end of a capacitor included in each of the plurality of electrolytic circuits and one end of an electrode pair included in the final electrolytic circuit to a return path end of the DC power supply;
One end of the main circuit of the thyristor in the first stage electrolysis circuit among the plurality of electrolysis circuits connected in cascade is connected to the output end of the DC power supply, and the thyristor in the remaining electrolysis circuit of the plurality of electrolysis circuits Connect one end of the main circuit to the connection point between the electrode pair and the capacitor in the previous electrolytic circuit,
One end of the main circuit of the thyristor included in the final electrolytic circuit is connected to a connection point between the electrode pair and the capacitor in the last electrolytic circuit of the plurality of electrolytic circuits,
The trigger control circuit sequentially turns on a thyristor included in a subsequent electrolytic circuit from a thyristor included in the first electrolytic circuit among the plurality of electrolytic circuits, and finally causes a thyristor included in the final electrolytic circuit to conduct. An electrolyzer characterized by that.
電解質を溶解した電解液の電気分解を行う電気分解装置であって、
電解液を収容する電解槽と、
電気分解のための電力を供給する直流電源と、
前記電解液中に浸漬された第1電極対および当該第1電極対を流れる電流を蓄電するコンデンサを直列に接続した直列回路並びに当該直列回路に直列接続された主電路を有する第1サイリスタを含む第1の電解回路と、
前記電解液中に浸漬された第2電極対および当該第2電極対に直列に接続された主電路を有する第2サイリスタを含む第2の電解回路と、
前記第1サイリスタから前記第2サイリスタの順に順次導通させるトリガー制御回路と、
を備え、
前記コンデンサの一端および前記第2電極対の一端を前記直流電源の帰路端に接続し、
前記第1サイリスタの主電路の一端を前記直流電源の出力端に接続し、
前記第2サイリスタの主電路の一端を前記第1の電解回路における前記第1電極対と前記コンデンサとの接続点に接続することを特徴とする電気分解装置。
An electrolysis apparatus for electrolyzing an electrolytic solution in which an electrolyte is dissolved,
An electrolytic cell containing an electrolytic solution;
A direct current power source for supplying power for electrolysis;
A first circuit pair connected in series with a first electrode pair immersed in the electrolyte and a capacitor for storing current flowing through the first electrode pair; and a first thyristor having a main electric circuit connected in series to the series circuit. A first electrolytic circuit;
A second electrolytic circuit including a second electrode pair immersed in the electrolyte and a second thyristor having a main circuit connected in series to the second electrode pair;
A trigger control circuit for sequentially conducting the first thyristor to the second thyristor;
With
One end of the capacitor and one end of the second electrode pair are connected to a return end of the DC power supply;
One end of the main circuit of the first thyristor is connected to the output end of the DC power supply;
One end of the main electric circuit of the second thyristor is connected to a connection point between the first electrode pair and the capacitor in the first electrolysis circuit.
JP2007098326A 2007-04-04 2007-04-04 Electrolysis apparats Pending JP2008255409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007098326A JP2008255409A (en) 2007-04-04 2007-04-04 Electrolysis apparats

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007098326A JP2008255409A (en) 2007-04-04 2007-04-04 Electrolysis apparats

Publications (1)

Publication Number Publication Date
JP2008255409A true JP2008255409A (en) 2008-10-23

Family

ID=39979285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007098326A Pending JP2008255409A (en) 2007-04-04 2007-04-04 Electrolysis apparats

Country Status (1)

Country Link
JP (1) JP2008255409A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102453928A (en) * 2010-10-26 2012-05-16 沈阳铝镁设计研究院有限公司 Power supply structure of cell control case in electrolytic plant of aluminum smelter
CN103510120A (en) * 2012-06-19 2014-01-15 贵阳铝镁设计研究院有限公司 Five-end-riser aluminum electrolysis tank bus configuration structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102453928A (en) * 2010-10-26 2012-05-16 沈阳铝镁设计研究院有限公司 Power supply structure of cell control case in electrolytic plant of aluminum smelter
CN102453928B (en) * 2010-10-26 2015-06-03 沈阳铝镁设计研究院有限公司 Power supply structure of cell control case in electrolytic plant of aluminum smelter
CN103510120A (en) * 2012-06-19 2014-01-15 贵阳铝镁设计研究院有限公司 Five-end-riser aluminum electrolysis tank bus configuration structure
CN103510120B (en) * 2012-06-19 2016-05-25 贵阳铝镁设计研究院有限公司 A kind of five power-on aluminum cell bus-bar collocation structure

Similar Documents

Publication Publication Date Title
AU2015225569B2 (en) Method and system to maintain electrolyte stability for all-iron redox flow batteries
AU2011323707B2 (en) Electrodialysis systems and methods for energy generation and waste treatment
Rocha et al. Pulsed water electrolysis: A review
US10047449B2 (en) Device and method for electrolytically coating an object
JP2023505013A (en) Water electrolysis method and apparatus
JP7036316B2 (en) Electrochemical devices and methods for controlling electrochemical devices
JP4562634B2 (en) Electrolysis system
JP2008255409A (en) Electrolysis apparats
US20230014927A1 (en) Organic hydride generation system, control device for organic hydride generation system, and control method for organic hydride generation system
JP2008280564A (en) Electrolyzer
CN113853455B (en) Control method for organic hydride generation system and organic hydride generation system
CN112424397A (en) Alternating current and direct current superposition system in electrolysis process
JPS6311430B2 (en)
CN117242210A (en) Electrolysis device
CN208802872U (en) A kind of three-dimensional electrolysis catalytic oxidizing equipment
Peng et al. Achieving low voltage half electrolysis with a supercapacitor electrode
TW201241239A (en) Large electrolytic vessel and electrolysis-stopping method
CA2510371A1 (en) Hydrogen generation system
US10106901B2 (en) Scalable energy demand system for the production of hydrogen
US20180327915A1 (en) Multipurpose electrolytic device (mped) for forced or spontaneous electrolytic processes, with independent electrolytes
FI130541B (en) A system for an electrochemical process and a method for preventing degradation of electrodes
CN2642792Y (en) Control device for electrolytic apparatus
CN220491210U (en) Intermittent electrolysis control device and electrolysis equipment
RU2322748C1 (en) Power supply unit for electrochemical process
JP7078246B2 (en) Magnesium battery system

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091112