JP2014505166A - Electrode for electrolytic cell - Google Patents

Electrode for electrolytic cell Download PDF

Info

Publication number
JP2014505166A
JP2014505166A JP2013545366A JP2013545366A JP2014505166A JP 2014505166 A JP2014505166 A JP 2014505166A JP 2013545366 A JP2013545366 A JP 2013545366A JP 2013545366 A JP2013545366 A JP 2013545366A JP 2014505166 A JP2014505166 A JP 2014505166A
Authority
JP
Japan
Prior art keywords
catalyst composition
electrode
noble metal
outer catalyst
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013545366A
Other languages
Japanese (ja)
Other versions
JP6247535B2 (en
JP2014505166A5 (en
Inventor
ウルゲゲ,クリスティアン
アントッジ,アントニオ・ロレンツォ
Original Assignee
インドゥストリエ・デ・ノラ・ソチエタ・ペル・アツィオーニ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by インドゥストリエ・デ・ノラ・ソチエタ・ペル・アツィオーニ filed Critical インドゥストリエ・デ・ノラ・ソチエタ・ペル・アツィオーニ
Publication of JP2014505166A publication Critical patent/JP2014505166A/en
Publication of JP2014505166A5 publication Critical patent/JP2014505166A5/ja
Application granted granted Critical
Publication of JP6247535B2 publication Critical patent/JP6247535B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/042Electrodes formed of a single material
    • C25B11/046Alloys
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/061Metal or alloy
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/093Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/097Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds comprising two or more noble metals or noble metal alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Catalysts (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Inert Electrodes (AREA)

Abstract

本発明は電解槽において気体状の生成物を発生させるための電極に関し、この電極は少なくとも二つの触媒組成物で被覆された金属の支持体を含み、最も外側の触媒組成物は化学的または物理的気相析出法によって堆積され、そして白金族金属の群から選択される貴金属またはその酸化物を含む組成を有する。
【選択図】なし
The present invention relates to an electrode for generating a gaseous product in an electrolytic cell, the electrode comprising a metal support coated with at least two catalyst compositions, the outermost catalyst composition being chemically or physically Deposited by chemical vapor deposition and having a composition comprising a noble metal selected from the group of platinum group metals or oxides thereof.
[Selection figure] None

Description

本発明は電解槽におけるアノードとして、例えば塩素-アルカリ電解槽における塩素発生用のアノードとして操作するのに適した電極に関する。   The present invention relates to an electrode suitable for operation as an anode in an electrolytic cell, for example as an anode for chlorine generation in a chlor-alkali electrolytic cell.

電気分解の用途において触媒被覆を備えた金属製電極を使用することは、当分野で公知である。貴金属またはそれらの酸化物を主成分とする被覆を備えた金属の支持体からなる電極は、例えば、水またはアルカリ塩化物の電気分解プロセスにおいて水素を発生させるためのカソードとして用いられ、また種々の電気冶金プロセスにおいて酸素を発生させるためやアルカリ塩化物の電気分解において塩素を発生させるためのアノードとして用いられる。この種の電極は熱過程によって製造することができ、すなわち、堆積すべき金属の先駆物質を含む溶液の適当な熱分解や、適当な電解浴からのガルバニ電着、あるいは溶射法やプラズマスプレー法または化学(または物理)気相析出法による直接の金属被覆によって製造することができる。   The use of metal electrodes with catalyst coatings in electrolysis applications is known in the art. Electrodes consisting of a metal support with a coating based on precious metals or their oxides are used, for example, as cathodes for generating hydrogen in water or alkaline chloride electrolysis processes, It is used as an anode for generating oxygen in the electrometallurgical process and for generating chlorine in the electrolysis of alkali chlorides. This type of electrode can be produced by a thermal process, i.e. suitable pyrolysis of a solution containing the metal precursor to be deposited, galvanic deposition from a suitable electrolytic bath, or spraying or plasma spraying. Alternatively, it can be produced by direct metallization by chemical (or physical) vapor deposition.

例えば、塩素と苛性ソーダを製造することを目的とする塩化ナトリウムのブラインの電気分解は、アノードで塩素を発生させる反応の過電圧を低下させるために二酸化ルテニウム(RuO)の表面層で活性化されたチタンまたはその他のバルブ金属の支持体からなるアノードを用いて、しばしば行うことができる。このタイプの電気分解については、ルテニウム、イリジウムおよびチタンの酸化物の混合物を主成分とする触媒配合物も知られていて、それらは全て、アノードで塩素を発生させる反応の過電圧を低下させることができる。 For example, the electrolysis of sodium chloride brine aimed at producing chlorine and caustic soda has been activated with a surface layer of ruthenium dioxide (RuO 2 ) to reduce the overvoltage of the reaction of generating chlorine at the anode. This can often be done with an anode consisting of a support of titanium or other valve metal. For this type of electrolysis, catalyst formulations based on a mixture of ruthenium, iridium and titanium oxides are also known, all of which can reduce the overvoltage of the reaction that generates chlorine at the anode. it can.

この種の電極は一般に、熱過程によって製造される。   This type of electrode is generally manufactured by a thermal process.

気相析出法によって支持体の上に触媒配合物を堆積させることができ、この方法は、被覆の堆積パラメーターを極めて正確に制御することができるという利点を有する。しかし、これらは基本的にバッチ(回分)タイプの加工であることによって特徴づけられ、単一のピースを処理することを可能にするためには、支持体を適当な堆積チャンバの中に装填する必要があり、このチャンバを数時間継続する緩やかな圧力降下過程に置かなければならない。プロセスの顕著な継続時間(必要な貴金属の量に応じて、通常は数時間を要する)に加えて、大量の触媒被覆を付与することによって、寿命が非常に短い被覆がもたらされる。   The catalyst formulation can be deposited on the support by vapor deposition, which has the advantage that the deposition parameters of the coating can be controlled very accurately. However, these are basically characterized by being a batch type process, and in order to be able to process a single piece, the support is loaded into a suitable deposition chamber. There is a need to place this chamber in a slow pressure drop process that lasts for several hours. In addition to the significant duration of the process (usually several hours depending on the amount of precious metal required), applying a large amount of catalyst coating results in a coating with a very short life.

本発明の様々な態様が、添付する特許請求の範囲に示されている。   Various aspects of the invention are set out in the accompanying claims.

第一の態様において、本発明は電解槽において気体状の生成物を発生させるための電極に関し、この電極は少なくとも一つの第一の触媒組成物と外側の触媒組成物で被覆されたバルブ金属の支持体からなり、前記少なくとも一つの第一の触媒組成物は、バルブ金属の酸化物またはスズの酸化物と白金属(PM)の群から選択される貴金属またはその単独か混合での酸化物との混合物を含み、前記少なくとも一つの第一の触媒組成物は先駆物質の熱分解によって得られ、前記外側の触媒組成物は白金属の群から選択される貴金属またはその単独か混合での酸化物を含み、前記外側の触媒組成物は化学的または物理的気相析出法によって堆積され、前記第一の触媒組成物における貴金属の量は表面について5g/mよりも多く、そして前記外側の触媒組成物における貴金属の量は表面について0.1〜3.0g/mの範囲である。 In a first aspect, the present invention relates to an electrode for generating a gaseous product in an electrolytic cell, the electrode comprising a valve metal coated with at least one first catalyst composition and an outer catalyst composition. The at least one first catalyst composition comprises a noble metal selected from the group consisting of a valve metal oxide or a tin oxide and a white metal (PM), or an oxide thereof alone or in combination. Wherein the at least one first catalyst composition is obtained by pyrolysis of a precursor and the outer catalyst composition is an oxide of a noble metal selected from the group of white metals, or a single or mixture thereof wherein the said outer catalyst composition is deposited by chemical or physical vapor deposition method, the amount of noble metal in the first catalyst composition more than 5 g / m 2 for the surface, and the outer The amount of the noble metal in the catalyst composition is in the range of 0.1 to 3.0 g / m 2 for the surface.

驚くべきことに、発明者らは、特定の性質を有する一つの最後の触媒層を化学的または物理的気相を介して堆積させることによって、寿命と電位の低下の両者について予期せざる特徴を有する電極が得られることを見いだした。   Surprisingly, the inventors have unforeseen features for both lifetime and potential reduction by depositing one final catalyst layer with specific properties via a chemical or physical gas phase. It has been found that an electrode having the same is obtained.

一つの態様において、本発明に係る電極の第一の触媒組成物は、チタン、イリジウム、ルテニウムを金属または酸化物の形で含んでいる。   In one embodiment, the first catalyst composition of the electrode according to the present invention contains titanium, iridium, ruthenium in the form of a metal or oxide.

一つの態様において、外側の触媒組成物はルテニウムおよび/またはイリジウムを金属または酸化物の形で含んでいる。   In one embodiment, the outer catalyst composition comprises ruthenium and / or iridium in the form of a metal or oxide.

一つの態様において、第一の触媒組成物における特定の貴金属の使用量は6〜8g/mの範囲であり、そして外側の触媒組成物における特定の金属の使用量は1.5〜2.5g/mの範囲である。 In one embodiment, the amount of specific noble metal used in the first catalyst composition is in the range of 6-8 g / m 2 and the amount of specific metal used in the outer catalyst composition is 1.5-2. The range is 5 g / m 2 .

別の態様において、本発明は電極を製造する方法に関し、この方法は、外側の触媒組成物を化学的または物理的気相析出法によって堆積することを含み、好ましくは、これを白金属の群から選択される貴金属の反応性スパッタリングによって行う。   In another aspect, the present invention relates to a method of manufacturing an electrode, the method comprising depositing an outer catalyst composition by chemical or physical vapor deposition, preferably in a group of white metals. By reactive sputtering of a noble metal selected from

さらなる態様において、本発明は使用された電極を再活性化することに関し、これは、白金属の群から選択される貴金属またはその単独か混合での酸化物を含む外側の触媒組成物を、化学的または物理的気相析出法によって堆積することを含む。   In a further aspect, the present invention relates to reactivating a used electrode, which comprises chemistry of an outer catalyst composition comprising an oxide of a noble metal selected from the group of white metals, or a single or mixture thereof. Depositing by physical or physical vapor deposition.

さらなる態様において、本発明はアルカリ塩化物溶液の電解槽、例えば塩素と苛性ソーダを製造することを目的とする塩化ナトリウムのブラインの電解槽に関し、これは上述した電極の上で塩素のアノード生成(陽極生成)を行うものである。   In a further aspect, the present invention relates to an alkaline chloride solution electrolyzer, for example a sodium chloride brine electrolyzer intended to produce chlorine and caustic soda, which produces an anodic generation of chlorine (anode) on the electrode described above. Generation).

以下の実施例は本発明の特定の態様を証明するために提示されるものであり、本発明の実行可能性は特許請求の範囲に記載された数値の範囲内で十分に実証されている。当業者であれば、実施例において開示された組成と技術は本発明を実施するために十分に機能するものであることが発明者によって見いだされた組成と技術を示していることを理解するべきであるが、しかるに、当業者であれば、本明細書の開示に照らして、開示された特定の態様において多くの変更を行うことができて、それでもなお、本発明の範囲から逸脱することなく、同様の結果または類似する結果が得られることを理解するべきである。   The following examples are presented to demonstrate certain embodiments of the invention, and the feasibility of the invention is well demonstrated within the numerical values recited in the claims. One skilled in the art should understand that the compositions and techniques disclosed in the examples are indicative of the compositions and techniques found by the inventors to be sufficiently functional to practice the present invention. However, one of ordinary skill in the art, in light of the disclosure herein, may make many modifications in the specific embodiments disclosed without departing from the scope of the present invention. It should be understood that similar or similar results can be obtained.

比較例1
10cm×10cmの大きさのチタンメッシュのサンプルにコランダムを吹き付け、残った部分に圧縮空気を噴射して洗浄した。次いで、このサンプルについて、超音波浴中でアセトンを用いて約10分にわたって脱脂を行った。乾燥した後、サンプルを250g/lのNaOHと50g/lのKNOを含む水溶液の中に約100℃で1時間にわたって浸漬した。このアルカリ処理を行った後、サンプルを脱イオン水の中で60℃で3回すすぎ洗いし、このとき一回毎に水を替えた。最後のすすぎ洗いは、少量のHCl(溶液1リットル当り約1ml)を加えて行った。空気による乾燥を行い、TiOの薄膜が成長したことによる褐色の色合いの形成が観察された。次いで、HClで酸性化した水と2-プロパノールの混合物中にRuCl・3HO、HIrCl・6HO、TiClを含み、金属について36%Ru、20%Ir、44%Tiのモル組成を有する水性アルコール溶液を100ml調製した。
Comparative Example 1
Corundum was sprayed on a sample of titanium mesh having a size of 10 cm × 10 cm, and the remaining portion was washed by jetting compressed air. The sample was then degreased with acetone in an ultrasonic bath for about 10 minutes. After drying, the sample was immersed in an aqueous solution containing 250 g / l NaOH and 50 g / l KNO 3 at about 100 ° C. for 1 hour. After this alkali treatment, the sample was rinsed three times at 60 ° C. in deionized water, with the water being changed every time. The final rinse was done by adding a small amount of HCl (about 1 ml per liter of solution). After drying with air, the formation of a brown color due to the growth of the TiO x thin film was observed. Then, RuCl 3 · 3H 2 O in a mixture of acidified water and 2-propanol in HCl, H 2 IrCl 6 · 6H 2 O, comprises TiCl 3, 36% for metals Ru, 20% Ir, 44% Ti 100 ml of an aqueous alcohol solution having a molar composition of

溶液を5回の被覆としてはけ塗りすることによって、チタンメッシュのサンプルに塗布し、それぞれの被覆を施した後、100〜110℃で約10分間の乾燥を行い、その後、450℃で15分間の熱処理を行った。後続の被覆を塗布する前に、そのたびにサンプルを空気中で冷却した。   The solution is applied to the titanium mesh sample by brushing as 5 coatings, each coating is applied, followed by drying at 100-110 ° C. for about 10 minutes, and then at 450 ° C. for 15 minutes. The heat treatment was performed. Each time the sample was cooled in air before applying subsequent coatings.

全ての手順の最後に、金属についてのRuおよびIrの合計として表して、9g/mの貴金属の総含有量が得られた。 At the end of all procedures, a total noble metal content of 9 g / m 2 expressed as the sum of Ru and Ir for the metal was obtained.

このようにして得られた電極を、サンプル番号1と定めた。   The electrode thus obtained was designated as sample number 1.

比較例2
10cm×10cmの大きさのチタンメッシュのサンプルにコランダムを吹き付け、残った部分に圧縮空気を噴射して洗浄した。次いで、このサンプルについて、超音波浴中でアセトンを用いて約10分にわたって脱脂を行った。乾燥した後、サンプルを250g/lのNaOHと50g/lのKNOを含む水溶液の中に約100℃で1時間にわたって浸漬した。このアルカリ処理を行った後、サンプルを脱イオン水の中で60℃で3回すすぎ洗いし、このとき一回毎に水を替えた。最後のすすぎ洗いは、少量のHCl(溶液1リットル当り約1ml)を加えて行った。空気による乾燥を行い、TiOの薄膜が成長したことによる褐色の色合いの形成が観察された。
Comparative Example 2
Corundum was sprayed on a sample of titanium mesh having a size of 10 cm × 10 cm, and the remaining portion was washed by jetting compressed air. The sample was then degreased with acetone in an ultrasonic bath for about 10 minutes. After drying, the sample was immersed in an aqueous solution containing 250 g / l NaOH and 50 g / l KNO 3 at about 100 ° C. for 1 hour. After this alkali treatment, the sample was rinsed three times at 60 ° C. in deionized water, with the water being changed every time. The final rinse was done by adding a small amount of HCl (about 1 ml per liter of solution). After drying with air, the formation of a brown color due to the growth of the TiO x thin film was observed.

次いで、このメッシュのサンプルを反応性スパッタリング装置の真空チャンバの中に入れた。   The mesh sample was then placed in a vacuum chamber of a reactive sputtering apparatus.

20%アルゴンとの酸素の混合物を供給して動的真空度が約50−4ミリバールに達したとき、スパッタリングターゲットを次の出力で分極させた:ルテニウム35W、イリジウム24W、チタン250W。ターゲットと電極基板の間隙は約10センチメートルであった。 When a mixture of oxygen with 20% argon was supplied and the dynamic vacuum reached about 50-4 mbar, the sputtering target was polarized with the following outputs: ruthenium 35W, iridium 24W, titanium 250W. The gap between the target and the electrode substrate was about 10 centimeters.

220分の総継続時間にわたって、チタンのメッシュの両面について交互に同じ条件で堆積の工程を実施した。このようにして得られた電極において、約1ミクロンの触媒被覆が形成され、貴金属の総含有量は、金属についてのRuおよびIrの合計として表して、約9g/mであった。 Over the entire duration of 220 minutes, the deposition process was carried out alternately under the same conditions on both sides of the titanium mesh. In the electrode thus obtained, a catalyst coating of about 1 micron was formed and the total precious metal content, expressed as the sum of Ru and Ir for the metal, was about 9 g / m 2 .

このようにして得られた電極を、サンプル番号2と定めた。   The electrode thus obtained was designated as sample number 2.

実施例1
10cm×10cmの大きさのチタンメッシュのサンプルにコランダムを吹き付け、残った部分に圧縮空気を噴射して洗浄した。次いで、このサンプルについて、超音波浴中でアセトンを用いて約10分にわたって脱脂を行った。乾燥した後、サンプルを250g/lのNaOHと50g/lのKNOを含む水溶液の中に約100℃で1時間にわたって浸漬した。このアルカリ処理を行った後、サンプルを脱イオン水の中で60℃で3回すすぎ洗いし、このとき一回毎に水を替えた。最後のすすぎ洗いは、少量のHCl(溶液1リットル当り約1ml)を加えて行った。空気による乾燥を行い、TiOの薄膜が成長したことによる褐色の色合いの形成が観察された。
Example 1
Corundum was sprayed on a sample of titanium mesh having a size of 10 cm × 10 cm, and the remaining portion was washed by jetting compressed air. The sample was then degreased with acetone in an ultrasonic bath for about 10 minutes. After drying, the sample was immersed in an aqueous solution containing 250 g / l NaOH and 50 g / l KNO 3 at about 100 ° C. for 1 hour. After this alkali treatment, the sample was rinsed three times at 60 ° C. in deionized water, with the water being changed every time. The final rinse was done by adding a small amount of HCl (about 1 ml per liter of solution). After drying with air, the formation of a brown color due to the growth of the TiO x thin film was observed.

次いで、HClで酸性化した水と2-プロパノールの混合物中にRuCl・3HO、HIrCl・6HO、TiClを含む水性アルコール溶液を100ml調製した。この溶液は、金属について36%Ru、20%Ir、44%Tiのモル組成を有する。 Then, acidified water and 2- RuCl 3 · 3H 2 O in a mixture of propanol, H 2 IrCl 6 · 6H 2 O, the aqueous alcohol solution containing the TiCl 3 was 100ml prepared with HCl. This solution has a molar composition of 36% Ru, 20% Ir, 44% Ti for the metal.

溶液を5回の被覆としてはけ塗りすることによって、チタンメッシュのサンプルに塗布し、それぞれの被覆を施した後、100〜110℃で約10分間の乾燥を行い、その後、450℃で15分間の熱処理を行った。後続の被覆を塗布する前に、そのたびにサンプルを空気中で冷却した。   The solution is applied to the titanium mesh sample by brushing as 5 coatings, each coating is applied, followed by drying at 100-110 ° C. for about 10 minutes, and then at 450 ° C. for 15 minutes. The heat treatment was performed. Each time the sample was cooled in air before applying subsequent coatings.

全ての手順の最後に、金属についてのRuおよびIrの合計として表して、7g/mの貴金属の総含有量が得られた。 At the end of all procedures, a total noble metal content of 7 g / m 2 expressed as the sum of Ru and Ir for the metal was obtained.

次いで、この半完成品としての電極を反応性スパッタリング装置の真空チャンバの中に入れた。   The semi-finished electrode was then placed in a vacuum chamber of a reactive sputtering apparatus.

20%アルゴンとの酸素の混合物を供給して動的真空度が約100−4ミリバールに達したとき、スパッタリングターゲットを次の出力で分極させた:ルテニウム30W、イリジウム35W。ターゲットと電極基板の間隙は約10センチメートルであった。得られる被覆に最適な特性を付与するために、基板に対してさらに約150Vの残りの分極化を行った。 When a mixture of oxygen with 20% argon was supplied and the dynamic vacuum reached about 100-4 mbar, the sputtering target was polarized with the following outputs: ruthenium 30W, iridium 35W. The gap between the target and the electrode substrate was about 10 centimeters. The remaining polarization of about 150V was further applied to the substrate in order to impart optimal properties to the resulting coating.

40分の総継続時間にわたって、電極の両面について交互に同じ条件で堆積の工程を実施した。このようにして得られた電極は約0.1μmの厚さの外側の触媒被覆を有し、貴金属の総含有量は、金属についてのRuおよびIrの合計として表して、約9g/mであった。 Over the total duration of 40 minutes, the deposition process was carried out alternately under the same conditions on both sides of the electrode. The electrode thus obtained has an outer catalyst coating of about 0.1 μm thickness and the total precious metal content is about 9 g / m 2 expressed as the sum of Ru and Ir for the metal. there were.

このようにして得られた電極を、サンプル番号3と定めた。   The electrode thus obtained was designated as sample number 3.

以上の実施例のサンプルを、200g/lの濃度の塩化ナトリウムのブラインを入れた実験室用電解槽の中でpHを3に厳密に制御しながら塩素を発生させるためのアノードとして、特徴づけした。4kA/mの電流密度で測定した塩素の過電圧と生成した塩素中の酸素の体積パーセントを、表1に報告する。 The sample of the above example was characterized as an anode for generating chlorine while strictly controlling the pH to 3 in a laboratory electrolytic cell containing 200 g / l sodium chloride brine. . The chlorine overvoltage measured at a current density of 4 kA / m 2 and the volume percent of oxygen in the chlorine produced are reported in Table 1.

Figure 2014505166
Figure 2014505166

同様に、以上の実施例のサンプルについて耐久試験を行った。この耐久試験は、電解液の濃度と温度についての工業上の電解条件の下での独立した電解槽におけるシミュレーションを行うものであるが、ただし、実験上の反応性を促進するために、電流密度を標準の値よりも2〜3倍高い値まで適宜増大させた。   Similarly, a durability test was performed on the samples of the above examples. This endurance test is a simulation in an independent electrolyzer under industrial electrolysis conditions for electrolyte concentration and temperature, but in order to promote experimental reactivity, the current density Was increased appropriately to a value 2-3 times higher than the standard value.

単位電流当りに減少した貴金属の量を、表2に報告する。   The amount of noble metal decreased per unit current is reported in Table 2.

Figure 2014505166
Figure 2014505166

以上の説明は本発明を限定することを意図しておらず、本発明はその範囲から逸脱することなく様々な態様に従って用いることができ、本発明の範囲は添付する特許請求の範囲によって一義的に確定される。   The above description is not intended to limit the present invention, and the present invention can be used in accordance with various embodiments without departing from the scope thereof, and the scope of the present invention is unambiguously defined by the appended claims. To be confirmed.

本出願の明細書と特許請求の範囲の全体を通して、「含む」という用語は、他の要素または付加物の存在を排除することを意図していない。   Throughout the specification and claims of this application, the term “comprising” is not intended to exclude the presence of other elements or additions.

文献中の検討事項、法令、資料、デバイス、記事、その他同種類のものは、単に本発明のための背景を提供するという目的のために本明細書に含まれる。これらの事項の何らかのもの、あるいはそれらの全てが先行技術の基礎の部分を形成していたか、あるいは、それらが、本出願の各々の請求項の優先日の前に、本発明に関連する分野において一般的な共通認識になっていた、ということは示唆されないし、表明されてもいない。   Literature considerations, statutes, materials, devices, articles, and the like are included herein for the purpose of merely providing a background for the present invention. Some of these matters, or all of them, form part of the prior art basis, or they are in the field relevant to the present invention before the priority date of each claim of this application. It has not been suggested or expressed that it was a general consensus.

Claims (9)

電気化学セルにおいて気体状の生成物を発生させるための電極であって、この電極は少なくとも一つの第一の触媒組成物と外側の触媒組成物で被覆されたバルブ金属の支持体からなり、前記少なくとも一つの第一の触媒組成物は、バルブ金属またはスズまたはこれらの酸化物と白金族金属から選択される貴金属またはその単独か混合での酸化物との混合物を含み、前記少なくとも一つの第一の触媒組成物は先駆物質の熱分解によって得られ、前記外側の触媒組成物は化学的または物理的気相析出法によって堆積され、前記少なくとも一つの第一の触媒組成物における貴金属の量は5g/mよりも多く、そして前記外側の触媒組成物における貴金属の量は0.1〜3.0g/mの範囲である、前記電極。 An electrode for generating a gaseous product in an electrochemical cell, the electrode comprising a valve metal support coated with at least one first catalyst composition and an outer catalyst composition, said electrode The at least one first catalyst composition includes a mixture of a valve metal or tin or an oxide thereof and a noble metal selected from a platinum group metal or an oxide thereof alone or in combination, and the at least one first catalyst composition. And the outer catalyst composition is deposited by chemical or physical vapor deposition, and the amount of noble metal in the at least one first catalyst composition is 5 g. The electrode, greater than / m 2 and the amount of noble metal in the outer catalyst composition is in the range of 0.1 to 3.0 g / m 2 . 前記少なくとも一つの第一の触媒組成物はチタン、イリジウムおよびルテニウムを含む、請求項1に記載の電極。   The electrode of claim 1, wherein the at least one first catalyst composition comprises titanium, iridium and ruthenium. 前記外側の触媒組成物はルテニウムおよび/またはイリジウムを含む、請求項1に記載の電極。   The electrode according to claim 1, wherein the outer catalyst composition comprises ruthenium and / or iridium. 前記少なくとも一つの第一の触媒組成物における特定の貴金属の使用量は6〜8g/mであり、そして前記外側の触媒組成物における特定の貴金属の使用量は1.5〜2.5g/mである、請求項1から3のいずれかに記載の電極。 The amount of the specific noble metal used in the at least one first catalyst composition is 6 to 8 g / m 2 , and the amount of the specific noble metal used in the outer catalyst composition is 1.5 to 2.5 g / m 2. The electrode according to claim 1, which is m 2 . 前記外側の触媒組成物を化学的または物理的気相析出法によって堆積することを含む、請求項1から4のいずれかに記載の電極を製造するための方法。   5. A method for manufacturing an electrode according to any one of claims 1 to 4, comprising depositing the outer catalyst composition by chemical or physical vapor deposition. 前記外側の触媒組成物を、白金属の群から選択される貴金属の反応性スパッタリングによって酸化物の混合物として堆積することを含む、請求項1から4のいずれかに記載の電極を製造するための方法。   5. The electrode according to claim 1, comprising depositing the outer catalyst composition as a mixture of oxides by reactive sputtering of a noble metal selected from the group of white metals. Method. 金属の支持体と使用済みの触媒被覆からなる使用済みの電極を再活性化するための方法であって、前記使用済みの触媒被覆の上にイリジウムとルテニウムの反応性スパッタリングによって外側の触媒組成物を酸化物の混合物として堆積することを含む、前記方法。   A method for reactivating a spent electrode comprising a metal support and a spent catalyst coating, wherein the outer catalyst composition is formed by reactive sputtering of iridium and ruthenium on the spent catalyst coating. Depositing as a mixture of oxides. 白金属の群から選択される貴金属またはその単独か混合での酸化物を含む外側の触媒組成物を化学的または物理的気相析出法によって堆積することを含む、請求項7に記載の使用済みの電極を再活性化するための方法。   Spent according to claim 7, comprising depositing an outer catalyst composition comprising a noble metal selected from the group of white metals or an oxide thereof alone or in a mixture by chemical or physical vapor deposition. Method for reactivating the electrode. 隔膜またはダイヤフラムによって分離されたカソードを含むカソード区画とアノードを含むアノード区画を有する電解槽であって、前記アノード区画にアルカリ塩化物のブラインが供給され、前記アノード区画の前記アノードは請求項1から4のいずれかに記載の電極である、前記電解槽。   An electrolyzer having a cathode compartment comprising a cathode and an anode compartment comprising an anode separated by a diaphragm or diaphragm, wherein the anode compartment is supplied with alkaline chloride brine, the anode of the anode compartment comprising: 4. The electrolytic cell, which is the electrode according to any one of 4 above.
JP2013545366A 2010-12-22 2011-12-21 Electrode for electrolytic cell Expired - Fee Related JP6247535B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ITMI2010A002354 2010-12-22
IT002354A ITMI20102354A1 (en) 2010-12-22 2010-12-22 ELECTRODE FOR ELECTROLYTIC CELL
PCT/EP2011/073605 WO2012085095A2 (en) 2010-12-22 2011-12-21 Electrode for electrolytic cell

Publications (3)

Publication Number Publication Date
JP2014505166A true JP2014505166A (en) 2014-02-27
JP2014505166A5 JP2014505166A5 (en) 2017-07-13
JP6247535B2 JP6247535B2 (en) 2017-12-13

Family

ID=43737007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013545366A Expired - Fee Related JP6247535B2 (en) 2010-12-22 2011-12-21 Electrode for electrolytic cell

Country Status (20)

Country Link
US (1) US20130228450A1 (en)
EP (2) EP2655693B1 (en)
JP (1) JP6247535B2 (en)
KR (2) KR20130143624A (en)
CN (1) CN103249872B (en)
AR (1) AR083989A1 (en)
AU (1) AU2011347262B2 (en)
BR (1) BR112013014015B1 (en)
CA (1) CA2815137C (en)
CL (1) CL2013001620A1 (en)
CO (1) CO6741167A2 (en)
DK (1) DK2655693T3 (en)
EA (1) EA024356B1 (en)
IL (1) IL225905A (en)
IT (1) ITMI20102354A1 (en)
MX (1) MX354730B (en)
SG (1) SG190951A1 (en)
TW (1) TW201226631A (en)
WO (1) WO2012085095A2 (en)
ZA (1) ZA201302944B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017535680A (en) * 2014-11-24 2017-11-30 インドゥストリエ・デ・ノラ・ソチエタ・ペル・アツィオーニ Anode for electrolysis of chlorine
WO2018097069A1 (en) * 2016-11-22 2018-05-31 旭化成株式会社 Electrode for electrolysis

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57177982A (en) * 1981-04-06 1982-11-01 Diamond Shamrock Corp Electrode recoating method
JPS58120790A (en) * 1982-01-14 1983-07-18 Permelec Electrode Ltd Production of electrode for electrolysis
JPH04301062A (en) * 1990-12-26 1992-10-23 Eltech Syst Corp Base material having improved plasma flame spray coated surface type
JP2003507580A (en) * 1999-08-20 2003-02-25 アトフィナ Cathode usable for electrolysis of aqueous solution
JP2008156684A (en) * 2006-12-22 2008-07-10 Tanaka Kikinzoku Kogyo Kk Anode electrode for hydrochloric acid electrolysis

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1195871A (en) * 1967-02-10 1970-06-24 Chemnor Ag Improvements in or relating to the Manufacture of Electrodes.
US3929608A (en) * 1970-07-29 1975-12-30 Solvay Catalytic material for electrodes
US3684543A (en) * 1970-11-19 1972-08-15 Patricia J Barbato Recoating of electrodes
GB1352872A (en) * 1971-03-18 1974-05-15 Ici Ltd Electrodes for electrochemical processes
SU522284A1 (en) * 1974-05-22 1976-07-25 Предприятие П/Я В-2287 Method for restoring spent coating activity
US4331528A (en) * 1980-10-06 1982-05-25 Diamond Shamrock Corporation Coated metal electrode with improved barrier layer
US4696731A (en) * 1986-12-16 1987-09-29 The Standard Oil Company Amorphous metal-based composite oxygen anodes
CN1012743B (en) * 1987-08-22 1991-06-05 福建省冶金工业研究所 Titanium anode for electrochemical industry
GB9018953D0 (en) * 1990-08-31 1990-10-17 Ici Plc Electrode
JP3212327B2 (en) 1991-08-30 2001-09-25 ペルメレック電極株式会社 Electrode for electrolysis
GB9316926D0 (en) * 1993-08-13 1993-09-29 Ici Plc Electrode
GB9316930D0 (en) * 1993-08-13 1993-09-29 Ici Plc Electrode
US6217729B1 (en) * 1999-04-08 2001-04-17 United States Filter Corporation Anode formulation and methods of manufacture
ITMI20021128A1 (en) * 2002-05-24 2003-11-24 De Nora Elettrodi Spa ELECTRODE FOR GAS DEVELOPMENT AND METHOD FOR ITS OBTAINING
CN101626846B (en) * 2007-04-18 2011-12-14 德诺拉工业有限公司 electrodes with mechanically roughened surface for electrochemical applications

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57177982A (en) * 1981-04-06 1982-11-01 Diamond Shamrock Corp Electrode recoating method
JPS58120790A (en) * 1982-01-14 1983-07-18 Permelec Electrode Ltd Production of electrode for electrolysis
JPH04301062A (en) * 1990-12-26 1992-10-23 Eltech Syst Corp Base material having improved plasma flame spray coated surface type
JP2003507580A (en) * 1999-08-20 2003-02-25 アトフィナ Cathode usable for electrolysis of aqueous solution
JP2008156684A (en) * 2006-12-22 2008-07-10 Tanaka Kikinzoku Kogyo Kk Anode electrode for hydrochloric acid electrolysis

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017535680A (en) * 2014-11-24 2017-11-30 インドゥストリエ・デ・ノラ・ソチエタ・ペル・アツィオーニ Anode for electrolysis of chlorine
WO2018097069A1 (en) * 2016-11-22 2018-05-31 旭化成株式会社 Electrode for electrolysis
JPWO2018097069A1 (en) * 2016-11-22 2019-07-25 旭化成株式会社 Electrode for electrolysis

Also Published As

Publication number Publication date
ITMI20102354A1 (en) 2012-06-23
EA201390927A1 (en) 2013-11-29
EP3118351A1 (en) 2017-01-18
IL225905A (en) 2015-08-31
ZA201302944B (en) 2014-06-25
CN103249872A (en) 2013-08-14
MX2013006271A (en) 2013-08-01
KR20180043398A (en) 2018-04-27
EP2655693A2 (en) 2013-10-30
EA024356B1 (en) 2016-09-30
US20130228450A1 (en) 2013-09-05
WO2012085095A3 (en) 2012-10-04
DK2655693T3 (en) 2017-02-20
WO2012085095A2 (en) 2012-06-28
CN103249872B (en) 2016-08-10
CO6741167A2 (en) 2013-08-30
AR083989A1 (en) 2013-04-10
CA2815137C (en) 2019-03-05
BR112013014015B1 (en) 2020-05-12
KR20130143624A (en) 2013-12-31
IL225905A0 (en) 2013-07-31
AU2011347262B2 (en) 2016-03-31
JP6247535B2 (en) 2017-12-13
CA2815137A1 (en) 2012-06-28
AU2011347262A1 (en) 2013-05-23
SG190951A1 (en) 2013-07-31
EP2655693B1 (en) 2016-11-16
CL2013001620A1 (en) 2013-11-08
KR101886032B1 (en) 2018-08-07
MX354730B (en) 2018-03-15
BR112013014015A2 (en) 2016-09-13
TW201226631A (en) 2012-07-01

Similar Documents

Publication Publication Date Title
JP5968899B2 (en) Anode for electrolysis of chlorine
KR100735588B1 (en) Cathode for electrolysing aqueous solutions
JP6929378B2 (en) Anode for electrolysis and its manufacturing method
KR20110094055A (en) Electrode for electrolysis cell
JP2009052069A (en) Electrode for electrolysis
JP4354821B2 (en) Electrode for electrolysis in acidic media
JP6920998B2 (en) Anode for electrolysis generation of chlorine
JP2019119930A (en) Chlorine generating electrode
JP6247535B2 (en) Electrode for electrolytic cell
JP6588816B2 (en) Chlorine generating electrode
TW202122635A (en) Electrode for electrochemical evolution of hydrogen
JP2836840B2 (en) Electrode for chlorine generation and method for producing the same
CN112313368A (en) Anode for the electrolytic evolution of chlorine
ITMI20091621A1 (en) ELECTRODE FOR ELECTROLYTIC PROCESSES WITH CONTROLLED CRYSTALLINE STRUCTURE
RU2791363C2 (en) Anode for electrolytic chlorine recovery
KR20190140755A (en) Anode for electrolysis and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160203

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160419

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160803

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20160803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161219

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170315

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170515

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20170530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171117

R150 Certificate of patent or registration of utility model

Ref document number: 6247535

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20171115

LAPS Cancellation because of no payment of annual fees