WO2018096776A1 - 電源回路 - Google Patents

電源回路 Download PDF

Info

Publication number
WO2018096776A1
WO2018096776A1 PCT/JP2017/034630 JP2017034630W WO2018096776A1 WO 2018096776 A1 WO2018096776 A1 WO 2018096776A1 JP 2017034630 W JP2017034630 W JP 2017034630W WO 2018096776 A1 WO2018096776 A1 WO 2018096776A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
voltage regulator
selection
power supply
detection
Prior art date
Application number
PCT/JP2017/034630
Other languages
English (en)
French (fr)
Inventor
友里 小原
純之 荒田
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to DE112017005367.6T priority Critical patent/DE112017005367B4/de
Priority to JP2018552432A priority patent/JP6726300B2/ja
Priority to US16/340,342 priority patent/US10664033B2/en
Priority to CN201780069425.XA priority patent/CN109964197B/zh
Publication of WO2018096776A1 publication Critical patent/WO2018096776A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/28Supervision thereof, e.g. detecting power-supply failure by out of limits supervision
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/263Arrangements for using multiple switchable power supplies, e.g. battery and AC
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/30Means for acting in the event of power-supply failure or interruption, e.g. power-supply fluctuations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/008Plural converter units for generating at two or more independent and non-parallel outputs, e.g. systems with plural point of load switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters

Definitions

  • the present invention relates to a power supply circuit including a plurality of voltage regulators.
  • a microcomputer for controlling an electronic device may require power input with a plurality of different voltages depending on the model, and the power-on sequence is determined for each. If the power is turned on in an order different from this predetermined order, the microcomputer may malfunction.
  • a power supply IC Integrated Circuit
  • the starting order of voltage regulators is determined at the development stage so as to correspond to the microcomputer mounted on the device to which it is applied.
  • the Therefore, the power supply IC cannot be applied to microcomputers having different power-on sequences. Therefore, it is difficult to divert the power supply IC to a different device.
  • the microcomputer mounted on the applicable device is changed, it is necessary to design the power supply IC again.
  • Patent Document 1 states: “The sequence circuit controls the activation timings of the power supply circuits 1 to 4 based on the count setting values CONT1 to CONT4 from the selection circuits of the power supply circuits 1 to 4, respectively.
  • the interface circuit outputs predetermined count setting values C81 to C84, and the interface circuit reads predetermined activation control data stored in the external storage device and outputs the data as count setting values C91 to C94.
  • the technology discloses that the count setting values C81 to C84 or the count setting values C91 to C94 are output to the sequence circuit as the count setting values CONT1 to CONT4 (see summary).
  • the present invention has been made in view of the above problems, and an object of the present invention is to prevent a malfunction of a power supply destination device due to an error in the power supply sequence in a power supply circuit having a variable power supply sequence.
  • the power supply circuit detects the operating state of the voltage regulator in the previous stage, and adjusts the starting or stopping order of each voltage regulator based on the detection result.
  • the power supply circuit of the present invention it is possible to prevent malfunction of the power supply destination device due to an error in the power supply sequence in the power supply circuit with variable power supply sequence.
  • FIG. 2 is a configuration diagram of a power supply circuit 17 according to Embodiment 1.
  • FIG. 6 is a time chart showing changes with time of each signal when the activation order of regulators is the order of regulators 11D, 11C, 11B, and 11A in the first embodiment. It is a timing chart of each signal when regulator 11C raises abnormality and output voltage VCC_C falls.
  • FIG. 6 is a configuration diagram of a power supply circuit 17 according to a second embodiment.
  • FIG. 3 is a configuration diagram of delay circuits 41A to 41D. 4 is a timing chart showing operations of delay circuits 41A to 41D.
  • FIG. 10 is a time chart showing changes with time of each signal when the start order of regulators is the order of regulators 11D, 11C, 11B, and 11A and the stop order is the order of regulators 11A, 11B, 11C, and 11D in the second embodiment.
  • FIG. 6 is a configuration diagram of a power supply circuit 17 according to a third embodiment.
  • FIG. 6 is a configuration diagram of a power supply circuit 17 according to a fourth embodiment.
  • FIG. 10 is a configuration diagram of a power supply circuit 17 according to a fifth embodiment.
  • FIG. 1 is a configuration diagram of a power supply circuit 17 according to the first embodiment of the present invention.
  • the power supply circuit 17 includes regulators 11A to 11D.
  • the regulators 11A to 11D are voltage adjustment circuits that output constant voltages (VCC_0 to VCC_C). These outputs are output to a power supply destination device outside the power supply circuit 17 and used as a power supply for an external circuit such as a microcomputer.
  • the regulators 11A to 11D are activated by activation signals EN_A, EN_B, EN_C, and EN_0, respectively.
  • the main activation signal that instructs the start of the power supply sequence is input as the activation signal EN_0 that activates the regulator 11D.
  • Regulators 11A to 11D are connected to detection circuits 12A to 12D, respectively.
  • the detection circuits 12A to 12D detect the operation state by monitoring the output voltages of the regulators 11A to 11D. When the output voltages of the regulators 11A to 11D are equal to or higher than the respective detection thresholds, the detection circuits 12A to 12D determine that the regulators 11A to 11D have started normally, and set the startup detection signals DTC_A, DTC_B, DTC_C, and DTC_0 to High level, respectively. Output as.
  • the detection threshold value of each regulator may be the same or different.
  • the selectors 13A to 13C are selection circuits that select and output one of the input signals according to the selection signals SEL_A to SEL_C.
  • the outputs of the selectors 13A to 13C are used as activation signals EN_A to EN_C for the regulators 11A to 11C, respectively.
  • the start detection signals DTC_0, DTC_B, and DTC_C are input to the selector 13A.
  • Activation detection signals DTC_0, DTC_A, and DTC_C are input to the selector 13B.
  • Activation detection signals DTC_0, DTC_A, and DTC_B are input to the selector 13C. That is, the start detection signal DTC_0 is commonly input to each selector, and the start detection signal other than the regulator that outputs the start signal is input to each selector.
  • the non-volatile memory 14 stores startup sequence data for specifying the startup sequence of the regulators 11A to 11C.
  • the activation sequence data is read to the register 15.
  • the selection signal generation circuit 16 refers to the activation order data stored in the register 15 and generates selection signals SEL_A to SEL_C.
  • the selection signal generation circuit 16 generates the selection signals SEL_A to SEL_C so that the activation detection signal of the preceding regulator is selected as the output of the selector according to the activation order specified by the activation order data. For example, when the regulator 11A is designated to be activated next to the regulator 11B, the selection signal SEL_A is generated so that the selector 13A selects the activation detection signal DTC_B. Thereby, the selection signal generation circuit 16 can adjust the starting order of the regulators 11A to 11C via the selection signals SEL_A to SEL_C.
  • the start-up of the next-stage regulator can be started after the output voltage of the pre-stage regulator has sufficiently increased. Therefore, even when the load connected to the outside of the power supply circuit 17 is large and it takes time to start up the regulator, or even when the pre-stage regulator does not start up due to a failure, it is possible to prevent an error in the power supply sequence.
  • the activation sequence data recorded in the nonvolatile memory 14 is only the activation sequence of the regulators 11A to 11C. Therefore, when three regulators 11A to 11C are started up in order, the power activation sequence is six, and the required number of bits is 3 bits. Even when a plurality of regulators are started up at the same time, the power supply startup sequence is 10 and the required number of bits is 4 bits. Therefore, the memory capacity can be saved.
  • FIG. 2 is a time chart showing changes with time of each signal when the starting order of the regulators is the order of regulators 11D, 11C, 11B, and 11A in the first embodiment. That is, in this example, the selector 13A selects the activation detection signal DTC_B, the selector 13B selects the activation detection signal DTC_C, and the selector 13C selects the activation detection signal DTC_0.
  • the regulator 11D starts and the output voltage VCC_0 rises.
  • VCC_0 exceeds the activation detection threshold of the detection circuit 12D
  • the activation detection signal DTC_0 becomes High. Since the selector 13C selects the activation detection signal DTC_0 and outputs it as the activation signal EN_C, the activation signal EN_C becomes High at the same time, the regulator 11C is activated, and the output voltage VCC_C increases.
  • the activation detection signal DTC_C becomes High. Since the selector 13B selects the activation detection signal DTC_C, the activation signal EN_B simultaneously becomes High. When the activation signal EN_B rises, the regulator 11B is activated. When the output voltage VCC_B exceeds the activation detection threshold, the activation detection signal DTC_B becomes High. Since the selector 13A selects the activation detection signal DTC_B, the activation signal EN_A becomes High at the same time, and the regulator 11A is activated. As described above, by arbitrarily setting the activation detection signal selected by the selectors 13A to 13C, the activation sequence of the regulator can be made variable.
  • the startup sequence of the regulator is variable by setting the time difference of the startup signal as in the prior art
  • the time required for startup of the regulator varies depending on the state of the externally connected load. It is necessary to set it.
  • the activation of the former regulator is detected and the latter regulator is activated, it is not necessary to allow a time margin, and a faster power supply sequence can be executed.
  • FIG. 3 is a timing chart of each signal when the regulator 11C malfunctions and the output voltage VCC_C decreases. It is assumed that the activation order is the same as in FIG. If the output voltage VCC_C decreases due to the abnormality of the regulator 11C from the state where all the regulators 11A to 11D are operating and falls below the activation detection threshold of the detection circuit 12C, the activation detection signal DTC_C becomes Low, and at the same time, the activation signal EN_B also becomes Low. It becomes. As a result, the regulator 11B stops. When the output voltage VCC_B falls below the activation detection threshold of the detection circuit 12B, the activation detection signal DTC_B becomes Low, and at the same time, the activation signal EN_A also becomes Low. As a result, the regulator 11A stops and the output voltage VCC_A decreases.
  • the output voltages of the regulators 11A to 11D are monitored by the detection circuits 12A to 12D, respectively, and the result is used as a start signal for the post-stage regulator, so that the post-stage regulator is stopped when the output voltage of the pre-stage regulator is abnormal. Thereby, an order error of the power supply sequence can be prevented. In addition, it is possible to prevent an abnormal power supply state that cannot occur in the set power supply sequence, such as the former regulator being stopped while the latter regulator is supplying power.
  • the power supply circuit 17 can prevent malfunction of an external element such as a microcomputer connected to the power supply circuit 17 by surely controlling the starting order of the regulator. Further, when the abnormal regulator returns to the normal state, it is immediately restarted according to the power supply sequence set by the subsequent regulator, and the external element can resume its operation.
  • an external element such as a microcomputer connected to the power supply circuit 17
  • the start order and stop order of each regulator are set by the same selection signals SEL_A to SEL_C.
  • the starting order data in the second embodiment specifies the stopping order of each regulator.
  • a configuration for delaying the output of each detection circuit by an arbitrary delay width is optionally added. Since other configurations are generally the same as those in the first embodiment, differences will be mainly described below.
  • FIG. 4 is a configuration diagram of the power supply circuit 17 according to the second embodiment.
  • the Delay circuits 41A to 41D are connected to the detection circuits 12A to 12D, respectively.
  • the outputs of the delay circuits 41A to 41C are input to the selectors 13A to 13C as the activation detection signals DTC_A, DTC_B, DTC_C, and DTC_0, respectively, as in the first embodiment.
  • the OR gate 42 receives the outputs DTC_A, DTC_B, DTC_C of the delay circuits 41A to 41C and the main activation signal as inputs, and outputs the activation signal EN_0 to the regulator 11D.
  • the main activation signal becomes High when all of the regulators 11A to 11D are stopped by the OR gate 42, the regulator 11D is activated first, and the activation sequence of the subsequent regulators 11A to 11C is executed. Further, when the main activation signal is Low, when all the regulators 11A to 11C are stopped, the activation signal EN_0 becomes Low and the regulator 11D is finally stopped.
  • the selection signal generation circuit 16 receives the main activation signal in addition to the activation sequence data.
  • the selectors 13A to 13C each receive a ground potential as an input in addition to the activation detection signal. These will be described below.
  • the selection signal generation circuit 16 outputs the signal value for the start sequence of the regulator as the selection signals SEL_A to SEL_C when the main start signal is High, and the signal value for the stop sequence when the main start signal is Low. Output as selection signals SEL_A to SEL_C. Specifically, (a) each selector selects the same output as in the first embodiment in the start sequence, and (b) in the stop sequence, the selector corresponding to the regulator that stops first selects the ground potential, Subsequent selectors select the activation detection signal corresponding to the regulator to be stopped next. Thereby, both the starting sequence and the stopping sequence can be made variable.
  • the output destination regulator is stopped. Therefore, by selecting the ground potential as the start signal for the regulator to be stopped first in the stop sequence, the stop sequence can be set separately from the start sequence. Furthermore, the target regulator can be prevented from being activated by selecting the ground potential as the activation signal when executing the activation sequence. Therefore, power consumption can be reduced when the number of power supplies required outside the power supply circuit 17 is small.
  • FIG. 5 is a configuration diagram of the delay circuits 41A to 41D.
  • the Delay circuits 41A to 41D have the same circuit configuration, and include a counter circuit 51, a counter value conversion circuit 52, and a comparison circuit 53.
  • the counter circuit 51 operates in accordance with a delay circuit input signal and a clock signal that are inputs of the delay circuits 41A to 41D, and outputs a counter value to the comparison circuit 53.
  • the counter circuit 51 clears the count value at the rising / falling edge of the delay circuit input signal and starts counting.
  • the counter value conversion circuit 52 reads the delay time setting value from the register 15, converts it into a target counter value, and outputs it to the comparison circuit 53.
  • the delay time set value is recorded in the nonvolatile memory 14 and stored in the register 15 when the power supply circuit 17 is activated.
  • the target counter value is recorded in the nonvolatile memory 14 as it is as the delay time setting value, the counter value conversion circuit 52 becomes unnecessary, and the delay time setting value is input from the register 15 to the comparison circuit 53 as it is.
  • the comparison circuit 53 compares the counter value output from the counter circuit 51 with the target counter value output from the counter value conversion circuit 52, and when the counter value exceeds the target counter value, the comparison circuit 53 outputs the same value as the delay circuit input signal. Output as Delay circuit output signal.
  • FIG. 6 is a timing chart showing the operations of the delay circuits 41A to 41D.
  • the counter circuit 51 When the counter circuit 51 receives the delay circuit input signal, the counter circuit 51 starts counting, and outputs a delay circuit output signal when the counter value reaches or exceeds the target counter value.
  • the delay time td from when the counter circuit 51 receives the delay circuit input signal to when the delay circuit output signal is output (or a value converted to the counter value) is stored in the nonvolatile memory 14 or the register 15. It is.
  • FIG. 7 shows the change over time of each signal when the starting order of regulators is the order of regulators 11D, 11C, 11B, and 11A and the stopping order is the order of regulators 11A, 11B, 11C, and 11D in the second embodiment. It is a time chart which shows. The delay times of the delay circuits 41A to 41D are all td.
  • the selector 13A selects DTC_B
  • the selector 13B selects DTC_C
  • the selector 13C selects DTC_0.
  • the selector 13A selects the ground potential
  • the selector 13B selects DTC_A
  • the selector 13C selects DTC_B.
  • the selection signal generation circuit 16 When the main activation signal becomes High, the selection signal generation circuit 16 outputs selection signals SEL_A, SEL_B, and SEL_C for the activation sequence to the selectors 13A to 13C, respectively. Simultaneously with the rise of the main activation signal, the activation signal EN_0 becomes High, the regulator 11D is activated, and the output voltage VCC_0 rises. When VCC_0 exceeds the activation detection threshold value of the detection circuit 12D, the output of the detection circuit 12D becomes High, and DTC_0 becomes High after a delay time td via the delay circuit 41D.
  • DTC_0 is output as the activation signal EN_C by the selector 13C
  • ENC becomes High at the same time as DTC_0 becomes High, and the regulator 11C is activated.
  • DTC_C and EN_B become High after td after the detection circuit 12C detects the start of the regulator 11C, the regulator 11B is started, and then the detection circuit 12B detects the start of the regulator 11B and DTC_B after td.
  • EN_A become High, and the regulator 11A is activated.
  • the selection signal generation circuit 16 When the main activation signal becomes Low, the selection signal generation circuit 16 outputs selection signals SEL_A, SEL_B, and SEL_C for the stop sequence.
  • the ground potential is selected as the start signal EN_A of the regulator 11A to be stopped first.
  • EN_A becomes Low
  • the regulator 11A stops, and the output voltage VCC_A decreases.
  • VCC_A falls below the activation detection threshold value of the detection circuit 12A
  • the output of the detection circuit 12A becomes Low
  • DTC_A becomes Low after a delay time td via the delay circuit 41A. Since the selector 13B selects DTC_A and outputs it as EN_B, EN_B becomes Low simultaneously with DTC_A, and the regulator 11B stops.
  • the ground potential is added as the input of the selectors 13A to 13C, and the selection signals of the selectors 13A to 13C are switched according to the main activation signal, so that the start sequence and the stop sequence are changed. Both can be set arbitrarily.
  • the selection signal generation circuit 16 generates the selection signals SEL_A to SEL_C.
  • the third embodiment of the present invention a configuration example is described in which the activation sequence data stored in the register 15 is used as it is as a selection signal, and the activation sequence and the termination sequence can be individually set. Since other configurations are substantially the same as those of the first and second embodiments, the following mainly describes differences.
  • FIG. 8 is a configuration diagram of the power supply circuit 17 according to the third embodiment.
  • the selectors 81A to 81C are selection circuits that output start signals in the stop sequence.
  • the AND gates 82A to 82C, the AND gates 83A to 83C, the OR gates 84A to 84C, the OR gate 85, and the inverting circuit 86 output any one of the outputs of the selectors 13A to 13C and the selectors 81A to 81C according to the value of the main activation signal. This is a logic circuit that determines whether to adopt EN_A to EN_C.
  • the ground potential is input to each of the selectors 81A to 81C.
  • activation detection signals DTC_B and DTC_C are input to the selector 81A
  • DTC_A and DTC_C are input to the selector 81B
  • DTC_A and DTC_B are input to the selector 81C.
  • the selectors 81A to 81C select and output one of the inputs according to the selection signals SEL_a to SEL_c.
  • the AND gates 82A to 82C receive the outputs of the selectors 81A to 81C and the main activation signal inverted by the inverting circuit 86. Therefore, the outputs of the AND gates 82A to 82C are equal to the output signals of the selectors 81A to 81C when the main activation signal is Low, and are always Low when the main activation signal is High.
  • the outputs of the selectors 13A to 13C and the main activation signal are input to the AND gates 83A to 83C. Accordingly, the outputs of the AND gates 83A to 83C are equal to the outputs of the selectors 13A to 13C when the main activation signal is High, and are always Low when the main activation signal is Low.
  • the outputs of the AND gates 82A to 82C and the outputs of the AND gates 83A to 83C are input to the OR gates 84A to 84C.
  • the outputs of the OR gates 84A to 84C are connected to the regulators 11A to 11C as activation signals EN_A, EN_B, and EN_C, respectively.
  • the OR gates 84A to 84C output the same values as the outputs of the selectors 13A to 13C as the activation signals EN_A, EN_B, and EN_C to the regulators 11A to 11C, respectively.
  • the OR gates 84A to 84C output the same values as the outputs of the selectors 81A to 81C to the regulators 11A to 11C as activation signals EN_A, EN_B, and EN_C, respectively.
  • the selectors 13A to 13C operate as selectors that determine the order of activation sequences
  • the selectors 81A to 81C operate as selectors that determine the order of stop sequences.
  • the selection signal of each selector is directly recorded in the nonvolatile memory 14 as activation sequence data, and is read from the nonvolatile memory 14 and stored in the register 15 when the power supply circuit 17 is activated.
  • the selection signals SEL_A, SEL_B, and SEL_C of the selectors 13A to 13C and the selection signals SEL_a, SEL_b, and SEL_c of the selectors 81A to 81C are directly input from the register 15, respectively.
  • the potential corresponding to each stored value of the register may be used as it is as the selection signal.
  • the power supply circuit 17 according to the third embodiment can arbitrarily set both the start sequence and the stop sequence without converting the start order data into the selection signal for each selector.
  • FIG. 9 is a configuration diagram of the power supply circuit 17 according to the fourth embodiment of the present invention.
  • the power supply circuit 17 according to the fourth embodiment includes selectors 91A to 91C and AND gates 92A to 92C in addition to the configuration described in the first embodiment. Since the other configuration is the same as that of the first embodiment, the difference will be mainly described below.
  • the input and selection signal to the selectors 91A to 91C are the same as those of the selectors 13A to 13C, respectively.
  • the AND gates 92A to 92C obtain the logical product by inputting the outputs of the selector 91A and the selector 13A, the selector 91B and the selector 13B, and the selector 91C and the selector 13C, respectively, and output the results as activation signals EN_A, EN_B, and EN_C, respectively. Therefore, the activation signal for the regulators 11A to 11C becomes High only when the outputs of the duplicated selectors both coincide with High. As a result, it is possible to prevent an illegal regulator operation when the output is fixed high due to a failure of the selector or the like.
  • FIG. 10 is a configuration diagram of the power supply circuit 17 according to the fifth embodiment of the present invention.
  • the power supply circuit 17 according to the fifth embodiment includes an external input terminal 101 instead of the nonvolatile memory 14 and the register 15 in the first embodiment. Since the other configuration is the same as that of the first embodiment, the difference will be mainly described below.
  • the external input terminal 101 receives data specifying the activation order of each regulator from the outside of the power supply circuit 17 and outputs it to the selection signal generation circuit 16. This eliminates the need to store the startup sequence data in the nonvolatile memory 14 in advance, so that the user can freely set the power supply sequence. Further, the power supply sequence can be changed according to the situation.
  • the signal received by the external input terminal 101 may be the startup sequence data itself or an electrical signal representing the same content.
  • the selection signal generation circuit 16 outputs a selection signal designated by the signal.
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • the duplex configuration described in the fourth embodiment can be adopted in other embodiments. Specifically, it is only necessary to provide a circuit that doubles at least one of the selectors and obtains a logical product of the outputs of the duplexed selectors.
  • the external input terminal 101 described in Embodiment 5 can be provided in other embodiments, and a selection signal can be generated using a signal received by the external input terminal 101.
  • the main activation signal is input as the activation signal EN_0 of the regulator 11D, and the detection circuit 12D detects the operating state of the regulator 11D.
  • the main activation signal itself may be used as an input to each selection circuit.
  • each selection circuit uses the detection result indicating that the main activation signal is input as an input.
  • ground potential as an input to the selector has been described.
  • the ground potential is not necessarily required as long as the potential instructs to stop the regulator.
  • 11A to 11D Regulators 12A to 12D: Detection circuits 13A to 13C: Selector 14: Non-volatile memory 15: Register 16: Selection signal generation circuit 17: Power supply circuits 41A to 41D: Delay circuits 81A to 81C: Selectors 82A to 82C: AND Gates 83A to 83C: AND gates 84A to 84C: OR gate 85: OR gate 86: Inversion circuits 91A to 91C: Selectors 92A to 92C: AND gate 101: External input terminal

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Power Sources (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)
  • Dc-Dc Converters (AREA)
  • Control Of Voltage And Current In General (AREA)

Abstract

電源シーケンスを可変とした電源回路において、電源供給順序の誤りによる電源供給先デバイスの誤動作を防止する。本発明に係る電源回路は、電圧レギュレータの動作順序を指定する選択信号と、前段の電圧レギュレータの動作状態の検出結果とに基づき各電圧レギュレータの起動または停止の順序を調整する。

Description

電源回路
 本発明は、複数の電圧レギュレータを備える電源回路に関する。
 電子機器を制御するマイクロコンピュータは、その機種によって複数の異なる電圧による電源入力を必要とする場合があり、また、その電源投入順序もそれぞれに定められている。この所定の投入順序と異なる順序で電源が投入された場合、マイクロコンピュータの誤動作が生じる恐れがある。
 マイクロコンピュータへ供給する電源を生成する半導体集積回路である電源IC(Integrated Circuit)においては、電圧レギュレータの起動順序は、適用する機器に搭載されるマイクロコンピュータに対応するように、開発段階で決定される。そのため、電源投入順序の異なるマイクロコンピュータへその電源ICを適用することはできない。したがって、電源ICを異なる機器へ転用することは困難である。また、適用機器に搭載されるマイクロコンピュータが変更となった場合は、改めて電源ICを設計する必要がある。
 この課題に対する従来技術として、各電圧レギュレータの起動信号を送るタイミングを制御して起動順序を可変とする対策法がある。例えば下記特許文献1は、「シーケンス回路は、電源回路1~4の選択回路からのカウント設定値CONT1~CONT4に基づいて、電源回路1~4の起動タイミングをそれぞれ制御する。タイミング設定回路は、所定のカウント設定値C81~C84を出力する。インターフェース回路は、外部記憶装置に格納された所定の起動制御データを読み出してカウント設定値C91~C94として出力する。選択回路は、選択信号SELに応答して、カウント設定値C81~C84又はカウント設定値C91~C94をカウント設定値CONT1~CONT4としてシーケンス回路に出力する。」という技術を開示している(要約参照)。
特開2013-182603号公報
 特許文献1記載のように、電圧レギュレータの起動タイミングを時間設定により可変化する電源回路においては、外部回路の負荷条件の変化による電圧立ち上がりの遅れや電圧レギュレータの故障などにより電圧レギュレータが起動しなかった場合であっても、設定時間が経過すると後段の電圧レギュレータはそれら条件とは無関係に起動する。したがってこのような場合は、マイクロコンピュータへの電源投入順序を誤り、誤作動を引き起こす恐れがある。
 本発明は、上記のような課題に鑑みてなされたものであり、電源シーケンスを可変とした電源回路において、電源供給順序の誤りによる電源供給先デバイスの誤動作を防止することを目的とする。
 本発明に係る電源回路は、前段の電圧レギュレータの動作状態を検出し、その検出結果に基づき各電圧レギュレータの起動または停止の順序を調整する。
 本発明に係る電源回路によれば、電源シーケンスを可変とした電源回路において、電源供給順序の誤りによる電源供給先デバイスの誤動作を防止することができる。
実施形態1に係る電源回路17の構成図である。 実施形態1において、レギュレータの起動順序をレギュレータ11D、11C、11B、11Aの順序とした場合における各信号の経時変化を示すタイムチャートである。 レギュレータ11Cが異常を起こし、出力電圧VCC_Cが低下した場合における各信号のタイミングチャートである。 実施形態2に係る電源回路17の構成図である。 Delay回路41A~41Dの構成図である。 Delay回路41A~41Dの動作を表すタイミングチャートである。 実施形態2において、レギュレータの起動順序をレギュレータ11D、11C、11B、11Aの順とし、停止順序をレギュレータ11A、11B、11C、11Dの順とした場合における各信号の経時変化を示すタイムチャートである。 実施形態3に係る電源回路17の構成図である。 実施形態4に係る電源回路17の構成図である。 実施形態5に係る電源回路17の構成図である。
<実施の形態1>
 図1は、本発明の実施形態1に係る電源回路17の構成図である。電源回路17は、レギュレータ11A~11Dを備えている。レギュレータ11A~11Dは、一定の電圧(VCC_0~VCC_C)を出力する電圧調整回路である。これらの出力は電源回路17の外部の電源供給先デバイスへと出力され、例えばマイクロコンピュータなどの外部回路の電源として用いられる。
 レギュレータ11A~11Dは、起動信号EN_A、EN_B、EN_C、EN_0によりそれぞれ起動される。本実施形態1においては、電源シーケンスの開始を指示する主起動信号は、レギュレータ11Dを起動する起動信号EN_0として入力される。
 レギュレータ11A~11Dは、それぞれ検知回路12A~12Dに接続されている。検知回路12A~12Dは、レギュレータ11A~11Dそれぞれの出力電圧をモニタすることにより、動作状態を検出する。レギュレータ11A~11Dの出力電圧がそれぞれの検出閾値以上となると、検知回路12A~12Dはそれぞれレギュレータ11A~11Dが正常に起動したと判定し、起動検知信号DTC_A、DTC_B、DTC_C、DTC_0をそれぞれHighレベルとして出力する。各レギュレータの検出閾値は同一であってもよいし異なっていてもよい。
 セレクタ13A~13Cは、入力された信号のなかから、選択信号SEL_A~SEL_Cにしたがっていずれかを選択して出力する、選択回路である。セレクタ13A~13Cの出力は、それぞれレギュレータ11A~11Cの起動信号EN_A~EN_Cとして用いられる。
 セレクタ13Aには、起動検知信号DTC_0、DTC_B、DTC_Cが入力される。セレクタ13Bには、起動検知信号DTC_0、DTC_A、DTC_Cが入力される。セレクタ13Cには、起動検知信号DTC_0、DTC_A、DTC_Bが入力される。すなわち各セレクタには、起動検知信号DTC_0が共通して入力されるとともに、自身が起動信号を出力するレギュレータ以外の起動検知信号が入力される。
 不揮発性メモリ14は、レギュレータ11A~11Cの起動順序を指定する起動順序データを格納する。電源回路17が起動するとき、起動順序データはレジスタ15に読み出される。選択信号生成回路16は、レジスタ15に格納された起動順序データを参照して選択信号SEL_A~SEL_Cを生成する。
 選択信号生成回路16は、起動順序データが指定する起動順序にしたがって、前段のレギュレータの起動検知信号がセレクタの出力として選択されるように、選択信号SEL_A~SEL_Cを生成する。例えばレギュレータ11Bの次にレギュレータ11Aが起動するように指定されている場合、セレクタ13Aが起動検知信号DTC_Bを選択するように、選択信号SEL_Aを生成する。これにより選択信号生成回路16は、選択信号SEL_A~SEL_Cを介して、レギュレータ11A~11Cの起動順序を調整することができる。
 さらに、前段レギュレータの起動検知信号を次段レギュレータの起動信号として用いることにより、前段レギュレータの出力電圧が十分に上昇した後に次段レギュレータの起動を開始することができる。したがって、電源回路17の外部に接続された負荷が大きくレギュレータの起動に時間を要する場合や、前段レギュレータが故障により起動しない場合などであっても、電源シーケンスの順序誤りを防ぐことができる。
 本実施形態1において、不揮発性メモリ14に記録する起動順序データはレギュレータ11A~11Cの起動順序のみである。そのため、レギュレータ11A~11Cの3つを順番に立ち上げる場合には電源起動シーケンスは6通りとなり必要なビット数は3bitである。複数のレギュレータを同時に立ち上げる場合を含めても、電源起動シーケンスは10通りで必要ビット数は4bitである。したがって、メモリ容量を節約することができる。
 図2は、本実施形態1において、レギュレータの起動順序をレギュレータ11D、11C、11B、11Aの順序とした場合における各信号の経時変化を示すタイムチャートである。すなわち本例において、セレクタ13Aは起動検知信号DTC_Bを選択し、セレクタ13Bは起動検知信号DTC_Cを選択し、セレクタ13Cは起動検知信号DTC_0を選択する。
 レギュレータ11Dの起動信号EN_0として入力されている主起動信号がHighになると、レギュレータ11Dが起動し出力電圧VCC_0が上昇する。VCC_0が検知回路12Dの起動検知閾値を上回ると、起動検知信号DTC_0がHighとなる。セレクタ13Cは起動検知信号DTC_0を選択し、起動信号EN_Cとして出力するので、同時に起動信号EN_CがHighとなり、レギュレータ11Cが起動し、出力電圧VCC_Cが上昇する。
 出力電圧VCC_Cが検知回路12Cの起動検知閾値を上回ると、起動検知信号DTC_CがHighとなる。セレクタ13Bは起動検知信号DTC_Cを選択しているので、起動信号EN_Bが同時にHighとなる。起動信号EN_Bが立ち上がるとレギュレータ11Bが起動する。出力電圧VCC_Bが起動検知閾値を上回ると、起動検知信号DTC_BがHighとなる。セレクタ13Aは起動検知信号DTC_Bを選択しているので、起動信号EN_Aが同時にHighとなり、レギュレータ11Aが起動する。このように、セレクタ13A~13Cが選択する起動検知信号を任意に設定することによって、レギュレータの起動順序を可変とすることができる。
 従来技術のように、起動信号の時間差設定によりレギュレータの起動順序を可変とする構成においては、外部接続負荷の状態によってレギュレータの起動に要する時間が変化するので、レギュレータの起動タイミングの時間差はマージンを見込んで設定する必要がある。これに対して本発明においては、前段レギュレータの起動検知を受けて後段レギュレータを起動するので、時間マージンを見込む必要がなく、より素早い電源シーケンスの実行が可能となる。
 図3は、レギュレータ11Cが異常を起こし、出力電圧VCC_Cが低下した場合における各信号のタイミングチャートである。起動順序は図2と同じであるものとする。レギュレータ11A~11Dがすべて動作している状態から、レギュレータ11Cの異常により出力電圧VCC_Cが低下し、検知回路12Cの起動検知閾値を下回ると、起動検知信号DTC_CがLowとなり、同時に起動信号EN_BもLowとなる。これによりレギュレータ11Bが停止する。出力電圧VCC_Bが検知回路12Bの起動検知閾値を下回ると、起動検知信号DTC_BがLowとなり、同時に起動信号EN_AもLowとなる。これによりレギュレータ11Aが停止し、出力電圧VCC_Aが低下する。
 その後レギュレータ11Cが正常状態となり、再び起動して出力電圧VCC_Cが検知回路12Cの起動検知閾値を上回ると、起動検知信号DTC_Cと起動信号EN_BがHighとなり、レギュレータ11Bが再起動し、出力電圧VCC_Bが上昇する。出力電圧VCC_Bが検知回路12Bの起動検知閾値を上回ると、起動検知信号DTC_Bと起動信号EN_AがHighとなる。これによりレギュレータ11Aが再起動し、出力電圧VCC_Aが上昇する。以上によりレギュレータ11A~11Dすべてが起動し、正常な電圧を出力している状態に戻る。
 このように、検知回路12A~12Dによりレギュレータ11A~11Dの出力電圧をそれぞれモニタし、その結果を後段レギュレータの起動信号とすることにより、前段レギュレータの出力電圧異常時には後段レギュレータが停止状態となる。これにより、電源シーケンスの順序誤りを防ぐことができる。また、後段レギュレータが電源を供給している状態で前段レギュレータが停止しているような、設定した電源シーケンス上起こり得ない異常な電源供給状態も防ぐことができる。
<実施の形態1:まとめ>
 以上のように、本実施形態1に係る電源回路17は、レギュレータの起動順序を確実に制御することにより、電源回路17に接続されたマイクロコンピュータなどの外部素子の誤動作を防ぐことができる。さらに異常となったレギュレータが正常状態に復帰した場合には、直ちに後段レギュレータが設定した電源シーケンスにしたがって再起動し、外部素子が動作を再開することができる。
<実施の形態2>
 実施形態1では、各レギュレータの起動順序と停止順序はいずれも同一の選択信号SEL_A~SEL_Cによって設定される。本発明の実施形態2においては、実施形態1で説明した構成に加えて、起動順序と停止順序それぞれを個別に設定することができる構成例を説明する。したがって本実施形態2における起動順序データは、各レギュレータの停止順序を併せて指定する。さらに、各検知回路の出力を任意の遅延幅で遅延させる構成をオプション的に追加する。その他構成は概ね実施形態1と同様なので、以下では主に差異点について説明する。
 図4は、本実施形態2に係る電源回路17の構成図である。Delay回路41A~41Dは、検知回路12A~12Dとそれぞれ接続されている。Delay回路41A~41Cの出力は、それぞれ起動検知信号DTC_A、DTC_B、DTC_C、DTC_0として実施形態1と同様にセレクタ13A~13Cに対して入力される。
 ORゲート42は、Delay回路41A~41Cの出力DTC_A、DTC_B、DTC_Cと、主起動信号とを入力として受け取り、起動信号EN_0をレギュレータ11Dに対して出力する。ORゲート42により、レギュレータ11A~11Dのすべてが停止状態のとき主起動信号がHighとなると、レギュレータ11Dが最初に起動され、後段のレギュレータ11A~11Cの起動シーケンスが実行される。さらに、主起動信号がLowの場合には、レギュレータ11A~11Cすべてが停止すると、起動信号EN_0がLowとなり、レギュレータ11Dが最後に停止する。
 選択信号生成回路16は、起動順序データに加えて主起動信号を入力として受け取る。セレクタ13A~13Cは、起動検知信号に加えてそれぞれグラウンド電位を入力として受け取る。以下これらについて説明する。
 選択信号生成回路16は、主起動信号がHighのときはレギュレータの起動シーケンスのための信号値を選択信号SEL_A~SEL_Cとして出力し、主起動信号がLowのときは停止シーケンスのための信号値を選択信号SEL_A~SEL_Cとして出力する。具体的には、(a)起動シーケンスにおいては各セレクタは実施形態1と同様の出力を選択し、(b)停止シーケンスにおいては最初に停止するレギュレータに対応するセレクタはグラウンド電位を選択するとともに、以後のセレクタは次に停止すべきレギュレータに対応する起動検知信号を選択する。これにより、起動シーケンスと停止シーケンスの両方を可変とすることができる。
 セレクタ13A~13Cがグラウンド電位を選択した場合、出力先のレギュレータは停止状態となる。したがって、停止シーケンスにおいて最初に停止したいレギュレータに対する起動信号としてグラウンド電位を選択することにより、起動シーケンスとは別に停止シーケンスを設定することができる。さらに、起動シーケンス実行時にグラウンド電位を起動信号として選択することにより、対象のレギュレータを起動させないようにすることもできる。したがって、電源回路17の外部で必要とされる電源数が少ない場合には、消費電力を低減することができる。
 図5は、Delay回路41A~41Dの構成図である。Delay回路41A~41Dは同様の回路構成を有しており、カウンタ回路51、カウンタ値変換回路52、比較回路53を備える。
 カウンタ回路51は、Delay回路41A~41Dそれぞれの入力であるDelay回路入力信号とクロック信号によって動作し、カウンタ値を比較回路53に出力する。カウンタ回路51は、Delay回路入力信号の立ち上がり・立ち下りエッジにおいてカウント値をクリアし、カウントを開始する。
 カウンタ値変換回路52は、レジスタ15から遅延時間設定値を読み取り、目標カウンタ値に変換して比較回路53へ出力する。遅延時間設定値は不揮発性メモリ14に記録されており、電源回路17起動時にレジスタ15に格納される。目標カウンタ値を遅延時間設定値としてそのまま不揮発性メモリ14に記録した場合はカウンタ値変換回路52は不要となり、レジスタ15から遅延時間設定値をそのまま比較回路53へ入力する。
 比較回路53は、カウンタ回路51の出力であるカウンタ値とカウンタ値変換回路52の出力である目標カウンタ値を比較し、カウンタ値が目標カウンタ値以上となると、Delay回路入力信号と同一の値をDelay回路出力信号として出力する。
 図6は、Delay回路41A~41Dの動作を表すタイミングチャートである。カウンタ回路51は、Delay回路入力信号を受け取るとカウントを開始し、カウンタ値が目標カウンタ値以上になるとDelay回路出力信号を出力する。カウンタ回路51がDelay回路入力信号を受け取ってからDelay回路出力信号を出力するまでの遅延時間td(またはこれをカウンタ値に換算した値)は、不揮発性メモリ14またはレジスタ15に格納されているものである。
 図7は、本実施形態2において、レギュレータの起動順序をレギュレータ11D、11C、11B、11Aの順とし、停止順序をレギュレータ11A、11B、11C、11Dの順とした場合における各信号の経時変化を示すタイムチャートである。Delay回路41A~41Dの遅延時間はすべてtdとした。主起動信号がHighのとき(起動シーケンス)、セレクタ13AはDTC_Bを選択し、セレクタ13BはDTC_Cを選択し、セレクタ13CはDTC_0を選択する。主起動信号がLowのとき(停止シーケンス)、セレクタ13Aはグラウンド電位を選択し、セレクタ13BはDTC_Aを選択し、セレクタ13CはDTC_Bを選択する。
 主起動信号がHighとなると、選択信号生成回路16は起動シーケンス用の選択信号SEL_A、SEL_B、SEL_Cをそれぞれセレクタ13A~13Cに出力する。主起動信号が立ち上がると同時に起動信号EN_0がHighとなり、レギュレータ11Dが起動し、出力電圧VCC_0が上昇する。VCC_0が検知回路12Dの起動検知閾値を超えると、検知回路12Dの出力がHighとなり、さらにDelay回路41Dを介して遅延時間tdだけ遅れてDTC_0がHighとなる。DTC_0はセレクタ13Cにより起動信号EN_Cとして出力されるので、DTC_0がHighとなると同時にEN_CがHighとなり、レギュレータ11Cが起動する。以降同様に、検知回路12Cがレギュレータ11Cの起動を検知してからtd後にDTC_CとEN_BがHighとなり、レギュレータ11Bが起動し、続いて、検知回路12Bがレギュレータ11Bの起動を検知してtd後にDTC_BとEN_AがHighとなり、レギュレータ11Aが起動する。
 主起動信号がLowとなると、選択信号生成回路16は停止シーケンス用の選択信号SEL_A、SEL_B、SEL_Cを出力する。最初に停止されるレギュレータ11Aの起動信号EN_Aとしてグラウンド電位が選択され、まずEN_AがLowとなり、レギュレータ11Aが停止し、出力電圧VCC_Aが低下する。VCC_Aが検知回路12Aの起動検知閾値を下回ると、検知回路12Aの出力がLowとなり、さらにDelay回路41Aを介して遅延時間tdだけ遅れてDTC_AがLowとなる。セレクタ13BはDTC_Aを選択しEN_Bとして出力するので、DTC_Aと同時にEN_BがLowとなり、レギュレータ11Bが停止する。レギュレータ11Bの出力電圧VCC_Bが低下し、検知回路12Bの起動検知閾値を下回ると、さらに遅延時間tdだけ遅れてDTC_BがLowとなり、セレクタ13Cによって同時にEN_CがLowとなる。EN_Cの立ち下がりを受けてレギュレータ11Cが停止し、VCC_Cが検知回路12Cの起動検知閾値を下回ってからさらに遅延時間td経過後にDTC_CがLowとなる。以上によりORゲート42の入力がすべてLowとなるので、EN_0がLowとなり、最後にレギュレータ11Dが停止し、出力電圧VCC_0が低下する。
<実施の形態2:まとめ>
 以上のように、本実施形態2によれば、セレクタ13A~13Cの入力としてグラウンド電位を追加し、主起動信号に応じてセレクタ13A~13Cの選択信号を切り替えることにより、起動シーケンスと停止シーケンスの両方を任意に設定することができる。
 さらにDelay回路41A~41Dによって、レギュレータ11A~11Dの起動順序だけでなく、起動タイミングも可変とすることができる。td=0と設定すれば、起動・停止シーケンスを確実かつ最短で実行することができる。
<実施の形態3>
 実施形態1~2においては、選択信号生成回路16が選択信号SEL_A~SEL_Cを生成することを説明した。本発明の実施形態3では、レジスタ15が格納している起動順序データをそのまま選択信号として用いるとともに、起動シーケンスと停止シーケンスを個別に設定することができる構成例を説明する。その他の構成は実施形態1~2と概ね同様であるので、以下では主に差異点について説明する。
 図8は、本実施形態3に係る電源回路17の構成図である。セレクタ81A~81Cは停止シーケンスにおける起動信号を出力する選択回路である。ANDゲート82A~82C、ANDゲート83A~83C、ORゲート84A~84C、ORゲート85、反転回路86は、主起動信号の値にしたがって、セレクタ13A~13Cとセレクタ81A~81Cいずれの出力を起動信号EN_A~EN_Cとして採用するかを決定する論理回路である。
 セレクタ81A~81Cにはそれぞれグラウンド電位が入力される。加えてセレクタ81Aには起動検知信号DTC_BとDTC_Cが入力され、セレクタ81BにはDTC_AとDTC_Cが入力され、セレクタ81CにはDTC_AとDTC_Bが入力される。セレクタ81A~81Cは、選択信号SEL_a~SEL_cにしたがって、いずれかの入力を選択して出力する。
 ANDゲート82A~82Cには、セレクタ81A~81Cそれぞれの出力と、反転回路86により反転された主起動信号が入力される。したがって、ANDゲート82A~82Cの出力は、主起動信号がLowのときセレクタ81A~81Cの出力信号と等しくなり、主起動信号がHighのとき常にLowとなる。
 ANDゲート83A~83Cには、セレクタ13A~13Cそれぞれの出力と、主起動信号が入力される。したがって、ANDゲート83A~83Cの出力は、主起動信号がHighのときセレクタ13A~13Cの出力と等しくなり、主起動信号がLowのとき常にLowとなる。
 ORゲート84A~84Cには、ANDゲート82A~82Cの出力と、ANDゲート83A~83Cの出力が入力される。ORゲート84A~84Cの出力は、それぞれ起動信号EN_A、EN_B、EN_Cとしてレギュレータ11A~11Cに接続される。
 主起動信号がHighのとき、ANDゲート82A~82Cの出力は常にLowであるので、ANDゲート83A~83Cの出力はセレクタ13A~13Cの出力と等しい。したがってORゲート84A~84Cは、セレクタ13A~13Cの出力と同一の値を起動信号EN_A、EN_B、EN_Cとしてレギュレータ11A~11Cそれぞれに出力する。同様に主起動信号がLowのとき、ORゲート84A~84Cはセレクタ81A~81Cの出力と同一の値をそれぞれレギュレータ11A~11Cへ起動信号EN_A、EN_B、EN_Cとして出力する。これにより、セレクタ13A~13Cは起動シーケンスの順序を決定するセレクタとして動作し、セレクタ81A~81Cは停止シーケンスの順序を決定するセレクタとして動作することになる。
 本実施形態3において、各セレクタの選択信号は起動順序データとして直接不揮発性メモリ14に記録され、電源回路17の起動時に不揮発性メモリ14から読み出されてレジスタ15に格納される。セレクタ13A~13Cそれぞれの選択信号SEL_A、SEL_B、SEL_Cと、セレクタ81A~81Cそれぞれの選択信号SEL_a、SEL_b、SEL_cは、レジスタ15から直接入力される。具体的には、レジスタの各記憶値に対応する電位を、選択信号としてそのまま用いればよい。
<実施の形態3:まとめ>
 以上のように、本実施形態3に係る電源回路17は、起動順序データを各セレクタに対する選択信号に変換することなく、起動シーケンスと停止シーケンスともに任意に設定することができる。
<実施の形態4>
 図9は、本発明の実施形態4に係る電源回路17の構成図である。本実施形態4に係る電源回路17は、実施形態1で説明した構成に加えて、セレクタ91A~91C、ANDゲート92A~92Cを備える。その他構成は実施形態1と同様であるので、以下では主に差異点について説明する。
 セレクタ91A~91Cに対する入力と選択信号は、それぞれセレクタ13A~13Cと同一である。ANDゲート92A~92Cは、それぞれセレクタ91Aとセレクタ13A、セレクタ91Bとセレクタ13B、セレクタ91Cとセレクタ13Cの出力を入力として論理積を求め、その結果を起動信号EN_A、EN_B、EN_Cとしてそれぞれ出力する。したがって、2重化したセレクタの出力がともにHighで一致した場合のみ、レギュレータ11A~11Cに対する起動信号がHighになる。これにより、セレクタの故障などにより出力がHighで固着した場合の不正なレギュレータの動作を防ぐことができる。
<実施の形態5>
 図10は、本発明の実施形態5に係る電源回路17の構成図である。本実施形態5に係る電源回路17は、実施形態1における不揮発性メモリ14とレジスタ15に代えて、外部入力端子101を備える。その他構成は実施形態1と同様であるので、以下では主に差異点について説明する。
 外部入力端子101は、各レギュレータの起動順序を指定するデータを、電源回路17の外部から受け取り、これを選択信号生成回路16に対して出力する。これにより、起動順序データをあらかじめ不揮発性メモリ14に記憶させる必要がなくなるので、ユーザが自由に電源シーケンスを設定することができる。また、状況に応じて電源シーケンスを変更することもできる。
 外部入力端子101が受け取る信号は、起動順序データそのものでもよいし、同等の内容を表す電気信号でもよい。いずれの場合であっても、選択信号生成回路16はその信号が指定する選択信号を出力する。
<本発明の変形例について>
 本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 例えば実施形態4で説明した2重化構成は、その他実施形態においても採用することができる。具体的には、各セレクタのうち少なくともいずれかを2重化するとともに2重化されたセレクタの出力の論理積を求める回路を設ければよい。また実施形態5で説明した外部入力端子101をその他実施形態において設け、外部入力端子101が受け取った信号を用いて選択信号を生成することができる。
 以上の実施形態において、主起動信号はレギュレータ11Dの起動信号EN_0として入力され、検知回路12Dがレギュレータ11Dの動作状態を検出することを説明した。これに代えて、主起動信号そのものを各選択回路に対する入力として用いてもよい。いずれの場合であっても、各選択回路は主起動信号が入力された旨の検出結果を入力として用いることになる。
 以上の実施形態において、セレクタに対する入力としてグラウンド電位を用いることを説明したが、レギュレータを停止させる旨を指示する電位であれば必ずしもグラウンド電位でなくともよい。
11A~11D:レギュレータ
12A~12D:検知回路
13A~13C:セレクタ
14:不揮発性メモリ
15:レジスタ
16:選択信号生成回路
17:電源回路
41A~41D:Delay回路
81A~81C:セレクタ
82A~82C:ANDゲート
83A~83C:ANDゲート
84A~84C:ORゲート
85:ORゲート
86:反転回路
91A~91C:セレクタ
92A~92C:ANDゲート
101:外部入力端子

Claims (10)

  1.  第1および第2電圧レギュレータ、
     前記第1電圧レギュレータの動作状態を検出する第1検出回路、
     前記第2電圧レギュレータの動作状態を検出する第2検出回路、
     前記第1および第2検出回路による検出結果にしたがって前記第1および第2電圧レギュレータの動作順序を調整する調整回路、
     を備え、
     前記調整回路は、前記第1および第2電圧レギュレータの動作順序を指定する選択信号にしたがって、前記第1および第2電圧レギュレータのいずれか一方が立ち上がった後に他方を立ち上げ、または前記第1および第2電圧レギュレータのいずれか一方が立ち下がった後に他方を立ち下げる
     ことを特徴とする電源回路。
  2.  前記調整回路はさらに、
     前記第2検出回路による検出結果と、前記電源回路を起動または停止する旨を指示する主起動信号が入力された旨の検出結果とのいずれかを選択し、前記第1電圧レギュレータを起動または停止する第1起動信号としてその選択結果を出力する第1選択回路、
     前記第1検出回路による検出結果と、前記主起動信号が入力された旨の検出結果とのいずれかを選択し、前記第2電圧レギュレータを起動または停止する第2起動信号としてその選択結果を出力する第2選択回路、
     を備え、
     前記第1選択回路は、前記第1電圧レギュレータを立ち上げた後に前記第2電圧レギュレータを立ち上げる旨を前記選択信号が指定する場合は前記主起動信号が入力された旨の検出結果を選択し、前記第2電圧レギュレータを立ち上げた後に前記第1電圧レギュレータを立ち上げる旨を前記選択信号が指定する場合は前記第2検出回路による検出結果を選択し、
     前記第2選択回路は、前記第2電圧レギュレータを立ち上げた後に前記第1電圧レギュレータを立ち上げる旨を前記選択信号が指定する場合は前記主起動信号が入力された旨の検出結果を選択し、前記第1電圧レギュレータを立ち上げた後に前記第2電圧レギュレータを立ち上げる旨を前記選択信号が指定する場合は前記第1検出回路による検出結果を選択する
     ことを特徴とする請求項1記載の電源回路。
  3.  前記第1検出回路は、前記第1電圧レギュレータの出力電圧が第1閾値を下回ると前記第1電圧レギュレータが立ち下がった旨の検出結果を出力し、
     前記第2検出回路は、前記第2電圧レギュレータの出力電圧が第2閾値を下回ると前記第2電圧レギュレータが立ち下がった旨の検出結果を出力する
     ことを特徴とする請求項1記載の電源回路。
  4.  前記第1検出回路は、前記第1電圧レギュレータの出力電圧が第1閾値以上になると前記第1電圧レギュレータが立ち上がった旨の検出結果を出力し、
     前記第2検出回路は、前記第2電圧レギュレータの出力電圧が第2閾値以上になると前記第2電圧レギュレータが立ち上がった旨の検出結果を出力する
     ことを特徴とする請求項1記載の電源回路。
  5.  前記第1選択回路は、前記第2検出回路による検出結果、前記主起動信号が入力された旨の検出結果、および前記第1電圧レギュレータを停止するよう指定する第1停止電位のいずれかを選択して前記第1起動信号として出力し、
     前記第2選択回路は、前記第1検出回路による検出結果、前記主起動信号が入力された旨の検出結果、および前記第2電圧レギュレータを停止するよう指定する第2停止電位のいずれかを選択して前記第2起動信号として出力し、
     前記第1選択回路は、前記第1電圧レギュレータを立ち下げた後に前記第2電圧レギュレータを立ち下げる旨を前記選択信号が指定しかつ前記電源回路を停止する旨の前記主起動信号が入力された場合は前記第1停止電位を選択し、前記第2電圧レギュレータを立ち下げた後に前記第1電圧レギュレータを立ち下げる旨を前記選択信号が指定しかつ前記電源回路を停止する旨の前記主起動信号が入力された場合は前記第2検出回路による検出結果を選択し、
     前記第2選択回路は、前記第2電圧レギュレータを立ち下げた後に前記第1電圧レギュレータを立ち下げる旨を前記選択信号が指定しかつ前記電源回路を停止する旨の前記主起動信号が入力された場合は前記第2停止電位を選択し、前記第1電圧レギュレータを立ち下げた後に前記第2電圧レギュレータを立ち下げる旨を前記選択信号が指定しかつ前記電源回路を停止する旨の前記主起動信号が入力された場合は前記第1検出回路による検出結果を選択する
     ことを特徴とする請求項2記載の電源回路。
  6.  前記調整回路はさらに、
     前記第2検出回路による検出結果を前記第1選択回路に対して出力する時刻を遅延させる第1遅延回路、
     前記第1検出回路による検出結果を前記第2選択回路に対して出力する時刻を遅延させる第2遅延回路、
     のうち少なくともいずれかを備える
     ことを特徴とする請求項2記載の電源回路。
  7.  前記調整回路はさらに、
     前記第2検出回路による検出結果と、前記第1電圧レギュレータを停止するよう指定する第1停止電位とのいずれかを選択して出力する第3選択回路、
     前記第1検出回路による検出結果と、前記第2電圧レギュレータを停止するよう指定する第2停止電位とのいずれかを選択して出力する第4選択回路、
     前記電源回路を起動する旨の前記主起動信号が入力された場合は前記第1および第2選択回路からの出力を前記第1および第2起動信号としてそれぞれ出力し、前記電源回路を停止する旨の前記主起動信号が入力された場合は前記第3および第4選択回路からの出力を前記第1および第2起動信号としてそれぞれ出力する、論理回路、
     を備えることを特徴とする請求項2記載の電源回路。
  8.  前記電源回路は、前記選択信号が指定する動作順序を表すビット値を格納する記憶素子を備え、
     前記第1、第2、第3、および第4選択回路は、前記記憶素子が格納しているビット値を選択入力として取得し、その選択入力にしたがって出力を選択する
     ことを特徴とする請求項7記載の電源回路。
  9.  前記調整回路は、
      前記第1電圧レギュレータを起動または停止する第1起動信号と、前記第2電圧レギュレータを起動または停止する第2起動信号とを出力し、
     前記電源回路はさらに、
      前記調整回路と同じ構成を有する第2調整回路、
      前記調整回路が出力する前記第1起動信号と前記第2調整回路が出力する前記第1起動信号との論理積を前記第1電圧レギュレータに対して出力する第1論理回路、
      前記調整回路が出力する前記第2起動信号と前記第2調整回路が出力する前記第2起動信号との論理積を前記第2電圧レギュレータに対して出力する第2論理回路、
     を備えることを特徴とする請求項1記載の電源回路。
  10.  前記電源回路はさらに、前記選択信号を指定する外部入力を受け取る入力端子を備える
     ことを特徴とする請求項1記載の電源回路。
PCT/JP2017/034630 2016-11-25 2017-09-26 電源回路 WO2018096776A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112017005367.6T DE112017005367B4 (de) 2016-11-25 2017-09-26 Stromversorgungsschaltung
JP2018552432A JP6726300B2 (ja) 2016-11-25 2017-09-26 電源回路
US16/340,342 US10664033B2 (en) 2016-11-25 2017-09-26 Power supply circuit
CN201780069425.XA CN109964197B (zh) 2016-11-25 2017-09-26 电源电路

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-229234 2016-11-25
JP2016229234 2016-11-25

Publications (1)

Publication Number Publication Date
WO2018096776A1 true WO2018096776A1 (ja) 2018-05-31

Family

ID=62195795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/034630 WO2018096776A1 (ja) 2016-11-25 2017-09-26 電源回路

Country Status (5)

Country Link
US (1) US10664033B2 (ja)
JP (1) JP6726300B2 (ja)
CN (1) CN109964197B (ja)
DE (1) DE112017005367B4 (ja)
WO (1) WO2018096776A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3913466B1 (en) * 2020-05-20 2023-12-13 NXP USA, Inc. Safety monitoring of power-up and/or power-down of a power management device
CN111813037A (zh) * 2020-06-11 2020-10-23 中国长城科技集团股份有限公司 一种开机控制方法、开机控制装置及电子设备
TWI747650B (zh) * 2020-12-08 2021-11-21 香港商冠捷投資有限公司 電源轉換裝置及直流至直流轉換模組

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54124238A (en) * 1978-03-20 1979-09-27 Hitachi Ltd Sequential circuit of power source
JPH0383445U (ja) * 1989-12-14 1991-08-26
JPH04289725A (ja) * 1991-03-15 1992-10-14 Fujitsu Ltd 電源の投入切断回路
JP2001184142A (ja) * 1999-12-27 2001-07-06 Hitachi Ltd 電源装置及び電源システム
JP2005253124A (ja) * 2004-03-01 2005-09-15 Fuji Electric Device Technology Co Ltd 電源起動回路、起動停止順序制御装置、および起動停止順序制御方法
JP2008206223A (ja) * 2007-02-16 2008-09-04 Fujitsu Ltd 電源回路、電源制御回路および電源制御方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3732190B2 (ja) * 2003-05-14 2006-01-05 ローム株式会社 レギュレータ用保護回路及びそれを備えた電源装置
US7484711B2 (en) * 2004-05-13 2009-02-03 Thomas & Betts International, Inc. Insert for aiding in wire pulling through conduit bodies
WO2006068012A1 (ja) * 2004-12-21 2006-06-29 Rohm Co., Ltd スイッチングレギュレータ
JP5039322B2 (ja) * 2006-05-09 2012-10-03 ローム株式会社 起動回路、方法ならびにそれを用いた低電圧誤動作防止回路、電源回路および電子機器
US20070290657A1 (en) * 2006-06-14 2007-12-20 David John Cretella Circuit and method for regulating voltage
US7944248B2 (en) * 2008-04-17 2011-05-17 Altera Corporation Techniques for measuring voltages in a circuit
JP5867173B2 (ja) 2012-03-05 2016-02-24 株式会社リコー 電源起動制御装置
KR102138936B1 (ko) * 2013-11-11 2020-07-28 삼성전자주식회사 전력 공급 장치 및 그것을 이용한 전력 공급 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54124238A (en) * 1978-03-20 1979-09-27 Hitachi Ltd Sequential circuit of power source
JPH0383445U (ja) * 1989-12-14 1991-08-26
JPH04289725A (ja) * 1991-03-15 1992-10-14 Fujitsu Ltd 電源の投入切断回路
JP2001184142A (ja) * 1999-12-27 2001-07-06 Hitachi Ltd 電源装置及び電源システム
JP2005253124A (ja) * 2004-03-01 2005-09-15 Fuji Electric Device Technology Co Ltd 電源起動回路、起動停止順序制御装置、および起動停止順序制御方法
JP2008206223A (ja) * 2007-02-16 2008-09-04 Fujitsu Ltd 電源回路、電源制御回路および電源制御方法

Also Published As

Publication number Publication date
JPWO2018096776A1 (ja) 2019-10-17
US10664033B2 (en) 2020-05-26
CN109964197A (zh) 2019-07-02
DE112017005367B4 (de) 2023-03-16
DE112017005367T5 (de) 2019-08-01
US20200042060A1 (en) 2020-02-06
CN109964197B (zh) 2023-04-07
JP6726300B2 (ja) 2020-07-22

Similar Documents

Publication Publication Date Title
US7449926B2 (en) Circuit for asynchronously resetting synchronous circuit
US9329210B1 (en) Voltage monitoring circuit
US9819223B2 (en) Power supply device and power supply method using the same
KR102713391B1 (ko) 파라미터의 에러를 검출하는 파라미터 모니터링 회로, 듀티 사이클 정정 회로 및 임피던스 정정 회로
US9589657B2 (en) Internal power supply voltage auxiliary circuit, semiconductor memory device and semiconductor device
US9612644B2 (en) Semiconductor device with power on reset circuitry
JP4492394B2 (ja) マイクロコンピュータ
WO2018096776A1 (ja) 電源回路
US20170012523A1 (en) Apparatuses and methods for charge pump regulation
KR100880831B1 (ko) 시스템 및 그것의 부트 코드 로딩 방법
US9373366B2 (en) Nonvolatile memory device and method of operating the same
US7873769B2 (en) Micro controller unit (MCU) capable of increasing data retention time and method of driving the MCU
US20110110173A1 (en) Signal generating circuit and related storage apparatus
US9639410B2 (en) Load-control backup signal generation circuit
US10565405B2 (en) Smart card device, system including the same and method of operating smart card system
US8513979B2 (en) Integrated circuit and related controlling method
US9741401B2 (en) Reception circuit for reducing current and electronic apparatus including the same
JP5428969B2 (ja) 画像形成装置
US8649237B2 (en) Power-up signal generation circuit
US8872564B2 (en) Semiconductor device
EP3211508B1 (en) Semiconductor device
JP6426208B2 (ja) 車両制御装置
TWI494946B (zh) 設置在記憶體裝置中且具有寬頻應用特性的延遲鎖定迴路系統以及動態改變設置在記憶體裝置中且具有寬頻應用特性之延遲鎖定迴路系統中的延遲電路的供應電壓的方法
JP5738724B2 (ja) トリミング回路、システム、判定プログラム、確認方法、及び判定方法
JP4438535B2 (ja) 電圧検出器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17873656

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018552432

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17873656

Country of ref document: EP

Kind code of ref document: A1