KR102424607B1 - Metal complex and method for preparing same - Google Patents

Metal complex and method for preparing same Download PDF

Info

Publication number
KR102424607B1
KR102424607B1 KR1020200100339A KR20200100339A KR102424607B1 KR 102424607 B1 KR102424607 B1 KR 102424607B1 KR 1020200100339 A KR1020200100339 A KR 1020200100339A KR 20200100339 A KR20200100339 A KR 20200100339A KR 102424607 B1 KR102424607 B1 KR 102424607B1
Authority
KR
South Korea
Prior art keywords
metal
catalyst
present
metal composite
deposition
Prior art date
Application number
KR1020200100339A
Other languages
Korean (ko)
Other versions
KR20220019979A (en
Inventor
김건태
김정원
성아림
Original Assignee
울산과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 울산과학기술원 filed Critical 울산과학기술원
Priority to KR1020200100339A priority Critical patent/KR102424607B1/en
Publication of KR20220019979A publication Critical patent/KR20220019979A/en
Application granted granted Critical
Publication of KR102424607B1 publication Critical patent/KR102424607B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/892Nickel and noble metals
    • B01J35/0033
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/093Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 수소 발생 반응의 촉매로 활용될 수 있는 금속 복합체 및 이의 제조방법에 관한 것이다. 본 발명에 따른 금속 복합체는 귀금속의 사용량이 적으면서도 촉매적 반응성 및 전기 전도도가 우수하므로 대규모 수소 발생 반응에 유용하게 활용될 수 있다. 또한, 본 발명에 따른 제조방법은 전기화학적인 방법을 사용함으로써, Ru 귀금속을 Ni-mesh 전극에 바로 증착할 수 있기 때문에, 간소화된 제조공정을 통하여 금속 복합체를 효율적으로 제조할 수 있다. The present invention relates to a metal complex that can be used as a catalyst for a hydrogen evolution reaction and a method for preparing the same. Since the metal composite according to the present invention has excellent catalytic reactivity and electrical conductivity while using a small amount of noble metal, it can be usefully used for large-scale hydrogen generation reactions. In addition, the manufacturing method according to the present invention can efficiently manufacture a metal composite through a simplified manufacturing process since noble Ru metal can be directly deposited on the Ni-mesh electrode by using an electrochemical method.

Description

금속 복합체 및 이의 제조방법{METAL COMPLEX AND METHOD FOR PREPARING SAME}Metal composite and manufacturing method thereof

본 발명은 수소 발생 반응의 촉매로 활용될 수 있는 금속 복합체 및 이의 제조방법에 관한 것이다.The present invention relates to a metal complex that can be used as a catalyst for a hydrogen evolution reaction and a method for preparing the same.

한정된 자원인 화석연료의 무분별한 사용은 전 세계적으로 심각한 환경 오염과 환경 변화들을 초래하고 있다. 따라서 미래에 사용될 수 있는 지속가능하며 친환경적인 에너지원의 개발이 필요하다. 친환경 에너지원인 수소는 무게당 에너지 밀도가 높으며 이산화탄소 배출도 없기때문에 화석연료를 대체할 수 있는 가장 이상적인 에너지원으로 간주되고 있다. The indiscriminate use of fossil fuels, a limited resource, is causing serious environmental pollution and environmental changes worldwide. Therefore, it is necessary to develop sustainable and eco-friendly energy sources that can be used in the future. Hydrogen, an eco-friendly energy source, has a high energy density per weight and does not emit carbon dioxide, so it is considered the most ideal energy source to replace fossil fuels.

최근 수소는 연료 전지에 활용하여 자동차의 에너지원으로 사용하거나 대용량 에너지 저장 장치에 사용되는 등 다방면에 사용되고 있으며, 그 범위 또한 커지고 있다. 하지만 수소는 반응성이 높아 그 자체로는 자연상에 존재하지 않는다. 따라서 수소 기체의 친환경적 대량 생산 방법에 대한 기술 개발의 필요성이 커지고 있다. Recently, hydrogen has been used in various fields such as being used in fuel cells and used as an energy source for automobiles or used in large-capacity energy storage devices, and the range is also increasing. However, hydrogen is highly reactive and does not exist in nature by itself. Therefore, the need for technology development for an environmentally friendly mass production method of hydrogen gas is increasing.

수소 기체를 생산하기 위한 친환경적인 방법 중에는 전기화학적 물 분해 반응 통하여 수소 기체를 수득하는 방법이 있으나, 실제로 활용되기 위해서는 수소 생산 효율이 매우 중요하다. 전기화학적 물 분해 반응에서 환원 반쪽 반응이 수소 발생 반응(Hydrogen Evolution Reaction (HER)이고, 이 반응의 활성화 에너지를 낮추기 위해서 촉매가 사용된다. 수소 발생 반응에는 백금(Pt)이나 팔라듐(Pd) 등의 귀금속계 촉매들이 대표적으로 사용되고 있다. 이 귀금속 촉매들은 수소 발생 반응에서 촉매적인 성능이 우수하나, 존재량이 매우 희박하고 고가이다. 이 때문에 다량의 촉매를 필요로 하는 대규모 수소 발생 반응에서는 사용하기가 현실적으로 어렵다.Among eco-friendly methods for producing hydrogen gas, there is a method of obtaining hydrogen gas through an electrochemical water decomposition reaction, but for practical use, hydrogen production efficiency is very important. In the electrochemical water splitting reaction, the reduction half reaction is the Hydrogen Evolution Reaction (HER), and a catalyst is used to lower the activation energy of this reaction. In the hydrogen evolution reaction, platinum (Pt) or palladium (Pd) Noble metal-based catalysts are typically used.These noble metal catalysts have excellent catalytic performance in hydrogen-generating reactions, but their abundance is very rare and expensive. difficult.

따라서, 실용적인 관점 촉매 효율의 중요성만큼이나 지구상에 많이 존재하면서 값싼 재료들로 이루어진 수소 발생 촉매의 개발도 필수적이다. 이를 해결하기 위한 방안으로 카본류와 섞어서 귀금속 촉매의 비율은 낮추면서 성능을 유지하려는 연구들이 많이 진행되어 왔다. 이와 관련하여, 한국등록특허 제10-1818817호는 금속 황화물이 코팅된 중공형 탄소나노섬유를 개시하고 있으나, 귀금속 촉매와 비교하여 실제 사용되기에는 수소 생산 효율과 촉매적 특성 낮다는 문제가 있다.Therefore, from a practical point of view, as much as the importance of catalytic efficiency, the development of a hydrogen-generating catalyst made of cheap materials while being abundant on earth is also essential. As a way to solve this problem, many studies have been conducted to maintain the performance while lowering the ratio of the noble metal catalyst by mixing it with carbon. In this regard, Korean Patent No. 10-1818817 discloses a hollow carbon nanofiber coated with a metal sulfide, but there is a problem in that hydrogen production efficiency and catalytic properties are low for practical use compared to a noble metal catalyst.

본 발명의 하나의 목적은 귀금속의 사용량이 적으면서도 수소 발생 반응에서의 촉매적 특성이 우수한 금속 복합체 및 이를 포함하는 수소 발생 반응용 촉매를 제공하는 것을 하나의 목적으로 한다.One object of the present invention is to provide a metal complex having excellent catalytic properties in a hydrogen-generating reaction with a small amount of noble metal used, and a catalyst for hydrogen-generating reaction including the same.

본 발명의 다른 하나의 목적은 간단한 공정으로 상기 금속 복합체를 효율적으로 제조할 수 있는 제조방법을 제공하는 것이다. Another object of the present invention is to provide a manufacturing method capable of efficiently manufacturing the metal composite through a simple process.

그러나 본 발명이 해결하고자 하는 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the problem to be solved by the present invention is not limited to the above-mentioned problems, and other problems not mentioned will be clearly understood by those skilled in the art from the following description.

상기한 본 발명의 목적을 달성하기 위하여, 본 발명의 일 측면에 따르면, 니켈(Ni)의 표면 상에 증착된 루테늄(Ru) 입자층; 및 상기 루테늄 금속 입자층 상에 증착된 텅스텐 산화물 입자층;을 포함하는, 금속 복합체가 제공된다.In order to achieve the above object of the present invention, according to an aspect of the present invention, a ruthenium (Ru) particle layer deposited on the surface of nickel (Ni); and a tungsten oxide particle layer deposited on the ruthenium metal particle layer.

상기한 본 발명의 목적을 달성하기 위하여, 본 발명의 다른 측면에 따르면, 상기 금속 복합체를 포함하는, 수소 발생 반응용 촉매가 제공된다.In order to achieve the above object of the present invention, according to another aspect of the present invention, there is provided a catalyst for hydrogen evolution, including the metal complex.

상기한 본 발명의 목적을 달성하기 위하여, 본 발명의 또 다른 측면에 따르면, (a) 루테늄(Ru) 입자가 용해된 전해질 용액에 니켈(Ni)을 담지하여 니켈 표면에 루테늄 금속 입자를 증착하는 단계; 및 (b) 상기 루테늄이 증착된 니켈 전극에 텅스텐 산화물을 증착하는 단계;를 포함하는 금속 복합체의 제조방법이 제공된다. In order to achieve the above object of the present invention, according to another aspect of the present invention, (a) depositing ruthenium metal particles on the nickel surface by supporting nickel (Ni) in an electrolyte solution in which ruthenium (Ru) particles are dissolved. step; and (b) depositing tungsten oxide on the nickel electrode on which the ruthenium is deposited.

본 발명에 따른 금속 복합체는 귀금속의 사용량이 적으면서도 촉매적 반응성 및 전기 전도도가 우수하므로 대규모 수소 발생 반응에 유용하게 활용될 수 있다. 또한, 본 발명에 따른 제조방법은 전기화학적인 방법을 사용함으로써, Ru 귀금속을 Ni-mesh 전극에 바로 증착할 수 있기 때문에, 간소화된 제조공정을 통하여 금속 복합체를 효율적으로 제조할 수 있다. Since the metal composite according to the present invention has excellent catalytic reactivity and electrical conductivity while using a small amount of noble metal, it can be usefully used for large-scale hydrogen generation reactions. In addition, the manufacturing method according to the present invention can efficiently manufacture a metal composite through a simplified manufacturing process since noble Ru metal can be directly deposited on the Ni-mesh electrode by using an electrochemical method.

도 1은 본 발명에 따른 금속 복합체의 수소 발생 반응 촉매 성능을 측정하기 위해 특정 전류에서 수소 기체를 발생시키기 위한 필요 전압을 측정한 결과를 나타낸 것이다.
도 2는 본 발명에 따른 금속 복합체의 수소 발생 반응 촉매 성능을 측정하기 위해 특정 전류에서 수소 기체를 발생시키기 위한 필요 전압을 측정한 결과를 타펠 플롯(Tafel plot) 그래프로 나타낸 것이다.
도 3은 순수한 Ni-mesh 상에 WO3를 원자층 증착한 촉매와 순수한 Ni-mesh의 촉매 성능을 비교한 그래프이다.
도 4는 텅스텐 옥사이드(WO3)의 증착을 통한 금속 촉매 향상 효과를 확인하기 위해 Ni-mesh 상에 Pt를 전기화학 증착시킨 다음 WO3를 원자층 증착한 촉매를 Ni-mesh 상에 Pt를 전기화학 증착시킨 촉매와 수소 발생 촉매 성능을 비교한 결과를 나타낸 것이다.
도 5는 Ru과 WO3의 전기화학 증착 순서를 달리하여 제조한 금속 복합체의 수소 발생 반응에서의 촉매 성능을 측정한 결과를 나타낸 것이다.
1 shows the results of measuring the voltage required to generate hydrogen gas at a specific current in order to measure the hydrogen evolution reaction catalytic performance of the metal complex according to the present invention.
2 is a Tafel plot graph showing the result of measuring the voltage required to generate hydrogen gas at a specific current in order to measure the hydrogen evolution reaction catalyst performance of the metal composite according to the present invention.
3 is a graph comparing the catalytic performance of a catalyst obtained by atomic layer deposition of WO 3 on pure Ni-mesh and pure Ni-mesh.
Figure 4 is tungsten oxide (WO 3 ) In order to confirm the metal catalyst improvement effect through the deposition, Pt is electrochemically deposited on Ni-mesh and then WO 3 is atomic layer-deposited catalyst on Ni-mesh Pt is electrically The results of comparison of the chemical vapor deposition catalyst and the hydrogen evolution catalyst performance are shown.
5 shows the results of measuring the catalytic performance in the hydrogen evolution reaction of the metal composite prepared by changing the electrochemical deposition order of Ru and WO 3 .

이하, 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail.

본 발명에 따른 금속 산화물은 니켈(Ni)의 표면 상에 증착된 루테늄(Ru) 입자층 및 상기 루테늄 금속 입자층 상에 증착된 텅스텐 산화물 입자층을 포함한다.The metal oxide according to the present invention includes a ruthenium (Ru) particle layer deposited on a surface of nickel (Ni) and a tungsten oxide particle layer deposited on the ruthenium metal particle layer.

상기 텅스텐 산화물은 일반식이 WOx이고, 상기 x는 2 내지 4인 것일 수 있다. 이에 제한되는 것은 아니나, 상기 텅스텐 산화물은 WO2 (산화 텅스텐(IV)), WO3 (삼산화 텅스텐), WO3 또는 이들의 혼합물일 수 있다.The general formula of the tungsten oxide may be WO x , and x may be 2 to 4. Although not limited thereto, the tungsten oxide may be WO 2 (tungsten (IV) oxide), WO 3 (tungsten trioxide), WO 3 or a mixture thereof.

한편, 본 발명에 따른 수소 발생 반응용 촉매는 상기 금속 복합체를 포함한다. On the other hand, the catalyst for hydrogen generation reaction according to the present invention includes the metal complex.

또한, 본 발명에 따른 금속 복합체의 제조방법은 (a) 루테늄(Ru) 입자가 용해된 전해질 용액에 니켈(Ni)을 담지하여 니켈 표면에 루테늄 금속 입자를 증착하는 단계; 및 (b) 상기 루테늄이 증착된 니켈 전극에 텅스텐 산화물을 증착하는 단계;를 포함한다.In addition, the manufacturing method of the metal composite according to the present invention comprises the steps of (a) depositing ruthenium metal particles on a nickel surface by supporting nickel (Ni) in an electrolyte solution in which ruthenium (Ru) particles are dissolved; and (b) depositing tungsten oxide on the ruthenium-deposited nickel electrode.

상기 (a) 단계의 증착은 전기화학법을 이용하는 것일 수 있다.The deposition in step (a) may be performed using an electrochemical method.

상기 (b) 단계의 텅스텐 산화물의 증착은 원자증착법(Atomic layer deposition)을 이용하는 것일 수 있다.The deposition of tungsten oxide in step (b) may be performed using atomic layer deposition.

상기 니켈 전극은 메쉬(mesh) 형태인 것일 수 있다.The nickel electrode may be in the form of a mesh.

상기 텅스텐 산화물은 일반식이 WOx이고, 상기 x는 2 내지 4인 것일 수 있다. 이에 제한되는 것은 아니나, 상기 텅스텐 산화물은 WO2 (산화 텅스텐(IV)), WO3 (삼산화 텅스텐), WO3 또는 이들의 혼합물일 수 있다.The general formula of the tungsten oxide may be WO x , and x may be 2 to 4. Although not limited thereto, the tungsten oxide may be WO 2 (tungsten (IV) oxide), WO 3 (tungsten trioxide), WO 3 or a mixture thereof.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.Hereinafter, preferred examples are presented to help the understanding of the present invention. However, the following examples are only provided for easier understanding of the present invention, and the contents of the present invention are not limited by the following examples.

[실시예][Example]

실시예 1. 금속 복합체의 제조Example 1. Preparation of metal composite

0.25M의 과염소산(HClO4, 전착용 현탁액) 200mL에 0.6223g RuCl3를 전구체 성분으로 녹인 후, 2시간 동안 균일하게 혼합되도록 교반하여 증착용 용액을 제조하였다. 1cm x 2cm의 금속 전극(주성분: 니켈, 두께: 1.6 mm 폼, 기공률: ≥95%)를 상기 증착용 용액에 침지하여 전착하였다. 전착 방식은 먼저 면적당 -0.1A로 0.05 초 동안 전극을 환원시킨 후, +0.2 A로 0.05 초 동안 산화시키는 것을 1회 사이클로 120회 반복하였다. 그 다음 면적당 -1A로 300초 동안 전극을 환원시켜 Ru 금속을 전착하였다. After dissolving 0.6223 g RuCl 3 as a precursor component in 200 mL of 0.25M perchloric acid (HClO 4 , electrodeposition suspension), a solution for deposition was prepared by stirring to uniformly mix for 2 hours. A metal electrode of 1 cm x 2 cm (main component: nickel, thickness: 1.6 mm foam, porosity: ≥ 95%) was immersed in the deposition solution and electrodeposited. In the electrodeposition method, the electrode was first reduced at -0.1 A per area for 0.05 seconds, and then oxidized at +0.2 A for 0.05 seconds, repeated 120 times in one cycle. Then, the electrode was reduced at -1A per area for 300 seconds to electrodeposit the Ru metal.

이후, 원자층 증착을 위한 전구체인 텅스텐 헥사카르보닐(Tungsten hexacarbonyl, W(CO)6)을 130℃로 증기화시켰다. 원자층 증착은 전구체 노출과 산화 과정을 통한 전구체의 유기물 제거를 1 사이클로 수행하였으며, 증착을 위한 챔버의 온도는 190℃로 하였다. 전구체 노출 시간과 횟수는 2분씩 2번 진행하였고 그 다음 과정으로 5분 동안 공기에 노출시켜 유기물의 산화를 진행하였다. Thereafter, tungsten hexacarbonyl (W(CO) 6 ), which is a precursor for atomic layer deposition, was vaporized at 130°C. In the atomic layer deposition, one cycle of removing the organic material from the precursor through the precursor exposure and oxidation process was performed, and the temperature of the chamber for deposition was 190°C. Precursor exposure time and frequency were carried out twice for 2 minutes each, followed by exposure to air for 5 minutes to oxidize organic matter.

실시예 2. 수소 발생 반응 성능 측정Example 2. Measurement of hydrogen evolution reaction performance

상기 실시예 1에 따라 제조된 금속 복합체의 수소 발생 반응에서의 촉매 성능을 측정하였다. 비교예로 순수한 Ni-mesh(비교예 1: Ni), Ni-mesh 상에 Ru을 전기화학 증착한 금속 복합체(비교예 2: Ru/Ni) 및 상용 Pt/C를 드롭 코팅(drop-coating)한 촉매(비교예 3: Pd/C)를 사용하여 촉매 특성을 비교 분석하였다.Catalyst performance in the hydrogen evolution reaction of the metal composite prepared according to Example 1 was measured. As a comparative example, pure Ni-mesh (Comparative Example 1: Ni), a metal composite obtained by electrochemically depositing Ru on Ni-mesh (Comparative Example 2: Ru/Ni) and commercial Pt/C drop-coating Catalyst properties were comparatively analyzed using one catalyst (Comparative Example 3: Pd/C).

측정방법으로, 상기 실시예 1에 따라 제조된 금속 복합체(WO3ALD-Ru/Ni) 및 비교예 1 내지 3의 샘플을 작동 전극으로 사용하고, 상기 작동 전극과 기준 전극 및 카운터 전극으로 구성된 3 전극 시스템을 사용하여 측정하였다. 전해질로는 pH 7.3으로 CO2가 포화된 1M KOH를 사용하였다.As a measurement method, the metal composite (WO 3 ALD-Ru/Ni) prepared according to Example 1 and the samples of Comparative Examples 1 to 3 were used as working electrodes, and the working electrode, the reference electrode, and the counter electrode were 3 Measurements were made using an electrode system. 1M KOH saturated with CO 2 at pH 7.3 was used as the electrolyte.

도 1 및 2는 상기 실시예 1 및 비교예 1 내지 3의 샘플의 전기화학적 촉매 특성을 비교한 그래프이다. 1 and 2 are graphs comparing the electrochemical catalyst properties of the samples of Example 1 and Comparative Examples 1 to 3;

도 1에 도시된 바와 같이, 일정한 전류 즉 일정한 수소 기체를 발생시키기 위해 필요한 전압을 측정한 결과, 실시예 1에 따른 금속 복합체의 경우에는 -50mA에서 -0.29V의 과전압이 필요한 반면, 비교예 1 내지 3의 경우에는 각각 약 -0.98V, -0.44V, -0.34V의 과전압이 필요한 것으로 나타나, 실시예 1에 따른 금속 복합체가 비교예 1 내지 3과 비교하여 수소 발생 반응 성능이 향상되었음을 알 수 있다. As shown in FIG. 1 , as a result of measuring a voltage required to generate a constant current, that is, a constant hydrogen gas, in the case of the metal composite according to Example 1, an overvoltage of −0.29V at -50mA is required, whereas Comparative Example 1 In the case of to 3, it appears that an overvoltage of about -0.98V, -0.44V, and -0.34V is required, respectively, and it can be seen that the metal composite according to Example 1 has improved hydrogen generation reaction performance compared to Comparative Examples 1 to 3 have.

도 2에 도시된 바와 같이, 타펠 플롯(Tafel plot)을 살펴보면, 실시예 1에 따른 금속 복합체가 비교예 1 내지 3의 금속 복합체에 비하여 낮은 기울기를 가짐을 알 수 있다. 이는 본 발명에 따른 금속 복합체가 높은 촉매 활성을 나타냄을 의미한다. As shown in FIG. 2 , looking at the Tafel plot, it can be seen that the metal composite according to Example 1 has a lower slope than the metal composite of Comparative Examples 1 to 3. This means that the metal composite according to the present invention exhibits high catalytic activity.

텅스텐 옥사이드(WO3)의 증착을 통한 금속 촉매 향상 효과를 확인하기 위해 순수한 Ni-mesh 상에 WO3를 원자층 증착한 촉매(비교예 4: W-Ni)의 수소 발생 촉매 성능을 측정하였다. 순수한 Ni-mesh(비교예 1: Ni)와 촉매 성능을 비교 분석하였다. 그 결과를 도 3에 나타내었다.In order to confirm the effect of improving the metal catalyst through the deposition of tungsten oxide (WO 3 ), the hydrogen generation catalytic performance of the catalyst (Comparative Example 4: W-Ni) in which WO 3 was atomic layer deposited on pure Ni-mesh was measured. Pure Ni-mesh (Comparative Example 1: Ni) and catalyst performance were compared and analyzed. The results are shown in FIG. 3 .

도 3에 도시한 바와 같이, 비교예 4의 WO3를 Ni-mesh 상에 원자층 증착한 촉매의 경우 비교예 1의 순수한 Ni-mesh와 비교하여 수소 발생 반응 성능이 향상되었음을 알 수 있다. As shown in FIG. 3 , in the case of the catalyst obtained by atomic layer deposition of WO 3 of Comparative Example 4 on the Ni-mesh, it can be seen that the hydrogen generation reaction performance was improved compared to that of the pure Ni-mesh of Comparative Example 1.

텅스텐 옥사이드(WO3)의 증착을 통한 금속 촉매 향상 효과를 확인하기 위해 Ni-mesh 상에 Pt를 전기화학 증착시킨 다음 WO3를 원자층 증착한 촉매(비교예 5: WO3-Pt-Ni)의 수소 발생 촉매 성능을 측정하였다. Ni-mesh 상에 Pt를 전기화학 증착시킨 촉매(비교예 6: Pt-Ni)를 비교예로 하여 촉매 특성을 비교 분석하였다. 그 결과를 도 4에 나타내었다.In order to confirm the metal catalyst improvement effect through deposition of tungsten oxide (WO 3 ), Pt was electrochemically deposited on Ni-mesh and then WO 3 was atomic layer deposited catalyst (Comparative Example 5: WO 3 -Pt-Ni) of hydrogen evolution catalyst performance was measured. Catalysts obtained by electrochemical deposition of Pt on Ni-mesh (Comparative Example 6: Pt-Ni) were used as Comparative Examples to compare and analyze catalyst properties. The results are shown in FIG. 4 .

도 4에 도시된 바와 같이, 일정한 전류 즉 일정한 수소 기체를 발생시키기 위해 필요한 전압을 측정한 결과, 비교예 5의 WO3-Pt-Ni 촉매의 경우, 비교예 6의 Pt-Ni 촉매와 비교하여 수소 발생 반응 성능이 감소되었음을 알 수 있다. As shown in FIG. 4 , as a result of measuring a voltage required to generate a constant current, that is, a constant hydrogen gas, the WO 3 -Pt-Ni catalyst of Comparative Example 5 was compared with the Pt-Ni catalyst of Comparative Example 6 It can be seen that the hydrogen evolution reaction performance is reduced.

상기 실험 결과로부터 WO3가 증착될 때 수소 발생 반응에서의 촉매 성능이 향상되나, Pt 상에 WO3를 증착하는 경우에는 오히려 촉매 활성도가 감소하는 것으로 나타났다. 이로부터, WO3 원자층 증착은 Ru 상에 이루어질 때 특이적으로 수소 발생 반응에서의 촉매 성능이 향상될 수 있음을 확인할 수 있다. From the above experimental results, when WO 3 was deposited, catalytic performance in the hydrogen evolution reaction was improved, but when WO 3 was deposited on Pt, catalytic activity was rather decreased. From this, it can be confirmed that the catalytic performance in the hydrogen evolution reaction can be specifically improved when WO 3 atomic layer deposition is performed on Ru.

다음으로, Ru과 WO3의 전기화학 증착 순서를 달리하여 제조한 금속 복합체의 수소 발생 반응에서의 촉매 성능을 측정하였다.Next, the catalytic performance in the hydrogen evolution reaction of the metal composite prepared by changing the electrochemical deposition order of Ru and WO 3 was measured.

Ni-mesh 상에 WO3를 원자층 증착하고, Ru 금속을 전기화학 증착시킨 촉매 (비교예 7: Ru-WO3-Ni)를 비교예로 하여 촉매 특성을 비교 분석하였다. 그 결과를 도 5에 나타내었다. Catalyst properties were comparatively analyzed using a catalyst obtained by atomic layer deposition of WO 3 on Ni-mesh and electrochemical deposition of Ru metal (Comparative Example 7: Ru-WO 3 -Ni) as a comparative example. The results are shown in FIG. 5 .

도 5에 도시된 바와 같이, 일정한 전류 즉 일정한 수소 기체를 발생시키기 위해 필요한 전압을 측정한 결과, 비교예 7과 같이 Ru보다 WO3를 먼저 원자층 증착한 경우 실시예 1과 비교하여 수소 발생 반응 성능이 감소됨을 알 수 있다. As shown in FIG. 5 , as a result of measuring a voltage required to generate a constant current, that is, a constant hydrogen gas, as in Comparative Example 7, when WO 3 was deposited earlier than Ru as an atomic layer, hydrogen generation reaction compared to Example 1 It can be seen that the performance is reduced.

이는 WO3를 Ru보다 먼저 증착시킬 경우 Ru과 Ni-mesh 사이의 전자 전도성을 오히려 WO3이 방해하기 때문이다. This is because, when WO 3 is deposited before Ru, WO 3 rather hinders electron conductivity between Ru and Ni-mesh.

상기 결과로부터, 본 발명에서와 같이 Ni 상에 Ru를 먼저 증착한 후 WO3를 증착함으로써, Ru 표면의 수소 발생 반응을 위한 활성도 인자를 WO3로 최적화시킬 수 있고, 이를 통해 상용 Pt/C보다 뛰어난 수소 발생 반응용 촉매 소재를 제조할 수 있음을 알 수 있다. From the above results, by depositing WO 3 after depositing Ru first on Ni as in the present invention, it is possible to optimize the activity factor for the hydrogen evolution reaction on the Ru surface to WO 3 , and through this, It can be seen that an excellent catalyst material for hydrogen evolution reaction can be prepared.

진술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. The stated description of the present invention is for illustrative purposes, and those of ordinary skill in the art to which the present invention pertains can understand that it can be easily modified into other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, it should be understood that the embodiments described above are illustrative in all respects and not restrictive.

Claims (8)

니켈(Ni)의 표면 상에 증착된 루테늄(Ru) 입자층; 및 상기 루테늄 금속 입자층 상에 증착된 텅스텐 산화물 입자층;을 포함하는, 금속 복합체. a ruthenium (Ru) particle layer deposited on a surface of nickel (Ni); and a tungsten oxide particle layer deposited on the ruthenium metal particle layer. 제 1 항에 있어서,
상기 텅스텐 산화물은 일반식이 WOx이고, 상기 x는 2 내지 4인 것을 특징으로 하는, 금속 복합체.
The method of claim 1,
The general formula of the tungsten oxide is WO x , wherein x is 2 to 4, the metal composite.
제 1 항의 금속 복합체를 포함하는, 수소 발생 반응용 촉매.A catalyst for hydrogen evolution, comprising the metal complex of claim 1 . (a) 루테늄(Ru) 입자가 용해된 전해질 용액에 니켈(Ni) 전극을 담지하여 니켈 표면에 루테늄 금속 입자를 증착하는 단계; 및
(b) 상기 루테늄이 증착된 니켈 전극에 텅스텐 산화물을 증착하는 단계;를 포함하는 금속 복합체의 제조방법.
(a) depositing ruthenium metal particles on a nickel surface by supporting a nickel (Ni) electrode in an electrolyte solution in which ruthenium (Ru) particles are dissolved; and
(b) depositing tungsten oxide on the nickel electrode on which the ruthenium is deposited;
제 4 항에 있어서,
상기 (a) 단계의 증착은 전기화학법을 이용하는 것을 특징으로 하는, 금속 복합체의 제조방법.
5. The method of claim 4,
The deposition of step (a) is characterized in that using an electrochemical method, a method of manufacturing a metal composite.
제 4 항에 있어서,
상기 (b) 단계의 텅스텐 산화물의 증착은 원자증착법(Atomic layer deposition)을 이용하는 것을 특징으로 하는, 금속 복합체의 제조방법.
5. The method of claim 4,
The deposition of the tungsten oxide in step (b) is characterized in that using an atomic layer deposition (atomic layer deposition), a method of manufacturing a metal composite.
제 4 항에 있어서,
상기 니켈 전극은 메쉬(mesh) 형태인 것을 특징으로 하는, 금속 복합체의 제조방법.
5. The method of claim 4,
The nickel electrode is a method of manufacturing a metal composite, characterized in that in the form of a mesh (mesh).
제 4 항에 있어서,
상기 텅스텐 산화물은 일반식이 WOx이고, 상기 x는 2 내지 4인 것을 특징으로 하는, 금속 복합체의 제조방법.
5. The method of claim 4,
The general formula of the tungsten oxide is WO x , wherein x is 2 to 4, the method for producing a metal composite.
KR1020200100339A 2020-08-11 2020-08-11 Metal complex and method for preparing same KR102424607B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200100339A KR102424607B1 (en) 2020-08-11 2020-08-11 Metal complex and method for preparing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200100339A KR102424607B1 (en) 2020-08-11 2020-08-11 Metal complex and method for preparing same

Publications (2)

Publication Number Publication Date
KR20220019979A KR20220019979A (en) 2022-02-18
KR102424607B1 true KR102424607B1 (en) 2022-07-25

Family

ID=80495170

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200100339A KR102424607B1 (en) 2020-08-11 2020-08-11 Metal complex and method for preparing same

Country Status (1)

Country Link
KR (1) KR102424607B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114717601B (en) * 2022-05-17 2024-01-30 临沂大学 Three-phase interface composite integrated alkaline water electrolysis hydrogen production electrode and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010188243A (en) 2009-02-17 2010-09-02 Hitachi Ltd Catalytic material and method of producing the same
KR101503735B1 (en) 2014-01-20 2015-03-19 연세대학교 산학협력단 Method of synthesis metal sulfide using atomic layer deposition metal oxide

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7429402B2 (en) * 2004-12-10 2008-09-30 Applied Materials, Inc. Ruthenium as an underlayer for tungsten film deposition
KR102272749B1 (en) * 2016-11-22 2021-07-06 아사히 가세이 가부시키가이샤 Electrode for electrolysis

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010188243A (en) 2009-02-17 2010-09-02 Hitachi Ltd Catalytic material and method of producing the same
KR101503735B1 (en) 2014-01-20 2015-03-19 연세대학교 산학협력단 Method of synthesis metal sulfide using atomic layer deposition metal oxide

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Ahiud Morag et al., ADV. ELECTRON. MATER. 2020. 6. 1900844 (2019.11.29)
Arpan Kumar Nayak et al., ACS Omega 2017, 2, 7039-7047 (2017.10.20)
Ubisha Joshi et al., ACS Appl. Mater. Interfaces 2018, 10, 6354-6360 (2018.02.12)
Yu Hang Li et al., Nature Communications, 6, 8064 (2015.08.19)

Also Published As

Publication number Publication date
KR20220019979A (en) 2022-02-18

Similar Documents

Publication Publication Date Title
Pu et al. Single-atom catalysts for electrochemical hydrogen evolution reaction: recent advances and future perspectives
Cao et al. Efficient and durable 3D self‐supported nitrogen‐doped carbon‐coupled nickel/cobalt phosphide electrodes: stoichiometric ratio regulated phase‐and morphology‐dependent overall water splitting performance
Wang et al. A self-supported Ni–Co perselenide nanorod array as a high-activity bifunctional electrode for a hydrogen-producing hydrazine fuel cell
Ding et al. Metal-based electrocatalytic conversion of CO 2 to formic acid/formate
Wang et al. Engineering NiF3/Ni2P heterojunction as efficient electrocatalysts for urea oxidation and splitting
Guo et al. Rational design of electrocatalysts and photo (electro) catalysts for nitrogen reduction to ammonia (NH 3) under ambient conditions
Pi et al. Highly efficient acidic oxygen evolution electrocatalysis enabled by porous Ir–Cu nanocrystals with three-dimensional electrocatalytic surfaces
Li et al. Bifunctional porous cobalt phosphide foam for high-current-density alkaline water electrolysis with 4000-h long stability
Li et al. Ultrafast Room‐Temperature Synthesis of Self‐Supported NiFe‐Layered Double Hydroxide as Large‐Current–Density Oxygen Evolution Electrocatalyst
Liu et al. Efficient overall water splitting catalyzed by robust FeNi 3 N nanoparticles with hollow interiors
Zheng et al. In Situ Formed Bimetallic Carbide Ni6Mo6C Nanodots and NiMoO x Nanosheet Array Hybrids Anchored on Carbon Cloth: Efficient and Flexible Self-Supported Catalysts for Hydrogen Evolution
Xing et al. Electro-synthesis of 3D porous hierarchical Ni–Fe phosphate film/Ni foam as a high-efficiency bifunctional electrocatalyst for overall water splitting
Tian et al. Cation–anion dual doping modifying electronic structure of hollow CoP nanoboxes for enhanced water oxidation electrocatalysis
Wang et al. Highly selective oxygen reduction to hydrogen peroxide on a carbon-supported single-atom Pd electrocatalyst
Huo et al. High selectivity toward C2H4 production over Cu particles supported by butterfly-wing-derived carbon frameworks
Lu et al. Facile synthesis of hierarchical NiCoP nanosheets/NiCoP nanocubes homojunction electrocatalyst for highly efficient and stable hydrogen evolution reaction
Gao et al. Hierarchical Ni2P@ NiFeAlO x nanosheet arrays as bifunctional catalysts for superior overall water splitting
Alexander et al. Role of the carbon support on the oxygen reduction and evolution activities in LaNiO3 composite electrodes in alkaline solution
Gangeri et al. Electrocatalytic performances of nanostructured platinum–carbon materials
CN113215617B (en) Copper nanowire loaded CoNi nanosheet electrocatalyst and preparation method and application thereof
Li et al. Self-ZIF template-directed synthesis of a CoS nanoflake array as a Janus electrocatalyst for overall water splitting
Wu et al. In-situ generation of Ru-catechol coordinative polymer precursor for high-performance hydrogen evolution reaction doped carbon catalyst
KR20210006216A (en) Water-spliting electrocatalyst and manufacturing method thereof
Wang et al. Interface engineering of oxygen vacancy-enriched Ru/RuO2–Co3O4 heterojunction for efficient oxygen evolution reaction in acidic media
Shen et al. Magnéli phase Ti 8 O 15 nanowires as conductive carbon-free energy materials to enhance the electrochemical activity of palladium nanoparticles for direct ethanol oxidation

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant